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Abstract
In the rank modulation scheme for flash memories, permutation codes have been studied.
In this paper, we study perfect permutation codes in Sn , the set of all permutations on n
elements, under the Kendall τ -metric. We answer one open problem proposed by Buzaglo
and Etzion. That is, proving the nonexistence of perfect codes in Sn , under the Kendall τ -
metric, for more values of n. Specifically, we present the polynomial representation of the
size of a ball in Sn under the Kendall τ -metric for some radius r , and obtain some sufficient
conditions of the nonexistence of perfect permutation codes. Further, we prove that there
does not exist a perfect t-error-correcting code in Sn under the Kendall τ -metric for some n
and t = 2, 3, 4, 5, or 5
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1 Introduction

Flash memory is a non-volatile storage medium that is both electrically programmable and
erasable. The rank modulation scheme for flash memories has been proposed in [7]. In this
scheme, a permutation corresponds to a relative ranking of all the flash memory cells’ levels.
A permutation code is a nonempty subset of Sn , where Sn is the set of all the permutations
over {1, 2, . . . , n}. Permutation codes have been studied under various metrics, such as the
�∞-metric [9,13,15], the Ulam metric [4], and the Kendall τ -metric [1,8,12,16].

In this paper, we will focus on permutation codes under the Kendall τ -metric. TheKendall
τ -distance [15] between two permutations π, σ ∈ Sn is the minimum number of adjacent
transpositions required to obtain the permutation σ from π , where an adjacent transposition
is an exchange of two distinct adjacent elements. Permutation codes under the Kendall τ -
distance with minimum distance d can correct up to

⌊ d−1
2

⌋
errors. Let AK (n, d) be the

maximum size of a permutation code in Sn with minimum Kendall τ -distance at least d . The
bounds on AK (n, d) were proposed in [2,8,11,14]. Some t-error-correcting codes in Sn were
constructed in [1,6,8,17,18]. Buzaglo and Etzion [2] proved that there does not exist a perfect
single-error-correcting code in Sn , where n > 4 is a prime or 4 ≤ n ≤ 10. They further
[2] proposed the open problem to prove the nonexistence of perfect codes in Sn , under the
Kendall τ -metric, for more values of n and/or other distances. In this paper, we give some
sufficient conditions of the nonexistence of perfect permutation codes. Moreover, we prove
that there does not exist a perfect t-error-correcting code in Sn under the Kendall τ -metric
for some n and t = 2, 3, 4, 5, or 5

8

(n
2

)
< 2t + 1 ≤ (n

2

)
. Specially, we prove that there does

not exist a perfect two-error-correcting code in Sn , where n + 2 > 6 is a prime. We also
prove that there does not exist a perfect three-error-correcting code in Sn , where n+1 > 6 is
a prime, or n2 + 2n− 6 has a prime factor p > n, or 4 ≤ n ≤ 33. We further prove that there
does not exist a perfect four-error-correcting code in Sn , where n + 1 > 6 or n + 2 > 7 is a
prime, or n2 + 3n − 12 has a prime factor p > n, or 5 ≤ n ≤ 19. We prove that there does
not exist a perfect five-error-correcting code in Sn , where n ≥ 16 or n+ 7 ≥ 12 is a prime or
n3 + 3n2 − 6n − 28 has a prime factor p > n. For 5

8

(n
2

)
< 2t + 1 ≤ (n

2

)
and n ≥ 5, we also

prove that there does not exist a perfect t-error-correcting code in Sn except for 2t +1 = (n
2

)
.

The rest of this paper is organized as follows. In Sect. 2, wewill give some basic definitions
for the Kendall τ -metric and for perfect permutation codes. In Sect. 3, we determine the size
of some balls with radius r in Sn under the Kendall τ -metric. In Sect. 4, we present some
sufficient conditions of the nonexistence of perfect permutation codes under the Kendall
τ -metric. In Sect. 5, we prove the nonexistence of a perfect t-error-correcting code in Sn for
some n and t = 2, 3, 4, 5, or 5

8

(n
2

)
< 2t + 1 ≤ (n

2

)
. Section 6 concludes this paper.

2 Preliminaries

In this section we give some definitions and notations for the Kendall τ -metric and perfect
permutation codes. In addition, we summarize some important known facts.

Let [n] denote the set {1, 2, . . . , n}. Let Sn be the set of all the permutations over [n]. We
denote by π � [π(1), π(2), . . . , π(n)] a permutation over [n]. For two permutations σ, π ∈
Sn , theirmultiplicationπ◦σ is denoted by the composition ofσ onπ , i.e.,π◦σ(i) = σ(π(i)),
for all i ∈ [n]. Under this operation, Sn is a noncommutative group of size |Sn | = n!. Denote
by εn � [1, 2, . . . , n] the identity permutation of Sn . Let π−1 be the inverse element of π ,
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Nonexistence of perfect permutation codes under the Kendall τ -metric 2513

for any π ∈ Sn . For an unordered pair of distinct numbers i, j ∈ [n], this pair forms an
inversion in a permutation π if i < j and simultaneously π(i) > π( j).

Given a permutation π = [π(1), π(2), . . . , π(i), π(i + 1), . . . π(n)] ∈ Sn , an adjacent
transposition is an exchange of two adjacent elements π(i), π(i + 1), resulting in the per-
mutation [π(1), π(2), . . . , π(i + 1), π(i), . . . π(n)] for some 1 ≤ i ≤ n − 1. For any two
permutations σ, π ∈ Sn , the Kendall τ -distance between two permutations π, σ , denoted by
dK (π, σ ), is the minimum number of adjacent transpositions required to obtain the permu-
tation σ from π . The expression for dK (π, σ ) [8] is as follows:

dK (σ, π) = |{(i, j) : σ−1(i) < σ−1( j) ∧ π−1(i) > π−1( j)}|. (1)

For π ∈ Sn , the Kendall τ -weight of π , denoted by wK (π), is defined as the Kendall
τ -distance between π and the identity permutation εn . Clearly, wK (π) is the number of
inversions in the permutation π . The Kendall τ -metric is right invariant [3] as follows. For
any three permutations π, σ, β ∈ Sn , we have

dK (π, σ ) = dK (π ◦ β, σ ◦ β). (2)

Definition 1 For 1 ≤ d ≤ (n
2

)
, C ⊆ Sn is an (n, d)-permutation code under the Kendall

τ -metric, if dK (σ, π) ≥ d for any two distinct permutations π, σ ∈ C .

For a permutation π ∈ Sn , the Kendall τ -ball of radius r centered at π , denoted as
Bn
K (π, r), is defined by Bn

K (π, r) � {σ ∈ Sn |dK (σ, π) ≤ r}. For a permutation π ∈ Sn , the
Kendall τ -sphere of radius r centered at π , denoted as SnK (π, r), is defined by SnK (π, r) �
{σ ∈ Sn |dK (σ, π) = r}. The size of a Kendall τ -ball or a τ -sphere of radius r does not
depend on the center of the ball or sphere under the Kendall τ -metric. Thus, we denote the
size of Bn

K (π, r) and SnK (π, r) as Bn
K (r) and SnK (r), respectively. We denote the largest size

of an (n, d)-permutation code under the Kendall τ -metric as AK (n, d). The sphere-packing
bound for permutation codes under the Kendall τ -metric is as follows:

Proposition 1 [8, Theorems 17 and 18]

AK (n, d) ≤ n!
Bn
K (

⌊ d−1
2

⌋
)
.

When d = 2r +1, an (n, 2r +1)-permutation codeC under the Kendall τ -metric is called
a perfect permutation code under the Kendall τ -metric if it attains the sphere-packing bound,
i.e., |C | · Bn

K (r) = n!. That is, the balls with radius r centered at the codewords of C form
a partition of Sn . A perfect (n, 2r + 1)-permutation code under the Kendall τ -metric is also
called a perfect r -error-correcting code under the Kendall τ -metric.

In [2], Buzaglo and Etzion proved that there does not exist a perfect one-error-correcting
code under the Kendall τ -metric if n > 4 is a prime or 4 ≤ n ≤ 10. Based on the above
definitions and notations, we will prove the nonexistence of a perfect t-error-correcting code
in Sn under the Kendall τ -metric for some n and t = 2, 3, 4, 5, or 5

8

(n
2

)
< 2t + 1 ≤ (n

2

)
by

using the sphere-packing upper bound and the properties of Bn
K (r) and SnK (r) in the following

sections.
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2514 X. Wang et al.

3 The size of a ball or a sphere with radius r in Sn under the Kendall
�-metric

In this section, we compute the size of a ball or a sphere with radius r in Sn under the
Kendall τ -metric and give polynomial representations of Bn

K (r) and SnK (r) for some r ,
respectively. Since Bn

K (r) does not depend on the center of the ball, we consider the ball
Bn
K (εn, r) which is a ball with radius r centered at the identity permutation εn and denote by

SnK (εn, r) � {σ ∈ Sn |dK (σ, εn) = wk(σ ) = r} the sphere centered at εn and of radius r .

3.1 The size of a sphere of radius r in Sn under the Kendall �-metric

In order to give the polynomial representation of SnK (r), we require some notations and
lemmas as follows. For a permutation π = [π(1), π(2), . . . , π(n)] ∈ Sn , the reverse of
π is the permutation πr � [π(n), π(n − 1), . . . , π(2), π(1)]. For all π ∈ Sn , we have
wK (π) ≤ (n

2

)
. For convenience, we denote SnK (r) = 0 for r ≥ (n

2

) + 1 or r < 0.

Lemma 1 [2, Lemma 1] For every π ∈ Sn,

wK (π) + wK (πr ) = dK (π, πr ) =
(
n

2

)
. (3)

By Lemma 1, we can obtain the following lemma.

Lemma 2 For any 0 ≤ i ≤ (n
2

)
,

SnK (i) = SnK
((n

2

)
− i

)
. (4)

Proof Letm = (n
2

)
. We just need to prove that |SnK (εn, i)| = |SnK (εn,m− i)|. First we define

a function f : SnK (εn, i) → SnK (εn,m − i), where f (π) = πr for any π ∈ SnK (εn, i).
If π ∈ SnK (εn, i), then wK (π) = i . By (3), wK (πr ) = (n

2

) − i = m − i . Hence,
f (π) ∈ SnK (εn,m − i). Moreover, we can easily prove that the function f is reasonable and
bijection. Thus, SnK (i) = SnK

((n
2

) − i
)
. 
�

Lemma 3 For any 0 ≤ r ≤ (n
2

)
, SnK (r) is the number of permutations with r inversions in

Sn.

Proof Since SnK (r) = |SnK (εn, r)| = |{σ ∈ Sn |dK (σ, εn) = wk(σ ) = r}|, by (1), we clearly
obtain that SnK (r) is the number of permutations with r inversions in Sn . 
�

When i = 0 or 1, SnK (0) = 1 and SnK (1) = n − 1. By Lemma 3, it is known that SnK (r)
is the Triangle of Mahonian numbers which has some recursive structure in the following
lemma. For the recursive structure of Mahonian numbers, we can see the Mahonian numbers
sequence A008302 [10].

Lemma 4 [10, FORMULA] For all 1 ≤ n and 1 ≤ i ≤ (n
2

)
,

SnK (i) =
i∑

j=max{0,i−(n−1)}
Sn−1
K ( j). (5)
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Moreover, for all 0 ≤ i ≤ (n
2

)
, we have

SnK (i) = SnK (i − 1) + Sn−1
K (i) − Sn−1

K (i − n),

where SnK (r) = 0 for r < 0.

By Lemma 4, we clearly obtain that SnK (i) is an increasing sequence for 0 ≤ i ≤ 1
2

(n
2

)
.

Moreover, we give the formula of SnK (i) by using some SmK ( j) for m < n and j < i in the
following lemma.

Lemma 5 For all 4 ≤ n and 3 ≤ i ≤ n − 1, there exists a unique integer t such that(t−1
2

)
< i ≤ (t

2

)
. Then, we have

SnK (i) = StK (

(
t

2

)
− i) +

i−1∑

l=t

i−1∑

j=i−l

SlK ( j) +
n−1∑

l=i

i−1∑

j=0

SlK ( j).

Proof When 3 ≤ n and 2 ≤ i ≤ n − 1, by (5), we have

SnK (i) − Sn−1
K (i) =

i−1∑

j=0

Sn−1
K ( j). (6)

In (6), we set n to i + 1, . . . , n and obtain n − i equations, respectively. Then by summing
all the equations, we have

SnK (i) − SiK (i) =
n−1∑

l=i

i−1∑

j=0

SlK ( j). (7)

For j and i such that 0 ≤ j < i ≤ l ≤ n − 1, if SlK ( j) and SiK (i) are known, then
by (7) we can compute SnK (i). In the following, we will compute SiK (i). When 5 ≤ i , then
i ≤ (i−1

2

)
. Hence, by (5), for 5 ≤ i , we obtain that

SiK (i) − Si−1
K (i) =

i−1∑

j=1

Si−1
K ( j).

For 5 ≤ i , we can find an integer t such that
(t−1

2

)
< i ≤ (t

2

)
and t < i . We also obtain

0 ≤
(
t

2

)
− i < i . (8)

Similarly,when 5 ≤ i , in (5),we set n to t+1, . . . , i and obtain i−t equations, respectively.
By summing all the equations, we have

SiK (i) − StK (i) =
i−1∑

l=t

i−1∑

j=i−l

SlK ( j). (9)

Combining (4), (8), and (9), we have

SiK (i) = StK (

(
t

2

)
− i) +

i−1∑

l=t

i−1∑

j=i−l

SlK ( j), (10)

for 5 ≤ i .
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When i = 4, S4K (4) = S4K (
(4
2

) − 4) = S4K (2). When i = 3, we have S3K (3) = S3K (
(3
2

) −
3) = S3K (0) = 1.

Therefore, if i ∈ {3, 4}, we choose t = i , and the second term of Equation (10) is zero.
Thus, in these cases, we still have the representation in (10).

By (7) and (10), we can obtain the expression of SnK (i) in the above lemma. 
�
Specifically, we give the polynomial representations of SnK (2) and SnK (3) for all 3 ≤ n as

follows.

Lemma 6 For all 3 ≤ n, we have

SnK (2) = n(n − 1)

2
− 1,

SnK (3) = n3 − 7n

6
.

Proof When i = 2, by (7), we have

SnK (2) − S2K (2) =
n−1∑

l=2

1∑

j=0

SlK ( j). (11)

Since SnK (0) = 1, SnK (1) = n − 1 and S2K (2) = 0, by (11), we have

SnK (2) =
n−1∑

l=2

1∑

j=0

SlK ( j) =
n−1∑

l=2

l = n(n − 1)

2
− 1. (12)

Similarly, when i = 3, by (7), we have

SnK (3) − S3K (3) =
n−1∑

l=3

2∑

j=0

SlK ( j). (13)

Since SnK (0) = 1, SnK (1) = n − 1, SnK (2) = n(n−1)
2 − 1, and S3K (3) = 1, by (13), we have

SnK (3) = S3K (3) +
n−1∑

l=3

2∑

j=0

SlK ( j) = 1 +
n−1∑

l=3

l2 + l − 2

2
= n3 − 7n

6
. (14)

According to (12) and (14), we can obtain the expressions of SnK (2) and SnK (3), respec-
tively. 
�

Here, we easily obtain S2K (0) = S2K (1) = 1. By Lemma 6, when n = 3, we have
S3K (0) = 1, S3K (1) = 2, S3K (2) = 2, and S3K (3) = 1. By Lemma 6 and Lemma 2, we have

S4K (0) = 1, S4K (1) = 3, S4K (2) = 5, S4K (3) = 6, S4K (4) = 5, S4K (5) = 3, and S4K (6) = 1.
If all the SnK ( j) for all n and j ≤ i − 1 are known, by Lemma 5, we can compute SnK (i)

for 4 ≤ n and 4 ≤ i ≤ n − 1. Next we present an example to compute SnK (i) in Lemma 5.

Example 1 When i = 4,
(3
2

)
< 4 ≤ (4

2

)
. Then, we obtain t = 4 in Lemma 5. Furthermore,

we have

SnK (4) = S4K (

(
4

2

)
− 4) +

3∑

l=4

i−1∑

j=i−l

SlK ( j) +
n−1∑

l=4

3∑

j=0

SlK ( j).
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By Lemma 6, we have S4K (
(4
2

) − 4) = S4K (2) = 5. Thus,

SnK (4) = 5 +
n−1∑

l=4

(
1 + (l − 1) + l(l − 1)

2
− 1 + l3 − 7l

6

) = n(n + 1)(n2 + n − 14)

24
.

In the following, we also give the formula of SnK (i) for all 5 ≤ n and n ≤ i ≤ (n−1
2

)
.

Lemma 7 For all 5 ≤ n and n ≤ i ≤ (n−1
2

)
, there exists a unique integer t such that

(t−1
2

)
< i ≤ (t

2

)
and t ≥ 4. Then, we have

SnK (i) = StK (

(
t

2

)
− i) +

i−1∑

l=t

i−1∑

j=i−l

SlK ( j) −
i−1∑

l=n

i−1∑

j=i−l

SlK ( j). (15)

Proof When 5 ≤ n and n ≤ i ≤ (n−1
2

)
, in (5), we set n to n + 1, . . . , i , respectively. Then

we obtain n − i equations and sum all the equations. Thus, we have

SiK (i) − SnK (i) =
i−1∑

l=n

i−1∑

j=i−l

SlK ( j). (16)

By (10) and (16), we have

SnK (i) = StK (

(
t

2

)
− i) +

i−1∑

l=t

i−1∑

j=i−l

SlK ( j) −
i−1∑

l=n

i−1∑

j=i−l

SlK ( j).

When i = n, the third term (i.e.,
∑i−1

l=n

∑i−1
j=i−l S

l
K ( j)) is zero. 
�

Example 2 When i = 5 and n = 5, we have
(3
2

)
< 5 ≤ (4

2

)
. Then, we obtain t = 4 in Lemma

7. Furthermore, by (15), we have

S5K (5) = S4K (

(
4

2

)
− 5) +

4∑

l=4

4∑

j=5−l

SlK ( j).

Thus, S5K (5) = S4K (1) + ∑4
j=1 S

4
K ( j) = 3 + (3 + 5 + 6 + 5) = 22.

For every 6 ≤ n, due to i = 5 ≤ n − 1, SnK (5) can be computed by Lemma 5.
Hence, if SnK ( j) are known for all 1 ≤ j ≤ i − 1 and n, we will compute SnK (i) for all

n in the next two steps. For 5 ≤ i , there exists a unique integer t such that
(t−1

2

)
< i ≤ (t

2

)
.

Then, for every 2 ≤ l ≤ t − 1, SlK (i) = 0. First, when t ≤ l ≤ i , if i >
⌊(l

2

)
/2

⌋
, we have

SlK (i) = SlK (
(l
2

) − i) where
(l
2

) − i < i ; otherwise, by Lemma 7, we compute SlK (i) for

i ≤
⌊(l

2

)
/2

⌋
. Second, when i + 1 ≤ l, we compute SlK (i) by Lemma 5.

When i = 5, we can compute SnK (5) for all n. Here, t = 4. Then, S4K (5) = S4K (
(4
2

)−5) =
S4K (1) = 3 and S5K (5) = 22 by Lemma 7 in Example 2. In the following, we will give the
formula of SnK (5) for all 6 ≤ n by Lemma 5.

Example 3 When i = 5 and 6 ≤ n, by Lemma 5 and (7), we have

SnK (5) = S5K (5) +
n−1∑

l=5

4∑

j=0

SlK ( j).

123
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By Examples 1 and 2 and Lemma 6, we have

SnK (5) = 22 +
n−1∑

l=5

(
1 + (l − 1) + l(l − 1)

2
− 1 + l3 − 7l

6
+ l(l + 1)(l2 + l − 14)

24

)

= (n − 1)(n4 + 6n3 − 9n2 − 74n − 120)

120

for all 5 ≤ n.

By Lemmas 2, 5, and 7, we can compute the value of SnK (i) for all 6 ≤ i and n as follows.

Proposition 2 When 6 ≤ i , we can compute SnK (i) for all 5 ≤ n by using Lemmas 2, 5, and
7.

Proof For all 0 ≤ i ≤ 5 and 3 ≤ n, all the SnK (i) are computed. We can compute SnK (i) for
all n by using SnK ( j) for all 1 ≤ j ≤ i − 1 and n.

First, we find an integer t such that
(t−1

2

)
< i ≤ (t

2

)
. For every t ≤ l ≤ i , if i >

⌊(l
2

)
/2

⌋
,

we have SlK (i) = SlK (
(l
2

) − i) where
(l
2

) − i < i ; else if i ≤
⌊(l

2

)
/2

⌋
, we compute SlK (i) by

Lemma 7. Second, for every i + 1 ≤ l, we compute SlK (i) by Lemma 5. So, we can obtain
SnK (i) for all 5 ≤ n and 6 ≤ i . 
�

3.2 The size of a ball of radius r in Sn under the Kendall �-metric

In this subsection, we will give the polynomial representation of the size of a ball with radius
r in Sn under the Kendall τ -metric by using SnK (r). We easily obtain the following lemma
about the relationship between Bn

K (r) and SnK (r).

Lemma 8 For any 0 ≤ r ≤ (n
2

)
, we have

Bn
K (r) =

r∑

l=0

SnK (l).

Given SnK (i) for all 0 ≤ i ≤ r − 1, by Lemmas 5, 7 and 8, we easily obtain the recursion
formula of Bn

K (r) in the following theorem.

Theorem 1 Suppose SnK (i) are known for all 0 ≤ i ≤ r − 1 and 5 ≤ n. If 4 ≤ r ≤
⌊

(n2)
2

⌋
,

there exists a unique integer t such that
(t−1

2

)
< r ≤ (t

2

)
. When 4 ≤ r ≤ n − 1, we have

Bn
K (r) =

r−1∑

l=0

SnK (l) + StK (

(
t

2

)
− r) +

r−1∑

l=t

r−1∑

j=r−l

SlK ( j) +
n−1∑

l=r

r−1∑

j=0

SlK ( j).

When n ≤ r ≤
⌊

(n2)
2

⌋
, we have

Bn
K (r) =

r−1∑

l=0

SnK (l) + StK (

(
t

2

)
− r) +

r−1∑

l=t

r−1∑

j=r−l

SlK ( j) −
r−1∑

l=n

r−1∑

j=r−l

SlK ( j).

123
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Specially, we have Bn
K (0) = 1 and Bn

K (1) = n. When r = 2, for all n ≥ 2, we have

Bn
K (2) =

2∑

l=0

SnK (l) = (1 + n − 1 + n(n − 1)

2
− 1) = (n + 2)(n − 1)

2
. (17)

When r = 3, for all n ≥ 3, we have

Bn
K (3) =

3∑

l=0

SnK (l) = (1+n−1+ n(n − 1)

2
−1+ n3 − 7n

6
) = (n + 1)(n2 + 2n − 6)

6
.

(18)

Example 4 When r = 4 and 4 ≤ n, by Example 1 and Theorem 1, we have

Bn
K (4) =

3∑

l=0

SnK (l) + S4K (

(
4

2

)
− 4) +

3∑

l=4

4−1∑

j=4−l

SlK ( j) +
n−1∑

l=4

3∑

j=0

SlK ( j)

= (n + 2)(n + 1)(n2 + 3n − 12)

24
. (19)

Moreover, when r = 5 and 5 ≤ n, by Example 3 and Theorem 1, we have

Bn
K (5) =

4∑

l=0

SnK (l) + SnK (5)

= (n + 7)n(n3 + 3n2 − 6n − 28)

120
. (20)

When r ≥ 6, we can compute Bn
K (r) by using Proposition 2 and Theorem 1.

4 Some sufficient conditions of the nonexistence of perfect
permutation codes

In this section, we will give some sufficient conditions of the nonexistence of a perfect
t-error-correcting code in Sn under the Kendall τ -metric.

4.1 The first sufficient condition of the nonexistence of perfect permutation codes

In this subsection, we present a sufficient condition of the nonexistence of a perfect t-error-
correcting code under the Kendall τ -metric by using the sphere-packing upper bound.

Lemma 9 For any 0 ≤ t ≤
⌊

(n2)−1
2

⌋
, if there exists a perfect t-error-correcting code C in Sn

under the Kendall τ -metric. Then, we must have

Bn
K (t) · |C | = n!.

That is, the necessary condition of the existence of a perfect t-error-correcting code in Sn
under the Kendall τ -metric is Bn

K (t)|n!.
Proof By the sphere-packing upper bound in Proposition 1, if there exists a perfect t-error-
correcting code C in Sn under the Kendall τ -metric, we must have Bn

K (t) · |C | = n!. Thus,
Bn
K (t)|n!. So, the necessary condition of the existence of a perfect t-error-correcting code in

Sn under the Kendall τ -metric is Bn
K (t)|n!. 
�
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According to Lemma 9, we have the following theorem which illustrate the nonexistence
of a perfect t-error-correcting code in Sn under the Kendall τ -metric.

Theorem 2 For any 0 ≤ t ≤
⌊

(n2)−1
2

⌋
, if Bn

K (t) has a prime factor p > n, then there does

not exist a perfect t-error-correcting code in Sn under the Kendall τ -metric.

Proof By Lemma 9, the necessary condition of the existence of a perfect t-error-correcting
code in Sn under the Kendall τ -metric is Bn

K (t)|n!. Since Bn
K (t) has a prime factor p > n,

we have Bn
K (t) � n!. So, we prove the above result. 
�

4.2 The second sufficient condition of the nonexistence of perfect permutation
codes

In this subsection, we give another sufficient condition of the nonexistence of a perfect t-
error-correcting code under the Kendall τ -metric by using some properties of Bn

K (r) and
SnK (r). For convenience, we define Sn,i � {π ∈ Sn |π(i) = 1} for any 1 ≤ i ≤ n. That is, π
is an element of Sn,i if 1 appears in the i-th position of π . Clearly, |Sn,i | = (n − 1)!.

For π ∈ Sn,k , let T
(t)
n,(k, j)(π) � Bn

K (π, t)∩ Sn, j for all 0 ≤ t ≤
⌊

(n2)−1
2

⌋
. In the following,

we prove that the size of T (t)
n,(k, j)(π) does not depend on π . For convenience, we denote the

size of T (t)
n,(k, j)(π) as T (t)

n,(k, j).

Lemma 10 For all 1 ≤ k, j ≤ n and any π ∈ Sn,k , the size of T
(t)
n,(k, j)(π) does not depend

on π .

Proof For any two distinct permutations π, σ ∈ Sn,k , we prove |T (t)
n,(k, j)(π)| = |T (t)

n,(k, j)(σ )|.
First, we have T (t)

n,(k, j)(π) = {β ∈ Sn |dK (π, β) ≤ t, β( j) = 1}. By (2), we get

T (t)
n,(k, j)(π) = {β ∈ Sn |dK (π, β) ≤ t, β( j) = 1}

= {β ∈ Sn |dK (εn, β ◦ π−1) ≤ t, β( j) = 1}
= {β ∈ Sn |dK (σ, β ◦ π−1 ◦ σ) ≤ t, β( j) = 1}.

Hence, |T (t)
n,(k, j)(π)| = |{β ∈ Sn |dK (σ, β ◦ π−1 ◦ σ) ≤ t, β( j) = 1}| = |{β ◦ π−1 ◦ σ ∈

Sn |dK (σ, β ◦ π−1 ◦ σ) ≤ t, β( j) = 1}|. Since β ◦ π−1 ◦ σ( j) = σ(π−1(β( j))) = 1,
we have |{β ◦ π−1 ◦ σ ∈ Sn |dK (σ, β ◦ π−1 ◦ σ) ≤ t, β( j) = 1}| = |{β ◦ π−1 ◦ σ ∈
Sn |dK (σ, β ◦ π−1 ◦ σ) ≤ t, β ◦ π−1 ◦ σ( j) = 1}|. Let γ = β ◦ π−1 ◦ σ . Then, we obtain
that |T (t)

n,(k, j)(π)| = |{β ◦ π−1 ◦ σ ∈ Sn |dK (σ, β ◦ π−1 ◦ σ) ≤ t, β ◦ π−1 ◦ σ( j) = 1}| =
|{γ ∈ Sn |dK (σ, γ ) ≤ t, γ ( j) = 1}| = |T (t)

n,(k, j)(σ )|. Thus, the size of T (t)
n,(k, j)(π) does not

depend on π . 
�

Similarly, the exchange between k and j in T (t)
n,(k, j) does not change the size of T

(t)
n,(k, j).

Lemma 11 For all 1 ≤ k, j ≤ n, we have

T (t)
n,(k, j) = T (t)

n,( j,k).
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Proof By Lemma 10, we only prove |T (t)
n,(k, j)(π)| = |T (t)

n,( j,k)(σ )| for any π ∈ Sn,k and

σ ∈ Sn, j . According to the definition of T (t)
n,(k, j)(π), we have

T (t)
n,(k, j)(π) = {β ∈ Sn |dK (π, β) ≤ t, β( j) = 1}

= {β ∈ Sn |dK (π ◦ β−1, εn) ≤ t, β( j) = 1}
= {β ∈ Sn |dK (π ◦ β−1 ◦ σ, σ ) ≤ t, β( j) = 1}.

Then, we get π ◦ β−1 ◦ σ(k) = σ(β−1(π(k))) = σ( j) = 1. Given π ∈ Sn,k and σ ∈ Sn, j ,
we obtain |{β ∈ Sn |dK (π ◦β−1 ◦σ, σ ) ≤ t, β( j) = 1}| = |{π ◦β−1 ◦σ ∈ Sn |dK (π ◦β−1 ◦
σ, σ ) ≤ t, π ◦ β−1 ◦ σ(k) = 1}|, i.e., |T (t)

n,(k, j)(π)| = |T (t)
n,( j,k)(σ )|. 
�

Assume that there exists a perfect t-error-correcting code C (t) ⊂ Sn . For any 1 ≤ i ≤ n,
we defineC (t)

n,i � C (t) ∩ Sn,i and xi � |C (t)
n,i |. SinceC (t) is a perfect t-error-correcting code, it

follows that for any two distinct permutations π, σ ∈ C (t) we have Bn
K (π, t)∩ Bn

K (σ, t) = ∅.
Moreover, we get

⋃
π∈C(t) Bn

K (π, t) = Sn . Clearly, we can obtain the following lemma.

Lemma 12 For all 1 ≤ i ≤ n, we have
⋃

1≤k≤n,π∈C(t)
n,k

T (t)
n,(k,i)(π) = Sn,i .

Proof For each permutation σ ∈ Sn,i , there must exist a codeword π ∈ C (t) such that
σ ∈ Bn

K (π, t), where π(k) = 1 for some k ∈ [n]. By the definition of T (t)
n,(k,i)(π), we have

σ ∈ T (t)
n,(k,i)(π). Hence,

⋃
1≤k≤n,π∈C(t)

n,k
T (t)
n,(k,i)(π) = Sn,i . 
�

For any two distinct permutations π ∈ C (t)
n,k and σ ∈ C (t)

n, j , the relationship between

T (t)
n,(k,i)(π) and T (t)

n,( j,i)(σ ) is given as follows.

Lemma 13 For any two distinct permutations π ∈ C (t)
n,k and σ ∈ C (t)

n, j , we have

T (t)
n,(k,i)(π)

⋂
T (t)
n,( j,i)(σ ) = ∅ for all 1 ≤ i ≤ n.

Proof Sinceπ, σ ∈ C (t) andπ �= σ , Bn
K (π, t)

⋂
Bn
K (σ, t) = ∅. Clearly, due to the definition

of T (t)
n,(k,i)(π), we have T (t)

n,(k,i)(π)
⋂

T (t)
n,( j,i)(σ ) = ∅ for all 1 ≤ i ≤ n. 
�

By Lemmas 12 and 13, for all 1 ≤ i ≤ n, we obtain that
∣∣∣∣∣∣∣

⋃

1≤k≤n,π∈C(t)
n,k

T (t)
n,(k,i)(π)

∣∣∣∣∣∣∣
=

n∑

k=1

∑

π∈C(t)
n,k

T (t)
n,(k,i) =

n∑

k=1

T (t)
n,(k,i)xk = |Sn,i | = (n − 1)!, (21)

where |C (t)
n,k | = xk .

Let x = (x1, x2, . . . , xn) and let I be the all-ones column vector. By (21), we have a
matrix form as

AxT = (n − 1)! · I, (22)

where A = (ai, j ) is an n × n matrix and ai, j = T (t)
n,( j,i).

Furthermore, we discuss the sum of every row in A as follows.

Lemma 14 For all 1 ≤ i ≤ n, we have
n∑

k=1

T (t)
n,(k,i) = Bn

K (t).
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Proof For all 1 ≤ i ≤ n andπ ∈ Sn,i , Bn
K (π, t) = Bn

K (π, t)
⋂

Sn = Bn
K (π, t)

⋂ ( ⋃n
k=1 Sn,k

) =⋃n
k=1

(
Bn
K (π, t)

⋂
Sn,k

)
. Since all the sets of Sn,k are pairwise disjoint, we have

Bn
K (t) = |Bn

K (π, t)| =
∣
∣
∣
∣
∣

n⋃

k=1

(
Bn
K (π, t)

⋂
Sn,k

)
∣
∣
∣
∣
∣

=
n∑

k=1

∣
∣
∣Bn

K (π, t)
⋂

Sn,k

∣
∣
∣

(a)=
n∑

k=1

T (t)
n,(i,k)

(b)=
n∑

k=1

T (t)
n,(k,i),

where
(a)= follows from the definition of T (t)

n,(i,k) and
(b)= follows from Lemma 11. 
�

By Lemma 14, we obtain that the sum of every row in A is equal to Bn
K (t). Then, it follows

that the linear equation system defined in (22) has a solution y = (n−1)!
Bn
K (t) · I . In order to discuss

the solutions of (22), we need the following lemma that is an immediate conclusion of the
well known Gerschgorin circle theorem [5].

Lemma 15 Let B = (bi, j ) be an n × n matrix. If |bi,i | >
∑

j �=i |bi, j | for all i , 1 ≤ i ≤ n,
then B is nonsingular.

Theorem 3 For any 0 ≤ t ≤
⌊

(n2)−1
2

⌋
, if T (t)

n,(i,i) ≥ Bn
K (t)
2 − 1 for all 1 ≤ i ≤ n and Bn

K (t)

has a prime factor p ≥ n, then there does not exist a perfect t-error-correcting code in Sn
under the Kendall τ -metric.

Proof If T (t)
n,(i,i) ≥ Bn

K (t)
2 − 1 for all 1 ≤ i ≤ n, by Lemma 15, then A is a nonsingular

matrix. Hence, y is the unique solution of (22). That is, we have x = y = (n−1)!
Bn
K (t) · I . If

Bn
K (t) has a prime factor p ≥ n and A is nonsingular, then (n−1)!

Bn
K (t) is not an integer and perfect

t-error-correcting codes do not exist. Hence, we prove the above result. 
�

4.3 The third sufficient condition of the nonexistence of perfect permutation codes

In this subsection, we give the third sufficient condition of the nonexistence of a perfect t-
error-correcting code under the Kendall τ -metric by using some upper bounds on AK (n, 2t+
1).

Lemma 16 [14, Theorem 23] If AK (n, 2t + 1) ≥ M, then
(⌈M

2

⌉

2

)
(2t + 2) +

(⌊M
2

⌋

2

)
(2t + 2) +

⌈
M

2

⌉ ⌊
M

2

⌋
(2t + 1) ≤

(
n

2

) ⌈
M

2

⌉ ⌊
M

2

⌋
.

Lemma 17 [2, Theorem 10] If 2
3

(n
2

)
< d ≤ (n

2

)
, then

AK (n, d) = 2.
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By Lemma 16, we present some sufficient conditions of the nonexistence of a perfect
t-error-correcting code in Sn under the Kendall τ -metric as follows.

Theorem 4 For any 1
2

(n
2

) ≤ 2t + 1 ≤ (n
2

)
, if Bn

K (t) · 4t+4
4t+3−(n2)

< n!, then there does not exist
a perfect t-error-correcting code in Sn under the Kendall τ -metric. Moreover, for 2

3

(n
2

)
<

2t + 1 ≤ (n
2

)
, if 2Bn

K (t) < n!, then there does not exist a perfect t-error-correcting code in
Sn under the Kendall τ -metric.

Proof By Lemma 16, if AK (n, 2t + 1) is even, then we have

AK (n, 2t + 1) ≤ 4t + 4

4t + 3 − (n
2

) (23)

for any 1
2

(n
2

) ≤ 2t + 1 ≤ (n
2

)
. If AK (n, 2t + 1) is odd, then we obtain

AK (n, 2t + 1) ≤
(n
2

) + 1

4t + 3 − (n
2

) (24)

for any 1
2

(n
2

) ≤ 2t + 1 ≤ (n
2

)
. When 1

2

(n
2

) ≤ 2t + 1 ≤ (n
2

)
, then 4t + 3 >

(n
2

) + 1. Hence, by
(23) and (24), for any 1

2

(n
2

) ≤ 2t + 1 ≤ (n
2

)
, we have AK (n, 2t + 1) ≤ 4t+4

4t+3−(n2)
. Moreover,

the necessary condition of the existence of a perfect t-error-correcting code in Sn under the
Kendall τ -metric is Bn

K (t) · AK (n, t) = n!. So, if Bn
K (t) 4t+4

4t+3−(n2)
< n!, then there does not

exist a perfect t-error-correcting code in Sn under the Kendall τ -metric.
When 2

3

(n
2

)
< 2t + 1 ≤ (n

2

)
, by Lemma 17, we have AK (n, 2t + 1) = 2. Thus, if

2Bn
K (t) < n!, then there does not exist a perfect t-error-correcting code in Sn under the

Kendall τ -metric. So, we prove the above result. 
�

5 The nonexistence of a perfect t-error-correcting code in Sn under the
Kendall �-metric

In the section, we will discuss the nonexistence of a perfect t-error-correcting code in Sn for
some n and t by using Theorems 2, 3 and 4.

5.1 The nonexistence of a perfect t-error-correcting code in Sn by using the first
condition

In this subsection, we use Theorem 2 to prove the nonexistence of perfect t-error-correcting
code in Sn for some n and t = 2, 3, 4, 5.

When t = 2, by (17), we have Bn
K (2) = (n+2)(n−1)

2 . By Theorem 2, we can prove the
nonexistence of a perfect two-error-correcting code in Sn , where n + 2 > 6 is a prime.

When t = 3, by (18), we have Bn
K (3) = (n+1)(n2+2n−6)

6 . First, if n + 1 > 6 is a prime,
then Bn

K (3) have a prime factor n+ 1 > n. Second, we compute n2 + 2n− 6 for 4 ≤ n ≤ 33
and obtain that (n+1)(n2 +2n−6) has a prime factor p > n except for n = 13 and n = 26.
If n = 13, B13

K (3) = 441 = 9 × 72. Thus, 441 � 13!. If n = 26, B26
K (3) = 3249 = 9 × 192.

Hence, 3249 � 26!. So, by Theorem 2, we can prove the nonexistence of a perfect three-error-
correcting code in Sn , where n + 1 > 6 is a prime, or n2 + 2n − 6 has a prime factor p > n,
or 4 ≤ n ≤ 33.
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When t = 4, by (19), we have Bn
K (4) = (n+1)(n+2)(n2+3n−12)

24 . First, if n + 1 > 6
or n + 2 > 7 is a prime, then Bn

K (3) have a prime factor p > n. Second, we compute
n2 + 3n − 12 for 5 ≤ n ≤ 19 and obtain that (n2 + 3n − 12)(n + 1)(n + 2) has a prime
factor p > n except for n = 13. If n = 13, B13

K (4) = 1715 = 5 × 73. Thus, 1715 � 13!. So,
by Theorem 2, we can prove the nonexistence of a perfect four-error-correcting code in Sn ,
where n + 1 > 6 or n + 2 > 7 is a prime, or n2 + 3n − 12 has a prime factor p > n, or
5 ≤ n ≤ 19.

When t = 5, by (20), Bn
K (5) = (n+7)n(n3+3n2−6n−28)

120 . By Theorem 2, we can prove the
nonexistence of a perfect five-error-correcting code in Sn , where n + 7 ≥ 12 is a prime or
n3 + 3n2 − 6n − 28 has a prime factor p > n.

By the above discussion, we have the following theorem.

Theorem 5 When t = 2, there does not exist a perfect two-error-correcting code in Sn, where
n + 2 > 6 is a prime. When t = 3, there does not exist a perfect three-error-correcting code
in Sn, where n + 1 > 6 is a prime, or n2 + 2n − 6 has a prime factor p > n, or 4 ≤ n ≤ 33.
When t = 4, there does not exist a perfect four-error-correcting code in Sn, where n+ 1 > 6
or n + 2 > 7 is a prime, or n2 + 3n − 12 has a prime factor p > n, or 5 ≤ n ≤ 19. When
t = 5, there does not exist a perfect five-error-correcting code in Sn, where n + 7 ≥ 12 is a
prime or n3 + 3n2 − 6n − 28 has a prime factor p > n.

5.2 The nonexistence of a perfect t-error-correcting code in Sn by using the second
condition

In this subsection, we use Theorem 3 to prove the nonexistence of perfect t-error-correcting
code in Sn for some n, t .When t = 1 or 5, Bn

K (t) has a factor n. Buzaglo andEtzion [2] proved
that A is nonsingular for n > 4 and therefore, there is no perfect single-error-correcting codes

in Sn if n ≥ 4 is a prime. In the following, we discuss the condition of T (5)
n,(i,i) ≥ Bn

K (5)
2 − 1

for all 1 ≤ i ≤ n which makes A nonsingular.

First, due to Bn
K (5) = n(n+7)(n3+3n2−6n−28)

120 , we obtain that Bn
K (5) has a prime factor

p > n for all 5 ≤ n ≤ 16 except for B7
K (5) = 73 and B11

K (5) = 24 × 3 × 5 × 11. By
Theorem 2, we obtain that there is no perfect five-error-correcting codes in Sn for 5 ≤ n ≤ 10

or 12 ≤ n ≤ 16. Second, we only consider the condition of T (5)
n,(i,i) ≥ Bn

K (5)
2 − 1 for all

1 ≤ i ≤ n, where n ≥ 17.
When i = 1 and π ∈ Sn,1, we obtain all the elements of T (5)

n,(1,1)(π) by only moving the
right n − 1 elements at most 5 adjacent transpositions. Hence, we have

T (5)
n,(1,1) = Bn−1

K (5).

In order to compute T (5)
n,(i,i) for 2 ≤ i ≤ n, we need the following lemmas.

Lemma 18 For all 1 ≤ i ≤ n, we have

T (5)
n,(i,i) = T (5)

n,(n+1−i,n+1−i).

Proof Choose π ∈ Sn,i and πr ∈ Sn,n+1−i . By Lemma 10, we obtain that

T (5)
n,(i,i) = |T (5)

n,(i,i)(π)| = |{β ∈ Sn |dK (π, β) ≤ 5, β(i) = 1}|,
and
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T (5)
n,(n+1−i,n+1−i) = |T (5)

n,(n+1−i,n+1−i)(π
r )|

= |{β ∈ Sn |dK (πr , β) ≤ 5, β(n + 1 − i) = 1}|.

We just need to prove that |T (5)
n,(i,i)(π)| = |T (5)

n,(n+1−i,n+1−i)(π
r )|. First we define a function

f : T (5)
n,(i,i)(σ ) → T (5)

n,(n+1−i,n+1−i)(σ
r ), where f (σ ) = σ r for any σ ∈ T (5)

n,(i,i)(π).

If β ∈ T (5)
n,(i,i)(π), then dK (β, π) ≤ 5 and β(i) = 1. Hence, dK (πr , βr ) ≤ 5 and

βr (n+1− i) = 1. Then, βr ∈ T (5)
n,(n+1−i,n+1−i)(π

r ). Moreover, we can easily prove that the

function f is reasonable and bijection. Thus, T (5)
n,(i,i) = T (5)

n,(n+1−i,n+1−i) for all 1 ≤ i ≤ n.
�
Lemma 19 For π, σ ∈ Sn,i and 2 ≤ i ≤ n − 1, let π = [a1, . . . ai−1, 1, ai+1, . . . , an]
and σ = [b1, . . . bi−1, 1, bi+1, . . . , bn]. If the number of different elements between
{a1, . . . , ai−1} and {b1, . . . , bi−1} is t , then dK (π, σ ) ≥ t2 + t .

Proof Assume that the former t elements between [a1, . . . ai−1] and [b1, . . . bi−1] are dif-
ferent. Then, for all 1 ≤ j, k ≤ t , we have that {a j , bk}, {1, a j } and {1, b j } in π and σ are
different ordered pairs. Thus, we have dK (π, σ ) ≥ t2 + t . 
�

By Lemma 18, we only consider T (5)
n,(i,i) for 2 ≤ i ≤ n − 2. By Lemma 19,

for π = [a1, . . . ai−1, 1, ai+1, . . . , an] ∈ Sn,i , we can divide T (5)
n,(i,i)(π) into two dis-

joint subsets as follows. For convenience, we denote by Fri (π) = ∪i−1
j=1{π( j)} a

set of the former i − 1 elements of π , i.e., Fri (π) = {a1, . . . ai−1}. Moreover, we
denote by Li (π) = {β|β(i) = 1, Fri (β) = Fri (π), and dK (β, π) ≤ 5} and
Ri (π) = {β|the number of different elements between Fri (π) and Fri (β) is1, β(i) =
1, and dK (β, π) ≤ 5}.

Lemma 20 Let 2 ≤ i ≤ n−2. For any π ∈ Sn,i , we obtain that T
(5)
n,(i,i)(π) = Li (π)∪ Ri (π)

and Li (π) ∩ Ri (π) = ∅.
Proof By the definitions of Li (π) and Ri (π), we clearly have Li (π) ∩ Ri (π) = ∅. Choose
β ∈ T (5)

n,(i,i)(π) and let t be the number of different elements between Fri (π) and Fri (β). By

Lemma 19, we obtain that dK (β, π) ≥ t2 + t . Since β ∈ T (5)
n,(i,i)(π), we have dK (β, π) ≤ 5

and t ≤ 1. Hence, if t = 1, then β ∈ Ri (π). If t = 0, then β ∈ Li (π). So, we obtain that
T (5)
n,(i,i)(π) = Li (π) ∪ Ri (π) and Li (π) ∩ Ri (π) = ∅. 
�

Example 5 Let n = 11 and π = [3, 2, 1, 4, 5, 6, 7, 8, 9, 10, 11]. Consider T (5)
11,(3,3)(π),

we obtain the two kinds of permutations in T (5)
11,(3,3)(π). By using an adjacent transpo-

sitions on the former 2 elements of π , we obtain the first kind of permutation σ =
[2, 3, 1, 4, 5, 6, 7, 8, 9, 10, 11]. By using three adjacent transpositions on the elements
{3, 1, 4} of σ , we obtain the second kind of permutation σ ′ = [2, 4, 1, 3, 5, 6, 7, 8, 9, 10, 11]
(i.e., [2, 3, 1, 4, 5, 6, 7, 8, 9, 10, 11] → [2, 3, 4, 1, 5, 6, 7, 8, 9, 10, 11] → [2, 4, 3, 1, 5, 6, 7,
8, 9, 10, 11] → [2, 4, 1, 3, 5, 6, 7, 8, 9, 10, 11]).

By Lemma 10, the size of Li (π) and Ri (π) does not depend on π ∈ Sn,i . Then, we denote
by Li and Ri the size of Li (π) and Ri (π), respectively. The values of Li and Ri is given in
the following lemma and the proof of the next lemma is given in Appendix A.
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Lemma 21 For 2 ≤ i ≤ n − 1, we obtain that

Li =
5∑

t=0

Si−1
K (t)Bn−i

K (5 − t)

and

Ri =

⎧
⎪⎨

⎪⎩

Bn−2
K (2) + Bn−2

K (1) + Bn−2
K (0) if i = 2 or n − 1,

Bn−3
K (2) + 3Bn−3

K (1) + 3 if i = 3 or n − 2,
∑2

t=0 S
i−1
K (t)Bn−i

K (2 − t) + 2
∑1

t=0 S
i−1
K (t)Bn−i

K (1 − t) + 2 if 4 ≤ i ≤ n − 3,

where Si−1
K (t) = 0 for all t ≥ ( i−1

� i−1
2 �

)
.

By Lemma 21, when i = 3, 4 and 5, we have

T (5)
n,(2,2) = Bn−2

K (5) + Bn−2
K (2) + Bn−2

K (1) + 1, (25)

T (5)
n,(3,3) = Bn−3

K (5) + Bn−3
K (4) + Bn−3

K (2) + 3Bn−3
K (1) + 3, (26)

T (5)
n,(i,i) =

5∑

t=0

Si−1
K (t)Bn−i

K (5 − t) +
2∑

t=0

Si−1
K (t)Bn−i

K (2 − t) + 2
1∑

t=0

Si−1
K (t)Bn−i

K (1 − t) + 2,

(27)

for all 4 ≤ i ≤ n − 3, where Si−1
K (t) = 0 for all t ≥ ( i−1

� i−1
2 �

)
. By (17)–(20) and (25)–(27),

we compute the size of T (5)
n,(i,i) as follows. For all 1 ≤ i ≤ n, we have

T (5)
n,(i,i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
120 (n

5 + 5n4 − 15n3 − 65n2 − 46n + 120) if i = 1 or n,
1

120 (n
5 − 25n3 + 60n2 − 36n) if i = 2 or n − 1,

1
120 (n

5 − 45n3 + 120n2 + 164n − 480) if i = 3 or n − 2,
1

120 (n
5 − 45n3 + 60n2 + 344n − 240) if i = 4 or n − 3,

1
120 (n

5 − 45n3 + 60n2 + 224n) if i = 5 or n − 4,
1

120 (n
5 − 45n3 + 60n2 + 224n − 120) if 6 ≤ i ≤ n − 5,

(28)

where 16 ≤ n.
By (28), then we have

T (5)
n,(i,i) − Bn

K (5)

2
− 1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
240n

5 − 1
16n

3 − 1
4n

2 + 13
30n if i = 1 or n,

1
240n

5 − 1
24n

4 − 13
48n

3 + 19
24n

2 + 31
60n − 1 if i = 2 or n − 1,

1
240n

5 − 1
24n

4 − 7
16n

3 + 31
24n

2 + 131
60 n − 5 if i = 3 or n − 2,

1
240n

5 − 1
24n

4 − 7
16n

3 + 19
24n

2 + 221
60 n − 3 if i = 4 or n − 3,

1
240n

5 − 1
24n

4 − 7
16n

3 + 19
24n

2 + 161
60 n − 1 if i = 5 or n − 4,

1
240n

5 − 1
24n

4 − 7
16n

3 + 19
24n

2 + 161
60 n − 2 if 6 ≤ i ≤ n − 5.

(29)
By simple computations, for all n ≥ 16, we obtain that

T (5)
n,(i,i) − Bn

K (5)

2
− 1 > 0, (30)

for all 1 ≤ i ≤ n.
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By (30) and Theorem 3, if n ≥ 16 and t = 5, we have A is nonsingular. Thus there
does not exist a perfect five-error-correcting code in Sn if n ≥ 16 is a prime. By the above
discussion and Theorem 5, we have the following theorem.

Theorem 6 There does not exist a perfect five-error-correcting code in Sn, where n ≥ 16 is
a prime or n + 7 ≥ 12 is a prime or n3 + 3n2 − 6n − 28 has a prime factor p > n.

5.3 The nonexistence of a perfect t-error-correcting code in Sn by using the third
condition

In this subsection, we use Theorem 4 to prove the nonexistence of perfect t-error-correcting
code in Sn for some n and 5

8

(n
2

)
< 2t + 1 <

(n
2

)
.

Assume that 2
3

(n
2

)
< 2t + 1 ≤ (n

2

)
. If 2t + 1 = (n

2

)
, by Lemma 2 or Corollary 8 [2], we

have 2Bn
K (t) = n! and there exists a perfect t-error-correcting code in Sn under the Kendall

τ -metric. Otherwise, by Lemma 17, we obtain that 2Bn
K (t) < n! and there does not exist a

perfect t-error-correcting code in Sn under the Kendall τ -metric for all 2
3

(n
2

)
< 2t + 1 ≤ (n

2

)

except for 2t + 1 = (n
2

)
.

Let 2t + 1 = α
(n
2

)
for 5

8 ≤ α ≤ 2
3 . If AK (n, 2t + 1) is even, by (23), we have

AK (n, 2t + 1) < 1 + 1

2α − 1
≤ 5.

If AK (n, 2t + 1) is odd, by (24), we obtain

AK (n, 2t + 1) <
1

2α − 1
≤ 4.

Hence, we have that
AK (n, 2t + 1) ≤ 4 (31)

for all 5
8

(n
2

)
< 2t + 1 ≤ 2

3

(n
2

)
.

In order to prove the nonexistence of perfect t-error-correcting code in Sn for all 5
8

(n
2

)
<

2t + 1 ≤ 2
3

(n
2

)
, we need some lemmas in the following. The proof of the next lemma is given

in Appendix B.

Lemma 22 Let p, q be two integers such that 1 ≤ p < q and p + q ≤ 1
2

(n
2

)
. Then, we have

SnK (p) + SnK (q) + p − 2 < SnK (p + q)

for all n ≥ 6.

By Lemma 22, we can obtain the following lemma.

Lemma 23 For any n ≥ 5, we obtain that

4Bn
K

(⌊
1

3

(
n

2

)
− 1

2

⌋)
< n!. (32)

Proof By Lemma 2, we have Bn
K

(⌊ 1
2 (

(n
2

) − 1)
⌋) ≤ 1

2n!. In order to obtain the result in (32),
we only need to prove that

⌊
1
3 (

n
2)− 1

2

⌋

∑

i=0

SnK (i) <

⌊
1
2 ((n2)−1)

⌋

∑

i=
⌊
1
3 (

n
2)− 1

2

⌋
+1

SnK (i) (33)
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for all n ≥ 6.
Assume that

(n
2

) = 6m for somem ≥ 3. Then
⌊ 1
3

(n
2

) − 1
2

⌋ = 2m−1 and
⌊ 1
2 (

(n
2

) − 1)
⌋ =

3m − 1. Hence, we have ⌊
1
3 (

n
2)− 1

2

⌋

∑

i=0

SnK (i) =
2m−1∑

i=0

SnK (i)

and ⌊
1
2 ((n2)−1)

⌋

∑

i=
⌊
1
3 (

n
2)− 1

2

⌋
+1

SnK (i) =
3m−1∑

i=2m

SnK (i).

By Lemma 22, we have Sn(m+ t)+ Sn(m− t)+m− t −2 < Sn(2m) for all 1 ≤ t ≤ m−1.
Hence, we obtain Sn(m + t) + Sn(m − t) ≤ Sn(2m) for all 1 ≤ t ≤ m − 1. Since Sn(t) is a
strictly increasing sequence for 1 ≤ t ≤ 3m, then Sn(0) + Sn(m) ≤ Sn(2m). So, we have

(
Sn(0) + Sn(m)

) +
m−1∑

t=1

(
Sn(m + t) + Sn(m − t)

) ≤ mSn(2m) <

3m−1∑

i=2m

SnK (i). (34)

Therefore, when
(n
2

) = 6m and n ≥ 6, by (34), we can obtain this result of (33).
Similarly, when n ≥ 6 and

(n
2

) = 6m + s for any 1 ≤ s ≤ 5, we also have the result
in (33). Thus, when n ≥ 6, we obtain 4Bn

K

(⌊ 1
3

(n
2

) − 1
2

⌋)
< n!. Moreover, when n = 5,

we have 4B5
K

(⌊
1
3

(5
2

) − 1
2

⌋)
= 4B5

K (2) = 64 < 5!. So, when n ≥ 5, we prove the above

lemma. 
�
By (31) and Lemma 23, we can prove the following theorem.

Theorem 7 Let n ≥ 5. For any 5
8

(n
2

)
< 2t + 1 <

(n
2

)
, there does not exist a perfect t-error-

correcting code in Sn under the Kendall τ -metric. For 2t + 1 = (n
2

)
, there exists a perfect

t-error-correcting code in Sn under the Kendall τ -metric.

Proof When 2
3

(n
2

)
< 2t+1 <

(n
2

)
, by the above discussion, we have that there does not exist a

perfect t-error-correcting code in Sn under theKendall τ -metric except for 2t+1 = (n
2

)
.When

5
8

(n
2

)
< 2t +1 ≤ 2

3

(n
2

)
, by (31), we have AK (n, 2t +1) ≤ 4. Furthermore, by Lemma 23, we

obtain AK (n, 2t + 1) · Bn
K (t) < n! for 5

8

(n
2

)
< 2t + 1 ≤ 2

3

(n
2

)
. Thus, there does not exist a

perfect t-error-correcting code in Sn under the Kendall τ -metric for all 58
(n
2

)
< 2t+1 ≤ 2

3

(n
2

)
.

So, when 5
8

(n
2

)
< 2t + 1 <

(n
2

)
, there does not exist a perfect t-error-correcting code in Sn

under the Kendall τ -metric. For 2t + 1 = (n
2

)
, by Lemmas 2 and 17, we have AK (n, d) = 2

and 2Bn
K (t) = n!. Therefore, there exists a perfect t-error-correcting code in Sn under the

Kendall τ -metric for 2t + 1 = (n
2

)
. 
�

6 Conclusions

Permutation codes under the Kendall τ -metric have attracted lots of research interest due
to their applications in flash memories. In this paper, we considered the nonexistence of
perfect codes under the Kendalls τ -metric. We gave the polynomial representations of the
size of a ball or a sphere with radius r when t = 2, 3, 4, or 5. Moreover, we presented three
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sufficient conditions of the nonexistence of perfect permutation codes under the Kendall τ -
metric. Finally, we used these sufficient conditions to prove that there does not exist a perfect
t-error-correcting code in Sn under the Kendall τ -metric for some n and t = 2, 3, 4, 5, or
5
8

(n
2

)
< 2t + 1 ≤ (n

2

)
. Specifically, we proved that there does not exist a perfect two-error-

correcting code in Sn , where n + 2 > 6 is a prime. We also proved that there does not exist
a perfect three-error-correcting code in Sn , where n + 1 > 6 is a prime or n2 + 2n − 6 has
a prime factor p > n or 4 ≤ n ≤ 33. We further proved that there does not exist a perfect
four-error-correcting code in Sn , where n + 1 > 6 or n + 2 > 7 is a prime or n2 + 3n − 12
has a prime factor p > n or 5 ≤ n ≤ 19. We proved that there does not exist a perfect five-
error-correcting code in Sn , where n ≥ 16 or n + 7 ≥ 12 is a prime or n3 + 3n2 − 6n − 28
has a prime factor p > n. For 5

8

(n
2

)
< 2t + 1 ≤ (n

2

)
and n ≥ 5, we proved that there does not

exist a perfect t-error-correcting code in Sn except for 2t + 1 = (n
2

)
.
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Appendix A

The purpose of this appendix is to prove Lemma 21 given in Section 5.2.

Proof We choose any permutation β ∈ Li (π). Then β is obtained by applying some t
adjacent transpositions and at most 5− t adjacent transpositions on the former i −1 elements
of π and the latter n− i elements of π , respectively, where 0 ≤ t ≤ 5. Thus, these operations
can produce Si−1

K (t)Bn−i
K (5 − t) permutations. If t ≥ ( i−1

� i−1
2 �

)
, we have Si−1

K (t) = 0. So, the

size of the first kind of permutations is
∑5

t=0 S
i−1
K (t)Bn−i

K (5 − t).
Next, we choose π = [2, 1, 3, . . . , n] ∈ Sn,2 such that π(i) = i for all i ≥ 3. By Lemma

10, we obtain R2 = |R2(π)|. If σ ∈ R2(π), then we have σ(1) = 3, 4, or 5.When σ(1) = 3,
we can obtain that elements 2 and 3 are exchanged and this operation needs at least 3 adjacent
transpositions. Then the number of this kind of permutations in R2(π) is Bn−2

K (2). When
σ(1) = 4, we have that elements 2 and 4 are exchanged and this operation needs at least 4
adjacent transpositions. Hence, the number of this kind of permutations in R2(π) is Bn−2

K (1).
When σ(1) = 5, we obtain that elements 2 and 5 are exchanged and this operation needs at
least 5 adjacent transpositions. Hence, the number of this kind of permutations in R2(π) is
Bn−2
K (0). So when i = 2, we obtain that R2 = Bn−2

K (2) + Bn−2
K (1) + Bn−2

K (0). By Lemma
18, when i = n − 1, we also get Rn−1 = Bn−2

K (2) + Bn−2
K (1) + Bn−2

K (0).
Similarly, when i = 3 or n− 2, we can obtain that Ri = Bn−3

K (2)+ 3Bn−3
K (1)+ 3. When

4 ≤ i ≤ n−3, we can prove that Ri = ∑2
t=0 S

i−1
K (t)·Bn−i

K (2−t)+2
∑1

t=0 S
i−1
K (t)Bn−i

K (1−
t) + 2. 
�

Appendix B

The purpose of this appendix is to prove Lemma 22 given in Sect. 5.3.
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Proof In order to obtain this result, we first prove that when 1 ≤ p < q and p + q ≤ 1
2

(n
2

)
,

then
SnK (p) + SnK (q − 1) < SnK (q) + SnK (p − 1) (35)

by induction for all n ≥ 6.
When n = 6, we obtain

(6
2

) = 15. By Lemma 4, we compute S6K (t) to obtain that S6K (0) =
1, S6K (1) = 5, S6K (2) = 14, S6K (3) = 29, S6K (4) = 49, S6K (5) = 71, S6K (6) = 90, S6K (7) =
101. Hence, when n = 6, we clearly have that S6K (p) + S6K (q − 1) < S6K (q) + S6K (p − 1)
for 1 ≤ p < q ≤ 7 and p + q ≤ 7. So when n = 6, S6K (t) satisfies the condition in (35).

Now we assume that SmK (t) satisfies the condition in (35) for some integers m ≥ 6, that
is, if 1 ≤ p < q and p + q ≤ 1

2

(m
2

)
, then

SmK (p) + SmK (q − 1) < SmK (q) + SmK (p − 1). (36)

When n = m + 1, by Lemma 4, we obtain

Sm+1
K (q) = Sm+1

K (q − 1) + SmK (q) − SmK (q − m − 1)

Sm+1
K (p) = Sm+1

K (p − 1) + SmK (p) − SmK (p − m − 1)

for 1 ≤ p < q and p + q ≤ 1
2

(m+1
2

)
. Hence, we have

Sm+1
K (q) + Sm+1

K (p − 1) + SmK (p) + SmK (q − m − 1) = Sm+1
K (q − 1)

+Sm+1
K (p) + SmK (q) + SmK (p − m − 1). (37)

Using the induction hypothesis on SmK (q), we can obtain some results as follows. When
p ≥ m + 1, then 1 ≤ p − m < q and p + q − m − 1 < 1

2

(m
2

) − m
2 − 1. Thus, by (36), we

have
SmK (p − m) + SmK (q − 1) < SmK (q) + SmK (p − m − 1). (38)

Since q − 1 ≥ max{p, q −m − 1}, by (36), then SmK (p) + SmK (q −m − 1) < SmK (p −m) +
SmK (q − 1). Hence, by (38), we obtain SmK (p) + SmK (q −m − 1) < SmK (q) + SmK (p−m − 1).

When p < m+1, then SmK (p−m−1) = 0. If q < m+1, we also have SmK (q−m−1) = 0.
Since p < q , then SmK (p) < SmK (q). If q ≥ m + 1, then 1 ≤ p, q − m and p + q − m <
1
2

(m
2

) − m
2 . Hence, by (36), we obtain SmK (p) + SmK (q − m) ≤ SmK (p + q − m). Assume

q ≤ 1
2

(m
2

)
, then p+ q −m ≤ q . Since SmK (t) is an increasing sequence for all 0 ≤ t ≤ n

2

(m
2

)
,

then SmK (p+q−m) ≤ SmK (q). Assume 1
2

(m
2

)
< q and p+q ≤ 1

2

(m+1
2

)
, then

(m
2

)−q < 1
2

(m
2

)
.

By Lemma 2, SmK (q) = SmK (
(m
2

) − q). Since p + q − m <
(m
2

) − q <
(m
2

)
, we also have

SmK (p)+ SmK (q−m−1) < SmK (p)+ SmK (q−m) ≤ SmK (p+q−m) < SmK (
(m
2

)−q) = SmK (q).

By the above discussion, we always have SmK (p)+ SmK (q−m−1) < SmK (q)+ SmK (p−m−1)
for 0 ≤ p < q and p + q ≤ 1

2

(m+1
2

)
. By (37), we obtain that

Sm+1
K (q − 1) + Sm+1

K (p) < Sm+1
K (q) + Sm+1

K (p − 1),

for 1 ≤ p < q and p+ q ≤ 1
2

(m+1
2

)
. So, by induction, if 1 ≤ p < q and p+ q ≤ 1

2

(n
2

)
, then

SnK (p) + SnK (q − 1) < SnK (q) + SnK (p − 1). (39)

By (39), we obtain

SnK (p + q − t) + SnK (t) < SnK (p + q − t + 1) + SnK (t − 1)
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for all 1 ≤ t ≤ p < q and p + q ≤ 1
2

(n
2

)
. Hence, we can get

SnK (p) + SnK (q) + p − 1 < SnK (p + q) + SnK (0)

for 1 ≤ p < q and p + q ≤ 1
2

(n
2

)
. Since SnK (0) = 1, then we have

SnK (p) + SnK (q) + p − 2 < SnK (p + q)

for 1 ≤ p < q and p + q ≤ 1
2

(n
2

)
. 
�
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