
Designs, Codes and Cryptography (2022) 90:2551–2562
https://doi.org/10.1007/s10623-021-00917-0

OnZ2Z4-additive polycyclic codes and their Gray images

Rongsheng Wu1 ·Minjia Shi1

Received: 17 December 2020 / Revised: 7 May 2021 / Accepted: 26 July 2021 /
Published online: 27 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In this paper, we first generalize the polycyclic codes over finite fields to polycyclic codes
over the mixed alphabet Z2Z4, and we show that these codes can be identified as Z4[x]-
submodules ofRα,β withRα,β = Z2[x]/〈t1(x)〉 ×Z4[x]/〈t2(x)〉, where t1(x) and t2(x) are
monic polynomials overZ2 andZ4, respectively. Then we provide the generator polynomials
and minimal generating sets for this family of codes based on the strong Gröbner basis.
In particular, under the proper defined inner product, we study the dual of Z2Z4-additive
polycyclic codes. Finally, we focus on the characterization of the Z2Z4-MDSS and MDSR
codes, and as examples, we also present some (almost) optimal binary codes derived from
the Z2Z4-additive polycyclic codes.

Keywords Z2Z4-additive polycyclic codes · Minimal generating sets · Duality · Optimal
codes · Bounds

1 Introduction

Polycyclic codes over finite fields are a nature generalization of the concept of cyclic codes
that are ideals modulo some other polynomials t(x) [22]. It was shown that every polycyclic
code over a finite field is a shortened cyclic code, and most of the best known random error-
correcting codes are shortened cyclic codes [32]. Recently, there are many papers on the
characterization of the polycyclic codes and their duality, see [2,7,29] and references therein.
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Extending the alphabets to the case of finite chain rings are considered later in [17,23].
Meanwhile, the description of the multivariable codes over finite chain rings, which contain
the polycyclic codes as special cases with univariable, can be found in [25–27].

Mixed alphabet codes were first defined by Delsarte [14] in terms of the association
schemes. Besides, Rifà and Pujol [34] introduced the translation invariant propelinear codes,
and it was shown that such codes consistent with the additive codes in the binary Hamming
scheme. Recently, Borges et al. [11] initially studied the generator and parity-check matrices
of the Z2Z4-additive codes systematically.

Since then, the research on this new topic has attracted the interest of many scholars. First,
Aydogdu and Siap studied the algebraic structure of Z2Z2s -additive codes [3] and ZprZps -
additive codes [4], and they also considered the duals of these additive codes. Borges and
Fernández-Córdoba [9] investigated the Z2Z2[u]-additive codes, and they showed that the
class ofZ2Z2[u]-linear codes is exactly the class ofZ2-linear codeswith automorphismgroup
of even order. Second,Z2Z4-additive cyclic codeswere introduced in [1], and these codes can
be used to construct binary codes with good parameters via Gray maps. On the other hand,
the generator polynomials for their duality were exhibited in [12]. Lately, Aydogdu et al.
[5] studied Z2Z2[u]-cyclic and constacyclic codes. In particular, some optimal binary linear
codes were derived from this family of codes. Very recently, Qian and Cao [33] considered
a more general case, i.e., ZqZq [u]-additive cyclic codes, they obtained many MDSS (maxi-
mumdistance separablew.r.t. the Singleton bound) codes and optimal q-ary codes usingGray
map.Moreover, the construction of 1-perfect additive codes can be found in [10,36]. General-
izations of linear complementary dual (LCD for short) codes [28] over finite fields to additive
complementary dual (ACD for short) codes over mixed alphabets can be found in [6] and
[21]. In addition, the constructions of one-weight and two-weight additive codes were char-
acterized in [15,37]. Another interesting topic on additive codes, presented in [16,20,40,41],
is asymptotical property, and it has been shown that those codes are asymptotically good.

The main object of this manuscript is to study the additive polycyclic codes in Z
α
2 × Z

β
4 .

More precisely, we show that these codes can be viewed asZ4[x]-submodules ofRα,β , where
Rα,β = Z2[x]/〈t1(x)〉×Z4[x]/〈t2(x)〉, t1(x) and t2(x) are monic polynomials of Z2[x] and
Z4[x], respectively. The main tool used here is the strong Gröbner basis theory. Similarly,
another natural topic is to study the duality. Recall that the standard inner product (see [11]
for more details) between (u|v) and (u′|v′) in Z

α
2 × Z

β
4 is defined by:

〈(u|v), (u′|v′)〉 = 2
α−1∑

i=0

uiu
′
i +

β−1∑

j=0

v jv
′
j ∈ Z4,

where (u|v) = (u0, . . . , uα−1|v0, . . . , vβ−1), (u′|v′) = (u′
0, . . . , u

′
α−1|v′

0, . . . , v
′
β−1) ∈

Z
α
2 × Z

β
4 . Let C be a Z2Z4-additive code, then Z2Z4-dual of C is defined by

C⊥0 =
{
(x|y) ∈ Z

α
2 × Z

β
4 : 〈(x|y), (v|w)〉 = 0 for all (v|w) ∈ C

}
.

It was shown in [1] that theZ2Z4-dual of aZ2Z4-additive cyclic code is still cyclic. However,
in general this property is not valid for an additive polycyclic code. At this point, it might be
one reason why there is little known on this kind of codes.

The paper is organized as follows. Section 2 collects the basic definition of Z2Z4-additive
polycyclic codes. In Sect. 3, we investigate the generator polynomials and the standard
generating sets for Z2Z4-additive polycyclic codes. Section 4 is devoted to studying the
duality ofZ2Z4-additive polycyclic codes based on a proper defined inner product. In Sect. 5,
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we characterize theZ2Z4-MDSS andMDSRcodes, and present some (almost) optimal binary
codes derived fromZ2Z4-additive polycyclic codes. Finally,we conclude this paper in Sect. 6.

2 Preliminaries

2.1 Z2Z4-additive codes

Let Z4 be the ring of integers modulo 4, then a code over Z4 of length n is said to be linear if
it is an additive submodule of Zn

4. In general, Z2Z4-additive codes are defined as subgroups

of Zα
2 × Z

β
4 (see [11] for more details), they are generalizations of the usual binary and

quaternary linear codes. For any r = r0 + 2r1 ∈ Z4 with r0, r1 ∈ Z2, we then define a scalar
multiplication on c ∈ Z

α
2 × Z

β
4 as

rc = r(v|w) = (
r0v0, r0v1, . . . , r0vα−1|rw0, rw1, . . . , rwβ−1

)
,

where c = (v|w) = (v0, v1, . . . , vα−1|w0, w1, . . . , wβ−1) ∈ Z
α
2 × Z

β
4 . Thus, any Z2Z4-

additive code can always be identified as aZ4-submodule ofZα
2×Z

β
4 under thismultiplication.

Let X (resp. Y ) be the set of Z2 (resp. Z4) coordinate positions. Denote CX (resp. CY )
the punctured code of C by deleting the coordinates Y (resp. X ). Let Cb be the subcode of C
which contains all order two codewords, and κ be the dimension of the linear code (Cb)X .
If C is a Z2Z4-additive code, i.e., a subgroup of Zα

2 × Z
β
4 , then the code C is isomorphic to

Z
γ
2 × Z

δ
4, for some positive integers γ and δ, and C is called a Z2Z4-additive code of type

(α, β; γ, δ, κ). Further, we have |Cb| = 2γ+δ . A Z2Z4-additive code C is called separable if
and only if C = CX × CY .

2.2 Graymap

The classical Gray map [19] φ from the ring Z4 to Z
2
2 is given by

φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0).

This mapping is widely used to construct binary codes from linear quaternary codes. The
main property of φ from this point of view is that it is an isometry between Z4 with the Lee
metric and Z2 with the Hamming metric. In fact, this important property holds when we
generalize it to the mixed alphabet Z2Z4.

For this purpose, let x = (x0, x1, . . . , xn−1) ∈ Z
n
4, then the coordinate-wise extension ψ

can be expressed as ψ(x) = (φ(x0), φ(x1), . . . , φ(xn−1)) ∈ Z
2n
2 . Then, the Gray-like map

	 for element (v|w) ∈ Z
α
2 × Z

β
4 is defined as 	((v|w)) = (v|ψ(w)). Obviously 	 is a

weight-preserving map from (Zα
2 × Z

β
4 ,Lee weight) to (Z

α+2β
2 ,Hamming weight), that is,

wt((v|w)) = wtH (	(v|w)) = wtH (v) + wtL(w),

where wtH (v) is the Hamming weight of v and wtL(w) is the Lee weight of w. Throughout
this paper we use the calligraphic C to denote the codes over the mixed Z2Z4 alphabet, and
we use the standard C to denote the codes over Z2 or Z4.
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2.3 Polycyclic codes

Now, we begin with a brief review of polycyclic codes over the residue class ring Z4.
We called a linear code C of length n over Z4 is polycyclic if there exists a vector
c = (c0, c1, . . . , cn−1) ∈ Z

n
4 such that for every codeword (a0, a1, . . . , an−1) ∈ C yields

(0, a0, . . . , an−2) + an−1(c0, c1, . . . , cn−1) ∈ C .

We refer to c as an associate vector ofC . Note that such a vector is not necessarily unique. On
the other hand, let c(x) = c0+c1x+· · ·+cn−1xn−1 ∈ Z4[x] under the usual correspondence
between vectors and polynomials, and denote t(x) = xn − c(x). Then, a polycyclic code
C over Z4 can also be viewed as an ideal of Z4[x]/〈t(x)〉. Now, we are ready to introduce
the definition of the Z2Z4-additive polycyclic codes which are a nature generalization of the
classical polycyclic codes over Z2 (or Z4) and the Z2Z4-additive cyclic codes.

Definition 1 A subset C of Zα
2 × Z

β
4 is called a Z2Z4-additive polycyclic code if

(i) C is a Z2Z4-additive code, and
(ii) there exist two vectors (c0, c1, . . . , cα−1) ∈ Z

α
2 , (c′

0, c
′
1, . . . , c

′
β−1) ∈ Z

β
4 such that for

any codeword (v|w) = (v0, v1, . . . , vα−1|w0, w1, . . . , wβ−1) ∈ C, its poly-shift
T(v|w) = (

(0, v0, . . . , vα−2) + vα−1(c0, c1, . . . , cα−1)|
(0, w0, . . . , wβ−2) + wβ−1(c

′
0, c

′
1, . . . , c

′
β−1)

) ∈ C.

From Definition 1, we see that there exists a one-to-one correspondence between the
elements in Z

α
2 × Z

β
4 and Rα,β , where Rα,β = Z2[x]/〈t1(x)〉 × Z4[x]/〈t2(x)〉, t1(x) =

xα − (c0 +c1x +· · ·+cα−1xα−1) ∈ Z2[x] and t2(x) = xβ − (c′
0 +c′

1x +· · ·+c′
β−1x

β−1) ∈
Z4[x]. From now on, let f (x) ∈ Z4[x] and (v(x)|w(x)) ∈ Rα,β , define the multiplication ∗
as follows:

f (x) ∗ (v(x)|w(x)) = ( f (x)v(x)| f (x)w(x)),

where f (x) ≡ f (x) (mod 2). This property induces the following characterization for
Z2Z4-additive polycyclic codes with the module-theoretic language.

Theorem 2 A subset C is called a Z2Z4-additive polycyclic code if and only if C is a Z4[x]-
submodule of Rα,β .

Proof Let C be a Z2Z4-additive polycyclic code, then its polynomial representation is closed
under scalar multiplication by elements ofZ4. Let (v0, v1, . . . , vα−1|w0, w1, . . . , wβ−1) ∈ C
correspond an element (v(x)|w(x)) ∈ Rα,β . Then the word

x ∗ (v(x)|w(x)) = (vα−1c0 + (v0 + vα−1c1) x + · · · + (vα−2 + vα−1cα−1) x
α−1|

wβ−1c
′
0 + (

w0 + wβ−1c
′
1

)
x + · · · +

(
wβ−2 + wβ−1c

′
β−1)x

β−1
)

corresponds the word
(
vα−1c0, . . . , vα−2 + vα−1cα−1)|wβ−1c

′
0, . . . , wβ−2 + wβ−1c

′
β−1

)
∈ Z

α
2 × Z

β
4 ,

which is a codeword of C from Definition 1, and this implies that C is closed under multipli-
cation by x , and hence it is a Z4[x]-submodule of Rα,β . Conversely, it is easy to check that
a Z4[x]-submodule of Rα,β is exactly a Z2Z4-additive polycyclic code. 	
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Remark 3 Let C be a Z4[x]-submodule of Rα,β with t1(x) = xα − 1, t2(x) = xβ − λ,
λ ∈ {1, 3} and β odd, which is a special case of a Z2Z4-additive polycyclic code. Then it is
easy to check that theZ2Z4-dual C⊥0 is also aZ4[x]-submodule ofRα,β . However, in general
this property is no longer true for other polynomials with t1(x) ∈ Z2[x] and t2(x) ∈ Z4[x]
under the usual inner product, we will focus on the duality ofZ2Z4-additive polycyclic codes
in Sect. 4.

3 The structure of Z2Z4-additive polycyclic codes

A polynomial over Z2 is called square-free if it has no multiple irreducible factors in its
decomposition, and the square-free part of a polynomial over Z2 is the product of all its
distinct irreducible factors. Recall that a polynomial t(x) ∈ Z4[x] is called basic irreducible
if t(x) is irreducible overZ2. From [35, Lemma 3.1], it is clear thatZ4[x]/〈t(x)〉 is a principal
ideal ring if t(x) is square-free. Then t(x) factors uniquely into monic and coprime basic
irreducibles, an assumption we make throughout this paper.

Before preceding with the structure of Z2Z4-additive polycyclic codes, we need the fol-
lowing two elementary lemmas for polycyclic codes over Z2 and Z4, respectively, and they
can be found in [23,32].

Lemma 4 Let C ⊂ Z2[x]/〈t1(x)〉 be a polycyclic code over Z2 with t1(x) ∈ Z2[x] and
deg(t1(x)) = α ≥ 1. Then, there exists a unique monic polynomial f (x) ∈ Z2[x] of minimal
degree such that

(i) C = 〈 f (x)〉, and f (x)|t1(x);
(ii) If deg( f (x)) = k, then the ideal 〈 f (x)〉 in the algebra polynomial modulo t1(x) has

dimension α − k, that is, |C | = 2α−k .

Lemma 5 Let C ⊂ Z4[x]/〈t2(x)〉 be a polycyclic code over Z4 with t2(x) ∈ Z4[x] and
deg(t2(x)) = β ≥ 1. Then C admits a set of generator polynomials {g0(x), 2g1(x)} such
that

(i) g0(x) and g1(x) are monic polynomials over Z4;
(ii) deg(g0(x)) > deg(g1(x)), and g1(x)|g0(x)|t2(x);
(iii) The linear code C has 4β−deg(g0(x))2deg(g0(x))−deg(g1(x)) codewords.

In particular, C = 〈g0(x), 2g1(x)〉 = 〈g0(x) + 2g1(x)〉.
In fact, the set {g0(x), 2g1(x)} for the linear code C described in Lemma 5 is called the

strong Gröbner basis for the principal ideal ring Z4[x]/〈t2(x)〉, the reader may refer to [31,
Sect. 4] for more details. In addition, it should be noticed that a strong Gröbner basis of C
is not necessarily unique [30, Theorem 7.5]. However, the degrees of g0(x) and g1(x) are
unique. After these preparations, we are now in a position to state and prove the main result
in this section.

Theorem 6 Let C be a Z2Z4-additive polycyclic code in Rα,β defined above. Then C can be
identified as

C = 〈( f (x)|0), (e(x)|g0(x) + 2g1(x))〉, (1)

where f (x)|t1(x) (mod 2), g1(x)|g0(x)|t2(x) (mod 4), and e(x) is a binary polynomial
satisfying deg(e(x)) < deg( f (x)), and f (x)| t2(x)g1(x)

e(x) (mod 2).
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Proof Let C be a Z2Z4-additive polycyclic code, then the projection of C on Z4[x]/〈t2(x)〉
according to its quaternary part is the mapping

ϕ : C −→ Z4[x]/〈t2(x)〉 by ( f1(x), f2(x)) �−→ f2(x).

It is clear that ϕ induces aZ4-module homomorphism, and Im(ϕ) is an ideal ofZ4[x]/〈t2(x)〉,
that is, Im(ϕ) = 〈g0(x) + 2g1(x))〉 with g1(x)|g0(x)|t2(x) from Lemma 5.

On the other hand, according to Lemma 4, we know that ker(ϕ) is a submodule of C
with the generator polynomial formed by ( f (x)|0), where f (x)|t1(x) (mod 2). Then, the
remainder of the proof follows as in the proof of [1], we omit the details here. 	

Corollary 7 Let C be a code defined in (1). If gcd( f (x), t2(x)

g1(x)
) ≡ 1 (mod 2), then we have

e(x) = 0, i.e., the additive code C is separable.

The next theorem gives a minimal generating set for a Z2Z4-additive polycyclic code
viewed as a Z4-module.

Theorem 8 Suppose thatC is aZ2Z4-additive polycyclic code defined in (1). Letdeg( f (x)) =
a0, deg(g0(x)) = b0, deg(g1(x)) = b1 and g0(x)h0(x) = t2(x) (mod 4). Let

S1 = {xi ∗ ( f (x)|0) : 0 ≤ i ≤ α − a0 − 1},
S2 = {xi ∗ (e(x)|g0(x) + 2g1(x)) : 0 ≤ i ≤ β − b0 − 1},
S3 = {xi ∗ (h0(x)e(x)|2h0(x)g1(x)) : 0 ≤ i ≤ b0 − b1 − 1}.

Then the union S1 ∪ S2 ∪ S3 forms a minimal generating set for the code C. In addition, the
code C has 2α−a0+b0−b14β−b0 codewords.

Proof Without loss of generality we may assume that c(x) ∈ C. Then there exist two poly-
nomials f1(x), f2(x) ∈ Z4[x] such that

c(x) = f1(x) ∗ ( f (x)|0) + f2(x) ∗ (e(x)|g0(x) + 2g1(x)).

It is easy to check that f1(x)∗ ( f (x)|0) ∈ Span(S1). Suppose that deg( f2(x)) ≤ β −b0 −1,
then f2(x) ∗ (e(x)|g0(x)+ 2g1(x)) ∈ Span(S2). Otherwise, we have f2(x) = h0(x) f3(x)+
f4(x), where f3(x), f4(x) ∈ Z4[x] and deg( f4(x)) ≤ β − b0 − 1, which yields

f2(x) ∗ (e(x)|g0(x) + 2g1(x)) = f3(x) ∗ (h0(x)e(x)|2h0(x)g1(x)) + �,

where � ∈ Span(S2), and we only need to show that f3(x) ∗ (h0(x)e(x)|2h0(x)g1(x)) ∈
Span(S3). In fact, it is true from a similar argument above. In addition, the elements in the
union S1 ∪ S2 ∪ S3 are linear independent over Z4, and this completes the proof. 	

Proposition 9 Let C be the code defined in (1), where deg( f (x)) = a0, deg(g0(x)) = b0,
deg(g1(x)) = b1 and g0(x)h0(x) = t2(x) (mod 4). Then C is of type

(α, β;α − a0 + b0 − b1, β − b0, α − a1),

where a1 = deg(gcd( f (x), h0(x)e(x))).

Proof By Theorem 8 it suffices to show κ = α − a1. Since Cb is the subcode of C which
contains all codewords of order 2, we have

Cb = 〈( f (x)|0), (0|2g0(x)), (h0(x)e(x)|2h0(x)g1(x))〉.
Hence, it is clear that (Cb)X = 〈gcd( f (x), h0(x)e(x))〉. This completes the proof. 	
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Example 10 Let t1(x) = x4 + x3 + x2 + 1, t2(x) = x7 + 2x5 + 2x4 + x3 + 2x2 + x + 3,
f (x) = x + 1, e(x) = 1, g0(x) = x5 + 3x4 + 2x3 + x2 + 2x + 3 and g1(x) = x + 3. Then
the code C is of type (4, 7; 7, 2, 4) and |C| = 212.

In the following, a polynomial g(x) ∈ Z2[x] orZ4[x]will be denoted simply by g without
ambiguity.

4 Duality of the additive polycyclic codes inR˛,ˇ

In this section, we always assume that t1 = t2 in Rα,β , where t1 ∈ Z2[x] and t2 ∈ Z4[x].
Following the previous section, we define an inner product on Rα,β by the rule:

〈(u0|u1), (v0|v1)〉α,β = 2u0v0 + u1v1 ∈ Z4[x]/〈t2〉,
where (u0|u1), (v0|v1) ∈ Rα,β . In particular, if α = 0 (resp. β = 0), that is, when C is a
quaternary code (resp. C is a binary code), then for u1, v1 ∈ Z4[x] (resp. u0, v0 ∈ Z2[x]),
the inner product is defined by 〈u1, v1〉β = u1v1 ∈ Z4[x]/〈t2(x)〉 (resp. 〈u0, v0〉α = u0v0 ∈
Z2[x]/〈t1(x)〉). Next, on the basis of the inner product defined above, the dual C⊥ of a
Z2Z4-additive polycyclic code can be described as follows.

Definition 11 Let C be a Z2Z4-additive polycyclic code in Rα,β . Then the dual C⊥ of C is
defined by the formula:

C⊥ = {(u0|u1) ∈ Rα,β : 〈(u0|u1), (v0|v1)〉α,β = 0 for all (v0|v1) ∈ C}.
Lemma 12 Keep the notion above. The form 〈., .〉α,β is a symmetric Z4[x]-bilinear form on
Rα,β with t1 = t2. Further, this bilinear form is also non-degenerate.

Proof Let a, b ∈ Z4[x] and (u0|u1), (u′
0|u′

1), (v0|v1) ∈ Rα,β . An easy argument shows that

〈a ∗ (u0|u1) + b ∗ (u′
0|u′

1), (v0|v1)〉α,β = a〈(u0|u1), (v0|v1)〉α,β + b〈(u′
0|u′

1), (v0|v1)〉α,β .

In particular, for a fixed (u0|u1) ∈ Rα,β , if 〈(u0|u1), (v0|v1)〉α,β = 0 for all (v0|v1) ∈ Rα,β ,
then we have u0 = u1 = 0, i.e., the bilinear form 〈., .〉α,β is non-degenerate. 	


First we remind a lemma of bilinear form over Frobenius ring of [24,38,39].

Lemma 13 Let R be a Frobenius ring. Let M be an R-module. Suppose ε : M × M → R is
a non-degenerate bilinear form. Let C ⊆ Mn be an R-submodule, C⊥ε is the dual of C with
respect to ε. Then |C | · |C⊥ε | = |M |n.

Now we return to the polynomial ring over Z4.

Proposition 14 Let C be a Z2Z4-additive polycyclic code in Rα,β . Then

(i) C⊥ is a Z4[x]-submodule of Rα,β ;
(ii) |C| · |C⊥| = |Rα,β |.
Proof The proof of assertion (i) is trivial. For (ii), according to Lemma 12, we know the form
〈., .〉α,β is a non-degenerate bilinear form over Z4[x]. Since Rα,β is a Z4[x]-module, and
C ⊆ Rα,β is a Z4[x]-submodule, then the result follows from Lemma 13 directly. 	
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As just observed, the Z2Z4-dual of a Z2Z4-additive polycyclic code does not coincide
with the dual in this section. However, Proposition 14 allows us to give a analogous result to
Theorem 8 that depends on C. In the following, we first make some notation.
Notation Let d1 = gcd( f , et2

g0
), and f = d1d2. Let d = gcd( f , e), then there exist e1, e2 ∈

Z2[x] such that e1 f + e2e = d . Set d1 = dd ′ and g0 = g1h1. Moreover, we define
e′ = e2(

d ′t1
f + d2t1

f ), g′
0 = d1t2

g1 f
and g′

1 = dt2
d1g0

.

Remark 15 A similar argument in [5] shows that d2|h1, and this implies that g′
1|g′

0|t2.
Theorem 16 Keep the notion above. Let C be a Z2Z4-additive polycyclic code defined in (1).
Then the dual C⊥ of the code C is given by

C⊥ = 〈(t1/ gcd( f , e)|0),
(
e′|g′

0 + 2g′
1

)〉. (2)

Proof Write C′ = 〈(t1/ gcd( f , e)|0), (e′|g′
0 + 2g′

1)〉, and we first show that C′ ⊆ C⊥. It is
easy to verify that the following three equations:

〈(t1/ gcd( f , e)|0), ( f |0)〉α,β = 0,

〈(t1/ gcd( f , e)|0), (e|g0 + 2g1)〉α,β = 0,

〈(e′|g′
0 + 2g′

1), ( f |0)〉α,β = 0.

For the rest case, we have

〈(e′|g′
0 + 2g′

1), (e|g0 + 2g1)〉α,β = 2ee′ + g0g
′
0 + 2g1g

′
0 + 2g0g

′
1.

Since g0g′
0 = d1t2

g1 f
g0 ≡ 0 (mod t2) and

2ee′ = 2ee2

(
d ′t1
f

+ d2t1
f

)
≡ 2

(
t1
d2

+ t1
d1

)
= 2g1g

′
0 + 2g0g

′
1 (mod t2),

where the last equality comes from the assumption t1 = t2.
On the other hand, it remains to show that |C′| = |C⊥|. As in Theorem 8 and Proposition

14, C′ is aZ2Z4-additive polycyclic code of size 2deg(g1)+deg(g0)+deg( f ), which coincides with
the size of C⊥. So we have C′ = C⊥. 	

Proposition 17 Let C be a Z2Z4-additive polycyclic code defined in (1) with t1 = t2, where
deg( f ) = a0, deg(g0) = b0, deg(g1) = b1, g0h0 = t2 (mod 4) and deg(gcd( f , h̄0e)) = a1.
Then C⊥ is of type

(α, α; 2a1 + b0 − a0 − b1, a0 + b1 − a1, a1).

Proof According to Proposition 9 and Theorem 16, the result is straightforward. 	

Example 18 Let C = 〈(x2 + x + 1|2(x2 + 3x + 1))〉, and type (3, 3; 1, 0, 1) with t1 = t2 =
f = g0 = x3 + 1. Then we have C⊥ = 〈(x + 1|0), (x |3)〉 with type (3, 3; 2, 3, 2). In fact,
the dual C⊥ is equal to the Z2Z4-dual C⊥0 .

Example 19 Consider C = 〈(x +1|0), (1|2(x3 +2x2 +3x +3))〉, of type (4, 4; 4, 0, 4), with
t1 = t2 = g0 = x4+ x3+ x2+1. Then we have C⊥ = 〈(x3+ x+1|3)〉 of type (4, 4; 0, 4, 0).
However, for u = (1, 1, 0, 1|1, 0, 0, 0) ∈ C⊥ and v = (0, 1, 1, 0|0, 0, 0, 0) ∈ C, it is obvious
that 〈u, v〉 = 2 �= 0. This means that although the additive codes C⊥ and C⊥0 have the same
type (see Proposition 17 and [11, Theorem 2]), they might not be equivalent.
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5 Examples of Z2Z4-additive polycyclic codes with good parameters

Recall that if C is a Z2Z4-additive code, of type (α, β; γ, δ, κ), with minimum distance d ,
then its parameters satisfy one of the following two inequalities (see [1,8]):

d − 1

2
≤ α

2
+ β − γ

2
− δ, (3)

⌊
d − 1

2

⌋
≤ α + β − γ − δ. (4)

More precisely, the code C is called MDSS (maximum distance separable w.r.t. the Singleton
Bound) if it satisfies (3) with equality, and it is called MDSR (maximum distance separable
w.r.t. the rank bound) if it satisfies (4) with equality.

Theorem 20 Let C be a Z2Z4-additive polycyclic code defined in (1) with e = g0 = g1 = 1,
f = x + 1, (x + 1)|t1 and (x + 1)|t2. Then C is MDSS.

Proof In fact, we have h0 = t2 and a1 = 1 in Proposition 9. Therefore, it is easy to check
that C is of type (α, β;α − 1, β, α − 1) with minimum distance 2. 	

Remark 21 Notice that if t1 = xα −1 and t2 = xβ −1with β an odd integer, then [1, Theorem
18] is just the case of Theorem 20. However, we do not require β to be an odd number in
other cases. That is, we have no limitation on the values of β here.

We now turn our attention to the case of MDSR codes. Suppose that ( f |0) ∈ C ⊆ Rα,β

with deg( f ) > 0, then the code C could never be MDSR. Otherwise, the minimum distance
d of C is deg( f ) + 1 or less and according to Proposition 9, we have

α + β − γ − δ = a0 + b1 =
⌊
d − 1

2

⌋
≤

⌊
a0
2

⌋
,

where a0 = deg( f ) > 0 and b1 ≥ 0, which is a contradiction.
If deg( f ) = 0, i.e., (1|0) ∈ C ⊆ Rα,β and C is MDSR. Then the minimum distance of C

is 1, and with a similar discussion above, C must be of the form:

C = 〈(1|0), (0|g0 + 2)〉,
where g0 ∈ Z4[x] and g0|t2. Actually, C is aZ2Z4-additive polycyclic code of type (α, β;α+
deg(g0), β − deg(g0), α), and it is also separable. We summarize these results.

Theorem 22 Let C be any Z2Z4-additive polycyclic code of the form (1). If C is MDSR, then
C is either:

(i) C = 〈(e|g0+2g1)〉, where t1| t2g1 e (mod 2), g1|g0|t2 (mod 4) and α+deg(g1) = ⌊ d−1
2

⌋

with f = t1, or
(ii) C = 〈(1|0), (0|g0 + 2)〉, where g0|t2 (mod 4).

Example 23 (a) Consider the Z2Z4-additive polycyclic code C = 〈(x + 1|0), (1|3)〉 in
Z2[x]/〈x3 + x2〉 × Z4[x]/〈(x + 1)(x2 + x + 1)〉. Then C is an MDSS code of type
(3, 3; 2, 3, 2) with minimum distance 2 using computer system Magma [13].

(b) Consider C = 〈(x + 1|0), (1|3)〉 in Z2[x]/〈(x + 1)(x3 + x + 1)〉 ×Z4[x]/〈(x + 1)(x6 +
x3 + 1)〉. Then, the code C is MDSS and of type (4, 7; 3, 7, 3) with minimum distance 2.

(c) Consider C = 〈(1|(x + 3)(x3 + 2x2 + x + 3) + 2)〉 in Z2[x]/〈(x + 1)〉 ×Z4[x]/〈x(x +
3)(x3+2x2+x+3)〉. Then, the code C isMDSR and of type (1, 5; 4, 1, 1)withminimum
distance 3.

123



2560 R. Wu, M. Shi

Table 1 The list of some binary optimal codes fromZ2Z4-additive polycyclic codesC withC = 〈(e|g0+2g1)〉
t1 t2 e g0 g1 Z2Z4-type 	(C)

101 3131 11 101 1 [2, 3; 1, 1, 0] [8, 3, 4]�
1021 1221 01 13 1 [3, 3; 2, 1, 2] [9, 4, 4]�
12 012312 1 12312 3121 [1, 5; 1, 1, 1] [11, 3, 5]∗
1013 12312 12 0 31 [4, 4; 3, 0, 3] [12, 3, 6]�
1013 012312 12 12312 31 [4, 5; 3, 1, 3] [14, 5, 6]�
120101 0312321 12 312321 31 [5, 6; 4, 1, 4] [17, 6, 6]∗
10313 3202131 1301 321321 1 [6, 6; 5, 1, 5] [18, 7, 6]∗
120313 31020131 1201 0 3121 [7, 7; 4, 0, 4] [21, 4, 9]∗

We tried to find more MDSR codes from Z2Z4-additive polycyclic codes as Example 23
(c) according to Theorem 22 (i), i.e., the nontrivial case. However, it is not easy to find such
codes when α (i.e., deg(t1)) becomes bigger, and these experiments are limited to codes of
small length, we believe that there exist more MDSR codes for larger length. Fortunately,
in this process, we find some binary optimal codes (w.r.t. the online database [18]) from
Z2Z4-additive polycyclic codes via the Gray map, and the codes are listed in Table 1 by
Magma [13].

In general, we call a linear binary code optimal (or distance-optimal) if it has the highest
minimum distance for given length and dimension. For convenience, we write coefficients
of generator polynomials in increasing order. For instance, we write 1021332 to present the
polynomial 1 + x3 + x4 + x5 + 3x6 + 2x7 ∈ Z4[x].

In Table 1, the binary codes with asterisk “∗′′ are almost optimal, and we call a binary
[n, k, d] linear code almost optimal if its minimum distance is at most one less than the
largest possible value, that is, the code with parameters [n, k, d + 1] is optimal.

Further, the diamond “�” indicates that the corresponding binary codes are both opti-
mal and new according to the current database [18], and we confirm that these codes are
inequivalent to the currently known codes even though they have the same parameters. For
instance, let t1 = f = (x + 1)(x3 + x + 1), t2 = x(x + 3)(x3 + 2x2 + x + 3), e = x + 1,
g0 = (x + 3)(x3 + 2x2 + x + 3) and g1 = x + 3 in (1). Then the image 	(C), a linear code
with parameters [14, 5, 6], has generator matrix G given by

G =

⎛

⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0 1 1 0 0 1 1
0 1 0 1 0 0 1 1 0 0 1 1 0 0
0 0 1 1 0 0 0 0 1 1 1 1 0 0
0 0 0 0 1 0 1 1 0 1 1 0 1 0
0 0 0 0 0 1 1 1 1 0 0 1 0 1

⎞

⎟⎟⎟⎟⎠
.

It is easy to check that 	(C) and the best known linear code from the Magma
BKLC(F2, 14, 5) or online database [18], that is, shortening the extended QR code of length
17 at positions {15, 16, 17, 18}, are not permutation equivalent by Magma [13].
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6 Conclusion

In this paper, we have studiedZ2Z4-additive polycyclic codes, and these codes can be viewed
asZ4[x]-submodules ofRα,β .We determine the generator polynomials andminimal generat-
ing sets of this family of codes. Moreover, we study the dual of the Z2Z4-additive polycyclic
codes under a proper defined inner product. It is worth noting that the dual code considered
here is still additive polycyclic.Andfinally,we give some concrete examples ofZ2Z4-additive
polycyclic codes which lead to optimal binary codes via the Gray map.

In fact, let R be a finite chain ring with residue field F . If f ∈ R[x] and f̄ square-free,
then R/〈 f 〉 is a principal ideal ring, and every polycyclic code in R/〈 f 〉 admits a strong
Gröbner basis like Lemma 5 (more details refer to [30,31]). Thus, the main results of this
paper can be generalized to FR-additive polycyclic codes, and it may derive more linear
codes with good parameters over a finite field F .

In future studies, it would be interesting to consider quasi-polycyclic codes and ACD
polycyclic codes over the mixed alphabets.
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31. Norton G.H., Sǎlǎgean A.: Cyclic codes and minimal strong Gröbner basis over a principal ideal ring.

Finite Fields Appl. 9(2), 237–249 (2003).
32. Peterson W.W., Weldon E.J.: Error-Correcting Codes, 2nd edn. MIT Press, Cambridge (1972).
33. Qian L.Q., Cao X.W.: Bounds and optimal q-ary codes derived from the Zq R-cyclic codes. IEEE Trans.

Inf. Theory 66(2), 923–935 (2020).
34. Rifà J., Pujol J.: Translation invariant propeliniear codes. IEEE Trans. Inf. Theory 43(2), 590–598 (1997).
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