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Abstract
Given k points in S1 satisfying certain conditions which are determined through their sym-
metric functions, we introduce a method for constructing spherical t-designs in R

2 with
2t +k elements. This approach points toward a better understanding of the space of spherical
t-designs as well as provides a systematic way to obtain examples.
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1 Introduction

A finite subset X of Sn−1 in R
n is a spherical t-design if for any polynomial f (x) =

f (x1, . . . , xn) of degree at most t , the value of the integral of f (x) on Sn−1 divided by the
volume of Sn−1 equals the average value of f (x) on the finite set X . They were introduced
by Delsarte et al. [5]. In the survey [1] a detailed explanation of the developments in the
subject can be found, along with a discussion of the connections of spherical t-designs with
other fields ofmathematics such as group theory, number theory and orthogonal polynomials,
among others.

The case of spherical t-designs in R
2 was studied in [8]. Consider the elements of R2 as

complex numbers, thus
S1 = {z ∈ C : |z| = 1}.

Denote σi , i = 1, . . . , k the elementary symmetric polynomials (the symmetric functions,
for short) of a set of k elements {z1, . . . , zk}. We usually write σi instead of σi (z1, . . . , zk).
A spherical t-design X in R

2 can be defined by means of the complex polynomial having
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the elements of X as its roots (for this and other equivalent definitions of spherical t-designs,
see [1]).

Definition 1 Let t, n be positive integers, and n ≥ t + 1. A set X = {z1, . . . , zn} ⊂ S1 is a
spherical t-design, or simply a t-design, if

σi (z1, . . . , zn) = 0 for i = 1, . . . , t . (1)

Equivalently, the polynomial

f (z) = (z − z1) · · · (z − zn) = zn + c1zn−1 + · · · + cn−1z + cn (2)

is such that ci = 0 for i = 1, . . . , t , because ci = (−1)iσi .

As the elements of a given t-design X are unit-norm complex numbers, we can observe the
following:

Remark 2 (cf. [8, Lemma 2])

(i) The condition σi = 0 for i = 1, . . . , t is equivalent to σn−i = 0 for i = 1, . . . , t .
(ii) σiσn = σn−i , for i = 1 . . . , n (σ0 is taken as 1).

Notice that this definition of t-design allows repeated elements in the set X .
It is clear that the n-th roots of any unit-norm complex number (regular n-gons) form a

t-design if n > t . Moreover, it is easy to see that, if n1, . . . , ns are positive integer numbers
greater than t and w1, . . . , ws ∈ S1, then the roots of the polynomial

f (z) =
s∏

i=1

(zni − wi ), (3)

also form a t-design with n = ∑s
i=1 ni elements. In [8], spherical t-designs as such are

called group-type t-designs, while a t-design that is not a group-type t-design is called a non-
group-type t-design. In particular, for any positive integer t there exists always group-type
t-designs with n elements, provided n ≥ t + 1. The natural question of deciding whether
there are t-designs besides these easily obtained ones is answered by the following theorem.

Theorem 3 [8, Theorem A] Let X be a spherical t-design in R
2 with |X | = n. Then

(i) for t + 1 ≤ n ≤ 2t + 2, X is always a group-type t-design; more precisely, when
t + 1 ≤ n ≤ 2t + 1, X is a regular n-gon and when n = 2t + 2, X is the union of two
regular (t + 1)-gons (this includes the (2t + 2)-gon case);

(ii) for each n ≥ 2t+3, besides group-type t-designs, there are as many as ℵ1 non-group-type
t-designs.

This paper goes deeper in the understanding of t-designs inR2 as started in [8], though our
approach is different. We can say that, in some way, we parameterize the design with some
of its points. The precise information to make this possible turn out to be in the symmetric
functions of this points, more specifically, on algebraic and metric conditions upon such
functions.Moreover, group-type t-designs can be obtained through easily described algebraic
conditions.

In Sect. 4 our general method to construct a t-design X with |X | = 2t + k, given
a1, . . . , ak ∈ S1 is given. The a′

i s will belong to X while the other 2t elements in the
design turn out to be the roots of a polynomial whose coefficients are expressed in terms of
the symmetric functions σ1, . . . , σk of the a′

i s. Such polynomial will be denoted by Gk,t . So,
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Symmetric functions and spherical t-designs inR2 2565

conditions must be imposed on a1, . . . , ak in order that: (1) the coefficients of the polynomial
Gk,t are well defined and, (2) the roots of Gk,t are all unit-norm complex numbers. When
these conditions are satisfied we will say that the a′

i s are in good position. Using this method,
we construct a family of 3-designs in Example 34.

For clarity in the exposition, our method is illustrated first in Sect. 3 by means of the
simplest case where a non-group spherical t-design can appear: a spherical 2-design of
7 elements. In Sect. 3.1 we show how conditions on three unit-norm complex numbers
naturally appear when trying to construct a spherical 2-design of 7 elements containing
them. Proposition 14 assures the existence and unicity of such a design under the obtained
conditions and Example 18 gives a family of non-group-type 2-designs. In this case we are
able to give a complete description of our object of study: Proposition 22 states that any
2-design with 7 elements, where at least five of them are distinct, can be obtained by this
method. In Sect. 3.3 conditions for a 2-design with 7 elements to be of group-type are given
and this result is generalized latter for any t and k = t + 1, in Proposition 37.

Another reason for giving a separate treatment to 2-designs is that they are an important
kind of unit norm tight frames (see [2]), also known as balanced unit norm tight frames,
which are studied in [7].

Our results indicate that it makes sense to consider the space of t-designs in the σ -space,
that is, the space whose coordinates are the symmetric functions. This is explained in Sect. 5
and applied to the case of 2-designs. Further development of this approach could contribute
to a new understanding of spherical t-designs.

2 Polynomials with roots on the unit circle

In this article, we are facedwith the problem of decidingwhether a given complex polynomial
has all of its roots in S1. This is not a trivial issue and it is particularly difficult to find necessary
and sufficient conditions on the coefficients of the polynomials (see, for instance, [10] and
[3]).

Definition 4 A polynomial P(z) = ∑m
k=0 αk zk ∈ C[z] is self-inversive if αm−k = wαk for

k = 0, . . . , m, where w ∈ C, |w| = 1.

It is easily seen that a polynomial with all of its roots in the unit circle is self-inversive,
but the following classical result says much more:

Theorem 5 (Cohn [3]) A complex polynomial P has all of its zeros in the unit circle if and
only if the following two conditions holds:

i) P is self-inversive,
ii) All zeros of P ′ lie in the unit disk.

It is also not an easy task to decide whether a given polynomial has its roots on the unit
disk. However, for the case of degree 3, we can give the following criteria.

Proposition 6 Let g(z) = z3 + az2 + bz + c ∈ C[z] such that c − ba �= 0 and let D = {z ∈
C : |z| ≤ 1}. If |a| < 1 and |c − ab| < 1 − |a|2 − |ac − b|, then g(z) has all of its roots in
D.

If c = ba then the roots of g(z) lie in D if and only if a, b ∈ D.
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Proof Observe that z is a root of g(z) if and only if

z2 = −bz − c

z + a
.

By hypothesis, the mapping M : C∞ → C∞ given by M(z) = −bz − c

z + a
is a Möbius

transformation (see, for instance, [4]) such that, if |a| �= 1, M(S1) is a circle C with center

z0 = − ac − b

|a|2 − 1
and radius ρ = |c − ab|

||a|2 − 1| .
If |a| < 1 the outside of D is mapped to the inside of C , while the second hypothesis is

equivalent to ρ < 1 − |z0|, which implies that C and its interior are contained in D. So, if z
is a root of g(z) and |z| > 1, then M(z) = z2 ∈ D, a contradiction.

The last affirmation is obvious since z3 + az2 + bz + ab = (z2 + b)(z + a). ��
The following result, due to Lakatos and Losonczi [9] (see also [10]) gives sufficient condi-
tions for a self-inversive polynomial to have all of its roots on the unit circle.

Theorem 7 (Lakatos–Losonczi)All zeros of a self-inversive polynomial P(z) = ∑m
k=0 αk zk ∈

C[z] of degree m ≥ 1 are on the unit circle if

|αm | ≥ 1

2

m−1∑

k=1

|αk |. (4)

For real polynomials with roots on the unit circle, the relation between them and their
coefficients can be clarified: Let b = (b1, . . . , bd) ∈ R

d and denote gb the polynomial

gb = (x2d + 1) + b1(x2d−1 + x) + · · · + bd−1(xd+1 + xd−1) + bd xd .

It is not difficult to see that if g ∈ R[z] is a monic polynomial of degree 2d such that all of
its complex roots lie on S1 and 1 and −1 are roots of g with even multiplicity (possibly 0),
then g = gb for some b ∈ R

d . Moreover, let Vd be the set of those b ∈ R
d such that all of

the roots of gb lie in S1 and

Id = {(r1, . . . , rd) ∈ R
d : −2 ≤ r1 ≤ r2 ≤ · · · ≤ rd ≤ 2}.

The following proposition is Lemma 2.1.1 in [6].

Proposition 8 Vd is homeomorphic to Id .

Remark 9 The homemorphism Φ of Proposition 8 is given in the following way: for r =
(r1, . . . , rd) ∈ Id , define Φ(r) to be the unique b ∈ R

d such that

xd

(
d∑

i=0

(−1)iσi (r1, . . . , rd)

(
x + 1

x

)d−i
)

= gb(x),

where σ0 is taken as 1.

Example 10 The set V1 is the closed interval [−2, 2]. For d = 2, we have that (b1, b2) =
Φ(r1, r2) = (−r1 − r2, r1r2 + 2) and, as Φ transforms the boundary of I2 in the boundary
of V2, we have that

V2 = {(b1, b2) : 2|b1| − 2 ≤ b2 ≤ b21
4

+ 2}. (5)
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More generally, a description of the space of complex polynomials such that all of their roots
lie in S1 can be given.

Definition 11 If the complex polynomial L(z) = zk + c1zk−1 + · · · + ck−1z + ck satisfies
ck = 1 and ci = ck−i for i = 1 . . . , k, then it is called conjugate reciprocal.

In [11], the geometry, topology and Lebesgue measure of the space of conjugate reciprocal
polynomials of fixed degree with all roots in S1 is studied. To state some of their results, we
introduce the matrix Xk ∈ C

k−1×k−1 by giving its l, j entry:

[Xk]l, j =
⎧
⎨

⎩

δl, j + δk−l, j if 1 ≤ l < k/2
δl, j if l = k/2
iδk−l, j − iδl, j if k/2 < l < k,

(6)

where δl, j is the Kronecker delta and i is the imaginary unit (in [11] this matrix is normalized,
but this is unimportant for us). The key point here is that the polynomial

l(x) = (xk + 1) +
k−1∑

n=1

cn xk−n

is conjugate reciprocal if and only if there exists w ∈ R
k−1 such that c = Xkw ∈ C

k−1, in
which case it is denoted w(x) = l(x). Define Wk as the set

Wk = {w ∈ R
k−1 : w(x) has all roots in S1}. (7)

We have the following theorem which summarizes some of the results in [11]:

Theorem 12 Wk is homeomorphic to the unit ball of Rk−1 and its boundary is the set of those
w ∈ Wk such that Δ(w(x)) = 0, where Δ denotes the discriminant of a given polynomial.

Example 13 To describe the set W3, recall that

Δ(ax3 + bx2 + cx + d) = b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd.

Thus, we have

Δ(w1, w2) = Δ(x3 + (w1 + iw2)x2 + (w1 − iw2)x + 1)

= w4
1 + 2w2

1w
2
2 + w4

2 − 8w3
1 + 24w1w

2
2 + 18w2

1 + 18w2
2 − 27 (8)

and the boundary of W3 is the set {(w1, w2) ∈ R
2 : Δ(w1, w2) = 0}.

3 2-designs with 7 elements

3.1 Existence

Let a1, a2, a3 ∈ S1 and assume that there is a 2-design X , with |X | = 7 containing them.
This is equivalent to the existence of a polynomial of degree 7

f (z) = z7 + c6z6 + · · · + c1z + c0 (9)

such that

i) c6 = c5 = 0 and
ii) a1, a2, a3 are roots of f (z) and the other roots b1, b2, b3, b4 also belong to S1.
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As we saw, condition i) can be replaced by c2 = c1 = 0 and, moreover, these two conditions
are equivalent if we assume ii) to be true. Taking this into account, we try to obtain the
coefficients of such f (z).

Let σ1, σ2, σ3 be the symmetric functions of a1, a2, a3 and write

f (z) =
3∏

i=1

(z−ai )

4∏

i=1

(z−bi ) = (z3−σ1z2+σ2z−σ3)(z
4− σ̃1z3+ σ̃2z2− σ̃3z+ σ̃4), (10)

where σ̃1, σ̃2, σ̃3, σ̃4 are the symmetric functions of b1, b2, b3, b4. To obtain the σ̃i ’s we
impose c6 = c5 = c2 = c1 = 0. By calculating the product of the two polynomials in the
right-hand side of (10) and equating to zero the coefficients of z6, z5, z2 and z, we come to

σ̃1 = −σ1 (11)

σ̃2 = −σ̃1σ1 − σ2 = σ 2
1 − σ2 (12)

and to the system {
σ2σ̃3 + σ1σ̃4 = −σ3(σ

2
1 − σ2)

σ3σ̃3 + σ2σ̃4 = 0
(13)

Assuming that σ 2
2 − σ3σ1 �= 0, we obtain

σ̃3 = −σ3σ2(σ
2
1 − σ2)

σ 2
2 − σ1σ3

, σ̃4 = σ 2
3 (σ 2

1 − σ2)

σ 2
2 − σ1σ3

. (14)

Thus we have obtained the following proposition, to be generalized in Sect. 4.

Proposition 14 Let a1, a2, a3 ∈ S1 such that σ 2
2 − σ3σ1 �= 0.

i) If the roots b1, b2, b3, b4 of the polynomial

G(z) := z4 + σ1z3 + (σ 2
1 − σ2)z

2 + σ3σ2(σ
2
1 − σ2)

σ 2
2 − σ1σ3

z + σ 2
3 (σ 2

1 − σ2)

σ 2
2 − σ1σ3

(15)

are unit-norm complex numbers then the set X = {a1, a2.a3, b1, b2, b3, b4} is the unique
spherical 2-design with 7 elements that contains a1, a2, a3.

ii) If some root of G(z) does not belong to S1 then there is not a spherical 2-design with 7
elements containing a1, a2, a3.

Remark 15 Note that the condition on the polynomial G(z) is actually a condition on
a1, a2, a3. We specify this in Definition 25 below.

Now, we can apply the results of Sect. 2 to establish when our 2-design actually exists.
Surprisingly, the polynomialG(z) turns out to be self-inversivewithno further conditions
on the numbers a1, a2, a3 ∈ S1 (this is easy to check using σ̄2σ3 = σ1 and |σ3| = 1, see
Proposition 31 below for the general case), so we apply Proposition 6 to G ′(z) in order to
satisfy the second condition of Theorem 5.

Corollary 16 Let a1, a2, a3 ∈ S1 such that σ 2
2 − σ3σ1 �= 0 and G(z) the polynomial defined

in Eq.(15). In the following cases there exists a 2-design containing them.

1. If 2σ3σ2 �= 3σ1(σ 2
2 − σ3σ1), 0 < |σ1| < 4

3 and
∣∣3σ1σ 2

2 − 3σ 2
1 σ3 − 2σ2σ3

∣∣ < 8 −
9
2 |σ1|2 −

∣∣∣4σ1σ3 − 5
2σ

2
2

∣∣∣.

2. If 2σ3σ2 = 3σ1(σ 2
2 − σ3σ1) and 3

4σ1,
σ 2
1 − σ2

2
∈ D.
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3. If |σ1| < α, where α is the real root of the polynomial 3x3+10x2+6x −8 (α  0.60712).

Proof The first two cases follow from applying Proposition 6 to

1

4
G ′(z) = z3 + 3

4
σ1z2 + σ 2

1 − σ2

2
z + σ3σ2(σ

2
1 − σ2)

4(σ 2
2 − σ1σ3)

,

using the fact that |σ 2
1 − σ2| = |σ 2

2 − σ1σ3|, which follows from σ 2
3 (σ 2

1 − σ2) = σ 2
2 − σ1σ3

(note also that the case σ1 = 0 is excluded because, due to σ̄2σ3 = σ1, it would implies σ2 = 0
and then σ 2

2 − σ3σ1 = 0). The condition of the third case is stronger than the two previous
ones. If 2σ3σ2 �= 3σ1(σ 2

2 −σ3σ1), apply triangle inequality and, if 2σ3σ2 = 3σ1(σ 2
2 −σ3σ1),

the two inequalities follows. ��
Remark 17 For arbitrary t , wewill define a general polynomialGk,t (seeDefinition 25 below)
so that G(z) = G3,2(z) and obtain a general condition implying that all of its roots are in
the unit circle (see Corollary 32). Nevertheless, in the case t = 2, the conditions given by
Corollary 16 are more accurate.

We can use Example 10 to give a family of examples of 2-designs.

Example 18 Let z0 ∈ S1 and set

a1 = 1, a2 = z0, a3 = z0.

We want to find out when there is a 2-design containing 1, z0, z0. We have

σ1 = σ2 = 1 + 2�(z0), σ3 = 1,

then σ 2
2 − σ1σ3 �= 0 if and only if z0 �= ±i and z0 �= − 1

2 ± i
√
3
2 , in order to be able to define

the polynomial in (15), we discard these cases.
Thus, we need to check when the polynomial

G0(z) = z4 + (1 + 2�(z0))z
3 + 2�(z0)(1 + 2�(z0))z

2 + (1 + 2�(z0))z + 1 (16)

has all of its roots in S1. Note first that 1 is not a root of G0, because in that case �(z0) /∈ R,
and if −1 is a root, has multiplicity 2. By (5), taking b1 = 1+ 2�(z0) and b2 = 2�(z0)(1+
2�(z0)), we have that G0(z) has all of its roots in S1 if and only if �(z0) belongs to the set
{

x ∈ R : 2|2x + 1| − 2 ≤ 2x(2x + 1) ≤ (2x+1)2

4 + 2
}

=
[−1−√

28
6 , 0

]
∪

[
1
2 ,

−1+√
28

6

]
.

As −1−√
28

6  −1, 0485 and z0 ∈ S1, we conclude that G0(z) has all of its roots in S1 if and

only if�(z0) ∈ [−1,− 1
2

)∪(− 1
2 , 0

)∪
[
1
2 ,

−1+√
28

6

]
. We depict, for some particular values of

z0, the corresponding 2-designs in Fig. 1. The grey points are the roots of the corresponding
G0(z).

Remark 19 Notice that, in the previous example, the condition σ 2
2 − σ1σ3 = 0 implies that

our three input points are either the cubic roots of the unity or three of the four quartic roots
of the unity. Therefore, in both cases there exists an infinite number of group-type 2-designs
containing them. It is also worth noticing that the cases z0 = −1 and z0 = 1

2 both correspond
to the group-type 2-design given by the union of the quartic roots of 1 and the cubic roots of
−1. Here −1 belongs to both sets of roots.

Remark 20 If we would have applied Corollary 16 to work this example, we would have
obtained that for �(z0) ∈ (−1,− 1

2

) ∪ (− 1
2 , 0

)
there exists a 2-design containing 1, z0, z0,

that is, a less precise condition.
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Fig. 1 Examples of 2-designs

3.2 Characterization of 2-designs

We would like to give a reciprocal statement to Proposition 14: Does any 2-design with 7
elements can be obtained in this way? To answer to this question we need the following
lemmas.

Lemma 1 Let a1, a2, a3 ∈ S1 such that σ 2
2 − σ3σ1 = 0. Then one of the following is true:

i) a1, a2, a3 are the cubic roots of a unit-norm complex number, or
ii) some pair of the ai ’s are opposite.

Proof As the polynomial

3∏

i=1

(z − ai ) = z3 − σ1z2 + σ2z − σ3

is self inversive, we have σ1σ3 = σ2 and |σ3| = 1. Then |σ1|2 = |σ2|2 = |σ1|, that is |σ1| = 0
or |σ1| = 1. If |σ1| = 0 we have σ1 = σ2 = 0 and then a1, a2, a3 are the cubic roots of σ3.
On the other hand, if |σ1| = 1, we have σ3 = σ1σ1σ3 = σ1σ2 and then a1, a2, a3 are the
roots of

z3 − σ1z2 + σ2z − σ1σ2 = (z − σ1)(z
2 + σ2) (17)

which implies ii). ��
Lemma 2 Let X be a finite subset of S1 such that |X | ≥ 3 and for any three distinct points
in X, σ 2

2 −σ3σ1 = 0, where σ1, σ2, σ3 are the corresponding symmetric functions. Then one
the following options is true:

(i) |X | = 3 and the elements of X are the cubic roots of a unit-norm complex number, or
(ii) |X | = 4 and the elements of X are the quartic roots of a unit-norm complex number.

Proof If there exists a1, a2, a3 distinct elements of X such that σ1 = 0, then, by Lemma 1,
they are the cubic roots of σ3 and, moreover, there are not other (distinct) elements in X . In
fact, let a4 ∈ X such that a4 �= ai , i = 1, 2, 3. Applying Lemma 1 to a1, a2, a4 we have
that a4 = −a1 or a4 = −a2. If a4 = −a1 apply Lemma 1 to a3, a2, a4 and get a1 = a2 or
a1 = a3, a contradiction. Similarly if a4 = −a2. We conclude that a1, a2, a3 are the only
distinct elements of X .

So, we are left with the case of |σ1| = 1: take three distinct points, they are the roots of a
polynomial as in (17). As we have σ2 = σ 2

1 , any other distinct point in X must be equal to
−σ1 so the elements of X are the roots of z4 − σ 4

1 . ��
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Corollary 21 Let X be a spherical 2-design with 7 elements, and at least five of them are
distinct. Then there exists three elements of X such that σ 2

2 −σ3σ1 �= 0, where σ1, σ2, σ3 are
the corresponding symmetric functions.

Now we can apply Proposition 14 to obtain our characterization result.

Proposition 22 Let X a 2-design with 7 elements, and at least five of them distinct. Then
there exist a1, a2, a3 ∈ X such that X = {a1, a2.a3, b1, b2, b3, b4} where b1, b2, b3, b4 are
the roots of the polynomial G(z) defined in (15) and σ1, σ2, σ3 are the symmetric functions
of a1, a2, a3.

3.3 Group-type 2-designs

What can be said about group-type 2-designs under this point of view? To answer that
question, first note the following fact, whose proof is evident.

Proposition 23 A spherical 2-design of 7 elements is of group-type if and only if it is given
by the roots of a polynomial of the shape

f (z) = z7 + αz4 + βz3 + γ (18)

where one of the following options holds:

i) α, β ∈ S1 and γ = αβ.
ii) α = β = 0 and γ ∈ S1.

We would like to describe group-type t-designs in terms of symmetric functions. The
following proposition shows that this is possible.

Proposition 24 Let a1, a2, a3 ∈ S1 such that σ 2
2 − σ3σ1 �= 0. If σ3 = σ2σ1 then there is a

spherical 2-design X containing a1, a2, a3. Moreover, X is a group-type 2-design.

Proof We know by Proposition 14 that if there is a 2-design with 7 elements containing
a1, a2, a3, their other four elements must be the roots of the polynomial G(z) in equation
(15), provided that all of them are in S1. Instead of finding this out, we make the product

f (z) = (z3−σ1z2+σ2z−σ3)

(
z4 + σ1z3 + (σ 2

1 − σ2)z
2 + σ3σ2(σ

2
1 − σ2)

σ 2
2 − σ1σ3

z + σ 2
3 (σ 2

1 − σ2)

σ 2
2 − σ1σ3

)

(19)
and show that f (z) satisfies the first condition on Proposition 23.

First, observe that, due to a1, a2, a3 ∈ S1, we have σ1σ3 = σ2, which, together with our
assumption, gives

|σ1|2σ2 = σ2.

If σ2 = 0 then σ1 = 0 (because |σ3| = 1), whichwould imply σ 2
2 −σ3σ1 = 0, a contradiction.

So |σ1| = |σ2| = 1. We also have,

σ 2
2 − σ1σ3 = σ2(σ2 − σ 2

1 )

and then
f (z) = (z3 − σ1z2 + σ2z − σ1σ2)(z4 + σ1z3 + (σ 2

1 − σ2)z2 − σ1σ2z − σ 2
1 σ2) =

= z7 − σ 3
1 z4 − σ 2

2 z3 + σ 3
1 σ 2

2 .
��
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Alternatively,we can combinePropositions 23, 14 and22 to obtain necessary and sufficient
conditions for 2-design with 7 elements to be of group-type . In fact, both two cases in
Proposition 23 applied to the polynomial

(
z3 − σ1z2 + σ2z − σ3

)
(

z4 + σ1z3 + (σ 2
1 − σ2)z

2 + σ3σ2(σ
2
1 − σ2)

σ 2
2 − σ1σ3

z + σ 2
3 (σ 2

1 − σ2)

σ 2
2 − σ1σ3

)

(20)
turn out in algebraic and norm conditions on the σi ’s, though these conditions will be rather
cumbersome. In Sect. 5 further tools to understand the space of t-designs in the σ -space will
be given.

4 Spherical t-designs inR
2

4.1 Existence

In this section we generalize the principal results obtained for the case t = 2. To state our
main theorem we need the following definition.

Definition 25 Let t , k be positive integer numbers. Let a1, . . . , ak ∈ S1 and σ1, . . . , σk their
corresponding symmetric functions. We say that a1, . . . , ak are in t-good position if the
following two conditions hold:

i) The determinant Δk,t = Δk,t (σ1, . . . , σk) of the matrix

Tk,t =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

σk−1 σk−2 σk−3 . . . σk−t+1 σk−t

σk σk−1 σk−2 . . . σk−t+2 σk−t+1

0 σk σk−1 . . . σk−t+3 σk−t+2

0 0 σk . . . σk−t+4 σk−t+3
...

... . . . . . . . . .
...

0 0 . . . 0 σk σk−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
t×t (21)

is non-zero. Here σi is taken as zero if i ≤ 0.
ii) All of the roots of the polynomial

Gk,t (z) = z2t − σ̃1z2t−1 + σ̃2z2t−2 − · · · − σ̃2t−1z + σ̃2t (22)

lie in S1, where the coefficients σ̃i are defined as follows: for i = 1, . . . , t they satisfy
the recursion formula

σ̃1 = −σ1 and σ̃i = −σi − ∑i−1
j=1 σ̃ jσi− j for i = 2, . . . , t (23)

while, for i = t + 1, . . . , 2t , they are obtained as the unique solutions of the system

Tk,t ·

⎡

⎢⎢⎢⎣

σ̃t+1

σ̃t+2
...

σ̃2t

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

−σk σ̃t

0
...

0

⎤

⎥⎥⎥⎦ (24)

Example 26 For any t the matrix T1,t is singular, so one single point is never in t-good
position.
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Example 27 Equations (11),(12) and (14) give the expressions for the σ̃i
′s if t = 2, k = 3

and a1, a2, a3 ∈ S1 are such that Δ3,2 = σ 2
2 − σ1σ3 �= 0. The polynomial G3,2(z) is equal

to the polynomial G(z) in (15).

Example 28 Set t = 3 and k = 4. The expressions for σ̃i are, for i = 1, 2, 3 :
σ̃1 = −σ1, σ̃2 = −σ2 + σ 2

1 , σ̃3 = −σ3 + 2σ1σ2 − σ 3
1 .

Assuming Δ4,3 = σ 3
3 − 2σ2σ3σ4 + σ1σ

2
4 �= 0, we can solve the system

⎡

⎣
σ3 σ2 σ1
σ4 σ3 σ2
0 σ4 σ3

⎤

⎦ ·
⎡

⎣
σ̃4
σ̃5
σ̃6

⎤

⎦ =
⎡

⎣
−σ4σ̃3

0
0

⎤

⎦

to obtain

σ̃4 = σ4(σ3 − 2σ1σ2 + σ 3
1 )(σ 2

3 − σ4σ2)

Δ4,3
,

σ̃5 = −σ 2
4 σ3(σ3 − 2σ1σ2 + σ 3

1 )

Δ4,3
,

σ̃6 = σ 3
4 (σ3 − 2σ1σ2 + σ 3

1 )

Δ4,3
.

Our main theorem below, allows to find a t-design with 2t + k elements, given k points
in t-good position.

Theorem 29 For k complex numbers in S1 in t-good position, there is an unique t-design X
containing them with |X | = k + 2t .

Proof Assume that a1, . . . , ak ∈ S1 are in t-good position and let

L(z) =
k∏

i=1

(z − ai ) = zk +
k∑

i=1

(−1)iσi z
k−i . (25)

By hypothesis, the set X of the roots of the polynomial

L(z)Gk,t (z) = zn +
n∑

i=1

cn−i z
n−i ,

where n = k + 2t , is a subset of S1. Thus, to show that X is a spherical t-design it only
suffices to check that cn−1 = cn−2 = · · · = cn−t = 0 and this is clear for the construction
of the coefficients of Gk,t (z).

The unicity also follows from the construction of Gk,t (z) because, if a1, . . . , ak belongs
to a spherical t-design X with n = k + 2t elements, and {b1, . . . , bn−k} = X \ {a1, . . . , ak}
then the bi ’s are the roots of a polynomial

H(z) = z2t +
2t∑

i=1

(−1)iφi z
2t−i ,

where the φi ’s are the symmetric functions of b1, . . . , bn−k . Being X a spherical t-design,
the polynomial

L(z)H(z) = zn +
n∑

i=1

dn−i z
n−i ,
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must satisfy dn−i = di = 0, i = 1, . . . , t and this implies that φi = σ̃i for i = 1, . . . , 2t ,
where the σ̃i ’s are as in Definition 25. Thus, b1, . . . , bn−k are the roots of Gk,t (z) = H(z). ��

Remark 30 Assume t ≥ 2. From Theorems 29 and 3 we conclude that if 2 points in S1 are in
t-good position then there exists a unique group-type t-design (the union of two t + 1-gons)
containing them.

In order to construct t-designs, we need to decide, for k complex numbers in S1 such that
Δk,t �= 0, whether the polynomial Gk,t (z) have all of its roots in S1. This can be done using
Theorem 5. Unexpectedly, Gk,t (z) satisfies the first one of the conditions of the theorem if
k ≥ t + 1.

Proposition 31 Let t, k be positive integers such that k ≥ t + 1. If a1, . . . , ak ∈ S1 satisfy
that Δk,t �= 0, then the polynomial Gk,t (z) is self-inversive.

Proof As Gk,t (z) is monic, we need to show that the constant term σ̃2t is a unit-norm complex
number and that σ̃2t σ̃i = σ̃2t−i , for i = 1, . . . , t . Note that, by Cramer’s rule,

σ̃2t = (−1)tσ t
k σ̃t

Δk,t
. (26)

As |σk | = 1, it is enough to prove that |σ̃t | = |Δk,t |. We will show that, for any t ,

σ t
kΔk,t = (−1)t σ̃t , (27)

which implies the previous assertion. Observe that, if t = 1, σkΔk,1 = σkσk−1 = σ1 = −σ̃1

and that if t = 2, σ 2
k Δk,2 = σ 2

k (σ 2
k−1 − σkσk−2) = σ 2

1 − σ2 = σ̃2. So, suppose that t ≥ 3
and that (27) is true for lower values of t . We can express Δk,t as

Δk,t =
t−2∑

i=1

(−1)i−1σ i−1
k σk−iΔk,t−i + (−1)t−2σ t−2

k (σk−t+1σk−1 − σk−tσk). (28)

Then,

σ t
kΔk,t =

t−2∑

i=1

(−1)i−1σiσ
t−i
k Δk,t−i + (−1)t−2σ 2

k (σk−t+1σk−1 − σk−tσk) =

=
t−2∑

i=1

(−1)i−1σi σ̃t−i (−1)t−i + (−1)t−2(σt−1σ1 − σt ) =

=(−1)t

(
−

t−2∑

i=1

σi σ̃t−i − σt−1σ̃1 − σt

)
= (−1)t σ̃t .

We now prove that
σ̃2t σ̃i = σ̃2t−i , (29)

for i = 1, . . . , t − 1. If i = 1,

σ̃2t σ̃1 = −σ̃2tσ1 = (−1)t−1σk−1σ
t−1
k σ̃t

Δk,t
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and this is easily seen to be equal to σ̃2t−1 using, again, Cramer’s rule. Now, take 1 < i ≤ t−1
and assume that σ̃2t σ̃ j = σ̃2t− j holds for j < i . By (24) we have that

i∑

j=0

σk− j σ̃2t−(i− j) = 0.

Thus,

σk σ̃2t−i = −
i∑

j=1

σk− j σ̃2t−(i− j) = −
i∑

j=1

σk− j σ̃2t σ̃i− j ,

and we finally obtain

σ̃2t−i = −σ̃2t

i∑

j=1

σkσk− j σ̃i− j = −σ̃2t

i∑

j=1

σ j σ̃i− j = σ̃2t σ̃i .

The only thing left to prove to conclude is σ̃2t σ̃t = σ̃t , but this is straightforward, because
we have σ̃2tΔk,t = (−1)tσ t

k σ̃t and from (27) it follows easily that

Δk,t = (−1)tσ t
k σ̃t (30)

which finishes the proof. ��
Finding under what conditions on a1, . . . , ak the polynomial Gk,t (z) satisfies the second

condition of Cohn’ Theorem could be a difficult task and we do not have at our disposal a
result as Corollary 16 for t > 2. Instead of that, we can apply Theorem 7 to arrive to sufficient
conditions for the existence of t-designs.

Corollary 32 Let t, k be positive integers such that k ≥ t + 1. If a1, . . . , ak ∈ S1 satisfy that
Δk,t �= 0, and that

t−1∑

i=1

2|σ̃i | + |σ̃t | ≤ 2 (31)

then a1, . . . , ak are in t-good position. Consequently, Theorem 29 guarantees the existence
and unicity of a t-design X, with |X | = k + 2t , containing them.

Proof As we saw, |σ̃2t | = 1 and σ̃2t σ̃i = σ̃2t−i for i = 1, . . . , t − 1, which implies that
|σ̃i | = |σ̃2t−i | for i = 1, . . . , t − 1. Then, Theorem 7 applied to the monic polynomial Gk,t

gives the result. ��
Example 33 Applying Corollary 32 to the case t = 2, k = 3, we obtain that the condition

2|σ1| + |σ 2
1 − σ2| ≤ 2 (32)

assures the existence and unicity of a 2-design containing a1, a2, a3 ∈ S1 such that σ 2
2 −

σ1σ3 �= 0. If we set a1 = z0, a2 = z0 and a3 = 1 with z0 ∈ S1 we obtain the existence of

2-designs for 1−√
17

4  −0, 78077 ≤ �(z0) < − 1
2 . This comes from solving the equation

2|1 + 2�z0| + |(1 + 2�z0)
2 − (1 + 2�z0)| ≤ 2.

Compare this with Example 18 and with Remark 20.
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Fig. 2 Examples of 3-designs

Example 34 In this example, we construct a family of 3-designs in a similar fashion than we
did in Example 18. In order to apply Corollary 32, we must take 4 points in S1 such that
Δ4,3 �= 0.

Let z0, z1 ∈ S1 and set

a1 = z0, a2 = z0, a3 = z1, a4 = z1.

We have

σ1 = σ3 = 2(�(z0) + �(z1)), σ2 = 2 + 2(�(z0z1) + �(z0z1)), σ4 = 1.

Based on Example 28, we obtain the expressions for the σ̃i
′s. We put z0 = eiθ0 and z1 = eiθ1

so that �(z0) = cos θ0 and �(z1) = cos θ1 and we obtain:

σ̃1 = σ̃5 = −2(cos θ0 + cos θ1), σ̃2 = σ̃4 = 4 cos2 θ0 + 4 cos2 θ1 + 4 cos θ0 cos θ1 − 2, σ̃6 = 1.

whereas
Δ4,3 = −σ̃3 = 2(cos θ0 + cos θ1)(4 cos

2 θ0 + 4 cos2 θ1 − 3)

Notice thatwecouldobtain, throughProposition8 conditions forG4,3(z) = ∑6
i=0(−1)i σ̃i z6−i ∈

R[z] to have all of its roots lying in S1, however this will lead us to too many calculations.
Moreover, even an application of Corollary 32 in the general case would carry too much
work to obtain a condition on θ0 and θ1. So, instead of doing that, we put θ0 = π

3 and look
for those θ1 such that condition (31) holds. This will give us a family of 3-designs. Writing
θ instead of θ1, condition (31) is equivalent to

|1 + 2 cos θ | + |4 cos2 θ + 2 cos θ − 1| + |1 + 2 cos θ ||2 cos2 θ − 1| ≤ 1. (33)

which holds for −0.82948... ≤ cos θ ≤ −0.61803.... Then, for the corresponding values of
θ , we can assure the existence of 3-designs. The corresponding design for cos θ1 = − 3

4 is
depicted in Fig. 2 on the left. As in Example 33, conditions for existence are not sharp: on
the right of Fig. 2 there is a 3-design whose existence is not provided by the calculations in
this example, but obtained in the same fashion.

It is clear that a rotation applied to all elements of a t-design gives another t-design. So, we
expect our method for constructing t-designs from a subset of S1 will produce a consistent
result if we rotate that subset.
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Proposition 35 Let a1, . . . , ak be in t-good position and X the t-design containing them. If
θ ∈ R then eiθ a1, . . . , eiθ ak are in t-good position and the corresponding t-design Xθ is
obtained from X by a rotation in the angle θ .

Proof Weclaim that the coefficient of z j of the polynomialGk,t (z) is a homogeneous function
of degree 2t − j when considered as a function on a1, . . . , ak . Thus, denoting Gθ (z) the
corresponding polynomial for eiθ a1, . . . , eiθ ak , we have that Gθ (z) = ei2tθ Gk,t (e−iθ z).
Then, the roots of Gθ are of the form eiθ b where b is a root of Gk,t .

We now prove the claim. For j = 1, . . . , t , it is clear by definition (cf.(23)) that the
symmetric functions σ̃i are homogeneous of degree j . For j = t + 1, . . . , 2t , note first that
Δk,t is homogeneous of degree tk − t (considered as a function on a1, . . . , ak). In fact, from
(27), we easily obtain Δk,t = (−1)tσ t

k σ̃t (note that this also implies that Δk,t �= 0 when
applied to eiθ a1, . . . , eiθ ak).

Now, from (26), σ̃2t is homogeneous of degree tk + t − (tk − t) = 2t and finally, (29)
concludes the proof. ��

It would be nice to have a result like Proposition 22 in the general case. Even in the case
t = 3, k = 4 it is not clear what implies for 4 points in S1 to satisfy Δ4,3 = σ 3

3 − 2σ2σ3σ4 +
σ1σ

2
4 = 0. In particular, any 4 of the quintic roots of a unit-norm complex number fulfill this

condition and it is clear that they belong to an infinite number of 3-designs with 10 elements.
Nevertheless, we believe that the following statement is true:

Conjecture 36 Every t-design of 2t + k elements can be obtained from k points in t-good
position using the methods developed here.

4.2 Group-type t-designs

In the general case, it is also possible to describe group-type spherical t-designs in the σ -
space. We focus on the case k = t + 1. The following proposition generalizes Proposition
24.

Proposition 37 Let k = t + 1 and a1, . . . , ak ∈ S1 such that Δk,t �= 0. If σk = σ1σk−1 and
σi = 0 for i �= 1, k − 1, k then a1, . . . , ak are in t-good position and the t-design containing
them is of group-type.

Proof As before, σk = σ1σk−1 is equivalent to |σ1| = |σk−1| = 1. Then, it is enough to show
that

L(z)Gk,t (z) = (z2t − σ 2
k−1)(z

k − σ k
1 ),

where L(z) is as in (25). In this case

L(z) = zk − σ1zk−1 + (−1)k−1σk−1z + (−1)kσ1σk−1.

In order to calculate Gk,t , we use (23) to obtain

σ̃i = (−1)iσ i
1, (34)

for i = 1, . . . , t − 1 and
σ̃t = (−1)tσ t

1 − σk−1. (35)

From (30) and (35) we obtain that in this case

Δk,t = (−1)t+1σ t
1σ

t−1
k−1 + σ t

k−1,
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thus
σ̃t

Δk,t
= −1

σ t−1
k−1

and we have that

σ̃2t−i = σ̃2t σ̃i = (−1)tσ t
k σ̃t

Δk,t
σ̃i = (−1)t−1+iσ t−i

1 σk−1 (36)

for i = 0, . . . , t − 1. Finally, we have

Gk,t =
t−1∑

i=0

σ i
1z2t−i + (σ t

1 + (−1)t+1σk−1)z
t + (−1)t−1

2t∑

i=t+1

σ i
1σk−1z2t−i

and performing the product we arrive at the desired result. ��
Moreover, we can obtain others group-type t-designs in a similar fashion. Observe that due
to k = t + 1, the obtained t-design X is such that |X | = 3t + 1 then X is the union of, at
most, two n-gons. In the case of Proposition 37, we get the union of a 2t-gon and a t +1-gon,
but we get other combinations if we ask additional algebraic conditions on the σ ’s, as the
following examples shows.

Example 38 If we take k = 5 and t = 4 and we ask the conditions σ1 = σ4 = 0 and
σ5 = σ2σ3 we get

L(z)G5,4(z) = (z7 + σ 2
2 σ3)(z

6 − σ 2
3 ),

that is, the 4-design obtained is the union of a hexagon and a heptagon.

Example 39 If we take k = 4 and t = 3 and we ask the conditions σ4 = σ1σ3, σ 2
1 = σ2 and

σ3 = σ1σ2 we get
L(z)G4,3(z) = (z5 + σ 3

1 σ2)
2,

that is, the 3-design obtained is a pentagon with all points repeated twice.

It would be interesting to have a result describing the general pattern for obtaining group-type
t-designs for general k and t .

5 The space of t-designs

To finish this article, we would like to discuss how t-designs in R
2 could be understood

as elements of a subset lying in a bigger space. Our results show that when conditions are
imposed on the symmetric functions of complex numbers in S1 instead of on the numbers
themselves, the existence (or the non-existence) of a t-design and the condition to be of
group-type becomes clearer than it would be if we simply analyzed the given finite subset of
S1.

It is known (see, for instance [12, Appendix V]) that, if we denote < a1, . . . , ak > a
k-uple in Ck without regarding the ordering of the elements, the k-th symmetric power of C

C
k
sym = {< a1, . . . , ak >: a1, . . . , ak ∈ C},

is in bijective correspondence with C
k by means of the mapping  : Ck

sym → C
k given by

(< a1, . . . , ak >) = (σ1(a1, . . . , ak), . . . , σk(a1, . . . , ak)).

Moreover, the spaceCk
sym can be realized as a analytic variety and themapping is holomor-

phic. This shows that one can work indistinctly in the set of unordered k-uples of complex
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numbers or in the σ−space. Nevertheless, it is not that clear what the rank of the mapping
 is if instead we consider unordered k-uples of elements in S1.

We can obtain a more suitable insight applying Theorem 12, considering each t-design
being parametrized by an element of Ck

sym or, equivalently, by the k-uple (σ1, . . . , σk).

Definition 40 Let σ = (σ1, . . . , σk−1) ∈ C
k−1 and Xk , Wk as in equations (6), (7), respec-

tively. We say that σ is t-compatible if

1. Δk,t (σ1, . . . , σk−1, (−1)k) �= 0
2. (−1)iσi = Xkw, w ∈ Wk .

We call the set of all t-compatible σ , the t-compatible space.

Observe that the t-compatible space can be described by means of the set Wk .

Proposition 41 For every set {a1, . . . , ak} of points in S1 in t-good position, there exists a σ

in the t-compatible space.

Proof Let a1, . . . , ak in t-good position. By Proposition 35, we can rotate them in order that
the resulting set is also in good position and satisfies σk = (−1)k , where we denote also by
σi the simmetric functions of the rotated points. Thus, the polynomial zk − σ1zk−1 + · · · +
(−1)k−1σk−1z + 1 is conjugate reciprocal and all of its roots are in the unit cicle, that is,
(−1)iσi = Xkw for some w ∈ Wk . ��
Using Proposition 22 we obtain a nice description of the space of 2-designs with 7 elements.

Corollary 42 For every 2-design with 7 elements such that at least five of them are distinct,
we have a σ = (σ1, σ̄1) in the 2-compatible space.

To give a description of the space of 2-designs with 7 elements we first need to find all σ1 ∈ C

such that σ = (σ1, σ̄1) is 2-compatible, that is, to find all (w1, w2) ∈ W3, so we consider the
polynomial

z3 − σ1z2 + σ̄1z + 1 = z3 + (w1 + iw2)z
2 + (w1 − iw2)z + 1.

Since σ1 = −w1 − iw2, we consider Δ(−w1,−w2) = 0 (cf. eq.(8)) as the boundary of the
set of (w1, w2) such that the corresponding σ are compatible.

– The conditionΔ3,2 = 0 is σ1
2+σ1 = 0, which happens if and only if σ1 ∈ {0, 1, 1

2 ±
√
3
2 },

so we exclude these points.
– By Proposition 24, the equation σ3 = σ1σ2 corresponds to group-type 2-designs, in this

case this is equivalent to |σ1| = 1.
– Finally, in Corollary 16, item 3, we saw that for every σ with |σ1| ≤ α, α  0.60712,

we obtain a 2-design.

These considerations are reflected in Fig. 3, draw in the w-space. The interior of the curve
corresponds to the set of compatible σ , and the shaded regions correspond to actual 2-designs.
Note that there may be other 2-designs besides these ones (see Corollary 16, items 1 and 2).

We also note that different points in this picture could give raise to the same 2-design. To
elucidate this appropriately, we have to decide for what values of σ1 the polynomial

(z3 − σ1z2 − σ1z + 1)

(
z4 + σ1z3 + (σ 2

1 + σ1)z
2 + σ1

2 + |σ1|2σ1
σ1

2 + σ1
z + σ 2

1 + σ1

σ1
2 + σ1

)

= z7 + c3z4 + c4z3 + c0
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Fig. 3 The space of 2-designs of 7 elements

Fig. 4 The 2-design whose
elements are the zeroes of
z7 + 29

27 z4 + 29
27 z3 + 1

is the same one. As c4 = c0c3, it suffices to see for what values of compatible σ1

σ 2
1 + σ1

σ1
2 + σ1

= c0,
σ1

2 + |σ1|2σ1
σ1

2 + σ1
− σ 3

1 − 2|σ1|2 + 1 = c3

remain equal. For instance, for the values 1
3 ,

−21+√
513

18  0.09164 and −21−√
513

18  −2.425
of σ1 we obtain the same 2-design, that is depicted in Fig. 4.

This discussion also helps to clarify the question raised in Sect. 3.3: which are all the
group-type 2-designs with 7 elements? Solving c3c4 = c0 we obtain |σ1| = 1 plus a finite
number of points and solving c3 = c4 = 0 also gives a finite number of points. This illustrates
Theorem 3ii) in this case.
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