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Abstract
In a study of multilength variable-weight optical orthogonal codes (MLVWOOCs), compat-
ible (N , M,W , 1, Q; 2) difference packing (briefly (N , M,W , 1, Q; 2)-CDP) set systems
play an important role. In this paper, a new consequence of Weil’s theorem on multiplicative
character sums is presented, some direct constructions of pairwise 2-compatible balanced
(n, g,W , 1) difference families (DFs) are obtained for W = {3, 4}, {3, 5}, and recursive
constructions for (N , M,W , 1, Q; 2)-CDP set systems are derived by means of semicyclic
group divisible designs (SCGDDs). Some series of compatible difference packing set systems
are produced, and several infinite classes of optimal MLVWOOCs are then obtained.

Keywords Difference packings · Multilength variable-weight optical orthogonal codes ·
Relative difference families · Semicyclic group divisible designs · Weil’s theorem on
multiplicative character sums
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1 Introduction

The following notations will be use in this paper.
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• Let Fq be the finite field of order q and F∗
q be its multiplicative group.

• For a positive integer n, let Zn be the residual-class ring of integers module n and nZnr

the unique additive subgroup {0, n, . . . , (r − 1)n} of order r in Znr . Obviously, Fn is
equal to Zn if n is a prime.

• Let W = {w1, . . . , wk} be an ordering of a set of k positive integers with each w j ≥ 3,
and η = max{w j : 1 ≤ j ≤ k}.

• Let Q = (q1, . . . , qk) be a k-tuple of positive rational numbers with
∑k

j=1 q j = 1.
• Let N = {n0, n1, . . . , nl−1} be a set of l positive integers and M = [m0,m1, . . . ,ml−1]

be an multi-set of l positive integers.
• For a non-empty subset of B ⊂ Zn , the list of differences of B is defined to be the

multiset �B = [b − b′ (mod n) : (b′, b) ∈ B × B, b �= b′].
• For non-empty subsets Be ⊂ Zne and Bs ⊂ Zns , the external difference list of ordered pair

(Be, Bs) is defined to be themultiset�E (Be, Bs) = [y−x (mod ne) : (x, y) ∈ Be×Bs].
An (n,W , 1) difference packing (briefly (n,W , 1)-DP) is a family F of w j -subsets (base
blocks) of Zn whose list of differences�F =⋃B∈F �B covers every element of Zn \{0} at
most once, where w j ∈ W . The number of base blocks inF is called its size. The difference
leave ofF is a proper subset Zn\�F of Zn , denoted byDL(F ). If Zn\�F forms an additive
subgroup H of Zn having order g, thenF is said to be g-regular [32] or a relative difference
family with parameters (n, g,W , 1) [6], shortly denoted by (n, g,W , 1)-DF. In this case, the
difference list �F contains each element of Zn \ H exactly once and no element from H .
When W = {w}, we will omit the braces. Many series of optimal constant-weight optical
orthogonal codes (CWOOCs) were produced by (n, g, w, 1)-DFs, the interested reader may
refer to [1,4,6,11,17,32,34] and the references therein. In particular, an (n, 1, w, 1)-DF is
usually called a difference family and simply denoted by (n, w, 1)-DF. For the existence of
(n, w, 1)-DFs, the interested reader may refer to [5,9,12,13] and the references therein.

An (n,W , 1, Q)-DPF is an (n,W , 1)-DP with the property that the ratio of base blocks
of size w j is q j , 1 ≤ j ≤ k. If the number of base blocks of size w j is 1

k |F | for 1 ≤ j ≤ k,
then an (n,W , 1)-DP is said to be balanced. Q is normalized if Q = ( a1b , . . . ,

ak
b ) with

gcd(a1, . . . , ak) = 1. From the definition of an (n,W , 1, Q)-DP with normalized Q, the
largest size of F is upper bounded by

b

⎢
⎢
⎢
⎢
⎢
⎢
⎣

n − 1
k∑

j=1
a jw j (w j − 1)

⎥
⎥
⎥
⎥
⎥
⎥
⎦

An (n,W , 1, Q)-DPF is said to be optimal if the largest size ofF reaches the upper bound.
Optimal (n,W , 1, Q)-DPs, which are related to optimal (n,W , 1, Q) variable-weight OOCs,
have been considered in several papers such as [10,30,36] and the references therein. Using
standard techniques in design theory, the following result is clear.

Lemma 1 If 1 ≤ g ≤ ∑k
j=1 a jw j (w j − 1), then an (n, g,W , 1, Q)-DF is optimal, where

Q = ( a1b , . . . ,
ak
b ) is normalized.

Suppose that ne and ns are any two positive integers (ne may be equal to ns). We give the
following definitions that are similar to the ones of [20]. For any non-empty subsets Be ⊂ Zne
and Bs ⊂ Zns , the external difference list �E (Be, Bs) contains a zero when |Be ∩ Bs | �= 0.
Clearly, the number of occurrences of θ ∈ Zne in �E (Be, Bs) is equal to

�(Be,Bs )(θ) = |(Be ⊕e θ) ∩ Bs |,
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where Bs can be regarded as a (multi) subset of Zne , and we call �(Be,Bs )(θ) the external
difference function with respect to the ordered pair (Be, Bs) over Zne . For any pair (θ, θ ′) ∈
Zne × Zns , if the following inequalities are satisfied:

�(Be,Bs )(θ) ≤ λ, (1)

�(Bs ,Be)(θ
′) ≤ λ, (2)

then Be and Bs are said to be λ-compatible. Let Be and Bs be an (ne,W , 1, Q)-DP and an
(ns,W , 1, Q)-DP, respectively. We say that two DPs Be and Bs are λ-compatible, if both
(1) and (2) hold for any base blocks Be ∈ Be and Bs ∈ Bs . From the definition, it is easy to
obtain the following result.

Lemma 2 Two (n,W , 1, Q)-DPs, sayB1 andB2, areλ-compatible if and only if�(B1,B2)(θ)

cannot exceed λ for any θ ∈ Zn, B1 ∈ B1 and B2 ∈ B2.

The following two results are from [35], which are analogous of those in [20].

Lemma 3 Let B be an (n,W , 1, Q)-DP and −B = {−B : B ∈ B}, then B and −B are
2-compatible.

Lemma 4 LetB andB′ be two (n,W , 1, Q)-DPs. If�(T ) �= �(T ′) for any two base blocks
B ∈ B, B ′ ∈ B′ and any triples T ⊆ B, T ′ ⊆ B ′, then B, B′, −B and −B′ are pairwise
2-compatible.

Research on pairwise λ-compatible (n,W , 1, Q)-DPs hasmainly concentrated on the case
λ = 2 (theminimum nontrivial value). Previous studies havemainly focused onW as a single
point set, that is, all blocks have the same size. In [2] and [3], Bao and Ji construct some
series of pairwise 2-compatible (n, g, w, 1)-DFs for w = 3, 4. For general W , as far as we
know, there are few results about the existence of pairwise 2-compatible (n, g,W , 1, Q)-DFs
except for some results on W = {3, 4} in [35]. In this paper, in addition to further studying
the case of W = {3, 4}, we also consider pairwise 2-compatible balanced (n, g,W , 1)-DFs
for W = {3, 5}.

The remainder of this paper is organized as follows. In Sect. 2, a new consequence o
Weil’s theorem on multiplicative character sums is presented. In Sect. 3, by using cyclo-
tomic classes, we can get some direct constructions of pairwise 2-compatible balanced
(n, g,W , 1)-DFs for W = {3, 4}, {3, 5}. Section 4 presents recursive constructions for com-
patible (N , M,W , 1, Q; 2) difference packing set systems by means of semicyclic group
divisible designs. Consequently, several infinite classes of optimal multilength variable-
weight optical orthogonal codes (MLVWOOCs) are produced in Sect. 5.

The paper contains many terminologies, for convenience, we summarize some of them in
Table 1.

2 A new consequence of Weil’s theorem onmultiplicative character
sums

Let q ≡ 1 (mod m) be prime power, once a primitive element θ of Fq has been fixed, then
Cm
0 will denote the subgroup of Fq generated by θm , we setCm

i = θ iCm
0 , i = 1, 2, . . . ,m−1.

We refer to the cosets Cm
0 ,Cm

1 , . . . ,Cm
m−1 of C

m
0 in Fq as the cyclotomic classes of index m.

A transversal of Cm
0 in F∗

q , denoted by F∗
q /Cm

0 , is a complete system of representatives for
the cosets of a subgroup Cm

0 of F∗
q .
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Table 1 Terminologies in this paper

Terminology Section/Page Terminology Section/Page

Compatible difference packing CDP 1/3 CDP set system 4/12

Cyclic difference matrix CDM 4/12 Difference family DF 1/2

CDF set system 4/12 Difference packing DP 1/2

Group divisible design GDD 4/13 Multilength variable-weight OOC 5/19

Semi-cyclic GDD 4/13 Strong difference family SDF 3/7

Variable-weight OOC 5/18

We first recall that a multiplicative character of Fq is a map χ from Fq to the complex
field C such that χ(0) = 0, χ(1) = 1 and χ(xy) = χ(x)χ(y) for any x, y ∈ Fq . Here is
the statement of the theorem of Weil on multiplicative characters sums (see Theorem 5.41 in
[19]).

Theorem 1 [19] Let χ be a multiplicative character of order m > 1 of Fq and let f ∈ Fq [x]
be a polynomial that is not of the form agm for some pair (a, g) ∈ Fq × Fq [x]. Then, we
have:

∣
∣
∣
∣
∣
∣

∑

x∈Fq
χ[ f (x)]

∣
∣
∣
∣
∣
∣
≤ (d − 1)

√
q

where d is the number of distinct roots of f in its splitting field over Fq .

The following important theorem is a consequence of the theoremofWeil onmultiplicative
character sums.

Theorem 2 [8] Let q ≡ 1 (mod m) be a prime power, let A = {a1, a2, . . . , ar } be an r -
subset of Fq , and (α1, α2, . . . , αr ) an element of Zr

m . Set X = {x ∈ Fq : x + ai ∈ Cm
αi

, i =
1, 2, . . . , r}, then we have

|X | ≥ q−U
√
q−rmr−1

mr and hence |X | > n as soon as q > 1
4

(
U +√U 2 + 4mr−1(r + mn)

)2
,

where U =
r∑

i=1

(r
i

)
(m − 1)i (i − 1).

For integers m ≥ 2, r ≥ 1, s ≥ 1 and n ≥ 0, let

Q(m, n, r , s) = 1

4

(
U +

√
U 2 + 4mr+s−1(r + mn)

)2
,

where

U =
r∑

i=1

(
r

i

)

(m − 1)i (i − 1) +
s∑

j=1

(
s

j

)

(m − 1) j (2 j − 1)

+
r∑

i=1

s∑

j=1

(
r

i

)(
s

j

)

(m − 1)i+ j (i + 2 j − 1).

In order to construct pairwise 2-compatible (n, g,W , 1, Q)-DFs withW = {3, 5}, we extend
Theorem 2 to the following result.
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Theorem 3 Let q ≡ 1 (mod m) be a prime power, A = {a1, a2, . . . , ar } an r-subset
of Fq and B = {(b1, c1), (b2, c2), . . . , (bs, cs)} an s-subset of Fq × Fq. For an r-tuple
(α1, α2, . . . , αr ) ∈ Zr

m and an s-tuple (β1, β2, . . . , βs) ∈ Zs
m. Set

X = {x ∈ Fq : x + ai ∈ Cm
αi

for i = 1, 2, . . . , r; x2 + b j x + c j ∈ Cm
β j

for j = 1, 2, . . . , s},
where each x2 + b j x + c j is not of the form gm for some g ∈ Fp[x], x2 + b j x + c j ,
j = 1, 2, . . . , s, are pairwise coprime and gcd(x + ai , x2 + b j x + c j ) = 1 for each pair
(i, j). Then we have

|X | ≥ q −U
√
q − (r + s)mr+s−1

mr+s
and hence |X | > n as soon as q > Q(m, n, r , s).

Proof Fix a primitive element θ of Fq and fix a primitive complex mth root of unity ε, let χ
be the multiplicative character of Fq of order m defined by

χ(x) = εl for x ∈ Cm
l , l = 0, 1, . . . ,m − 1;χ(0) = 0.

For each i = 1, 2, . . . , r and each j = 1, 2, . . . , s, let fi (x), g j (x) ∈ Fq [x] defined by
fi (x) = θm−αi (x+ai ) and g j (x) = θm−β j (x2+b j x+c j ), respectively. Clearly, x+ai ∈ Cm

αi

is equivalent to fi (x) ∈ Cm
0 , and x

2 + b j x + c j ∈ Cm
β j

is equivalent to g j (x) ∈ Cm
0 . We then

have

X = {x ∈ Fq : fi (x) ∈ Cm
0 for i = 1, 2, . . . , r; g j (x) ∈ Cm

0 for j = 1, 2, . . . , s}.
For each x ∈ Fq , each i = 1, 2, . . . , r and each j = 1, 2, . . . , s, we have

1 + χ[ fi (x)] + · · · + χ[ f m−1
i (x)] =

⎧
⎨

⎩

m, if fi (x) ∈ Cm
0 ;

0, if fi (x) ∈ F∗
q \ Cm

0 ;
1, if fi (x) = 0.

and

1 + χ[g j (x)] + · · · + χ[gm−1
j (x)] =

⎧
⎨

⎩

m, if g j (x) ∈ Cm
0 ;

0, if g j (x) ∈ F∗
q \ Cm

0 ;
1, if g j (x) = 0.

Now we consider the sum

S =
∑

x∈Fq
(

r∏

i=1

(1 + χ[ fi (x)] + · · · + χ[ f m−1
i (x)])

s∏

j=1

(1 + χ[g j (x)] + · · · + χ[gm−1
j (x)])).

It is not difficult to see that the contribution to S of a given element x ∈ Fq , namely the
product

r∏

i=1

(1 + χ[ fi (x)] + · · · + χ[ f m−1
i (x)])

s∏

j=1

(1 + χ[g j (x)] + · · · + χ[gm−1
j (x)])

is given by:

(1) mr+s if fi (x) ∈ Cm
0 for each i and g j (x) ∈ Cm

0 for each j , that is the case x ∈ X .
(2) mr+s−1 if fl(x) = 0, fi (x) ∈ Cm

0 for i ∈ {1, . . . , r} \ {l} and g j (x) ∈ Cm
0 for j ∈

{1, . . . , s}; or fi (x) ∈ Cm
0 for i ∈ {1, . . . , r}, gl(x) = 0, g j (x) ∈ Cm

0 for j ∈ {1, . . . , s}\
{l}. This is because fl(x) = 0 implies that all other fi (x) �= 0, and all g j (x) �= 0 since
a1, a2, . . . , ar are pairewise distinct, x2+b j x+c j , j = 1, 2, . . . , s are pairwise coprime,
and gcd(x+ai , x2+b j x+c j ) = 1 for each pair (i, j). The case for gl(x) = 0 is similar.
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(3) 0 in every other case.
It follows that

mr+s |X | ≤ |S| ≤ mr+s |X | + (r + s)mr+s−1.

Based on the notation of [8], we identify the set {0, 1, . . . ,m − 1}r with Zr
m . For

each α = (α1, . . . , αr ) ∈ Zr
m and each β = (β1, . . . , βs) ∈ Zs

m , let fα(x) =
f α1
1 (x) f α2

2 (x) · · · f αr
r (x) and gβ(x) = gβ1

1 (x)gβ2
2 (x) · · · gβs

s (x) be the polynomials of
Fq [x]. Obviously, expanding S we get

S =
∑

(α,β)∈Zr
m×Zs

m

∑

x∈Fq
χ( fα(x)gβ(x))

If 0 is the all zero r -tuple of Zr
m , we have f0(x) = 1. Similarly, g0(x) = 1. It follows

that χ( f0(x)g0(x)) = 1 for each x so that
∑

x∈Fq χ( f0(x)g0(x)) = q . So, we can write

S − q =
∑

(α,β)∈(Zr
m×Zs

m )\{(0,0)}

∑

x∈Fq
χ( fα(x)gβ(x)).

Now, for each α ∈ Zr
m \ {0}, we denote by w(α) the weight of α, namely the number

of nonzero coordinates of α. It is obvious that each fα(x) and each gβ(x) have exactly

w(α) and 2w(β) distinct roots in their splitting fields over Fq , respectively. By Theorem
1, we have
∣
∣
∣
∣
∣
∣

∑

x∈Fq
χ( fα(x)gβ(x))

∣
∣
∣
∣
∣
∣
≤ (w(α) + 2w(β) − 1)

√
q for any pair (α, β) ∈ (Zr

m × Zs
m) \ {(0, 0)}.

So, we have

q − |S| ≤ |S − q| ≤
∑

(α,β)∈(Zr
m×Zs

m )\{(0,0)}

∣
∣
∣
∣
∣
∣

∑

x∈Fq
χ( fα(x)gβ(x))

∣
∣
∣
∣
∣
∣

≤
∑

(α,β)∈(Zr
m×Zs

m )\{(0,0)}
(w(α) + 2w(β) − 1)

√
q

which gives

|S| ≥ q −
∑

(α,β)∈(Zr
m×Zs

m )\{(0,0)}
(w(α) + 2w(β) − 1)

√
q.

Whenw(α) �= 0 andw(β) = 0. For every fixed i ∈ {1, 2, . . . , r}, the number of elements
of Zr

m \ {0} such that w(α) = i is
(r
i

)
(m − 1)i .

When w(α) = 0 and w(β) �= 0. For every fixed j ∈ {1, 2, . . . , s}, the number of
elements of Zs

m \ {0} such that w(β) = j is
(s
j

)
(m − 1) j .

When w(α) �= 0 and w(β) �= 0. For every fixed i ∈ {1, 2, . . . , r} and every fixed
j ∈ {1, 2, . . . , s}, the number of elements of (Zr

m \ {0}) × (Zs
m \ {0}) such that w(α) +

w(β) = i + j is
(r
i

)(s
j

)
(m − 1)i+ j . So, we have

mr+s |X | + (r + s)mr+s−1 ≥ |S| ≥ q −U
√
q,
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where

U =
r∑

i=1

(
r

i

)

(m − 1)i (i − 1) +
s∑

j=1

(
s

j

)

(m − 1) j (2 j − 1)

+
r∑

i=1

s∑

j=1

(
r

i

)(
s

j

)

(m − 1)i+ j (i + 2 j − 1).

The assertion immediately follows. ��

It is easy to see that x2 + x + 1 is not the form of g2 for g ∈ Z p[x] when p �= 3. Applying
Theorem 3 with m = 2, n = 5, r = 3 and s = 1, one can obtain the following result.

Corollary 1 If p ≡ 1 (mod 2) is a prime and p > 834. Set X = {x ∈ Z p : x ∈ C2
1 , x − 1 ∈

C2
0 , x + 1 ∈ C2

1 , x
2 + x + 1 ∈ C2

0 }, then |X | > 5.

3 Direct constructions via cyclotomic classes

For W = {3, 4}, some direct constructions for pairwise 2-compatible balanced (n, g,W , 1)-
DFs are obtained in [35]. However, it is difficult to construct pairwise 2-compatible balanced
(n, g,W , 1)-DFs when η ≥ 5. In this section, in addition to further investigating direct
constructions of pairwise 2-compatible balanced (n, g,W , 1)-DFs for W = {3, 4}, we also
consider the case of W = {3, 5}.

The definition of a strong difference familywas introduced byM.Buratti [7]. An (n,W , μ)

strong difference family, or (n,W , μ)-SDF in short, is a familyF ofw j -subsets of Zn whose
list of differences �F = ⋃

B∈F �B covers every element of Zn exactly μ times, where
w j ∈ W . An (n,W , μ)-SDF is said to be balanced if the number of blocks of size w j is
1
k |F | for 1 ≤ j ≤ k. Strong difference families are very useful tools for constructing relative
difference families (see [7,8,21]).

Lemma 5 Let p ≡ 1 (mod 18) be a prime. If there exist d elements (x, y) of Z2
p satisfying

one of the following conditions:

(1) x ∈ C9
1 , x − 1 ∈ C9

4 , x + 1 ∈ C9
3 , y ∈ C9

5 and y3 − y ∈ C9
8 ;

(2) x ∈ C9
2 , x − 1 ∈ C9

8 , x + 1 ∈ C9
6 , y ∈ C9

1 and y3 − y ∈ C9
7 ;

(3) x ∈ C9
5 , x − 1 ∈ C9

2 , x + 1 ∈ C9
6 , y ∈ C9

7 and y3 − y ∈ C9
4 ;

(4) x ∈ C9
7 , x − 1 ∈ C9

1 , x + 1 ∈ C9
3 , y ∈ C9

2 and y3 − y ∈ C9
4 ,

where those x ′s are pairwise distinct and y′s are also pairwise distinct, then there are 2d
pairwise 2-compatible balanced (2p, 2, {3, 4}, 1)-DFs.

Proof We can identify Z2p with Z2 × Z p since gcd(p, 2) = 1. We first construct a balanced
(2, {3, 4}, 18)-SDF as follows: B1 = {0, 0, 0, 1}, B2 = {0, 0, 1, 1}, B3 = {0, 0, 1}, B4 =
{0, 0, 0}.

Let V = {(x, y) : x ∈ C9
1 , x − 1 ∈ C9

4 , x + 1 ∈ C9
3 , y ∈ C9

5 , y
3 − y ∈ C9

8 }. If
condition (1) is satisfied, then V �= ∅. For (x, y) ∈ V , let B(x, y) = ⋃3

i=1{B(i,x,t) : t ∈
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C9
0/{−1, 1}}⋃{B(y,t) : t ∈ C9

0/{−1, 1}}, where
B(1,x,t) = {(0, 0), (0, t), (0, xt), (1, x2t)},
B(2,x,t) = {(0, 0), (0, x2t), (1, x3t), (1, x4t)},
B(3,x,t) = {(0, 0), (0, x3t), (1, xt)},
B(y,t) = {(0, 0), (0, yt), (0, y3t)}.

We have
3⋃

i=1
�B(i,x,t)

⋃
�B(y,t) =⋃1

j=0{ j} × ({1,−1} · � j · t), where

�0 = {1, x, x − 1, x2, x4 − x3, x3, y, y3, y3 − y},
�1 = {x2, x2 − 1, x2 − x, x3, x3 − x2, x4, x4 − x2, x, x3 − x}.

If condition (1) is satisfied, each � j forms a transversal of Z∗
p/C

9
0 . We have

�B(x, y) =
⋃

t∈C9
0/{−1,1}

(

3⋃

i=1

�B(i,x,t)

⋃
�B(y,t))

=
⋃

t∈C9
0/{−1,1}

1⋃

j=0

{ j} × ({1,−1} · � j · t)

=
1⋃

j=0

{ j} × (Z p \ {0}) = Z2 × (Z p \ {0}),

hence eachB(x, y) and each−B(x, y)(=(−1,−1)·B(x, y)) is a balanced (2p, 2, {3, 4}, 1)-
DF. It is left to show that all B(x, y), −B(x, y) are pairwise 2-compatible.

For any twoelements (u, v), (x, y) ∈ V ,wewill prove that B ∈ B(x, y) and B ′ ∈ B(u, v)

are 2-compatible. Taking any base blocks B(1,x,t) ∈ B(x, y) and B(1,u,t ′) ∈ B(u, v), we
have �E (B(1,x,t), B(1,u,t ′)) as follows.

(0, 0) (0, t) (0, xt) (1, x2t)
(0,−t ′) (0, t − t ′) (0, xt − t ′) (1, x2t − t ′)
(0,−ut ′) (0, t − ut ′) (0, xt − ut ′) (1, x2t − ut ′)
(1,−u2t ′) (1, t − u2t ′) (1, xt − u2t ′) (0, x2t − u2t ′)

Obviously, the four differences in every row and every column are pairwise distinct. Each
element with the first coordinate being 1 occurs at most twice in �E (B(1,x,t), B(1,u,t ′)). In
the following, we discuss elements with the first coordinate being 0. Clearly, −1 ∈ C9

0
when p ≡ 1 (mod 18) is a prime. Note that t, t ′ ∈ C9

0 , x, u ∈ C9
1 , x − 1, u − 1 ∈ C9

4 ,
x + 1, u + 1 ∈ C9

3 , one can see that:

(1) An equality of the form xαt = −uβ t ′ where α, β ∈ {0, 1} is possible only for α = β.
(2) An equality of the form xα t = xβ t−uγ t ′ withα, β, γ ∈ {0, 1},α �= β is impossible; both

xαt = x2t − u2t ′ and −uαt ′ = x2t − u2t ′ with α ∈ {0, 1} are impossible; x2t − u2t ′ =
xαt − uβ t ′ with α, β ∈ {0, 1} and α �= β is impossible.

(3) Assume that t − t ′ = 0, then t = t ′. If xt − ut ′ = 0, we have xt = ut ′, then x = u,
that is a contradiction since x �= u. If x2t − u2t ′ = 0, we have x = −u. It follows that
x−1 = −(u+1), that is a contradiction since x−1 ∈ C9

3 and−(u+1) ∈ C9
4 . Similarly,

it is showed that {t − t ′, xt −ut ′, x2t −u2t ′} contains at most one element which is equal
to 0.
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(4) Assume that t − t ′ = xt − ut ′, then (x − 1)t = (u − 1)t ′. If t − t ′ = x2t − u2t ′, we
have x = u, that is a contradiction. Following a similar argument, we can show that the
equations t − ut ′ = xt − t ′ and t − ut ′ = x2t − u2t ′ can not established simultaneously.

The above four observations almost immediately imply that the list of external differences
�E (B(1,x,t), B(1,u,t ′)) cannot contain any element more than twice. Similarly, it is proved
that�E (B(i,x,t), B(i,u,t ′)),�E (B(i,x,t), B( j,u,t ′)),�E (B(i,x,t), B(v,t ′)) and�E (B(y,t), B(v,t ′))
cannot contain any element more than twice, where i, j = 1, 2, 3 and i �= j . Then,B(x, y)
and B(u, v) are 2-compatible from Lemma 2.

For any two elements (u, v), (x, y) ∈ V , a similar discussion shows that −B(x, y) and
−B(u, v) are 2-compatible and that B(x, y) and −B(u, v) are 2-compatible. So, we have
the conclusion.

Similarly, we can show that the conclusion is true when other conditions are satisfied. ��

Lemma 6 If p ≡ 1 (mod 18) is a prime, then there are four pairwise 2-compatible balanced
(2p, 2, {3, 4}, 1)-DFs.

Proof When p > 1478889, there are at least two elements x ∈ Z p satisfying x ∈ C9
1 ,

x − 1 ∈ C9
4 , x + 1 ∈ C9

3 in Lemma 5 by Theorem 2. For each fixed element x , we can pick
at least two elements y in such a way that y ∈ C9

5 and y3 − y ∈ C9
8 . Therefore, there exist

two elements (x, y) of Z2
p satisfying the condition (1) of Lemma 5. By Lemma 5, there are

four pairwise 2-compatible balanced (2p, 2, {3, 4}, 1)-DFs.
With the aid of computer, there are at least two elements (x, y) of Z2

p satisfying one
of the conditions in Lemma 5 for p < 1478889, and p /∈ {19, 37, 73, 127, 163, 181, 199,
271, 307, 379, 397, 523, 919}. Those two elements (x, y) of Z2

p are listed in Table 2 of
Appendix A for 109 ≤ p ≤ 991. Thus, there exist four pairwise 2-compatible balanced
(2p, 2, {3, 4}, 1)-DFs from Lemma 5.

For p ∈ {19, 37, 73}, the set Bp of base blocks of a balanced (2p, 2, {3, 4}, 1)-DF over
Z2p is displayed below. For 0 ≤ i ≤ ord(ξ) − 1, ξ iBp is also a balanced (2p, 2, {3, 4}, 1)-
DF where ord(ξ) stands for the order of ξ in the multiplier group of Z2p . We verify that
ξ iBp , i = 0, 1, 2, 3, form four pairwise 2-compatible balanced (2p, 2, {3, 4}, 1)-DFs for
(p, ξ, ord(ξ)) = (19, 5, 9), and ξ iBp , i = 0, 1, . . . , 8, form nine pairwise 2-compatible
balanced (2p, 2, {3, 4}, 1)-DFs for (p, ξ, ord(ξ)) = (37, 7, 9), (73, 37, 9).

B19 = {{0, 1, 3, 8}, {0, 4, 13, 24}, {0, 6, 21}, {0, 10, 22}}.
B37 = {{0, 1, 3, 7}, {0, 5, 13, 22}, {0, 10, 21, 33}, {0, 14, 29}{0, 16, 34}, {0, 19, 39}}.

B73 = {{0, 26, 34, 56}, {0, 122, 140}, {0, 135, 139}, {0, 9, 10, 75}, {0, 91, 93, 141}, {0, 37, 64, 97},
{0, 38, 52}, {0, 115, 134}, {0, 16, 111}, {0, 3, 39}, {0, 13, 72, 92}, {0, 25, 40, 83},
{0, 41, 125}, {0, 23, 68, 100}, {0, 28, 57, 104}{0, 17, 61}}.

For p ∈ {127, 163, 181, 199, 271, 307, 397, 523, 919}, we identify Z2p with Z2 × Z p . The
base blocksBp are listed in Appendix B, {(1, θ i t) ·Bp : t ∈ C9

0/{−1, 1}} and {(−1,−θ i t) ·
Bp : t ∈ C9

0/{−1, 1}}, i = 0, 1, form four pairwise 2-compatible balanced (2p, 2, {3, 4}, 1)-
DFs, where θ is a primitive root of Z p . Thus, there exist four pairwise 2-compatible balanced
(2p, 2, {3, 4}, 1)-DFs from Lemma 5. ��

Lemma 7 Let p ≡ 11 (mod 12) be a prime. If there exist d elements x of Z p satisfying
x ∈ C2

1 , x − 1 ∈ C2
0 , x + 1 ∈ C2

1 , x
2 + x + 1 ∈ C2

0 , then there are 2d pairwise 2-compatible
balanced (13p, 13, {3, 5}, 1)-DFs.
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Proof We can identify Z13p with Z13×Z p since gcd(p, 13) = 1.We first construct a balanced
(13, {3, 5}, 2)-SDF as follows: B1 = {0, 0, 1, 4, 6}, B2 = {0, 2, 5}. Clearly, B1 and B2 are
2-compatible.

Denote by X the set of elements x ∈ C2
1 such that x − 1 ∈ C2

0 , x + 1 ∈ C2
1 and

x2 + x + 1 ∈ C2
0 . If the conditions in this Lemma are satisfied, then X �= ∅. For x ∈ X , let

B(x) = {B(i,x,t) : i = 1, 2, t ∈ C2
0 }, where

B(1,x,t) = {(0, 0), (0, t), (1, xt), (4, x2t), (6, x3t)},
B(2,x,t) = {(0, 0), (2, xt), (5, x3t)}.

We have
⋃2

i=1 �B(i,x,t) =⋃ j∈Z13
{ j} × (� j · t), where

�0 = {−1, 1},�1 = {x, x − 1},�2 = {x3 − x2, x},�3 = {x2 − x, x3 − x},
�4 = {x2, x2 − 1},�5 = {x3 − x, x3},�6 = {x3, x3 − 1},� j = −�13− j , 7 ≤ j ≤ 12.

If the conditions in this Lemma are satisfied, each � j forms a transversal of Z∗
p/C

2
0 . We

have

�B(x) =
⋃

t∈C2
0

2⋃

i=1

�B(i,x,t) =
⋃

t∈C2
0

⋃

j∈Z13

{ j} × (� j · t)

=
⋃

j∈Z13

{ j} × (Z p \ {0}) = Z13 × (Z p \ {0}),

hence each B(x) and each −B(x) is a balanced (13p, 13, {3, 5}, 1)-DF. It is left to show
that all B(x), −B(x) are pairwise 2-compatible.

For any two elements x, y ∈ X , since B1 and B2 are 2-compatible, B(i,x,t) ∈ B(x) and
B( j,y,t ′) ∈ B(y) are 2-compatible for i, j ∈ {1, 2} and i �= j . In the following, we will prove
that B(i,x,t) ∈ B(x) and B(i,y,t ′) ∈ B(y) are 2-compatible for i = 1, 2. Taking any two base
blocks B(1,x,t) ∈ B(x) and B(1,y,t ′) ∈ B(y), we have �E (B(1,x,t), B(1,y,t ′)) as follows.

(0, 0) (0, t) (1, xt) (4, x2t) (6, x3t)
(0,−t ′) (0, t − t ′) (1, xt − t ′) (4, x2t − t ′) (6, x3t − t ′)

(−1,−yt ′) (−1, t − yt ′) (0, xt − yt ′) (3, x2t − yt ′) (5, x3t − yt ′)
(−4,−y2t ′) (−4, t − y2t ′) (−3, xt − y2t ′) (0, x2t − y2t ′) (2, x3t − y2t ′)
(−6,−y3t ′) (−6, t − y3t ′) (−5, xt − y3t ′) (−2, x2t − y3t ′) (0, x3t − y3t ′)

Obviously, the five differences in every row and every column are pairwise distinct. Each
element with the first coordinate being i �= 0 occurs at most twice in �E (B(1,x,t), B(1,y,t ′)),
we only need to discuss elements with the first coordinate being 0. Since p ≡ 11 (mod 12)
is a prime, −1 ∈ C2

1 and 3 ∈ C2
0 . Note that t, t ′ ∈ C2

0 , x, y ∈ C2
1 , x − 1, y − 1 ∈ C2

0 ,
x + 1, y + 1 ∈ C2

1 , x
2 + x + 1, y2 + y + 1 ∈ C2

0 , one can see that:

(1) An equality of the form t = xαt − yαt ′ where α ∈ {1, 2, 3} is impossible since xαt − t ∈
C2
i and yαt ′ ∈ C2

i+1, i = 0 or 1.
(2) An equality of the form −t ′ = xαt − yαt ′ where α ∈ {1, 2, 3} is impossible since

yαt ′ − t ′ ∈ C2
i and xαt ∈ C2

i+1, i = 0 or 1.
(3) Assume that t − t ′ = 0, then t = t ′. If xt − yt ′ = 0, then x = y, that is a contradiction

since x �= y. If x2t− y2t ′ = 0, we have x2− y2 = 0, then y = −x , that is a contradiction
since−x ∈ C2

0 , y ∈ C2
1 . If x

3t − y3t ′ = 0, we have x3 − y3 = 0, then (x − y)2 = −3xy,
that is a contradiction since (x − y)2 ∈ C2

0 and −3xy ∈ C2
1 . For fixed α ∈ {0, 1, 2, 3},
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if xαt − yαt ′ = 0, we can similarly prove that xβ t − yβ t ′ �= 0 for β ∈ {0, 1, 2, 3} and
β �= α.

(4) Assume that t − t ′ = xt − yt ′, then (x − 1)t = (y − 1)t ′. If t − t ′ = x2t − y2t ′, we have
x = y, that is a contradiction, hence the equations t−t ′ = xt− yt ′ and t−t ′ = x2t− y2t ′
can not hold simultaneously. If t − t ′ = x3t − y3t ′, we have x = −(y + 1), that is a
contradiction since x ∈ C2

1 and −(y + 1) ∈ C2
0 . So, the equations t − t ′ = xt − yt ′ and

t − t ′ = x3t − y3t ′ can not hold simultaneously. Following a similar argument, one can
show that the equations xt − yt ′ = x2t − y2t ′ and xt − yt ′ = x3t − y3t ′ can not hold
simultaneously.

The above four observations immediately imply that the list of external differences
�E (B(1,x,t), B(1,y,t ′)) cannot contain any elementmore than twice. Similarly, it is proved that
�E (B(2,x,t), B(2,y,t ′)) cannot contain any element more than twice. Then, B(x) and B(y)
are 2-compatible from Lemma 2.

For any two elements x, y ∈ X , a similar discussion shows that −B(x) and −B(y) are
2-compatible and that B(x) and −B(y) are 2-compatible. So, we have the conclusion. ��
Lemma 8 If p ≡ 11 (mod 12) is a prime, then there are ten pairwise 2-compatible balanced
(13p, 13, {3, 5}, 1)-DFs.
Proof When p > 834, there are at least five elements x ∈ Z p satisfying x ∈ C2

1 , x −1 ∈ C2
0 ,

x + 1 ∈ C2
1 , x

2 + x + 1 ∈ C2
0 from Corollary 1. By Lemma 7, there are ten pairwise

2-compatible balanced (13p, 13, {3, 5}, 1)-DFs.
With the aid of computer, there are five elements x ∈ Z p satisfying x ∈ C2

1 , x − 1 ∈ C2
0 ,

x +1 ∈ C2
1 , x

2 + x +1 ∈ C2
0 for 23 < p < 834 and p /∈ {47, 59, 71}. Those five elements x

of Z p are listed in Table 3 of Appendix A. So, there are ten pairwise 2-compatible balanced
(13p, 13, {3, 5}, 1)-DFs from Lemma 7.

For p ∈ {47, 59, 71}, there are three elements x ∈ Z p satisfying x ∈ C2
1 , x − 1 ∈ C2

0 ,
x + 1 ∈ C2

1 , x
2 + x + 1 ∈ C2

0 . Those three elements are listed as follow: (p; x ′s) =
(47; 10, 22, 29), (59; 23, 30, 54), (71; 21, 33, 41). By Lemma 7,B(x) and −B(x) form six
pairwise 2-compatible balanced (13p, 13, {3, 5}, 1)-DFs. Let θ be a primitive root of Z p . It
is easy to see that (1, θ) ·B(x) and −(1, θ) ·B(x) form six pairwise 2-compatible balanced
(13p, 13, {3, 5}, 1)-DFs. We check that B(x), −B(x), (1, θ) · B(x), −(1, θ) · B(x) form
twelve pairwise 2-compatible balanced (13p, 13, {3, 5}, 1)-DFs.

For p = 11, the set B of base blocks of a balanced (13p, 13, {3, 5}, 1)-DF is displayed
below. We take ξ = 14, and ord(ξ) = 5 stands for the order of ξ in the multiplier group of
Z13p . For 0 ≤ i ≤ord(ξ)−1, each ξ iB and each−ξ iB is also a balanced (13p, 13, {3, 5}, 1)-
DF. We check that these ten balanced (13p, 13, {3, 5}, 1)-DFs are pairwise 2-compatible.

B = {{0, 86, 94}, {0, 37, 118}, {0, 39, 42}, {0, 5, 9, 80, 98}, {0, 78, 142}, {0, 7, 112, 114, 129},
{0, 28, 41, 60, 87}, {0, 10, 58, 92, 127}, {0, 6, 30, 53, 73}, {0, 12, 52}}.

For p = 23,we identify Z13p with Z13×Z p . The base blocksA ′s listed belowand {(1, t)·A :
t ∈ C2

0 } forms a balanced (13p, 13, {3, 5}, 1)-DF, hence we verify that {(1, θ i t)·A : t ∈ C2
0 }

and {(−1,−θ i t) · A : t ∈ C2
0 }, i = 0, 1, form sixteen pairwise 2-compatible balanced

(13p, 13, {3, 5}, 1)-DFs, where θ is a primitive root of Z p .

{{(0, 0), (0, 1), (1, 14), (4, 12), (6, 7)}, {(0, 0), (2, 14), (5, 7)}};
{{(0, 0), (0, 1), (1, 19), (4, 16), (6, 5)}, {(0, 0), (2, 19), (5, 5)}};
{{(0, 0), (0, 1), (7, 7), (9, 12), (12, 14)}, {(0, 0), (8, 7), (11, 14)}};
{{(0, 0), (0, 1), (7, 5), (9, 16), (12, 19)}, {(0, 0), (8, 5), (11, 19)}}.
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��
Lemma 9 Let p ≡ 1 (mod 26) be a prime. If {x1, x2, x3, x4, x5, x1 −1, x2 −1, x3 −1, x2 −
x1, x3 − x1, x3 − x2, x5 − x4} are in different cosets among {C13

1 ,C13
2 , . . . ,C13

12 }, then there
are two pairwise 2-compatible balanced (p, {3, 5}, 1)-DFs.
Proof Let B = {B(i,t) : i = 1, 2, t ∈ C13

0 /{−1, 1}}, where B(1,t) = {0, t, x1t, x2t, x3t},
B(2,t) = {0, x4t, x5t}. We have�B(1,t) ∪�B(2,t) = {−1, 1} ·� · t , where� = {1, x1, x2, x3,
x4, x5, x1 − 1, x2 − 1, x3 − 1, x2 − x1, x3 − x1, x3 − x2, x5 − x4}. If the condition in this
Lemma is satisfied, then � forms a transversal of Z∗

p/C
13
0 . We have

�B =
⋃

t∈C13
0 /{−1,1}

(�B(1,t) ∪ �B(2,t)) =
⋃

t∈C13
0 /{−1,1}

({−1, 1} · � · t) = Z p \ {0},

hence B is a balanced (p, {3, 5}, 1)-DF. Clearly, −B is also a balanced (p, {3, 5}, 1)-DF.
Therefore, B and −B are 2-compatible from Lemma 3. ��
Lemma 10 If p ≡ 1 (mod 26) is a prime, then there exist two pairwise 2-compatible bal-
anced (p, {3, 5}, 1)-DFs.
Proof When p > 6.046652751×109, by Theorem 2 there exists a 5-tuple (x1, . . . , x5) of Z p

satisfying the condition of Lemma 9, hence there exist two pairwise 2-compatible balanced
(p, {3, 5}, 1)-DFs by Lemma 9.

With the aid of computer, there exist a 5-tuple (x1, . . . , x5) of Z p satisfying the condition
of Lemma 9 for any prime p ≡ 1 (mod 26) with 53 ≤ p < 6.046652751 × 109. These
5-tuple (x1, . . . , x5)′s are listed only for the first 18 values of p in Table 4 of Appendix A. ��

4 Recursive constructions

In this section, we are mainly trying to establish recursive constructions for (N , M,W , 1,
Q; 2)-CDP set systems by using semicyclic group divisible designs (SCGDDs).

4.1 Preliminaries

For any positive integer r and any subset B ⊆ Znr , we define the projection on Zn of B
to be the subset B ⊆ Zn obtained by taking each element of B modulo n. It must be an
multi-subset of Zn . It is clear that B = B when r = 1. For a familyF of subsets of Znr , we
define the projection on Zn of F as the collection of the all projections of its subsets.

As we know, we allow l pairwise 2-compatible DPs to be defined on the same cyclic
group. In order to distinguish, let n0, n1, . . . , nl−1 be l pairwise distinct positive integers. Let
B = {B0,B1, . . . ,Bl−1} be l pairwise 2-compatible DPs in whichBi is an (ni ,W , 1, Q)-
DP of size mi , 0 ≤ i ≤ l − 1, then we say that B is an (N , M,W , 1, Q; 2)-CDP set
system (or briefly a CDP set system if there is no need to list the parameters). If Bi is
a balanced (ni ,W , 1)-DP for each i , then B is said to be balanced. When each Bi is an
(ni , gi ,W , 1, Q)-DF, we make use of the notation CDF instead of CDP and denoted by N =
{(n0, g0), (n1, g1), . . . , (nl−1, gl−1)}. The size of B is the sum

∑l−1
i=0 mi . In the following,

we will state some known recursive constructions via cyclic difference matrices.
A (u, h, 1) cyclic difference matrix ((u, h, 1)-CDM in short) is an h × u matrix D =

(di j ) (0 ≤ i ≤ h − 1, 0 ≤ j ≤ u − 1) whose each entry is an integer of Zu such that for
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any two distinct rows i1 and i2, the list of di1 j − di2 j ( j = 0, 1, . . . u − 1) contains each
integer of Zu exactly once. Difference matrices have been studied extensively, see [14] and
the references therein. Here is one typical example.

Lemma 11 [14] Let u and h be integers with u ≥ h ≥ 3. If u is odd and the least prime
factor of u is not less than h, then there exists a (u, h, 1)-CDM. Especially, there exists a
(u, 4, 1)-CDM for any positive integer u with gcd(u, 6) = 1.

Construction 4 [35] Let r1, r2, . . . , rl−1 be l − 1 distinct positive integers such that an
(ri , η, 1)-CDM exists for i = 1, 2 . . . , l−1. Suppose that there exist l pairwise 2-compatible
(n, g,W , 1, Q)-DFs.

(1) Then, there exists an (N , M,W , 1, Q; 2)-CDF set system, where N = {(n, g),
(nr1, gr1), . . . , (nrl−1, grl−1)} and M = [t, tr1, . . . , trl−1

]
.

(2) Suppose further that there is a ({gr1, gr2, . . . , grl−1}, [m1,m2, . . . ,ml−1],W , 1, Q; 2)-
CDP set system and each base block contains at most two elements which are congruent

modulo g, then there is an (N ′, M ′,W , 1, Q; 2)-CDP set systemof size t+
l−1∑

i=1
(tri + mi ),

where N ′ = {n, nr1, . . . , nrl−1} and M ′ = [t, tr1 + m1, . . . , trl−1 + ml−1
]
.

Corollary 2 [35] Suppose that there are l pairwise 2-compatible (n, g,W , 1, Q)-DFs. Let
r1, r2, . . . , rs be s positive integers forwhich an (ri , η, 1)-CDMexists and there are l pairwise
2-compatible (gri , g,W , 1, Q)-DFs for 1 ≤ i ≤ s. Then, there are l pairwise 2-compatible
(nr1 · · · rs, g,W , 1, Q)-DFs.

Construction 5 [35] Let r1, r2, . . . , rl−1, g be positive integers such that gcd(r1r2 · · · rl−1, g)
= 1, there are l pairwise 2-compatible (n, g,W , 1, Q)-DFs and l − i pairwise 2-compatible
(nri , g,W , 1, Q)-DFs for 1 ≤ i ≤ l − 1 and such that an (ri , η, 1)-CDM exists for 1 ≤
i ≤ l − 1. If each base block of each (gri , g,W , 1, Q)-DF, 1 ≤ i ≤ l − 1, does not contain
three elements which are congruent modulo g, then there is an (N , M,W , 1, Q; 2)-CDF set
system, where

N = {(n, g), (nr1, g), (nr1r2, g), . . . , (nr1r2 · · · rl−1, g)}
and

M =
[

b(n − g)
∑k

j=1 a jw j (w j − 1)
,

b(nr1 − g)
∑k

j=1 a jw j (w j − 1)
, . . . ,

b(nr1 . . . rl−1 − g)
∑k

j=1 a jw j (w j − 1)

]

.

4.2 Recursive constructions via SCGDDs

A group divisible design K -GDD is a triple (V ,G ,B) satisfying the following properties:

(1) V is a v-set of points;
(2) G is a partition of V into subsets called groups;
(3) B is a collection of k-subsets of V called blocks, k ∈ K , such that a group and a block

contain at most one common point;
(4) every pair of points from distinct groups occurs in exactly one block.

The group type of the GDD is the list (|G| : G ∈ G ). The usual exponential notation will
be used to describe types. Thus, a GDD of type uh11 uh22 . . . uhss is one in which there are hi
groups of size ui for each i .
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Asemi-cyclic K -GDDwas introduced byYin for constructing optimal difference packings
[33]. Given positive integers h and u, define Ih = {0, 1, . . . , h − 1} and V = Ih × Zu . The
elements of V are denoted by (i, a), where i ∈ Ih and a ∈ Zu . A K -GDD of type uh on
Ih × Zu with the group set G = {{i} × Zu : i ∈ Ih} and the block set B is said to be semi-
cyclic, denoted by K -SCGDD of type uh , if for any B ∈ B, adding 1 ∈ Zu successively
to the second coordinate of each point of B ∈ B modulo u always gives u distinct blocks
of B. A (W , Q)-SCGDD of type uh is a W -SCGDD of type uh with the property that the
fraction of blocks of size w j is q j , 1 ≤ j ≤ k. A balancedW -SCGDD of type uh is simply a
(W , Q)-SCGDD of type uh with Q = ( 1k , · · · , 1

k ). Assume thatB∗ is the family of all base
blocks of a (W , Q)-SCGDD of type uh . Define the multiset

�i jB
∗ = [b − a (mod u) : (i, a), ( j, b) ∈ B, (i, a) �= ( j, b), B ∈ B∗].

When i = j , �i iB
∗ is the multiset of all pure (i, i)-differences ofB∗. When i �= j , �i jB

∗
is the multiset of all mixed (i, j)-differences of B∗. For any (i, j) ∈ Ih × Ih , it is easy to
verify that �i jB

∗ = Zu if i �= j or ∅ if i = j . When W = {w} and Q = (1), this SCGDD
is simply denoted by w-SCGDD of type uh , such a SCGDD is called a GD∗(w, 1, u; hu) in
[32]. For the existence of a w-SCGDD of type uh , the interested reader can refer to [28,29]
and the references therein. There are some examples of balanced W -SCGDDs of type uh

exhibited in the following lemma, which are very useful.

Lemma 12 There exists a balanced {3, 4}-SCGDD of type u4 for u = 6, 12, 18, 24.

Proof The desired base blocks of a balanced {3, 4}-SCGDD of type u4 are displayed in
Appendix C. ��

Proposition 1 Let Q = ( a1b , . . . ,
ak
b ) be normalized. Suppose that there exist an (n, h, 1)-DP

of size t and a (W , Q)-SCGDD of type uh, then there exists an (nu,W , 1, Q)-DP of size
bh(h−1)ut

∑k
i=1 aiwi (wi−1)

. If the difference leave of the given DP is L, then the difference leave of the

derived DP is

L ′ =
⋃

i∈L
{i + nj (mod nu) : 0 ≤ j ≤ u − 1}.

Moreover, if the givenDP is an (n, g, h, 1)-DF and there exists an optimal (gu,W , 1, Q)-DP,
then there exist an optimal (nu,W , 1, Q)-DP and an (nu, gu,W , 1, Q)-DF.

Proof Let A and B be, respectively, the family of all base blocks of the given (n, h, 1)-DP
and (W , Q)-SCGDD of type uh over Ih × Zu with the group set {{x} × Zu : x ∈ Ih}. For
any A = {x0, x1, . . . , xh−1} ∈ A and B = {(l0, y0), (l1, y1), . . . , (lwi−1, ywi−1)} ∈ B, we
construct

FA(B) = {xl0 + ny0, xl1 + ny1, . . . , xlwi−1 + nywi−1}.
Let FA =⋃B∈B FA(B). It is readily calculated that

�FA = {xlb − xla + n(yb − ya) : (la, ya), (lb, yb) ∈ B, B ∈ B, 0 ≤ a, b ≤ wi − 1, a �= b}
= {xlb − xla + nβ : la, lb ∈ Ih, la �= lb, β ∈ �lalbB}
= {xlb − xla + nβ : la, lb ∈ Ih, la �= lb, β ∈ Zu}
= {α + nβ : α ∈ �A, β ∈ Zu}.
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Let F =⋃A∈A FA, then we have

�F = {α + nβ : α ∈ �A , β ∈ Zu}
= {α + nβ : α ∈ Zn \ L, β ∈ Zu}.

It is readily known that each element in Znu\L ′ occurs in�F exactly once,while any element
in L ′ is not covered at all. Hence,F is the required (nu,W , 1, Q)-DP of size bh(h−1)ut

∑k
i=1 aiwi (wi−1)

.

In the following, we will prove the second part.
By assumption, there exists an (n, g, h, 1)-DF, we have an (nu, gu,W , 1, Q)-DF F

according to the above constructions. Let F ′ be an optimal (gu,W , 1, Q)-DP, then
F
⋃

( ng · F ′) forms an optimal (nu,W , 1, Q)-DP. ��

Applying Proposition 1 with n = 56, g = 8, W = {3, 4}, Q = { 23 , 1
3 }, h = 4 and u = 4,

we have the following example.

Example 1 Consider a (56, 8, 4, 1)-DF, A = {A1, A2, A3, A4} where A1 = {0, 1, 3, 9},
A2 = {0, 4, 15, 38}, A3 = {0, 5, 24, 36}, A4 = {0, 10, 26, 39}. The difference leave of A is
the unique additive subgroup {0, 7, 14, 21, 28, 35, 42, 49} of order 8 in Z56, denoted by L .
The base blocks of a ({3, 4}, ( 23 , 1

3 ))-SCGDD of type 44 are displayed below:

{(0, 0), (1, 0), (2, 0), (3, 0)}, {(0, 0), (1, 1), (2, 2), (3, 3)}, {(0, 0), (1, 2), (2, 1)},
{(0, 0), (1, 3), (3, 2)}, {(0, 0), (2, 3), (3, 1)}, {(1, 0), (2, 2), (3, 1)}.

Applying Proposition 1, we obtain a (224, 32, {3, 4}, 1, ( 23 , 1
3 ))-DF denoted by F from

the above A . Here, F consists of the following 24 blocks over Z224:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F11 = {0 + 0 · 56, 1 + 0 · 56, 3 + 0 · 56, 9 + 0 · 56} = {0, 1, 3, 9},
F12 = {0 + 0 · 56, 1 + 1 · 56, 3 + 2 · 56, 9 + 3 · 56} = {0, 57, 115, 177},
F13 = {0 + 0 · 56, 1 + 2 · 56, 3 + 1 · 56} = {0, 113, 59},
F14 = {0 + 0 · 56, 1 + 3 · 56, 9 + 2 · 56} = {0, 169, 121},
F15 = {0 + 0 · 56, 3 + 3 · 56, 9 + 1 · 56} = {0, 171, 65},
F16 = {1 + 0 · 56, 3 + 2 · 56, 9 + 1 · 56} = {1, 115, 65};

(3)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F21 = {0 + 0 · 56, 4 + 0 · 56, 15 + 0 · 56, 38 + 0 · 56} = {0, 4, 15, 38},
F22 = {0 + 0 · 56, 4 + 1 · 56, 15 + 2 · 56, 38 + 3 · 56} = {0, 60, 127, 206},
F23 = {0 + 0 · 56, 4 + 2 · 56, 15 + 1 · 56} = {0, 116, 71},
F24 = {0 + 0 · 56, 4 + 3 · 56, 38 + 2 · 56} = {0, 172, 150},
F25 = {0 + 0 · 56, 15 + 3 · 56, 38 + 1 · 56} = {0, 183, 94},
F26 = {4 + 0 · 56, 15 + 2 · 56, 38 + 1 · 56} = {4, 127, 94};

(4)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F31 = {0 + 0 · 56, 5 + 0 · 56, 24 + 0 · 56, 36 + 0 · 56} = {0, 5, 24, 36},
F32 = {0 + 0 · 56, 5 + 1 · 56, 24 + 2 · 56, 36 + 3 · 56} = {0, 61, 136, 204},
F33 = {0 + 0 · 56, 5 + 2 · 56, 24 + 1 · 56} = {0, 117, 110},
F34 = {0 + 0 · 56, 5 + 3 · 56, 36 + 2 · 56} = {0, 173, 148},
F35 = {0 + 0 · 56, 24 + 3 · 56, 36 + 1 · 56} = {0, 192, 92},
F36 = {5 + 0 · 56, 24 + 2 · 56, 36 + 1 · 56} = {5, 136, 92};

(5)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F41 = {0 + 0 · 56, 10 + 0 · 56, 26 + 0 · 56, 39 + 0 · 56} = {0, 10, 26, 39},
F42 = {0 + 0 · 56, 10 + 1 · 56, 26 + 2 · 56, 39 + 3 · 56} = {0, 66, 138, 207},
F43 = {0 + 0 · 56, 10 + 2 · 56, 26 + 1 · 56} = {0, 122, 82},
F44 = {0 + 0 · 56, 10 + 3 · 56, 39 + 2 · 56} = {0, 178, 151},
F45 = {0 + 0 · 56, 26 + 3 · 56, 39 + 1 · 56} = {0, 194, 95},
F46 = {10 + 0 · 56, 26 + 2 · 56, 39 + 1 · 56} = {10, 138, 95}.

(6)

123



2628 R. Qin et al.

The difference leave of F is

L ′ = {i + 56 j (mod 224) : i ∈ L, j ∈ Z4} = 7 · Z224

which is the unique additive subgroup of order 32 in Z224 and isomorphic to Z32. For an
optimal (224, {3, 4}, 1, ( 23 , 1

3 ))-DP, we construct an optimal (32, {3, 4}, 1, ( 23 , 1
3 ))-DP over

L ′ which contains three base blocks 7 · {0, 1, 3, 7}, 7 · {0, 5, 13}, 7 · {0, 9, 20}. These base
blocks together with the above 24 base blocks give us an optimal (224, {3, 4}, 1, ( 23 ,

1
3 ))-DP.��

In Example 1, let Ai j be the projection on Zn (n = 56) of Fi j , i ∈ {1, 2, 3, 4} and j ∈
{1, . . . , 6}. The projections on Zn of the resultant six base blocks in (3) are A11 = {0, 1, 3, 9},
A12 = {0, 1, 3, 9}, A13 = {0, 1, 3}, A14 = {0, 1, 9}, A15 = {0, 3, 9}, A16 = {1, 3, 9},
hence the union of these 6 sets is

⋃6
j=1 A1 j = {0, 1, 3, 9} = A1. While the union of the

projections on Zn of the six base blocks in (4) is
⋃6

j=1 A2 j = {0, 4, 15, 38} = A2. Similarly,
⋃6

j=1 A3 j = {0, 5, 24, 36} = A3,
⋃6

i=1 A4 j = {0, 10, 26, 39} = A4. It is easy to see

that {⋃6
j=1 Ai j : i = 1, 2, 3, 4} = {Ai : 1 ≤ i ≤ 4} = A . This is the case. There are

bh(h−1)u
∑k

i=1 aiwi (wi−1)
blocks of the resultant (nu,W , 1, Q)-DP F in Proposition 1 such that the

union of the projection on Zn of these blocks is equal to A ∈ A according to the construction
given in Proposition 1. By using this method, we obtain t unions from the projections on
Zn of the resultant (nu,W , 1, Q)-DP F since |F | = bh(h−1)ut

∑k
i=1 aiwi (wi−1)

. It is obvious that the

derived family of t unions is identical to the initial (n, h, 1)-DP A . Then, the two DPs A
and F are not 2-compatible. For convenience, these t unions are said to be the family of
unions from the projections on Zn of F . In order to extend Proposition 1 to construct CDP
set systems, we require the following result.

Lemma 13 Let u and u′ be any positive integers. Suppose that F and F ′ are an
(nu,W , 1, Q)-DP and an (nu′,W , 1, Q)-DP whose the families of unions from the pro-
jections on Zn of F and F ′ are denoted by A and A ′, respectively. If A and A ′ form a
pair of 2-compatible (n, h, 1)-DPs, then F and F ′ are also 2-compatible.

Proof Assume thatF andF ′ are not 2-compatible. By definition, there must be base blocks
F ∈ F and F ′ ∈ F ′ such that �(F,F ′)(θ) ≥ 3 or �(F ′,F)(θ

′) ≥ 3 for certain elements
θ ∈ Znu and θ ′ ∈ Znu′ . Denote by B and B ′ the projection on Zn of F and F ′, respectively.
Then, there exist A ∈ A and A′ ∈ A ′ such that B ⊆ A and B ′ ⊆ A′. Write ϑ, ϑ ′ ∈ Zn

such that ϑ ≡ θ (mod n) and ϑ ′ ≡ θ ′ (mod n). Further, we have �(A,A′)(ϑ) ≥ 3 or
�(A′,A)(ϑ

′) ≥ 3 from the above two inequalities. It follows that A and A′ would not be
2-compatible, that is a contradiction. Hence, F and F ′ are 2-compatible. ��
Construction 6 Let n, g and h be the given positive integerswith h ≥ 3, n = h(h−1)t+g and
g ≤ h(h − 1). Let u1, u2, . . . , ul be l distinct positive integers such that a (W , Q)-SCGDD
of type uhj exists, where Q = ( a1b , . . . ,

ak
b ) is normalized and j = 1, 2, . . . , l. Suppose that

there exist l pairwise 2-compatible (n, g, h, 1)-DFs.

(1) Then there exists an (N , M,W , 1, Q; 2)-CDF set system, where N = {(nu1, gu1),
(nu2, gu2), . . . , (nul , gul)} and

M =
[

bh(h − 1)u1t
∑k

i=1 aiwi (wi − 1)
,

bh(h − 1)u2t
∑k

i=1 aiwi (wi − 1)
, . . . ,

bh(h − 1)ul t
∑k

i=1 aiwi (wi − 1)

]

.
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(2) Suppose further that there is a ({gu1, gu2, . . . , gul}, [m1,m2, . . . ,ml ],W , 1, Q; 2)-
CDP set system and each base block contains at most two elements which are congruent

modulo g. Then, there exists an (N ′, M ′,W , 1, Q; 2)-CDP set system of size
l∑

j=1
(m j+

bh(h−1)u j t
∑k

i=1 aiwi (wi−1)
, where N ′ = {nu1, nu2, . . . , nul} and

M ′ =
[

m1 + bh(h − 1)u1t
∑k

i=1 aiwi (wi − 1)
,m2 + bh(h − 1)u2t

∑k
i=1 aiwi (wi − 1)

, . . . ,ml + bh(h − 1)ul t
∑k

i=1 aiwi (wi − 1)

]

.

Proof Let A j , 1 ≤ j ≤ l, be the given l pairwise 2-compatible (n, g, h, 1)-DFs. Write
H = n

g Zn for the unique additive subgroup of order g in Zn . Due to the uniqueness of
additive subgroups in Zn for given order g, the g-regularity implies that the l difference
families A1, A2,…, Al share the subgroup H as their difference leave. They are of optimal
size t since g ≤ h(h − 1). For each j with 1 ≤ j ≤ l, we apply Proposition 1 with A j and a

(W , Q)-SCGDD of type uhj to get an (nu j , gu j ,W , 1, Q)-DFF j of size
bh(h−1)u j t

∑k
i=1 aiwi (wi−1)

. Its

difference leave is the unique addition subgroup Hj = n
g Znu j of Znu j . Further, as observed

following Example 1, the family of unions from the projection on Zn of F j is A j . From
Lemma 13 and the hypothesis, we see thatF = {F1,F2, . . . ,Fl} is an (N , M,W , 1, Q; 2)-
CDF set system. The first conclusion then follows. From Construction 4, we have the second
conclusion. ��

Construction 6 tell us that, by using SCGDDs, a CDP set system with multiple block sizes
can be obtained from pairwise 2-compatible relative difference families with constant size.
We illustrate the idea of Construction 6 in the following example.

Example 2 Let A0 = {{0, 1, 3, 11, 20}} and A1 = {{0, 4, 13, 21, 23}}, then A0, A1 form
a pair of 2-compatible (24, 4, 5, 1)-DFs. These two relative difference families share the
unique additive subgroup H = 6 · Z24 in Z24 as their difference leave. The base blocks of a
({3, 4}, ( 23 , 1

3 ))-SCGDDof type u5 for u = 6, 12 are displayed inAppendixD. Now applying
Proposition 1, as presented in Example 1, we have a (144, 24, {3, 4}, 1, ( 23 , 1

3 ))-DF F0 and
a (288, 48, {3, 4}, 1, ( 23 , 1

3 ))-DF F1, where F0 and F1 are displayed below. We check that
{F0,F1} forms a ({(144, 24), (288, 48)}, {15, 30}, {3, 4}, 1, ( 23 , 1

3 ); 2)-CDF set system. Let
B1 ={{0,1,4,6}, {0,8,17},{0,10,21}}, then B1 forms a (48, {3, 4}, 1, ( 23 , 1

3 ))-DP of size 3
and each base block contains at most two elements which are congruent modulo 4, we check
that {F0,F1

⋃
(6 ·B1)} forms a ({(144, 288}, {15, 33}, {3, 4}, 1, ( 23 ,

1
3 ); 2)-CDP set system

of size 48.

F0 : {96, 25, 75, 83}, {72, 49, 75, 116}, {72, 99, 35, 44}, {0, 1, 35, 92}, {1, 99, 11, 116}, {24, 35, 20},
{73, 11, 92}, {1, 123, 107}, {0, 97, 83}, {0, 99, 59}, {1, 75, 44}, {120, 1, 140}, {24, 99, 82},
{72, 121, 123}, {75, 107, 140}.

F1 : {0, 4, 61, 237}, {4, 13, 69, 239}, {13, 21, 71, 216}, {21, 23, 48, 220}, {23, 0, 52, 229},
{0, 28, 181, 285}, {4, 37, 189, 287}, {13, 45, 191, 264}, {21, 47, 168, 277}, {0, 196, 37},
{4, 205, 45}, {13, 213, 47}, {21, 215, 24}, {23, 192, 28}, {0, 220, 13}, {4, 229, 21}, {13, 237, 23},
{21, 239, 0}, {23, 216, 4}, {0, 124, 109}, {4, 133, 117}, {13, 141, 119}, {21, 143, 96},
{23, 120, 100}, {0, 157, 117}, {4, 165, 119}, {13, 167, 96}, {21, 144, 100}, {23, 148, 109}.

��
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5 Applications tomultilength variable-weight OOCs

Optical code division multiple access (OCDMA) has received much attention as an attractive
way of satisfying the need of more reliable and faster communication systems and sharing
the huge optical bandwidth among users. A key towards an effective OCDMA system is
the choice of optical codes with good correlation properties. As a result, a special class of
unipolar (0,1) codes called optical orthogonal codes (OOCs) has been used for OCDMA
[15,25,26]. When these (constant-weight) OOCs are applied for multimedia applications,
their correlation properties can be change. Therefore, Yang introduced multimedia OCDMA
systems employing (constant-length) variable-weight OOCs to support multiple quality of
service (QoS) requirements [31]. An (n,W , 1, Q) variable-weight optical orthogonal code
C ((n,W , 1, Q)-VWOOC in short) is a family of binary n-tuples such that the following
three properties hold:

(1) WeightDistribution: Each n-tuple ofC has aHammingweight contained inW ; moreover,
there are precisely q j |C | codewords of Hamming weight w j , j ∈ {1, 2, . . . , k}.

(2) Auto-correlation Constraint: For any x = (x0, x1, . . . , xn−1) ∈ C with Hamming weight
w j ∈ W and any integer θ, 0 < θ < n,

n−1∑

r=0

xr xr−θ ≤ 1. (7)

(3) Cross-correlation Constraint: For any x = (x0, x1, . . . , xn−1) ∈ C , y = (y0, y1,
. . . , yn−1) ∈ C , x �= y and any integer θ, 0 ≤ θ < n,

n−1∑

r=0

xr yr−θ ≤ 1, (8)

where all subscripts here are taken modulo n. If the number of codewords of Ham-
ming weight w j equals 1

k |C | for each j , namely Q = ( 1k , . . . ,
1
k ), we say that C

is a balanced (n,W , 1)-VWOOC. Let �(n,W , 1, Q) denote the largest size of an
(n,W , 1, Q)-VWOOC.The following upper bound on the�(n,W , 1, Q) has been stated
in [10]:

�(n,W , 1, Q) ≤ b

⎢
⎢
⎢
⎢
⎢
⎢
⎣

n − 1
k∑

j=1
a jw j (w j − 1)

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

where Q = ( a1b , . . . ,
ak
b ) is normalized. An (n,W , 1, Q)-VWOOC is called optimal if

�(n,W , 1, Q) meets the bound (9). Optimal (n,W , 1, Q)-VWOOCs have been stud-
ied extensively for some years, the interested reader can refer to [10,16,30,36] and the
references therein. Variable-weight Optical orthogonal codes are closely related to some
combinatorial configurations, see [30].

Lemma 14 [30] An (n,W , 1, Q)-VWOOC of size t is equivalent to an (n,W , 1, Q)-
DP of size t . Furthermore, an optimal (n,W , 1, Q)-VWOOC is equivalent to an optimal
(n,W , 1, Q)-DP.

In an multimedia OCDMA system, variable-weight OOCs are designed for supporting
multiple QoS requirements. However, the rate of each user in a network is supposed identical.
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In [18,22], multilength OOCs are mainly designed for supporting multirate systems, where
longer and shorter codewords are provided to mainly support lower and higher services,
respectively. However, these codes show limited number of services and multiple access
interference or high cross-correlation in the networks. In order to solve the problems of
limited number of services in the multilength OOCs and constant rate in the VWOOCs,
multilength variable-weight OOCs (MLVWOOCs) are proposed for supporting multirate
and integrated multimedia services in OCDMA networks [23,24]. It allows the systems with
multirate multimedia services in an OCDMA network where some services may have lower
date rate and the other some services may have higher date rate with different performance
and QoS.

Under certain specified correlation constraints, anMLVWOOC can be seen simply as a set
of some constant length variable-weight OOCs of pairwise distinct lengths. More precisely,
let λ be a positive integer, N = {n0, n1, . . . , nl−1} a set of l positive integers and an multiset
M = [m0,m1, . . . ,ml−1] such that an (ni ,W , 1, Q)-VWOOC Ci exists with mi = |Ci |,
where i ∈ {0, 1, . . . , l − 1}, l ≥ 2 is an integer. We say that C = {C0,C1, . . . ,Cl−1} is an
(N , M,W , 1, Q; λ)-MLVWOOC, if the following two intercross-correlation constraints are
held: for any x = (x0, x1, . . . , xne−1) ∈ C of length ne, y = (y0, y1, . . . , yns−1) ∈ C of
length ns , then

ns−1∑

r=0

xr�eθ yr ≤ λ for any integer 0 ≤ θ < ne, (10)

ne−1∑

r=0

xr yr�sθ ≤ λ for any integer 0 ≤ θ < ns, (11)

where �i and ⊕i denote the subtraction and addition modulo ni , respectively. For each
given ni , the above definition indicates that all codewords in C of the length ni satisfy
the correlation constraints (7) and (8) which are said to be the auto-correlation constraint
and the intracross-correlation constraint, respectively, of the MLVWOOC. The size of the
MLVWOOC is the number of codewords in C , i.e. |C | =∑l−1

i=0 mi .
If W = {w} and Q = (1), we say that C is an (N , M, w, 1; λ)-MLOOC (mul-

tilength OOC). For the existence of optimal (N , M, w, 1; 2)-MLOOCs, the interested
reader may refer to [2,3,20,27]. If Ci is a balanced (ni ,W , 1)-VWOOC for each i , then
C = {C0, . . . ,Cl−1} is said to be a balanced (N , M,W , 1; λ)-MLVWOOC. As far as we
know, there are few known results about optimal MLVWOOCs. In [35], some infinite classes
of optimal balanced (N , M,W , 1; 2)-MLVWOOCs with W = {3, 4} are obtained and the
relationship between an MLVWOOC and a CDP set system is described.

Proposition 2 [35] Let Ci be an (ni ,W , 1, Q)-VWOOC of size mi andBi the corresponding
(ni ,W , 1, Q)-DP for 0 ≤ i ≤ l − 1, C = {C0,C1, . . . ,Cl−1} is an (N , M,W , 1, Q; λ)-
MLVWOOC if and only if B = {B0,B1, . . . ,Bl−1} is an (N , M,W , 1, Q; λ)-CDP set
system.

5.1 Upper bounds on code size

In this section, let Q = ( a1b , . . . ,
ak
b ) be normalized and n = t

b

∑k
j=1 a jw j (w j − 1) + g

such that g and t are positive integers with b|t and 1 ≤ g ≤∑k
j=1 a jw j (w j − 1).
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We use �(N ,W , 1, Q; λ) to denote the largest size
∑l−1

i=0 mi of an (N , M,W , 1, Q; λ)-
MLVWOOC. From the bound (9), we have the following inequality:

�(N ,W , 1, Q; λ) ≤ b
l−1∑

i=0

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ni − 1
k∑

j=1
a jw j (w j − 1)

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12)

This bound has nothing to do with the intercross-correlation constraint λ, then may in general
not be tight for small values ofλ. It is easy to see that the function�(N ,W , 1, Q; λ) decreases
with the decrease of λ, then the following inequality is obvious.

�(N ,W , 1, Q; 1) ≤ b

⎢
⎢
⎢
⎢
⎢
⎢
⎣

nl−1 − 1
k∑

j=1
a jw j (w j − 1)

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where nl−1 = max{n0, n1, . . . , nl−1}. So, we can construct an (N , M,W , 1, Q; 1)-
MLVWOOC of size meeting this bound from an optimal (nl−1,W , 1, Q)-VWOOC. When
λ = η, the trivial bound (12) is tight and by combining l optimal (ni ,W , 1, Q)-VWOOC’s
(i = 0, 1, . . . , l − 1), we can obtain an optimal (N , M,W , 1, Q; λ)-MLVWOOC of size
meeting this bound. Clearly, the intercross-correlation holds for any two codewords for
λ ≥ η since each codeword has weight no more than λ. In [35], some upper bounds
on balanced (N , M, {3, 4}, 1; λ)-MLVWOOCs are obtained with λ = 2, the least value
among the nontrivial intercross correlation. In this section, we consider the upper bounds on
(N , M,W , 1, Q; 2)-MLVWOOCs for general W and Q. We can get the following theorem,
which can be used to establish some upper bounds on the code size.

Theorem 7 For any ({n, nr}, [t,m],W , 1, Q; 2)-MLVWOOC, if g ≤
⌊∑k

j=1 a jw j (w j−1)−1
∑k

j=1 a jw j

⌋

,

the following inequality holds:

m ≤ b

⌊
nr − 1 − ϕ(r)

∑k
j=1 a jw j (w j − 1)

⌋

= r t + b

⌊
gr − 1 − ϕ(r)

∑k
j=1 a jw j (w j − 1)

⌋

,

where r ≥ 2 is an integer and

ϕ(r) = r − 1 − 2

⌊
(g − 1)r

∑k
j=1 a j (w j (w j − 1) − 2�w j

2 �)

⌋
k∑

j=1

a j�w j

2
�.

Proof Let C = {C0,C1} be an ({n, nr}, {t,m},W , 1, Q; 2)-MLVWOOC and A0 the DP of

size t representing C0. Since n = t
b

∑k
j=1 a jw j (w j −1)+g and g ≤

⌊∑k
j=1 a jw j (w j−1)−1
∑k

j=1 a jw j

⌋

,

we have

t = b · n − g
∑k

j=1 a jw j (w j − 1)
= b

⌊
n − 1

∑k
j=1 a jw j (w j − 1)

⌋

.

Then, A0 is an optimal (n,W , 1, Q)-DP. Its difference leave DL(A0) consists of g elements
including zero. Now let A1 be the (nr ,W , 1, Q)-DP of size m representing C1. So, F =
{A0,A1} is an ({n, nr}, [t,m],W , 1, Q; 2)-CDP set system from Proposition 2. The unique
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additive subgroup of order r in Znr is denoted by H , i.e., H = nZnr . Let Hi = H0 + i
(i = 0, 1, . . . , n−1) be the n additive cosets of H in Znr , where H0 = H and H0+i = {nj+i
(mod nr) : 0 ≤ j ≤ r − 1}. Then, every element of Hi has projection i on Zn . Assume that
there exists a base block B ∈ A1 containing a triple {b1, b2, b3} of a certain coset Hi , we
have

b1 − d ≡ b2 − d ≡ b3 − d ≡ θ − d (mod n)

for any A ∈ A0 and any d ∈ A, hence�(A,B)(θ −d) ≥ 3, that is a contradiction sinceA0,A1

are 2-compatible. So, for each base block B ∈ A1 and each coset Hi , we have |B ∩ Hi | ≤ 2.
Define

T j = {B ∈ A1 ∩ (Znr
w j

) : |B ∩ Hi | = 2 for at least one i ∈ Zn}, j = 1, 2, . . . , k,

T =
k⋃

j=1

T j .

Without loss of generality, we assume that T j = a j
b |T |, j = 1, 2, . . . , k. So, |H ∩ �(T )|

is the number of elements of H \ {0} included in �A1, i.e. |H ∩ �(A1)| = |H ∩ �(T )|.
Obviously, every block B ∈ T with |B| = w j contains at most �w j

2 � pairs of elements from
�w j

2 � distinct cosets of H , every being a 2-subset of a certain coset. Then, the difference
list �(B) contains at most 2�w j

2 � elements from H \ {0}, that is, �(B) contains at least
w j (w j − 1) − 2�w j

2 � elements from Znr \ H . We have

|H ∩ �(T j )| ≤ 2�w j

2
�|T j |, j = 1, 2, . . . , k; (13)

k∑

j=1

[(w j (w j − 1) − 2�w j

2
�)|T j |] ≤ |�(T ) ∩ (Znr \ H)|. (14)

For each d ∈ DL(A0), there are precisely r elements (from a certain coset of H ) having
projection d on Zn . Then, there are precisely (g−1)r elements in Znr \H whose projections
on Zn is contained in DL(A0) \ {0}. This indicates that

|�(T ) ∩ (Znr \ H)| ≤ (g − 1)r . (15)

In fact, if (15) is incorrect, then �(T ) must consist of more than (g − 1)r elements
not congruent to 0 (mod n). This follows that there exist at least one base block B =
{h, h′, b1, . . . , bw j−2} ∈ T such that bi − h (mod n) /∈ DL(A0) where h, h′ ∈ Hs for some
s ∈ Zn , bi ∈ Znr \Hs . It leads that there exists a unique base block A = {a1, a2, a3, . . .} ∈ A0

such thata2−a1 ≡ bi−h ≡ bi−s (mod n). Thenwehaveh−a1 ≡ h′−a1 ≡ bi−a2 ≡ s−a1
(mod n). Therefore �(A,B)(s − a1) ≥ 3, that is a contradiction since T ⊆ A1 and A0, A1

are 2-compatible. By combining (14) and (15), we have

k∑

j=1

[(w j (w j − 1) − 2�w j

2
�)|T j |] ≤ (g − 1)r ,

then

k∑

j=1

(w j (w j − 1) − 2�w j

2
�)a j

b
|T | ≤ (g − 1)r ,
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and hence

|T |
b

k∑

j=1

a j (w j (w j − 1) − 2�w j

2
�) ≤ (g − 1)r .

Since |T | is divisible by b, we have
|T |
b

≤
⌊

(g − 1)r
∑k

j=1 a j (w j (w j − 1) − 2�w j
2 �)

⌋

.

It is clear that

|H ∩ �(A1)| = |H ∩ �(T )| =
k∑

j=1

|H ∩ �(T j )|

≤
k∑

j=1

2�w j

2
�|T j | = 2

|T |
b

k∑

j=1

a j�w j

2
�

≤ 2

⌊
(g − 1)r

∑k
j=1 a j (w j (w j − 1) − 2�w j

2 �)

⌋
k∑

j=1

a j�w j

2
�.

This implies that there are at least ϕ(r) elements of H \ {0} which are not covered by�(A1).
The proof is then complete. ��

The restriction g ≤
⌊∑k

j=1 a jw j (w j−1)−1
∑k

j=1 a jw j

⌋

in Theorem 7 is necessary. It guarantees that

ϕ(r) is a non-negative integer-valued function and ϕ(r) ≤ r −1 for any given integer r . This
is because

0 ≤ 2

⌊
(g − 1)r

∑k
j=1 a j (w j (w j − 1) − 2�w j

2 �)

⌋
k∑

j=1

a j�w j

2
� ≤

⌊
(g − 1)r

∑k
j=1 a jw j (w j − 2)

⌋
k∑

j=1

a jw j

≤
⌊

(g − 1)r
∑k

j=1 a jw j
∑k

j=1 a jw j (w j − 2)

⌋

=
⌊

r −
∑k

j=1 a jw j (w j − g − 1)
∑k

j=1 a jw j (w j − 2)
· r
⌋

≤ r − 1. (16)

From the property of the function �x�, we have

b

⌊
nr − 1 − ϕ(r)

∑k
j=1 a jw j (w j − 1)

⌋

≤ b

⌊
nr − 1

∑k
j=1 a jw j (w j − 1)

⌋

− b

⌊
ϕ(r)

∑k
j=1 a jw j (w j − 1)

⌋

,

hence Theorem 7 tells us that the sizem is less by b

⌊
ϕ(r)

∑k
j=1 a jw j (w j−1)

⌋

than the trivial bound

(12). By using Theorem 7, the following upper bounds on the code size are obtained.

Corollary 3 For any ({n, nr1, . . . , nrl−1}, M,W , 1, Q; 2)-MLVWOOC with m0 = t , if g ≤⌊∑k
j=1 a jw j (w j−1)−1
∑k

j=1 a jw j

⌋

, the following inequality holds:

�({n, nr1, . . . , nrl−1},W , 1, Q; 2) ≤ t

+b
l−1∑

i=1

⎛

⎜
⎜
⎝

⌊
nri − 1

∑k
j=1 a jw j (w j − 1)

⌋

−

⎢
⎢
⎢
⎢
⎢
⎣

⌈
ri∑k

j=1 a jw j (w j−2)

⌉

− 1

∑k
j=1 a jw j (w j − 1)

⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎠ (17)
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where r1, r2, . . . , rl−1 are l − 1 arbitrary distinct integers and each ri ≥ 2.

Proof LetC = {C0,C1, . . . ,Cl−1}be an ({n, nr1, . . . , nrl−1}, M,W , 1, Q; 2)-MLVWOOC.
By the assumption, we have

t = b · n − g
∑k

j=1 a jw j (w j − 1)
= b

⌊
n − 1

∑k
j=1 a jw j (w j − 1)

⌋

,

Let us assume that C0 is an optimal (n,W , 1, Q)-VWOOC. Clearly, {C0,Ci } is an
({n, nri }, {t,mi }, W , 1, Q; 2)-MLVWOOC for every i with 1 ≤ i ≤ l − 1. According
to the definition of ϕ(r) and (16), we have

ϕ(ri ) ≥ ri − 1 −
(

ri −
∑k

j=1 a jw j (w j − g − 1)
∑k

j=1 a jw j (w j − 2)
· ri
)

=
∑k

j=1 a jw j (w j − g − 1)
∑k

j=1 a jw j (w j − 2)
· ri − 1

≥
∑k

j=1 a jw j (w j − 1) −
∑k

j=1 a jw j (w j−1)−1
∑k

j=1 a jw j
·∑k

j=1 a jw j

∑k
j=1 a jw j (w j − 2)

· ri − 1 = ri
∑k

j=1 a jw j (w j − 2)
− 1.

Since ϕ(ri ) ≥ 0 is an integer-valued function, we have

ϕ(ri ) ≥
⌈

ri
∑k

j=1 a jw j (w j − 2)

⌉

− 1.

Then,

mi ≤ b

⌊
nri − 1

∑k
j=1 a jw j (w j − 1)

⌋

− b

⌊
ϕ(ri )

∑k
j=1 a jw j (w j − 1)

⌋

≤ b

⌊
nri − 1

∑k
j=1 a jw j (w j − 1)

⌋

− b

⎢
⎢
⎢
⎢
⎢
⎣

⌈
ri∑k

j=1 a jw j (w j−2)

⌉

− 1

∑k
j=1 a jw j (w j − 1)

⎥
⎥
⎥
⎥
⎥
⎦

from Theorem 7. The inequality in the corollary is obtained. ��

It is clear that the upper bound (17) is less by

b
l−1∑

i=1

⎢
⎢
⎢
⎢
⎢
⎣

⌈
ri∑k

j=1 a jw j (w j−2)

⌉

− 1

∑k
j=1 a jw j (w j − 1)

⎥
⎥
⎥
⎥
⎥
⎦

than the trivial bound (12), which increases quickly with l and ri ’s increasing for the given set
W . Therefore, the bound (17) is a noticeable improvement from the bound (12). The values
of the function ϕ(r) defined in Theorem 7 become large when the values of g decrease,
we can further simplify this bound for small values of g. Especially, if we restrict to g ≤⌊ ∑k

j=1 a jw
2
j

2
∑k

j=1 a jw j

⌋

, then we can get the following meaningful corollary.
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Corollary 4 For any ({n, nr1, . . . , nrl−1}, M,W , 1, Q; 2)-MLVWOOC with m0 = t , if g ≤⌊ ∑k
j=1 a jw

2
j

2
∑k

j=1 a jw j

⌋

, the following inequality holds:

�({n, nr1, . . . , nrl−1},W , 1, Q; 2) ≤ t

+b
l−1∑

i=1

(⌊
nri − 1

∑k
j=1 a jw j (w j − 1)

⌋

−
⌊ ⌈ ri

2

⌉− 1
∑k

j=1 a jw j (w j − 1)

⌋)

(18)

where r1, r2, . . . , rl−1 are l − 1 arbitrary distinct integers and each ri ≥ 2.

Proof This proof is analogous of the proof of Corollary 3. By the assumption g ≤⌊ ∑k
j=1 a jw

2
j

2
∑k

j=1 a jw j

⌋

, we have

ϕ(ri ) ≥
∑k

j=1 a jw j (w j − g − 1)ri
∑k

j=1 a jw j (w j − 2)
− 1 =

∑k
j=1 a jw j (w j − 1) − g

∑k
j=1 a jw j

∑k
j=1 a jw j (w j − 2)

· ri − 1

≥
∑k

j=1 a jw j (w j − 1) −
∑k

j=1 a jw
2
j

2
∑k

j=1 a jw j
·∑k

j=1 a jw j

∑k
j=1 a jw j (w j − 2)

· ri − 1 = ri
2

− 1,

i.e., ϕ(ri ) ≥ ⌈ ri2
⌉− 1. Therefore, the inequality (18) holds from Theorem 7. ��

Applying Theorem 7 with g = 1, we can obtain the following upper bound on code size.

Corollary 5 For any ({n, nr1, . . . , nrl−1}, M,W , 1, Q; 2)-MLVWOOCwith m0 = t and g =
1, the following inequality holds:

�({n, nr1, . . . , nrl−1},W , 1, Q; 2)

≤ t + b
l−1∑

i=1

(⌊
nri − 1

∑k
j=1 a jw j (w j − 1)

⌋

−
⌊

ri − 1
∑k

j=1 a jw j (w j − 1)

⌋)

= t +
l−1∑

i=1

tri

(19)

where r1, r2, . . . , rl−1 are l − 1 arbitrary distinct integers and each ri ≥ 2.

Proof Similarly to the proof of Corollary 3, let C = {C0,C1, . . . ,Cl−1} be an ({n, nr1, . . . ,
nrl−1}, M,W , 1, Q; 2)-MLVWOOC. When g = 1, we have ϕ(r) = r − 1 from Theorem 7.
Applying Theorem 7 with g = 1, we get

mi ≤ b

⌊
nri − 1 − ϕ(ri )

∑k
j=1 a jw j (w j − 1)

⌋

≤ b

⌊
nri − 1

∑k
j=1 a jw j (w j − 1)

⌋

−b

⌊
ri − 1

∑k
j=1 a jw j (w j − 1)

⌋

= tri

for each i with 1 ≤ i ≤ l − 1. Thus, we have the conclusion. ��

Corollaries 3–5 give us upper bounds on �({n, nr1, . . . , nrl−1},W , 1, Q; 2). To be more
precise, the following theorem is obtained.
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Theorem 8 For any ({n, nr}, {t,m},W , 1, Q; 2)-MLVWOOC with integer r ≥ 2, then

�({n, nr},W , 1, Q; 2) ≤ b

⌊
n − 1

∑k
j=1 a jw j (w j − 1)

⌋

+ b

(⌊
nr − 1

∑k
j=1 a jw j (w j − 1)

⌋

− 1

)

(20)

if one of the following conditions is satisfied:

(1) r ≥∑k
j=1 a jw j (w j − 2)

∑k
j=1 a jw j (w j − 1) + 1 and g ≤

⌊∑k
j=1 a jw j (w j−1)−1
∑k

j=1 a jw j

⌋

;

(2) r ≥ 2
∑k

j=1 a jw j (w j − 1) + 1 and g ≤
⌊ ∑k

j=1 a jw
2
j

2
∑k

j=1 a jw j

⌋

;

(3) r ≥∑k
j=1 a jw j (w j − 1) + 1 and g = 1.

Proof Let C = {C0,C1} be an ({n, nr}, {t,m},W , 1, Q; 2)-MLVWOOC. By the assump-
tion, we have g ≤∑k

j=1 a jw j (w j − 1) and

t = b · n − g
∑k

j=1 a jw j (w j − 1)
= b

⌊
n − 1

∑k
j=1 a jw j (w j − 1)

⌋

.

Let us assume that C0 is an optimal (n,W , 1, Q)-VWOOC. By the assumption and applying
Corollaries 3-5 with l = 2, we have

m ≤ b

(⌊
nr − 1

∑k
j=1 a jw j (w j − 1)

⌋

−
⌊

ϕ(r)
∑k

j=1 a jw j (w j − 1)

⌋)

≤ b

(⌊
nr − 1

∑k
j=1 a jw j (w j − 1)

⌋

− 1

)

.

It follows that

t + m ≤ t + b

(⌊
nr − 1

∑k
j=1 a jw j (w j − 1)

⌋

− 1

)

.

This inequality obviously holds also when C0 is not optimal, i.e., the size of C0 does not

exceed t − b, since m ≤ b

⌊
nr−1

∑k
j=1 a jw j (w j−1)

⌋

from the bound (9). ��

It is not difficult to see that Theorem 8 can be generalized to the following result.

Corollary 6 For any ({n, nr1, . . . , nrl−1}, M,W , 1, Q; 2)-MLVWOOC with l − 1 distinct
integers ri ≥ 2 (i = 1, 2, . . . , l − 1), m0 = t , the following inequality holds:

�({n, nr1, . . . , nrl−1},W , 1, Q; 2) ≤ t + b

(
l−1∑

i=1

⌊
nri − 1

∑k
j=1 a jw j (w j − 1)

⌋

− 1

)

(21)

if there exist at least one r ∈ {r1, r2, . . . , rl−1} such that one of the three conditions presented
in Theorem 8 is satisfied.

It is easy to find that the value b

⌊
nr−1−ϕ(r)

∑k
j=1 a jw j (w j−1)

⌋

is enlarged when we use Theo-

rem 7 to get Corollaries 3–5, so the lower bound on r stated in Theorem 8 is sufficient
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but not necessary condition to get the inequality (20). For the given set W and the value
g, we can decide whether the inequality (20) holds or not by comparing the values of

b

⌊
nr−1

∑k
j=1 a jw j (w j−1)

⌋

and b

⌊
nr−1−ϕ(r)

∑k
j=1 a jw j (w j−1)

⌋

for those integers r below the bound. The

cases where W = {3, 4}, {3, 5} and 2 ≤ g ≤
⌊

a1w2
1+a2w2

2
2(a1w1+a2w2)

⌋

are presented in the following

result for convenience of later use.

Theorem 9 Let W = {3, 4}, {3, 5}, Q = ( 12 ,
1
2 ) and n = t

2

∑2
j=1 w j (w j − 1) + 2 such that

t is even. For any l − 1 distinct integers ri ≥ 2 (i = 1, 2, . . . , l − 1), the following inequality
holds:

�({n, nr1, . . . , nrl−1},W , 1, Q; 2) ≤ t + 2

(
l−1∑

i=1

⌊
nri − 1

∑k
j=1 w j (w j − 1)

⌋

− 1

)

(22)

if there exist at least one r ∈ {r1, r2, . . . , rl−1} taken from the values of the following table.

W n The desired values of r

{3,4} 9t + 2 r ≥ 37 or r ∈ {10, 11, 19 − 23, 28 − 35}
{3,5} 13t + 2 r ≥ 53 or r ∈ {14 − 19, 27 − 52}

5.2 New infinite classes of MLVWOOCs

In this section, several infinite classes of optimal MLVWOOCs are yielded by using pairwise
2-compatible (n, g,W , 1)-DFs and recursive constructions.

Theorem 10 If n is a positive integer whose prime factors are congruent to 1 mod-
ulo 12, then there is a balanced (N , M, {3, 4}, 1; 2)-MLVWOOC of size 20(n−1)

3 , where

N = {6n, 12n, 18n, 24n} and M = [ 2(n−1)
3 ,

4(n−1)
3 , 2(n − 1), 8(n−1)

3 ].
Proof From Lemma 12, a balanced {3, 4}-SCGDD of type u4 exists for u ∈ {6, 12, 18, 24},
and there exist four pairwise 2-compatible (n, 4, 1)-DFs from Corollary 4.4 in [3], hence
we have a balanced (N ′, M, {3, 4}, 1; 2)-CDF set system with size 20(n−1)

3 from Construc-
tion 6, where N ′ = {(6n, 6), (12n, 12), (18n, 18), (24n, 24)}. The corresponding balanced
(N , M, {3, 4}, 1; 2)-MLVWOOC with size 20(n−1)

3 does not reach the upper bound 12 by
missing two codewords (One of the codewords has a weight of 3 and the other has a weight
of 4). ��
Theorem 11 If n is a positive integer whose prime factors are congruent to 1 modulo
6 and greater than 13, then there is a balanced (N , M, {3, 4}, 1; 2)-MLVWOOC of size
10n − 7 attaining the upper bound (12), where N = {12n, 24n, 36n, 48n} and M =
[ 2n−2

3 , 8n−8
3 , 4n − 2, 16n−4

3 ].
Proof From Lemma 12, a balanced {3, 4}-SCGDD of type u4 exists for u ∈ {6, 12, 18, 24},
and there exist four pairwise 2-compatible (2n, 2, 4, 1)-DFs from the proof of Theorem
4.9 in [3]. Let B12 = {{0, 1, 3, 10}, {0, 5, 11}}, B18 = {{0,−1,−3,−10}, {0,−5,−11}},
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B24 ={{0,1,4,9}, {0,6,13,23},{0,11,27},{0,14,29}}, then Bu forms a balanced (2u,

{3, 4}, 1)-DP for u ∈ {12, 18, 24}. We verify that the balanced (24, {3, 4}, 1)-DP, the bal-
anced (36, {3, 4}, 1)-DP, the balanced (48, {3, 4}, 1)-DP are pairwise 2-compatible and each
base block contains at most two elements which are congruent modulo 2. So, we have a bal-
anced (N , M, {3, 4}, 1; 2)-CDP with size 10n − 7 from Construction 6. The corresponding
balanced (N , M, {3, 4}, 1; 2)-MLVWOOC is optimal since the size reaches the upper bound
(12). ��
Theorem 12 If n is a positive integer whose prime factors are congruent to 1 modulo 4 and
greater than 17, then there is a balanced (N , M, {3, 4}, 1; 2)-MLVWOOC of size 20n − 8
attaining the upper bound (12), where N = {18n, 36n, 54n, 72n} and M = [2n − 2, 4n −
2, 6n − 2, 8n − 2].
Proof From Lemma 12, a balanced {3, 4}-SCGDD of type u4 exists for u ∈ {6, 12, 18, 24},
and there exist four pairwise 2-compatible (3n, 3, 4, 1)-DFs from Corollary 4.13 of [3].
Let B12 = {{0, 1, 5, 11}, {0, 2, 16}}, B18 = {{0,−1,−3,−7}, {0,−5,−13,−22}, {0,
−12,−28}, {0,−15, −34}}, B24 ={{0,1,3,7}, {0,5,13,22},{0,10,21,35},{0,12,28},{0,15,
34},{0,18,41}}, then Bu forms a balanced (3u, {3, 4}, 1)-DP for u ∈ {12, 18, 24}. It is not
difficult to check that the balanced (36, {3, 4}, 1)-DP, the balanced (54, {3, 4}, 1)-DP, the
balanced (72, {3, 4}, 1)-DP are pairwise 2-compatible and each base block contains at most
two elements which are congruent modulo 3. So, we have a balanced (N , M, {3, 4}, 1; 2)-
CDP with size 20n − 8 from Construction 6. The corresponding balanced (N , M, {3, 4}, 1;
2)-MLVWOOC is optimal since the size reaches the upper bound (12). ��
Lemma 15 If n is a positive integer whose prime factors are congruent to 1 modulo 18, then
there are four pairwise 2-compatible balanced (2n, 2, {3, 4}, 1)-DFs.
Proof Let n = pa11 pa22 · · · pass be the factorization of n where each pi ≥ 19 be prime
and each integer ai ≥ 1. For each prime pi , there are four pairwise 2-compatible bal-
anced (2pi , 2, {3, 4}, 1)-DFs from Lemma 6. Since there is a (pi , 4; 1)-CDM from Lemma
11, applying Corollary 2 with g = 2, we can get four pairwise 2-compatible balanced
(2p1 pi , 2, {3, 4}, 1)-DFs. Repeat the process to get four pairwise 2-compatible balanced
(2n, 2, {3, 4}, 1)-DFs. ��
Theorem 13 If n is a positive integer whose prime factors are congruent to 1 modulo 18,
then there is an optimal balanced (N , M, {3, 4}, 1; 2)-MLVWOOC with the size meeting the
upper bound (22) where N = {2n, 10n, 14n, 22n}, M = [ 2n−2

9 , 10n−10
9 , 14n−14

9 , 22n−22
9 ].

Proof There exist four pairwise 2-compatible balanced (2n, 2, {3, 4}, 1)-DFs fromLemma15
and an (r , 4, 1)-CDM fromLemma 11, r = 5, 7, 11, hence there is a balanced (N ′, M, {3, 4},
1; 2)-CDF set system by Construction 4, where N ′ = {(2n, 2), (10n, 10), (14n, 14),
(22n, 22)}. The corresponding balanced (N , M, {3, 4}, 1; 2)-MLVWOOC is optimal since
the size meets the upper bound (22). ��
Lemma 16 If n is a positive integer whose prime factors are congruent to 11modulo 12, then
there are ten pairwise 2-compatible balanced (13n, 13, {3, 5}, 1)-DFs and each base block
contains at most two elements which are congruent modulo 13.

Proof Let n = pa11 pa22 · · · pass be the factorization of n where each pi ≥ 23 be prime
and each integer ai ≥ 1. For each prime pi , there are ten pairwise 2-compatible balanced
(13pi , 13, {3, 5}, 1)-DFs from Lemma 8. Along the lines of the proof of Lemma 15, we have
ten pairwise 2-compatible balanced (13n, 13, {3, 5}, 1)-DFs and each base block contains at
most two elements which are congruent modulo 13 from the construction. ��
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Theorem 14 If n0, n1, . . . , n9 are positive integers whose prime factors are congruent to 11
modulo 12, then there exists an optimal balanced (N , M, {3, 5}, 1; 2)-MLVWOOC with the
size attaining the upper bound (12), where N = {13n0, 13n0n1, . . . , 13n0n1 · · · n9} and
M = [n0 − 1, n0n1 − 1, . . . , n0n1 · · · n9 − 1].
Proof For each prime factor ni , there are ten pairwise 2-compatible balanced (13ni , 13,
{3, 5}, 1)-DFs and eachbase block contains atmost two elementswhich are congruentmodulo
13 from Lemma 16, hence there exists a balanced (N ′, M, {3, 5}, 1; 2)-CDF set system
from Construction 5, where N ′ = {(13n0, 13), (13n0n1, 13), . . . , (13n0n1 · · · n9, 13)} and
M = [n0 − 1, n0n1 − 1, . . . , n0n1 · · · n9 − 1]. The corresponding balanced (N , M, {3, 5},
1; 2)-MLVWOOC is optimal since the size reaches the upper bound (12). ��
Theorem 15 If n is a positive integer whose prime factors are congruent to 11 modulo 12,
then there is an optimal balanced (N , M, {3, 5}, 1; 2)-MLVWOOC with the size meeting the
upper bound (12), where N = {13n, 65n, 91n} and M = [n − 1, 5n − 1, 7n − 1].
Proof There are three pairwise 2-compatible balanced (13n, 13, {3, 5}, 1)-DFs from Lemma
16, and an (r , 5, 1)-CDM from Lemma 11, r ∈ {5, 7}, hence we have a balanced
(N ′, M ′, {3, 5}, 1; 2)-CDF set system from Construction 4, where N ′ = {(13n, 13), (65n,

65), (91n, 91)} and M ′ = [n − 1, 5n − 5, 7n − 7].
LetB5 ={{0,1,3,7,12}, {0,8,18,31,45}, {0,15,32}, {0,16,35}} andB7 ={{0,10,40,64,84},

{0,57,59,60,73}, {0,11,46,50,69}, {0,5,43}, {0,26,62}, {0,6,76}}, thenBr forms a balanced
(13r , {3, 5}, 1)-DP, r = 5, 7. We check that the balanced (65, {3, 5}, 1)-DP, the balanced
(91, {3, 5}, 1)-DP are 2-compatible and each base block contains at most two elements which
are congruent modulo 13, hence we have a balanced (N , M, {3, 5}, 1; 2)-CDP set system
from Construction 4, where N = {13n, 65n, 91n} and M = [n − 1, 5n − 1, 7n − 1]. The
corresponding balanced (N , M, {3, 5}, 1; 2)-MLVWOOC is optimal since the size meets the
upper bound (12). ��
Lemma 17 If n is a positive integer whose prime factors are congruent to 1 modulo 26, then
there are two pairwise 2-compatible balanced (n, {3, 5}, 1)-DFs.
Proof Let n = pa11 pa22 · · · pass be the factorization of n where each pi ≥ 53 be prime and
each integer ai ≥ 1. For each prime pi , there are two pairwise 2-compatible balanced
(pi , {3, 5}, 1)-DFs from Lemma 10. Along the lines of the proof of Lemma 15, we have two
pairwise 2-compatible balanced (n, {3, 5}, 1)-DFs. ��
Theorem 16 If n is a positive integer whose prime factors are congruent to 1 modulo 26
greater than 53, then there exists an optimal balanced (N , M, {3, 5}, 1; 2)-MLVWOOC with
the size meeting the upper bound (19) where N = {n, rn}, M = [ n−1

13 , rn−r
13 ], r is odd and

the least prime factor of r is not less than 5.

Proof There exist two pairwise 2-compatible balanced (n, {3, 5}, 1)-DFs fromLemma17 and
an (r , 5, 1)-CDMfromLemma11, hencewe can obtain a balanced (N ′, M, {3, 5}, 1; 2)-CDF
set system from Construction 4, where N ′ = {(n, 1), (rn, r)} and M = [ n−1

13 , rn−r
13 ]. The

corresponding balanced (N , M, {3, 5}, 1; 2)-MLVWOOC is optimal since the size attains
the upper bound (19). ��

6 Conclusion

In this paper, on the one hand some recursive constructions for compatible difference packing
set systems are obtained by using (W , Q)-SCGDDs of type uh . By using some (W , Q)-
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SCGDDs of type uh , we can get some series of compatible difference packing set systems
with multiple blocks sizes from compatible difference packing set systems with constant
block size, then some infinite classes of optimal MLVWOOCs with weights 3 and 4 are
produced. A (W , Q)-SCGDD of type uh is closely related to a 2-D variable-weight OOC
with AM-OPPW. So, it is worthy of constructing (W , Q)-SCGDDs of type uh for some
W and Q. On the other hand, a new consequence of the theorem of Weil on multiplicative
character sums is given, and several infinite classes of (N , M,W , 1, Q; 2)-CDP set systems
with W = {3, 4}, {3, 5} are produced via the new consequence and cyclotomic classes.
These (N , M,W , 1, Q; 2)-CDP set systems are used to yield some infinite classes of optimal
balancedMLVWOOCswithW = {3, 4}, {3, 5}. Therefore, the following problems are worth
of studying.

Problem 1 Construct optimal balanced (N , M,W , 1; 2)- MLVWOOCs for W = {4, 5},
{3, 4, 5}.

Problem 2 Construct optimal (N , M,W , 1, Q; 2)-MLVWOOCs for Q �= ( 12 ,
1
2 ).
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Appendix A

Table 2 Two (x, y)s in Lemma 6

p (x, y)′s p (x, y)′s p (x, y)′s

109 (22, 14), (37, 29) 379 (111, 85), (263, 155) 433 (15, 44), (229, 76)

487 (129, 140), (356, 347) 541 (118, 37), (176, 73) 577 (471, 58), (547, 153)

613 (278, 2), (501, 121) 631 (233, 183), (476, 314) 739 (60, 42), (92, 76)

757 (291, 40), (747, 143) 811 (88, 10), (646, 80) 829 (124, 22), (345, 24)

883 (563, 70), (746, 169) 937 (169, 3), (898, 7) 991 (94, 419), (410, 438)
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Table 3 Five x ′s in Lemma 8

p x ′s p x ′s p x ′s

83 5, 13, 18, 34, 42 107 20, 31, 50, 65, 70 131 17, 22, 50, 56, 66

167 34, 39, 67, 82, 90 179 6, 23, 71, 78, 96 191 21, 28, 41, 55, 61

227 31, 41, 45, 60, 66 239 13, 41, 46, 52, 69 251 18, 29, 46, 76, 95

263 28, 79, 106, 112, 118 311 22, 37, 43, 57, 68 347 5, 57, 62, 65, 68

359 38, 42, 56, 61, 86 383 39, 52, 88, 117, 131 419 10, 50, 53, 70, 85

431 13, 34, 70, 93, 133 443 28, 31, 43, 91, 101 467 18, 31, 44, 56, 72

479 85, 93, 101, 116, 129 491 6, 21, 62, 66, 86 503 29, 34, 37, 40, 57

563 14, 37, 53, 72, 128 587 5, 18, 23, 32, 44 599 42, 69, 112, 115, 137

647 19, 22, 37, 59, 73 659 28, 40, 46, 66, 71 683 23, 43, 50, 72, 92

719 22, 43, 46, 85, 88 743 20, 28, 39, 51, 55 827 5, 17, 20, 37, 45

Table 4 (x1, x2, x3, x4, x5) in Lemma 10

p (x1, x2, x3, x4, x5) p (x1, x2, x3, x4, x5) p (x1, x2, x3, x4, x5)

53 (3, 15, 48, 10, 29) 79 (3, 9, 63, 5, 40) 157 (3, 9, 106, 10, 42)

313 (3, 7, 34, 9, 26) 443 (3, 9, 47, 4, 143) 521 (3, 7, 117, 9, 27)

547 (5, 11, 98, 8, 102) 599 (3, 8, 23, 9, 44) 677 (3, 7, 88, 5, 28)

859 (3, 8, 37, 10, 103) 911 (3, 9, 79, 16, 88) 937 (3, 7, 19, 8, 118)

1093 (5, 9, 75, 16, 235) 1171 (3, 22, 145, 11, 27) 1223 (5, 11, 51, 37, 92)

1249 (3, 15, 22, 17, 78) 1301 (3, 7, 18, 12, 135) 1327 (3, 13, 51, 6, 58)
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Appendix B

Bps for p ∈ {127, 163, 181, 199, 271, 307, 397, 523, 919} in Lemma 6.

B127 : {(0, 0), (0, 1), (0, 4), (1, 16)}, {(0, 0), (0, 16), (1, 64), (1, 2)},
{(0, 0), (0, 64), (1, 4)}, {(0, 0), (0, 22), (0, 107)}.

B163 : {(0, 0), (0, 1), (0, 149), (1, 33)}, {(0, 0), (0, 33), (1, 27), (1, 111)},
{(0, 0), (0, 27), (1, 149)}, {(0, 0), (0, 7), (0, 17)}.

B181 : {(0, 0), (0, 1), (0, 116), (1, 62)}, {(0, 0), (0, 62), (1, 133), (1, 43)},
{(0, 0), (0, 133), (1, 116)}, {(0, 0), (0, 10), (0, 95)}.

B199 : {(0, 0), (0, 1), (0, 39), (1, 128)}, {(0, 0), (0, 128), (1, 17), (1, 66)},
{(0, 0), (0, 17), (1, 39)}, {(0, 0), (0, 89), (0, 111)}.

B271 : {(0, 0), (0, 1), (0, 38), (1, 89)}, {(0, 0), (0, 89), (1, 130), (1, 62)},
{(0, 0), (0, 130), (1, 38)}, {(0, 0), (0, 49), (0, 35)}.

B307 : {(0, 0), (0, 1), (0, 209), (1, 87)}, {(0, 0), (0, 87), (1, 70), (1, 201)},
{(0, 0), (0, 70), (1, 209)}, {(0, 0), (0, 59), (0, 303)}.
B397 : {(0, 0), (0, 1), (0, 211), (1, 57)}, {(0, 0), (0, 57), (1, 117), (1, 73)},
{(0, 0), (0, 117), (1, 211)}, {(0, 0), (0, 77), (0, 380)}.

B523 : {(0, 0), (0, 1), (0, 377), (1, 396)}, {(0, 0), (0, 396), (1, 237), (1, 439)},
{(0, 0), (0, 237), (1, 377)}, {(0, 0), (0, 90), (0, 461)}.

B919 : {(0, 0), (0, 1), (0, 374), (1, 188)}, {(0, 0), (0, 188), (1, 468), (1, 422)},
{(0, 0), (0, 468), (1, 374)}, {(0, 0), (0, 3), (0, 27)}.

Appendix C

Base blocks of balanced {3, 4}-SCGDDs of type u4 in Lemma 12.
u = 6:

{(0, 0), (1, 0), (2, 0), (3, 0)}, {(0, 0), (1, 2), (2, 1), (3, 5)}, {(1, 0), (2, 3), (3, 5)},
{(0, 0), (1, 4), (3, 2)},

{(0, 0), (1, 3), (2, 5), (3, 4)}, {(0, 0), (1, 5), (2, 3)}, {(0, 0), (1, 1), (2, 2), (3, 3)},
{(0, 0), (2, 4), (3, 1)}.

u = 12: the following base blocks by (+1 (mod 4),−).

{(0, 0), (1, 0), (2, 1), (3, 3)}, {(0, 0), (1, 3), (2, 2), (3, 8)}, {(0, 0), (1, 5), (2, 0)},
{(0, 0), (1, 8), (2, 6)}.

u = 18: the following base blocks by (+1 (mod 4),−).

{(0, 0), (1, 6), (2, 9), (3, 7)}, {(0, 0), (1, 13), (3, 6)}, {(0, 0), (1, 2), (2, 2), (3, 17)},
{(0, 0), (1, 17), (3, 9)}, {(0, 0), (1, 4), (2, 0), (3, 8)}, {(0, 0), (1, 5), (2, 12)}.
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u = 24: the following base blocks by (+1 (mod 4),−).

{(0, 0), (1, 0), (2, 23), (3, 11)}, {(0, 0), (1, 16), (3, 23)}, {(0, 0), (1, 2), (3, 2)},
{(0, 0), (1, 10), (2, 21), (3, 4)}, {(0, 0), (1, 3), (2, 12), (3, 7)}, {(0, 0), (1, 5), (2, 2), (3, 10)},
{(0, 0), (1, 4), (2, 10)}, {(0, 0), (2, 15), (3, 6)}.

Appendix D

Base blocks of ({3, 4}, ( 23 , 1
3 ))-SCGDDs of type u

5 in Example 2.
u = 6:

{(0, 4), (1, 1), (2, 3), (3, 3)}, {(0, 3), (1, 2), (2, 3), (4, 4)}, {(0, 3), (2, 4), (3, 1), (4, 1)},
{(0, 0), (1, 0), (3, 1), (4, 3)}, {(1, 0), (2, 4), (3, 0), (4, 4)}, {(0, 1), (3, 1), (4, 0)},
{(2, 3), (3, 4), (4, 5)},
{(1, 3), (3, 0), (4, 3)}, {(1, 0), (2, 5), (3, 4)}, {(0, 0), (1, 4), (3, 3)}, {(0, 0), (2, 4), (3, 2)},
{(1, 0), (2, 3), (4, 1)}, {(0, 5), (1, 0), (4, 5)}, {(0, 1), (2, 4), (4, 3)}, {(0, 3), (1, 5), (2, 5)}.

u = 12: the following base blocks by (+1 (mod 5),−).

{(0, 0), (1, 0), (2, 2), (3, 9)}, {(0, 0), (1, 1), (2, 7), (3, 11)}, {(0, 0), (1, 8), (3, 1)},
{(0, 0), (1, 9), (2, 0)}, {(0, 0), (1, 5), (2, 4)}, {(0, 0), (2, 6), (3, 4)}.
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