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Abstract

Searching for the right pairs of inputs in difference-based distinguishers is an important
task for the experimental verification of the distinguishers in symmetric-key ciphers. In this
paper, we develop an MILP-based approach to verify the possibility of difference-based
distinguishers and extract the right pairs. We apply the proposed method to some published
difference-based trails (Related-Key Differentials (RKD), Rotational-XOR (RX)) of block
ciphers SIMECK, and SPECK. As a result, we show that some of the reported RX-trails of
SIMECK and SPECK are incompatible, i.e. there are no right pairs that follow the expected
propagation of the differences for the trail. Also, for compatible trails, the proposed approach
can efficiently speed up the search process of finding the exact value of a weak key from the
target weak key space. For example, in one of the reported 14-round RX trails of SPECK,
the probability of a key pair to be a weak key is 274! when the whole key space is 2°°; our
method can find a key pair for it in a comparatively short time. It is worth noting that it was
impossible to find this key pair using a traditional search. As another result, we apply the
proposed method to SPECK block cipher, to construct longer related-key differential trails of
SPECK which we could reach 15, 16, 17, and 19 rounds for SPECK32 /64, SPECK48/96,
SPECK64/128, and SPECK128/256, respectively. It should be compared with the best
previous results which are 12, 15, 15, and 20 rounds, respectively, that both attacks work for
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a certain weak key class. It should be also considered as an improvement over the reported
result of rotational-XOR cryptanalysis on SPECK.

Keywords Experimental verification - Differential-based distinguishers - Weak keys -
Related key - MILP - SPECK - SIMECK

Mathematics Subject Classification 94A60 - 68P25

1 Introduction

Mixed Integer Linear Programming (MILP) was introduced in [37,48] to evaluate the secu-
rity of a block cipher against differential and linear cryptanalysis. Mouha et al. [37] used
MILP method to minimize the number of active S-boxes in a differential or linear trail.
Later, Sun et al. in [45,46] extended Mouha et al.’s work from byte-oriented ciphers to bit-
oriented ciphers. Recently, MILP has been widely used for the cryptanalysis of block ciphers
so that [13,17,38,39,41,52] can be mentioned as some examples among others. Other auto-
matic tools for the cryptanalysis of block ciphers are constraint programming see [18,19,44],
SAT/SMT/CryptoSMT see [12,21,28,34].

ARX-based ciphers are designed using only modular Addition, Rotation, and XOR. In
particular, the only source of non-linearity in an ARX scheme is the modular addition.
Algorithms built in this fashion are usually faster and smaller than S-Box-based algorithms
in software, and have some inherent security against side-channel attacks as modular addition
leaks less information than table look-ups. However, modular addition is not very attractive
in designing hardware optimized algorithms due to its latency and “large” input and output
size. Some examples of ARX ciphers are: the block ciphers SPECK [5], HIGHT [23], LEA
[22], the stream cipher SALSA20 [6], and the SHA-3 finalists SKEIN [16] and BLAKE [4].
SPECK is a family of lightweight block ciphers that uses an ARX structure that was publicly
released by the National Security Agency (NSA) in 2013 [5]. SPECK has been optimized
for performance in software implementations. SPECK is evaluated by many cryptanalysis
techniques [2,10,11,14,17,24,33,42,51].

The probability of differential trails (in differential [8] or rotational-X OR [3] cryptanalysis)
is usually built by multiplying the probabilities of each non-linear operation, but this approach
can lead to very misleading results in some ciphers. For example, in some ARX-based ciphers,
the independence assumption does not hold since it is possible for an output of modular
addition to be directly given as input to another modular addition. Therefore, in such cases,
the probabilities of modular additions cannot be computed as the product of probabilities of
the individual modular additions. It is important to note that in the case of ARX ciphers such
differences were already described for some attacks. For example, Knudsen et al. in [27],
treated this issue for the differential attack on RC2 block cipher. As another example, the
authors of [26], investigated this issue for the rotational cryptanalysis on ARX structures.
Several recent works have found trails that were incompatible when analyzing ARX hash
functions [9,29,30,36,40,47] and many others. Also, Elsheikh et al. in [15] recently studied
this issue and proposed an MILP model to describe the differential propagation through the
modular addition considering the dependency between the consecutive modular additions and
utilized their approach to automate the search process for the differential trails for Be1-T
cipher.
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Recently, Liu et al. presented an MILP model for the automatic verification of differential
characteristics in permutation-based primitives [32]. Their main idea is modeling the differ-
ential transitions and value transitions simultaneously for permutation-based primitives and
then connecting the value transitions and differential transitions for non-linear operations
used in primitives. They successfully applied their approach to reduced Gimli hash func-
tion [7]. To this end, in a part of their work, they described how they connected the value
and differential transitions of AND and OR operations (the only non-linear operations used
in Gim11i). However, they did not explain how one can connect the value and differential
transitions simultaneously for the other non-linear operations.

Hence, our work has some advantages over [32]. In fact, our approach in this paper can
be applied easily to any cipher structure with usual non-linear operations such as AND, OR,
Addition modulo 2", S-boxes layers, and others. Also, as will be explained later, our approach
can be efficiently used to verify the differential, related-key differential, and rotational-XOR
trails of ciphers.

In this paper, for the first time, to the best of our knowledge, we present an MILP-based
approach to experimentally verify whether a difference-based distinguisher includes any
right pair. As for the applications, we apply our approach to the obtained differential trails of
SIMECK and SPECK family of block ciphers. Also, the designers of SPECK family claim
that SPECK is designed to have resistance against related-key attacks. Part of this paper,
focuses on the automatic related-key differential cryptanalysis of a reduced SPECK block
cipher to find distinguishers covering more rounds than those found previously. Moreover,
the SPECK family of block ciphers is standardized by ISO in the RFID area of Sc31. Hence,
analysis from various aspects is important.

1.1 Our contribution

Our contribution in this paper is as follows:

— In this paper, we applied the MILP approach to identify incompatible differential trails
of block ciphers. Moreover, to the best of our knowledge, for the first time we applied the
MILP approach to efficiently speed up the search process of finding the exact value of
a weak key from the target weak key space. As the applications, we apply our approach
to verify the presented Rotational-XOR (RX) trails of SPECK and SIMECK family of
block ciphers based on papers [33] and [35], respectively.

— We find some weak keys for 15 and 20-round RX-trails of SIMECK32 /64, according
to the Tables 4 and 6 of [35]. Also, our approach returns this fact that the RX-trails for
27 and 35 rounds of SIMECK48/96, and SIMECK64 /128, based on Tables 7 and 8§,
respectively in [35], are incompatible.

— Our approach can find the weak keys for 12, 13, and 15-round RX-trail of SPECK48/96
based on Tables 3 and 4 in [33]. Moreover, our approach shows that RX-trails for 11 and
12 rounds of SPECK32/64, and 14 rounds of SPECK48/96, according to Tables 2
and 4 in [33], are incompatible trails.

— In addition, we explain how we can search compatible differential trails in block ciphers
and apply it to search related-key differential trails of some variants of SPECK family.
As a result, we present a search strategy for the searching of related-key differential
trails of SPECK family. We also present several distinguishers for the reduced version of
SPECK32/64, SPECK48/96, SPECK64 /128, and SPECK128/256, in related-key
mode. We consider our result for related-key differential as an improvement over Liu et
al.’s work [33], but from differential view. For SPECK32 /64, the longest distinguisher
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proposed in this paper covers 15 rounds of the cipher while the best previous related
work, i.e., rotational-XOR differential trail, covers only 12-round [33] (of course we
show that this 12-round is an invalid trail). In total, for this version of SPECK, we present
distinguishers for 10 to 15 rounds which work for a certain weak key class.

It is worth noting that the proposed distinguishers for 13 to 15 rounds are the new
distinguishers for these rounds of SPECK32/64. For SPECK48/96, our longest dis-
tinguishers cover 16 rounds, while the best previous related work covers 15 rounds [33]
and both work for a certain weak key class. We present the distinguishers for 13 to 17
rounds of SPECK64 /128 so that the distinguishers for 16 and 17 rounds are the new
distinguishers for these rounds of SPECK64 /128, for a certain weak key class. Also,
we present the distinguishers for 16 and 19 rounds of SPECK128/256.

— Moreover, for every obtained related-key differential of SPECK family, we use our MILP-
based approach to test whether the key differential trails are valid. For each one, we report
a weak key to verify it. Based on our experimental verification, our results are consistent
with the theoretical predictions.

In this paper, the computations are performed on PC (Intel Core (TM)i-5, CPU 3.50 GHz, 8
Gig RAM, Windows 10 x64) and also on a server (36 Core, Intel(R) Xeon(R) CPU E5-2695,
2.10GHz) with the optimizer Gurobi [20].

1.2 Outline

The remainder of this paper is organized as follows. Section 2 provides the required prelim-
inaries, including a brief description of SPECK and SIMECK block ciphers and as well as
Rotational-XOR cryptanalysis. In Sect. 3, our MILP-based method in searching for the right
pairs of difference-based trails is presented. In Sect. 4, some applications of our approach
are given. We explain how we can search compatible differential trails in block ciphers and
apply it to search related-key differential trails of some variants of SPECK family. Finally,
the paper is concluded in Sect. 6.

2 Preliminaries
2.1 Notations

In this paper, we denote an n-bit vector by x = (x,_1, ..., X1, X0), where xq is the least
significant bit. Also, the logical operation XOR, left circular rotation, right circular rotation,
the concatenation of x and y, the modular addition of bit string x and y, and the bit-wise
AND are referred to as @, <&, >, x|y, x B y, and &, respectively. Also, all input/output
differentials (or values) are in hexadecimal form and we omit the 0x symbol.

2.2 A brief description of SPECK

SPECK is a family of lightweight block ciphers designed by NSA in 2013 [5]. Generally,
SPECKb/mn will denote SPECK with b = 2n bit block size (n € {16, 24, 32, 48, 64}) and
mn bits key size (m € {2, 3, 4}). The round function F : I} x IF%” — ]F%” of SPECK takes
as input a n bit sub-key k! and a cipher state consisting of two n bit words (x~!, yi~=1)
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Fig. 1 Illustration of the SPECK and SIMECK ciphers

and produces the next round state (x’, y') as follows:

i—1

xti= ((xiil > o) B yiil) @kl = (Y < B) & x'

The value of rotation constant « and 8 are specified as: « = 7, § = 2 for SPECK32/64
and @ = 8, B = 3 for all other variants. The SPECK key schedules algorithm uses the same
round function to generate the round keys. Let K = ™2 ...,1° k% be a master key for
SPECK2n/mn where 1!, k% € Fyn. The round key Ktlis generated as o= (! >
BB cd K <« ) for T2 = (" >> a) B @ ¢, withe =i — 1 the
round number starting from 1.

A single round of SPECK with m = 4 is depicted in Fig. 1a.

In this paper, we consider those members of SPECK family for which the parameter of
m is 4, i.e., SPECK32/64, SPECK48/96, SPECK64/128, and SPECK128/256 that
respectively include 22, 23, 27, and 34 rounds, to produce a ciphertext from a plaintext.

2.3 A short description of SIMECK

SIMECK is a family of block ciphers that was proposed at CHES 2015 [50]. For n = 16, 24,
and 32, SIMECKb/k has ablock size of b = 2n and akey size of k = 2b. Itis a classical Feistel
network shown in Fig. 1b where the function F is defined as F(xi=h = x-1& (! « 3).
In the key schedule of SIMECK, the round keys K I (i=0,...,r)are generated from a
given master key (K3, K2, K', K°) with the help of the feedback shift registers as follows:

Kt =K'a f.(K*hed, i=01,....,r—4, M

where r for SIMECK32/64, SIMECK48/96, and SIMECK64/128 is 32, 36, and 44,
respectively. Also,' ¢ e {1,-,01,1,_,00} is predeﬁned'constants (1,—2 is a sequence of
n —2bit 1) and f/ is the SIMECK round function with ¢' acting as the round key.

2.4 Rotational-XOR(RX) cryptanalysis

Rotational cryptanalysis is a generic attack targeting ARX structures [25,26]. RX-
cryptanalysis is a recent technique as a related-key chosen plaintext attack to ARX structures
proposed by Ashur and Liu in 2016 [3]. This attack was applied to the block cipher SPECK
[33], SIMECK [35] and the hash function SipHash [49].

An RX-pair is defined as a rotational pair with rotational offset y under translation a as
x,x<Ky)®a).
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Definition 1 (RX-difference [3]) The RX-difference of x and x’ = (x < y) @ a with
rotational offset y, and translation a is denoted by

Ay, x)=(x <y ®x.

Furthermore, we will argue that RX difference of a pair (x, x) is A4, (x, x) if (x << ) @
x = Ay (x, x). Tt is clear that the rotation of an RX pair is an RX pair, the XOR of
two RX pairs is also an RX pair. Also, the XOR of a constant ¢ to each of the values in
(x,x) = (x, (x K y) @ a) is the RX-pair (z,7') = x Dc,(x K y) Da ® c). Now,
soppose that we denote the corresponding RX-difference in ¢ by AY ¢. Then the following
condition should be satisfied.

Ay(x, x)® AVc = Ay(z2,2).

Since A, (x, x,) =aand A, (z, Z/) =a®cd (c K y), therefore, the condition above
givesus AYc = ¢ @ (¢ < y). Hence, by considering the corresponding RX-difference in ¢
asAVc=c® (c K y), 4, x/) propagates to A, (z, z/) with propability 1.

For modular addition, in ( [3], theorem 1) the authors showed how one can calculate the
transition probability of RX pair through modular addition. In addition, the authors of [35]
extended the idea of RX-cryptanalysis to AND-RX ciphers with applications to STMON and
SIMECK. We assume that y = 1 throughout this paper.

3 MILP-based method to identify incompatible differential trails

In this section, we explore a simple approach based on the MILP method to verify whether
the differential trails are compatible. Also, it must be noted that our method in this section
can be very useful in most cases to find weak keys in related-key scenarios.

3.1 Our approach

To experimentally verify whether an RX or differential distinguisher includes any right pair,
a common way is to use a simple method of guessing the keys and check the differences
of the states. However, it is often infeasible because of the block size of the cipher and
the probability of the distinguisher. In this section, we model an MILP-based method to
determine whether there exist right pairs for the differential trails. To this end, suppose f is
a function with variables xo, x2, . .. x,,,—1. In our approach, we built some linear inequalities
to ensure that the following conditions are exactly established and added them to the MILP
model.

F(xo,x2, o X m1) =y, fg, X9, X ) =Y,
A(x0, x0) = X0, A(x2, x5) = Xa, ..., Axn,—1, X, 1) = Xpy—1,
Ay, y) =Y,

where the difference A(a, b) is defined as a @ b and A (a, b) in case of differential and RX
trails, respectively. In this paper, the function f is considered as the encryption function or
key expansion function of a block cipher. It is obvious that for a given differential trail of a
cipher, if its MILP model, as shown above is infeasible then the trail will be an incompatible
trail; otherwise, the model returns the right pairs.

Each cipher is designed by combining several operations. The most important operations
used in cryptographic algorithms are AND, modular addition, rotation, XOR operations. In
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the following section, we show that there is a set of linear inequalities which can exactly
describe all valid values of these operators in the MILP model.

3.1.1 Modeling the XOR operation

For every XOR operation, with bit-level input values x1, x2, and bit-level output value y, the
constraints are as follows!:
X1+x2+y=<2 x1+x2—-y=0, ?)
xX1+y—x>0, xo4+y—x;>0.

3.1.2 Modeling the modular addition

In the following section, we present the basic definition of modular addition that will be used
to model the modular addition.

Definition 2 (Addition modulo 2" [31]) The carry, carry(x, y) := ¢ € {0, 1}*, x, y € {0, 1}",
of addition x + y is defined recursively as follows. First, co := 0. Second, ¢j4+1 := (x;j A
i) @ (xi Aci) @ (yi Aci), forevery i > 0. Equivalently, ¢c;41 =1 < x; +y;i +¢; > 2.

Property 1 ([31]) If (x,y) € {0, 1} x {0, 1}", thenx +y =x ® y D carry(x, y).

Based on Definition 2 and Property 1, to model the modular addition (z = x + y) in the
MILP model, we must consider the linear inequalities whose solution set is exactly satisfied
in the following conditions.

1. ¢ =0.
2. civ1i=1lxi+yi+c =2, for i=0,...,n—2.
3.2i=x;®yi ®ci, for i=0,....,n—1 3)

Therefore, it is enough to describe these conditions of the Eq. (3) as linear inequalities.
The first condition is obvious. To model the second condition, we can consider the vector
(xi, yi, ci, ci+1) as follows.

- 0.0,0,0) (0.0, 1,0 (0.1,0,0) (0, 1,1, 1)
(x2. ir €0, Ci1) € [ (1,0,0,0) (1,01, 1) (11,0, 1) (1,1, 1, 1) }

Therefore, we consider the equations which prohibit the invalid (x;, y;, ¢;, ¢i+1). Hence, for
i=0,...,n—2, we have

Xi+yi—ci+1>0, xj+c¢ —ciy1 >0, yi+ci—cit1 >0,
vitci—cit1 =1, xi+ci—ciy1 <1, xi+yi—ciy1 <1,

To model the third condition, we can consider the following equations.
xi+yi+zi+c —2di=0, di=0o0rlor?2, i=0,...,n—1.

Therefore, with these inequalities, we can model the exact values of modular addition oper-
ation to the MILP.

I XOR operation is a linear operation and can be modeled similar to the differential behavior of XOR based
on[1].
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3.1.3 Modeling the AND operation

For every AND operation with bit-level input values x, x». and bit-level output value y, the
constraints are as follows:

x1—=y20, xp—y=>20, xi+x2—-y=<1

4 Applications

In this section, we apply our method to verify RX trails for SPECK and STMECK presented
in [33] and [35], respectively.

4.1 Verifying the previous reported RX trails on SIMECK

The authors of [35] analyzed the propagation of RX-differences through AND-RX rounds
and developed a formula for their expected probability. Also, they formulated an SMT model
for searching RX-trails in STMON and SIMECK. They found RX-distinguishers up to 20,
27, and 35 rounds with respective probabilities of 2726 242 and 2754 for SIMECK32/64,
SIMECK48/94,and SIMECK64 /128, for a weak key class of size 230 244 5nd 256 respec-
tively. In most cases, these are the longest published distinguishers for the respective variants
of SIMECK. The authours of [35] only presented the details of a 15 and 20-round RX trail
in SIMECK32/64, a 27-round RX trail in SIMECK48/96, and a 35-round RX trail in
SIMECK64/128 (see [35], Tables 4, 6, 7, and 8, respectively). Here we intend to find the
right key pairs that satisfy the required RX-difference of the sub-keys in tables mentioned in
[35].

The SIMECK key schedule algorithm is designed by combining AND, bit rotation, and
XOR operations. Hence, we can model the STMECK key schedule with the method described
in Sect. 3 and then fix the RX-difference in sub-keys based on the mentioned RX trails. Our
model returned the following result:

— For 15 and 20-round RX trails of SIMECK32 /64 ( [35], Tables 4, 6), our method found
some weak keys (see Table 1).

— The RX trails in [35] for 27 and 35 rounds of SIMECK48/96 and SIMECK64/128,
respectively, are incompatible.

In the following lemma, we prove the incompatibility of RX trail related to 27 rounds of
SPECK48/96 in [35].

Lemma 1 There are no right pair to satisfy the RX-difference of the sub-keys of 27 rounds of
SIMECK48/96 based on the Table 7 in [35].

Proof To find a contradiction in the RX-difference of sub-keys in this Table 7 of [35], we
only consider the rounds 2, 3, and 6 of the trail. These rounds are shown in Fig. 2 in details.
The red numbers show the RX-differences.

As can be seen in Fig. 2, the AND operations in rounds 2, 3, and 6 satisfy the conditions
of Lemma 1 in [35] and so they hold with probabilities of 272 24 and 274, respectively.
Assuming independency, the probability of the RX-difference of these three rounds should
hold with a probability of 2732; however, we show that it is an incompatible trail. To this
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Table 1 Some master key values to satisfy the RX-differences in 15 and 20-round of SIMECK32/64 based
on Tables 4 and 6 in [35]

(A1K3, A1k2, Ak, A1) = (0001, 0004, 0008, 0014)

(k3,k2,kl,k0) (k,3,k/2,k/l,k,0)

15-round (0166, DB05, 5662, C5B3) (02CD, B60F, ACCC, 8B73)
(82EF, DOAL, 454C, 1625) (05DE, A147, 8A90, 2C5E)
(B1C3, BBLF, 1443, DAE2) (6386, 763B, 288E, A9D1)
(B26B, 9338, 1504, F7BC) (64D6, 2675, 2A00, EF6D)
(916B, D43C, 1C04, E4BC) (22D6, A87D, 3800, C96D)

(A1K3, A1k2, Ak, A1k0) = (0002, 0001, 0000, 0004)

20-round (5D08, 1D23, FAB7, B1BC) (BA12, 3247, F56F, 637D)
(5D0C, 1D2B, FBA7, 918E) (BALA, 3A57, F74F, 2319)
(7D08, 7D23, 1AB7, 31A9) (FAL12, FA47, 356E, 6356)
(6D08, 5D23, 7AB7, A1AD) (DA12, BA47, F56E, 435F)
(4D08, 3D23, 9AB7, 21B8) (9A12, 7A47, 356F, 4374)
E (Round 3) K> K> (Round2) jA
3 2 2
3 2
. o204
- = -
<<< 5 Pr=2" << 5
6 4
«w<]l—— P «w<]—
ANc=6—@ 3 Alc =60

0
4 ks

o
1]
N
IS
i
%J
[9,]
mw

6
Lo <<c ] —— ¢

Alc =54
(Round 6) 05
k

L\

Fig.2 Part of the 27-round RX-trail of sub-keys for SIMECK48 /96 based on Table 7 in [35]

end, let f(x) = x&(x < 5) be the F-function of key schedule of STMECK. Also, assume
that Aj and A p respectively are RX-differences of the input and output of f(x), such
that the probability Aj« to A is non-zero. If we consider the input pairs of f(x) as
(x, (x K1) @ Aja), then there is the following relation between A, Ay, and x:

(O DD fx 1 Aja) = A8

By considering x as x = (x23, ..., X1, Xp), the j-th bitof A1 (i.e., A1f;) is determined as
follows.
(xj—18&xj—6) ® ((xj—6 ® Arorj_5)&(xj—1 & Ajaj_1)) = A1 Bj. “4)
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Now, in the second round by considering the sub-key & as the input of f(x) and for j = 6,
we have

(k2&k2) @ ((k3 & Ara)&(k2 @ Aras)) = A1,
since in the second round Ay = A1 = 000002, we have
(2883) ® (G © Dk?) = .

and this gives kg =0.
Now, in the third round by considering the sub-key k> as the input of f(x), for j = 6, and
due to the Aje = 000003 and A1 = 000001 we have

(384 @ (16 © D&k) =0,
so we have k; = 0. Also, for j =5,
(k3&k33) @ (k33 ® 1)&K3) = 0,

so this concludes
k3 = 0. ®)

In the sixth round, k® will be the input of f(x) and also Ay« = A1 = 000003,
therefore, by considering j = 6 in Eq. (4), we have

(kS &k() @ ((k§ @ D&AS) = 0,

so we have kg‘ =0.
On the other hand according to the third round, we have

kS = ((kg&k3) @ k3 ® k3 @ cs) .

For the third round the constant c = £££££d and so ¢s = 1. As was shown above, we have
k52 = kg = kg’ = 0 so the equation above concludes kﬁ = 1. Hence, by considering the Eq.
5, we reach a contradiction. ]

4.2 Verifying the previous reported RX trails on SPECK

In [33], the authors formulated a SAT/SMT model for RX cryptanalysis in the ARX primi-
tives and applied it to the block cipher family SPECK. They obtained longer distinguishers
than the ones previously published for the block cipher family SPECK working for a certain
weak key class. They presented several distinguishers for SPECK32/64, SPECK48/96,
SPECK64/128, SPECK96/144, and SPECK128/256. Note that the authors only pre-
sented the details of several trails and for other trails they only reported the probabilities.
Hence, in this section, we just verified the trails that are presented in detail in [33]. We mod-
eled the SPECK key schedule with the method described in Sect. 3 to verify the trails in [33].
Our MILP model returned the following result.

— Our model found the weak keys for 12, 13, and 15-round RX-difference of SPECK48/96
with respective probabilities of 272675 2=31.98 and 24381 fora weak key class of size
24351 22451 4nq 21.09, respectively (for more details of these trails refer to Tables 3
and 4 in [33]). Note that based on the authors’ claim, for experimental verification of
trails they injected key differences artificially and only tested the probability of the
RX characteristics over the cipher part. The resultant weak key for these RX trails are
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Table 2 Some master key values to satisfy the RX-differences in 12, 13, and 15-round of SPECK48/96
based on Tables 3 and 4 in [33]

(A2, AL, A0, AGKOY (2,10, 10, k) (12,11, 10 &0y 12-round
(003E00, 104F00, 0E0900, 000008)
(CC2F12, 0BBCY8, EBSE6F, 375180)
(986025, 073630, D8B5DF, 6EA308)
13-round
(003F00, F1C000, 060900, 000008)
(8FCFF8,4070DA, 7DA7EF, CA1913)
(LFAOF1, 7121B4, FDA6DE, 94322F)
15-round
(001F00, 744000, 021800, 000008)
(62C8CC, 253EA3,14D708, 8D41E7)
(C58E98, 3E3D46, 2BB610, 1A83CT)

listed in Table 2. Note that, [33] did not report the RX-differences for the master keys
(A12, Ajl, A19). Therefore, in our MLP model we did not fix the RX-differences of
these master keys and let the MILP model choose any appropriate differences.

— Our model did not find any weak keys for the following RX trails:

o RX trails for 11 and 12 rounds of SPECK32/64 with respective probabilities of
272215 and 2727 for a weak key class of size 2398 and 2492, respectively (for
more details of these trails refer to Table 2 in [33]).

o RX trails for 14 rounds of SPECK48/96 with respective probabilities of 273740,
for a weak key class of size 20-3* (for more details of this trail refer to Table 4 in

[33D.

In the following lemma, we prove the incompatibility of RX trail related to 11 rounds of
SPECK32/64 in[33]. In fact, the reason for this incompatibility is that the independence
assumption in the key schedule algorithm of SPECK does not hold since an output of
modular addition is given as input to another modular addition. A schematic view of this
fact is depicted in Fig. 3.

Lemma 2 There are no right pairs to satisfy the RX-difference of the sub-keys of 11 rounds
of SPECK32/64 based on the Table 2 in [33].

Proof Based on Eq. (3), the bit values of x, y, z (z = x + y), with the carry c, belong to the

following set.
1,0, 1, 1)
11,1 1)} ©

s Ly Ly Ly

Goym e e | ©:0:0.0.0.0.0.1,1,0),0.1,1,0,0). 0
Y323 €D € (1,0,1,0,0), (1,0,0, 1, 1), (1, 1,0,0, 1), (1

We denote the two n-bit vectors representing RX-differences at the input of modular
addition in the round i where i = 5,8, as Ajx' = (Ayx,_,,..., A1xj, A1xp) and
Alyi = (Aly,"%l, e, A]yi, Aly(i)) and the n-bit vectors representing RX-difference for
output of modular addition as AZ = (Alzilfl, A Az’i, Alzé)) and the n-bit vectors rep-
resenting RX-difference for carry as Arct = (A o, Alcil, Alcé). It should be noted

n—1°
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Ak '=0000

>>>7

Round 2 of
J, key path

0000 Ak *=0000

|

ooloo A k *=0000

>>>7

Round 5 of
| key path
0000 000F <<|<z
A'c =000C
0000 A)T;—QB
000F
— 0003 |A & °=0003
>>|>7 - l
0600 0003 |Ak’=0205
0205 |
>>>7 Round 8 of
0600 k th
001C H ey pa
001C <<<2
A'c =0009 0015
A k*=0801

Fig.3 Part of the 11-round RX-trail of sub-keys for SPECK32 /64 based on Table 2 in [33]

that based on the third condition of Eq. (3), the RX-difference of carry bit ¢! can be obtained
as Aict = Aixt @ Alyi ® A7

Therefore, the input/output RX-differences and the carry RX-difference of modular addi-
tions for the 5-th and 8-th rounds based on Fig. 3 can be written as binary notation as follows.

A1x> = 0000000000000000, A;x® = 0000011000000000,
A1y’ = 0000000000000000, A;y® = 0000001000000101,
A1z = 0000000000001111, A1z8 = 0000000000011100,
Ayc® = 0000000000001111, Aje'* = 0000010000011001.

By considering the modular addition operation for the 11-th round, we have (Alxg, A yS A zg,
Alcg, Alc?) = (0,0, 1, 1, 1). It should be noted that the pair values that can have RX-

difference (0, 0, 1, 1, 1) must be selected from the Set (6). Therefore, according to the Set
(6), the following pairs have the differential (0,0, 1, 1, 1).

5.5 5 5 5 0,1,1,0,0) (1,0,1,0,0)
[(xo’yO’ZO’CO’Cl)}E“(0,1,0,1,1) 001 0[]
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So, for each pair we get the condition
5_ -5
=72, @)

where c is the bit-wise NOT of ¢. Now, in a similar way and by considering the RX-difference
(A1x15, Alyls, Alz?, Alcf, Alcg) = (0,0, 1,1, 1), for each possible pair we have

=4, (8)
By considering the Egs. (7) and (8), we have
=1z )

Now, in the modular addition operation for the 8-th round, we have
(Ar1x§, ApyS, A28, Arcl, Avcy) = (1,1,0,0,1).
Thus, from Set (6) the following pairs will lead to the RX-difference (1, 1, 0,0, 1).

8 8 8 8 8 0,0,1,1,0) (0,0,0,0,0)
(x9’y9’z9’69’610)€{{(1,1,1,1,1) la.0.0.0 ]

Hence, for these pairs we can get the condition
8 8
X9 = Cyp- (10)

Now, by considering the RX-difference (Alx%;o, Aly%go, Alz?o, Alc%, Alc%): (1,0,0,1,0)
for the 10-th bit, the following pairs will lead to this differential.

§ 8§ 8 8 8 0,0,1,1,0) 0,1,0,1, 1)
(xlo’ylo»zlo’cmacn)eH(]’O,l’o,o) A toon(]

Therefore, we have the condition
By combining the Eqs. (10) and (11), we have
x§ =%, (12)

Since x® = (z° @ 0004) >> 7 (see Fig. 3), we have zg = xg and z? = x?o. Hence, by
considering the Egs. (9) and (12), we reach a contradiction. ]

5 Searching compatible differential trails in block ciphers

The two following steps can help us to search the compatible differential trails in the block
ciphers.

1 Build an MILP-based model for searching a (related-key) differential trail or a SMT-based
model for a RX trail (targeting ARX/AND structures) to obtain a satisfactory differential
trail >

2 Check if there exists a right pair of messages/keys based on the method mentioned in
Sect. 3.

2 The papers [33,35,45,46] can help to model the difference behavior of the ciphers based on MILP and SMT
methods. However, this step can also be performed with other automated solvers.
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It is worth noting that if there exist no right pairs, the differential trail found above is an
incompatible differential trail.?

5.1 Application on SPECK family of block ciphers

In the following section, we search the compatible related-key differential trails of SPECK
family of block ciphers.

5.1.1 Searching the related-key differential trails of SPECK family of block ciphers

In this section, first, thanks to the MILP method, we present several distinguishers for the
reduced version of SPECK32/64, SPECK48/96, SPECK64/128,and SPECK128/256,
in related-key mode. Then, we apply the method described in Sect. 3 to find the incompatible
trails. Our result in this section should be considered as an improvement over Liu et al.’s work
[33], but from differential view. Both works analyze SPECK-family in weak key models but
Liu et al. presented RX trails while we intend to present differential trails. However, as can be
seen in the following section, we obtain significantly better results, in terms of weak key(s),
class-size, or the number of rounds of the distinguishers.

5.1.2 Attack models

Let O p be the encryption datapath and Q x be the key expansion datapath of SPECK block
cipher and Pr(Qp) and Pr(Qk) show probability over the data path and the key expan-
sion datapath, respectively. In this paper, inspired by the rotational-XOR analysis [33], we
also consider 3 models of weak key attacks. In these models, an adversary can obtain data
encrypted under two different keys with a known relation, for plaintexts that are chosen by
the adversary. Attack models considered in this paper are as follows where b = 2n, and mn
denote the length of the block size and the length of the key, respectively.

1. Fir})ding a good related-key differential trail of the cipher such that Pr(Qp) x Pr(Qk) >
270,

2. Finding a good related-key differential trail of the cipher with probability Pr(Q p) > 27
such that Pr(Q p) x Pr(Qk) > 27"™". This case of attacks is in a weak key class and the
results are marked with © in the results tables.

3. Finding a good related-key differential trail of the cipher with probability Pr(Qp) > 27
over the data part, and the key expansion part with probability Pr(Qx) > 27" (i.e.,
ensuring that at least one weak key exists). This case of attack can only be used in the open-
key model, i.e., in addition to being in the weak key class and knowing the differential of
the two related-keys; the adversary also knows the key values. These results are marked
with ¥ in the results tables.

5.1.3 MILP-based differential trail search for SPECK family block cipher

In order to model the differential behavior of SPECK block cipher with the linear constraints
expression in the MILP, it is sufficient to express XOR, bit-wise rotation, and modular addi-
tion. Both XOR and bit rotation are linear operations and can be modeled similar to the ones
in Sect. 3.

3 In this case, we can check the alternative solutions in step 1. For example, by using “PoolSearchMode”
function in the optimizer Gurobi solver [20].

@ Springer



MILP-based method for the experimental verification of difference-based trails 2127

MILP model for modular addition

Definition 3 (The differential of addition modulo 2" [31]) We define the differential of
addition modulo 2" as a triplet of two input and one output differences, denoted as («, 8 +—
y), where (a, B, ) € {0, 1}". The differential probability of addition (D P™T) is defined as
follows:

DPY(a,Br>y) =2""#{x,y: x+ B (x D)+ (DB =y}.

In order to characterize the feasible differential trails for the modular addition and their
corresponding probabilities, Lipmaa and Moriai in [31] proposed two theorems as follows.

Theorem 1 The necessary and sufficient condition for the differential (a, B — y) to have a
probability > 0 is the following two conditions.

1. oy ® Bo®yo =0,
2. if aj—1=Pi—1 =Vi-1, thenoj_1 =B 1 =vi-1=; @B @y, i=1,....,.n— 1.

Theorem 2 When the differential (a, B — y) has a probability > 0, the probability is

n—2
= > ~eq(i . Bi.vi)
2 i

where

la =B = v,
eq @i i) = ea = { o 70 =T (13)

Based on these theorems, Fu et al. proposed an MILP modeling method for modular addition
operation in [17].

The first feasibility condition ag @ Bop & o = 0, in Theorem 1 can be represented
in MILP model as Inequalities (2). To describe the second conditions of Theorem 1
and also the definition of egq; in the MILP model, Fu et al. considered the vectors
(oti—1, Bi—1, Vi—1, i, Bi, Vi, ~ eqi—1) (fori = 1,...,n — 1) such that it is satisfied in the
conditions. For example, the differential patterns (0, 0,0, 1,0, 1,0) and (1,0,0,0,0, 1, 1)
are possible patterns and the differential pattern (0, 0, 0, 1, 0, 0, 0) is an impossible pattern
as i1 = Bi—1 = yvi—1 # ;i @ Bi @ yi. Hence, 56 vectors were generated in each bit in
total. Fu et al. used the "inequality generator()" function in the sage. geometry. polyhedron
class of SAGE [43] and the greedy algorithm in [45] to get 13 linear inequalities satisfying
all these 56 possible transitions. Then, given Theorem 2, it is sufficient to set the objective
function as sum of ~ eqg;_1’sfori =1,...,n— 1.

Hence, for n-bit words of the modular addition, the total number of the constraints contains
13(n — 1) 4 4 linear inequalities.

5.1.4 Searching for differential trails of SPECK
In this paper, we use the MILP model for related-key differential (RKD) cryptanalysis of

reduced SPECK block cipher. Hence, first, we explain our strategy for searching the RKD
trails and then present the searching result of SPECK.
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Fig.4 Our strategy for searching Ain
the differential trails of SPECK
i — 2 rounds
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Our searching strategy

We will give the details on how to search for the differential trails for SPECK. Based on the
structure of the key schedule of SPECK, the maximum number of consecutive rounds of sub-
keys that there are no differentials is 3 rounds. Based on the observation from our identified
differential trail for the small number of rounds, we found that the differential probability
is better when these 3 consecutive rounds of sub-keys lead to four consecutive rounds with
zero input differential in the encryption datapath of SPECK. The details of this strategy are
shown in Fig. 4. In this figure, we do not have any differentials in the input of i-th round to
(i 4+ 3)-th round, such that i can be 2 to r — 3 for r-round of SPECK.

The only non-linear operation in the SPECK round function is the modular addition, and
the only key-dependent operation is the sub-key addition. Given that the sub-key addition
happens after the modular addition, i.e., the cipher operation is completely predictable until
this first sub-key addition, we can ignore the modular addition in the first round of the
distinguishers.

5.1.5 Search results

In this section, we apply the technique described above in order to find a good differential
trail of the reduced-round variants of SPECK.

Differential trails of SPECK32/64

Table 3 shows the RKD trail covering up to 15 rounds found by our model. To the best
of our knowledge, the best published distinguisher trail so far has covered 12 rounds of
SPECK32/ 64 with a probability of 272337 for a weak key class of size 249 [33]. Based on
Table 431, our 13-round trail has a much better probability of 272385 for a weak key class of
size 2%,
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Tables 9, 10, 11, 12, 13, and 14 in the Appendix A.1, show the differential trails covering
10 to 15 rounds found by our program.

Note that the authors of [33] wrote that “ We extended our search to 13-round trails and
found that none exists, suggesting that a 12-round RX-trail is the longest possible one.” So,
our result shows that the related-key differential is more powerful against SPECK32/64,
compared to the rotational-XOR.

Differential trails of SPECK48/96

We found RKD trails covering up to 16 rounds for SPECK48 /9 6. Table 4 shows the summary
of searching result and also a comparison of our results with [33] for SPECK48/96. The
trails for 11 to 16 rounds are shown in Tables 15, 16, 17, 18, 19, and 20 in the Appendix A.2.

Differential trails of SPECK64/128

For SPECK64 /128, we successfully extended a distinguisher up to 17 rounds with a prob-
ability of 276981 for a weak key class of size 27%. Our results for 13 to 17 rounds of
SPECK64 /128 are shown in Table 5. Tables 21, 22, 23, 24, and 25 in the Appendix A.3,
show the RKD trail for these 13 to 17 rounds of SPECK64/128.

Differential trails of SPECK128/256

We present the distinguishers for 16 and 19 rounds of SPECK128 /256 as shown in Table 6.
Also, Tables 26 and 27 in the Appendix A.4, show the RKD trail for these 16 and 19 rounds
of SPECK128/256.

5.1.6 Experimental verification

Here we intend to measure the accuracy of our estimates for the probabilities, and therefore,
we first try to identify a weak key and then encrypt 232 (for case of SPECK32/64) plaintexts,
and measure the probability such that the differential feature is met.

We modeled the SPECK key schedule with the method described in Sect. 3 and fixed
the key input differentials based on Tables 9, 10, 11, 12, 13, and 14 for rounds 10 to 15 of
SPECK32/ 64, respectively. The time of solving the model to find the first weak key is shown
in the third column of Table 7. Also in this table, the number of pairs that is satisfied in the
encryption datapath are listed in the fifth column. This table shows that the results matched
the theoretical predictions. For all versions of SPECK mentioned above, we tested whether
the key differential trail is followed. For each version, we reported a weak key (see Tables 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27 in Appendix A)

5.1.7 Incompatible trails

It must be noted that the method mentioned in Sect. 3 can be very useful in most cases
to find a weak key. For example, our MILP model to find the related-key trails can find a
14-round related-key trail with the input differential (1805, 1281), the output differential
(DA52, 25AD), and the key input differential (0201, 4080, 1891, 4A25) with the data
probability of 2726 and key probability of 2793 (key class size of 21). In this case, our model,
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Table 8 The list of some of the

Ver. # di P P Refs.
related-key differential trails of er rounds Q%) r(Qp) o
SPECK for which the.:re are not 32/64 14 2—36 7—27 Table 28
any key values to satisfy the o 4
differential of key rounds 48/96 16 2- 27 Table 29
64/128 16 241 2757 Table 30
128/256 21 279 2-122 Table 31

after 150 seconds shows that there are no keys which can satisfy the differentials of round
keys. Note that without using our MILP method, we had to run the SPECK key schedule
algorithm for 2% times to know it. As a few other examples, in Table 8, we listed some
of the differential trails for which there are not any key values to reach the differentials of
round-keys.

In fact, the independency assumption between the two continuous modular addition of
the key schedule algorithm of SPECK is not enough to ensure the validity of the some of the
differential trails. As an example, in the following lemma, we show that the modular additions
used in the key schedule algorithm of SPECK are not independent. To show this, we consider
one of the differential trails shown in Table 8 shows that the cause of the invalidity of that
trail is the dependence of the modular additions.

Lemma 3 There are no right pair to satisfy the RK-difference of the sub-keys of 16 rounds of
SPECK48/96 as shown in Table 29.

Proof The proof is almost the same with proof of Lemma 2 and its detrails are presented in
Appendix C. O

6 Conclusion and future works

Thanks to the MILP method, in this study, we presented an efficient method to verify differ-
ential trails and also search for the right pairs. We applied our approach to the the previously
known RX trails of SIMECK and SPECK family of block ciphers to verify their corectness.
In addition, we presented related-key differential distinguishers on different variants of the
SPECK block cipher and obtained longer distinguishers compared to the ones previously
published. For each variant of the SPECK family of block ciphers, we presented several dis-
tinguishers. The longest distinguishers for SPECK32 /64, SPECK48/96, SPECK64 /128,
and SPECK128/256, cover 15, 16, 17, and 19 rounds, respectively, which are working on
a certain weak key class. In addition, we showed that the transitional probability over two
consecutive modular addition operations in the key schedule structure of SPECK is not inde-
pendent and our approach in this paper could find this case of the trails.

To the best of our knowledge, the current method for searching RX trails is based on
SAT/SMT solvers and thus proposing an MILP-based method to find the RX trails can be
considered as a future work. Also, based on our result, some previously reported RX trails of
SPECK and SIMECK were incompatible, for instance, 11 and 12 rounds of SPECK32/64,
27 and 35 rounds of SIMECK48/96 and SIMECK64 /128, respectively, therefore, finding
compatible RX trails or prove nonexistence of them can be considered as another future
work. In addition, in our analysis to find a good differential distinguisher for SPECK fam-
ily, we noticed that most of the obtained trails are incompatible (especially in case of
SPECK128/256). Thus, considering a direct approach to find a compatible differential
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trail may help improve the results (e.g., inspired by [15,32]). As another work, considering
our search to find a weak key in this paper may help find a collision in hash functions at a
reasonable time. Besides, the results of this paper could be used to verify many differential
trails which have been already considered as theoretical trails and we were not sure whether
there could be any pair of inputs following that trail (as we did this for recent results on
SPECK and SIMECK, in this article).

Acknowledgements Nasour Bagheri was supported in part by the Iran National Science Foundation (INSF)
under contract No. 98010674.

A RKD trails of SPECK variants
A.1 RKD trails of SPECK32/64

Tables 9, 10, 11, 12, 13 and 14.

Table 9 10-round related-key differential trail in SPECK32/64 with (Al Alj, Aly, Akg) =
(2800, 0200,0080,0001)

Round Differential in key log, Pr Differential in data log, Pr

0 0001 0204]/0005

1 0004 -1 0205(]0200

2 0010 -1 0800(/0000 -3

3 0000 -2 0000]]0000 -1

4 0000 0 0000[]0000 0

5 0000 0 0000[[0000 0

6 8000 0 0000]]0000 0

7 8002 0 8000|8000 0

8 8008 -1 0102(/0100 -1

9 812A -2 850A(|810A -3

10 152A]|1100 -5
log, (Pr(Qx)) : -7 logy (Pr(Qp)) : —-13

A pair of weak keys:

K = (10CD, 31BF,A172,E11F)
K’ = (38CD, 33BF, A1F2, E11E)
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Table 10 1l-round related-key differential trail in SPECK32/64 with (Al Aly, Aly, Akg) =

(0200, 0080,0071, 4A00)

Round Differential in key log, Pr Differential in data log, Pr

0 4700 4B21||Cc121

1 0008 —4 0121]|c000

2 0004 -1 0203]]0200 -3

3 0010 -1 0800([0000 -4

4 0000 -2 0000([0000 —1

5 0000 0 0000[[0000 0

6 0000 0 0000([0000 0

7 8000 0 0000[[0000 0

8 8002 0 8000|8000 0

9 8008 -1 0102([0100 —1

10 812A -2 850A[[810A -3

11 152A]|1100 -5
log, (Pr(Qx)) : —11 logy (Pr(Qp)) : —17

A pair of weak keys:
K = (8D43, 1D53, ED28,C242)
K’ = (8F43, 1DD3, ED59, 8842)

Table 11 12-round related-key differential trail in SPECK32/64 with (Alp, Aly, Aly, Akg) =

(0080,0051,0008,1200)

Round Differential in key log, Pr Differential in data log, Pr

0 1200 16E4||144C

1 4200 -2 04E4||10A8

2 0008 —4 02A1][4001 -1

3 0004 -1 0205]]0200 —4

4 0010 -1 0800(/0000 -3

5 0000 -2 0000(/0000 -1

6 0000 0 0000]/0000 0

7 0000 0 0000(|0000 0

8 8000 0 0000[/0000 0

9 8002 0 8000|8000 0

10 8008 -1 0102//0100 -1

11 812A -2 850A[|810A -3

12 1524|1100 -5
logy (Pr(Qx)) : —13 logy (Pr(Qp)) : —24

A pair of weak keys:
K = (89C6,B836, 00B4, B223)
K’ =(8946,B867,00BC, A023)
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Table 12 13-round related-key differential trail in SPECK32/64 with (Al Aly, Aly, Akg) =
(4000, 1880, 0400, 0009)

Round Differential in key log, Pr Differential in data log, Pr

0 0009 560B|[020A

1 0025 -2 5602(|5408

2 0080 -4 5081[|00A0 -7

3 0200 -1 0281][0001 -4

4 0800 -1 0004]/0000 -3

5 0000 -2 0000]]0000 -1

6 0000 0 0000[[0000 0

7 0000 0 0000[[0000 0

8 0040 -1 0000[[0000 0

9 01co -2 0040([0040 0

10 0140 -5 81008000 -2

11 8440 -2 8042||8040 -2

12 1543 -3 8100([8002 -3

13 9443(]9449 -2
log, (Pr(Qk)) : -23 log, (Pr(Qp)) : —24

A pair of weak keys:

K = (0502, DB48, E36E, 75EC)
K’ = (4502,C3C8, E76E, 75E5)

Table 13 14-round related-key differential trail in SPECK32/64 with (Al Aly, Aly, Akg) =
(1480,04C0,0128,1002)

Round Differential in key log, Pr Differential in data log, Pr

0 1002 1418||a418

1 8008 -3 041A[|A002

2 0023 -2 5402(|D408 -6

3 0080 -5 5083|0020 -6

4 0200 -2 0281]/0001 -5

5 0800 -1 0004[/0000 -3

6 0000 -3 0000[[0000 -1

7 0000 0 0000]]0000 0

3 0000 0 0000[/0000 0

9 0040 -1 0000[]0000 0

10 01C0 -2 0040(/0040 0

11 0140 -5 8100(|8000 -2

12 8440 -2 8042(|8040 -2

13 1543 -3 8100|8002 -3

14 9443|9449 -2
log, (Pr(Qk)) : -29 log; (Pr(Qp)) : -30

A pair of weak keys:

K = (96D6, CO6E, 877E, 8860)
K’ = (8256, C4AE, 8656, 9862)
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Table 14 15-round related-key differential trail in SPECK32/64 with (Al Aly, Aly, Akg) =
(4000,1580,0400,0009)

Round Differential in key log, Pr Differential in data log, Pr

0 0009

1 0023 —4 543E||D408

2 0080 -5 5083[|00A0 -6

3 0200 -1 0281][0001 -5

4 0800 -3 0004([0000 -3

5 0000 -3 0000[[0000 -1

6 0000 0 0000[[0000 0

7 0000 0 0000[[0000 0

8 0040 -1 0000[[0000 0

9 01co -2 0040([0040 0

10 0140 -5 81008000 -2

11 8440 -2 8042|8040 -2

12 6AFD —15 8100([8002 -3

13 CO1E —12 EBFD||EBF7 -2

14 4753 -9 2FCO[|801F -5

15 476D||4713 -3
log, (Pr(QK)) : — 62 logy (Pr(QD)) : - 32

A pair of weak keys:

K = (7A1F, D850, C89F, B35A)
K’ = (3A1F, CDDO, CC9F, B353)
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A.2 RKD trails of SPECK48/96

Tables 15, 16, 17, 18, 19 and 20.

Table 15 1l-round related-key differential trail in SPECK48/96 with (Al Aly, Aly, Akg) =

(020000,004000,000882,120008)

Round Differential in key log, Pr Differential in data log, Pr

0 120008 12504A(|405040

1 000040 -3 005042|400002

2 000200 -1 020012]]020000 -5

3 001000 —1 100000(]000000 -3

4 000000 -2 000000(||000000 —yl

5 000000 0 000000(|000000 0

6 000000 0 000000(|000000 0

7 000080 -1 000000(|000000 0

8 000480 -1 000080]|000080 0

9 002080 -2 800400]|800000 —1

10 812480 -2 80A084||80A080 -2

11 VV8504A0(|8000A4 -5
logy (Pr(Qk)) : —13 log, (Pr(Qp)) : —17

A pair of weak keys:

K = (426E81, 01E2A0, 23AD82, 401C62)
K’ = (406E81, 01A2A0, 23A500, 521C6A)

Table 16 12-round related-key differential trail in SPECK48/96 with (Aly, Aly, Aly, Akg) =

(020000,004000,000882,120008)

Round Differential in key log, Pr Differential in data log, Pr

0 120008 12504A(|405040

1 000040 -3 005042(|400002

2 000200 -1 020012(|020000 -5

3 001000 -1 100000]|000000 -3

4 000000 -2 000000(]000000 —1

5 000000 0 000000|]000000 0

6 000000 0 000000(|000000 0

7 000080 -1 000000(|000000 0

8 000780 -3 000080(|000080 0

9 000080 -7 800400(|800000 -3

10 800480 -1 808084(|808080 -2

11 002085 —4 840480(|800084 -3

12 00A405||00A021 —4
logy (Pr(Qk)) : —23 logy (Pr(Qp)) : —-21

A pair of weak keys:

K = (3BC6AS8, 4B6ED8, EBC297, C8A20E)
K’ = (39C6A8, 4B2ED8, EBCA15, DAA206)
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Table 17 13-round related-key differential trail in SPECK48/96 with (Al Aly, Aly, Akg) =

(000200,0000C0, 820008, 081200)

Round Differential in key log, Pr Differential in data log, Pr

0 081200 4A12D0|[4040D0

1 400000 —4 4200D0|[024000

2 000002 -1 120200]/000200 -5

3 000010 -1 001000]]000000 -3

4 000000 -2 000000]]000000 —1

5 000000 0 000000]]000000 0

6 000000 0 000000]]000000 0

7 800000 0 000000]|000000 0

8 800004 0 800000]|008000 0

9 800020 -1 008004(/008000 —1

10 808124 -2 8480A0(|8080A0 -3

11 840800 -4 A08504(|A48000 -5

12 A0C804 -3 242885([002880 -7

13 25CCAC|[2488AC -8
log, (Pr(Qk)) : —18 log, (Pr(Qp)) : -33

A pair of weak keys:

K = (34AF36,1AA373,C48D92, 2B0794)
K’ = (34AD36, 1AA3B3, 468D9A, 231594)

Table 18 14-round related-key differential trail in SPECK48/96 with (Al Aly, Aly, Akg) =

(020000, 004010,248801,102088)

Round Differential in key log, Pr Differential in data log, Pr

0 102088 10625A(|5042C2

1 900040 -6 0042D2(|500010

2 000204 -2 120012(|920090 -6

3 001024 -2 841449(|141010 -8

4 008000 -4 A08400(/000480 -9

5 040000 —1 002404]]000004 -5

6 200000 —1 000020]]000000 -3

7 000000 -2 000000(|000000 -1

8 000000 0 000000(]000000 0

9 000000 0 000000(]000000 0

10 010000 -1 000000(|000000 0

11 090000 -1 010000(|010000 0

12 410000 -2 080100]]000100 -2

13 490102 -3 410901(]410101 -3

14 09410A(/014900 -6
logy (Pr(Qk)) : -25 logy (Pr(Qp)) : —43

A pair of weak keys:

K = (A45E80, E09F24, F047C1, 4608BA)
K’ = (A65E80, EODF34, DACFCO0, 562832)

@ Springer



2142

S.Sadeghi et al.

Table 19 15-round related-key
differential trail in SPECK48/96
with (Alp, Aly, Aly, Akg) =
(000010,000002,441000,
004090)

Table 20 16-round related-key
differential trail in SPECK48/96
with (Aly, Aly, Aly, Akg) =
(000010,000020,00441000,
004090)

@ Springer

Round Differential inkey log, Pr  Differential in data  log, Pr

0 004090 825092(]820202

1 020000 —4 821002(|001200

2 100000 —1 009010(|000010 —5

3 800000 -1 000080(|000000 —3

4 000000 -1 000000[|000000 O

5 000000 0 000000[|000000 O

6 000000 0 000000[|000000 O

7 040000 -1 000000([000000 O

8 1C0000 —4 040000(|040000 O

9 040000 -5 200400/|000400 —5

10 240400 -2 042404(|040404 -3

11 042001 -6 240420(|042400 —4

12 240409 -7 202005|[010005 —5

13 042044 -6 20242C||282404 —6

14 250664 -5 002464|]410445 —7

15 C00245||C8206F —8
log, (Pr(Qg)): —43 logy (Pr(Qp)) : — 46

A pair of weak keys:

K = (0OC8E5B, 240ABD, 8BFBES, 73CFA3)

K’ = (0C8E4B, 240ABF, CFEBES, 738F33)

Round Differential inkey log, Pr  Differential in data  log, Pr

0 004090 825092(]820202

1 020000 —4 821002(]001200

2 100000 —1 009010(|000010 —5

3 800000 -1 000080(|000000 —3

4 000000 —1 000000(|000000 O

5 000000 0 000000[|000000 O

6 000000 0 000000[[000000 O

7 040000 —1 000000]|000000 O

8 1C0000 —4 040000(|040000 O

9 040000 -5 200400/|000400 —5

10 240400 -2 042404(||040404 -3

11 042001 -6 240420]|042400 —4

12 1A1C77 - 19 202005]|010005 —y5

13 DAO3C7 —15 183C54(|103c7C  —8

14 FFFECL —21 FELFFF||7FFC1F —38

15 83C4D4 — 14  8O000FF||7FE004 —3

16 FC24D0||0324F3 —3
logy (Pr(Qk)):  —94  log (Pr(Qp)): — 47

A pair of weak keys:

K = (E768B7, 64197F, A32B17, E346B7)
K’ = (E768A7, 64197D, E73B17,E30627)
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A.3 RKD trails of SPECK64/128
Tables 21, 22, 23, 24 and 25.
Ziaft;{ciezrjtiai?;;?luirrlld related-key Round Differential in key log, Pr Differential in data log, Pr
SPECK64/128 with 0 08001200 18421240(|10404040
(Aly, Aly, Aly, Akg) =
(00000200, 00000040, 1 40000000 —4 10420040]/00024000
00820008,08001200) 2 00000002 —1 00120200]]00000200 —5
3 00000010 —1 00001000]]00000000 —3
4 00000000 -2 00000000]|00000000 —1
5 00000000 0 00000000]]00000000 O
6 00000000 0 00000000]]00000000 O
7 80000000 0 00000000]]00000000 O
8 80000004 0 80000000(|80000000 O
9 80000020 —1 00800004[]00800000 —1
10 80800124 -2 84808020(|80808020 — 3
11 84000800 —4 20840184]|24800080 —6
12 A0804804 -3 24708481]|00A08080 —9
13 20046800]|25006C00 — 8
logy (Pr(Qk)): —18 logy (Pr(Qp)) : - 36
A pair of weak keys:
K = (10477738, AAIDCY04, 8BE451208, 7556C2C3)
K’ = (10477538, AA9DC944, 8EC71200, 7D56D0C3)
;iafl;:;eznztiai‘:r_:i)luirrlld related-key Round Differential in key log, Pr Differential in data log, Pr
SPECK64/128 with 0 00080012 40184212||40104040
(Al Aly, Aly, Akg) =
(00000002, 40000000, 1 00400000 —4 40104200(]00000240
08008200,00080012) 2 02000000 —1 00001202]]00000002 —5
3 10000000 -1 00000010]]00000000 —3
4 00000000 —1 00000000]|00000000 —1
5 00000000 0 00000000]]00000000 O
6 00000000 0 00000000[]00000000 O
7 00800000 —1 00000000]]00000000 O
8 07800000 -3 00800000/]00800000 O
9 00800000 -7 04008000]]00008000 —4
10 03808000 -5 00848080(]00808080 — 3
11 00840000 -9 84008400]/80048000 —7
12 05A08000 -7 80048084(|80208080 — 5
13 10A50080 — 12 01000400/]00040004 —6
14 10A00080]]108000A0 —3
log; (Pr(Qg)): =51 logy (Pr(Qp)): —37
A pair of weak keys:

K = (BE466B7E, FO2B57A6, 6F474116, 3E245A23)
K’ = (BE466B7C, BO2B57A6, 6747C316, 3E2C5A31)
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Table 23 15-round related-key

differential trail in Round Differential in key log, Pr Differential in data log, Pr
SPECK64/128 with 0 00080012 40184212]]40104040
(Al Aly, Aly, Akg) =
(00000002, 40000000, 1 00400000 —4 40104200]|/00000240
08008200,00080012) 2 02000000 —1 00001202|]00000002 —5
3 10000000 —1 00000010||]00000000 —3
4 00000000 —1 00000000|]00000000 —1
5 00000000 0 00000000|]00000000 O
6 00000000 0 00000000[]00000000 O
7 00800000 —1 00000000||]00000000 O
8 07800000 -3 00800000(]00800000 O
9 00800000 -7 04008000(]00008000 —4
10 038080000 -5 00848080(|00808080 —3
11 00840000 -9 84008400(|80048000 —7
12 05A08000 -7 80048084(||80208080 —5
13 10A50080 — 12 01000400/|00040004 —6
14 95908480 -9 10A00080(|]108000A0 —3
15 04002420(|800002120 — 8
log, (Pr(Qg)): —60 log, (Pr(Qp)): —45

A pair of weak keys:
K = (BE466B7E, FO2B57A6, 6F474116, 3E245A23)
K’ = (BE466B7C, BO2B57A6, 6747C316, 3E2C5A31)

Table 24 16-round related-key

differential trail in Round Differential in key log, Pr Differential in data log, Pr
SPECK64/128 with 0 08001200 18421240(|10404040
(Al Aly, Aly, Akg) =
(00000200, 00000040, 1 40000000 —4 10420040]/00024000
00820008,08001200) 2 00000002 —1 00120200]]00000200 —5
3 00000010 —1 00001000]]00000000 —3
4 00000000 -2 00000000(]00000000 —1
5 00000000 0 00000000]]00000000 O
6 00000000 0 00000000[|00000000 O
7 80000000 0 00000000[/00000000 O
8 80000004 0 80000000/|80000000 O
9 80000020 -1 00800004|]00800000 —1
10 80800124 -2 84808020/|80808020 — 3
11 84000800 —4 20840184(|24800080 —6
12 20804804 —3  24A08C81||00A08880 —8
13 84020821 -6 21046000(|24002400 — 10
14 8092592C -8 A0232801|/80220800 — 8
15 84808078 — 11 01104004|]00000000 — 11
16 80819038||80819038 —4
logy (Pr(Qk)): —43  logy (Pr(Qp)) : —60
A pair of weak keys:

K = (7009EF82, 01B2A171, C4E14153, 2A5CEE20)
K’ = (7009ED82, 01B2A131,C463415B, 225CFC20)
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Table 25 17-round related-key differential trail in SPECK64/128 with (Alp, Aly, Aly, Akg) =

(00000200,00000040, 00820008,

08001200)

Round Differential in key log, Pr Differential in data log, Pr

0 08001200 18421240]]10404040

1 40000000 —4 10420040]]00024000

2 00000002 —1 00120200(/00000200 -5

3 00000010 —1 00001000]]00000000 -3

4 00000000 -2 00000000]]00000000 —1

5 00000000 0 00000000[/00000000 0

6 00000000 0 00000000[/00000000 0

7 80000000 0 00000000]/00000000 0

8 80000004 0 80000000]|80000000 0

9 80000020 -1 00800004||00800000 —1

10 80800124 -2 84808020(|80808020 -3

11 84000800 —4 20840184(|24800080 —6

12 A0804804 -3 24A08C81||00A08880 -8

13 84020821 -6 21046000]|24002400 — 10

14 8092592C -8 A0232801]|80220800 -8

15 84811040 — 12 01104004(]000000000 —11

16 A409920C -6 80800000(|80800000 —4

17 2409120C||20091208 -2
log, (Pr(Qk)) : - 50 log, (Pr(Qp)) : — 62

In this case, after limiting the time for two weeks of running the MILP model, we could not find a weak key,
while based on our test for each of the two consecutive rounds there are not any independed modular addition

A.4 RKD trails of SPECK128/256

Tables 26 and 27.
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B Some of incompability RKD trails of SPECK variants

Tables 28, 29, 30 and 31.

Table 28 An incompatible
differential trail for 14 rounds of
SPECK32/64 with

(Al, Aly, Aly, Akg) =

(0001, 4000,0880,0025)

Table 29 An incompatible
differential trail for 16 rounds of
SPECK48/96 with

(Alp, Aly, Aly, Akg) =
(020000, 004000,000882,
120008)

@ Springer

Round Differential inkey log, Pr  Differential in data  log, Pr

0 0025 50A4(|5021

1 0080 —4 5081||00A0

2 0200 -1 0281]]0001 —4

3 0800 -1 0004]]0000 -3

4 0000 -2 0000]]0000 -1

5 0000 0 0000]]0000 0

6 0000 0 0000]]0000 0

7 0040 —1 0000]]0000 0

8 0140 -1 0040]|0040 0

9 0240 —4 8100]|8000 -1

10 87C0 -5 8142]|8140 -3

11 0042 -1 8002]|8500 -5

12 8140 —4 8042]|9440 -2

13 0557 -6 9000(|c102 —4

14 C575]||C17E —4
logy (Pr(Qk)):  —36 logy (Pr(Qp)) : —27

Round Differential inkey log, Pr  Differential in data  log, Pr

0 120008 12504A(|405040

1 000040 -3 005040(|400002

2 000200 -1 020012]|020000 =5

3 001000 —1 100000J|000000 —3

4 000000 -2 000000J|000000 —1

5 000000 0 000000([000000 O

6 000000 0 000000(|000000 O

7 000080 —1 000000(|000000 O

8 000480 -1 000080(|000080 O

9 002080 -2 800400||800000 —1

10 812480 -2 80A084([80A080 —2

11 OEC884 -9 84C4A0([81C0A4 —6

12 840CA0 —11 2E03A4([200680 —11

13 239184 —11 002421(|001020 -9

14 800001 —-17 008180(|000080 —6

15 00F245 -8 000000(|000400 —2

16 00F645||00D645 —1
logy (Pr(Qk)):  —69 logy (Pr(Qp)) : —47
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Table 30 An incompatible differential trail 16 rounds of SPECK64/128 with
(Alp, Aly, Aly, Aky)=(00208002,40000000,08000200,00080012)
Round Differential in key log, Pr Differential in data log, Pr
0 00080012 82888292(|90C09080
1 00400080 -3 82808280(|12401200
2 02000480 -2 92829202]]00820202 — 10
3 10000000 —4 04108010[/00009000 — 11
4 80000000 -1 00048080[/00000800 -5
5 00000004 0 00000400(]00000000 -2
6 00000000 -2 00000000(]00000000 —1
7 00000000 0 00000000[/00000000 0
8 00000000 0 00000000]/00000000 0
9 20000000 —1 00000000]/00000000 0
10 E0000001 -2 20000000(|20000000 0
11 20000000 -6 00200001[/00200000 -3
12 20200001 -2 21202000]|20202000 -3
13 21000008 -5 00210021[/01200020 -5
14 20200049 -7 01202128]|/08202028 -6
15 21002200 -6 00010040(|41000100 -8
16 A0002200(|A8002A02 -3
logy (Pr(Qk)) : —41 logy (Pr(Qp)) : —57
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000080 81248!: The key
differential
>>>8 for round 10
of data path
M |
000008 Round 11 ji3
EH 812480 of key path \l/
07EC80 07EC80 0EC884
>>>8 nl
8007EC A J
07EC80 239184 Thekey
E 239184 | —» differential
>>>8 for round 13
of data path
Round 14 M
9C8C20 [,
of key path <<|<3
9C8C20 800001

Fig.5 Part of the 16-round incompatible differential trail of SPECK48/96 based on Table 29

C Manual verification of one of the incompatible RKD trails

Lemma4 There are no right pair to satisfy the RK-difference of the sub-keys of 16 rounds of
SPECK48/96 as shown in Table 29.

Proof To find a contradiction in the key expansion datapath of the key differences of the
trails in Table 29, we fixed the input differential of sub-keys in all 16 rounds. Our MILP
model gives us an infeasible solution. This means that there are not any key values to satisfy
the differential of round keys for 16 rounds of SPECK48/96 based on Table 29. After that,
we tried to find the key values for fewer rounds by removing some last rounds. When we
removed the fourteenth round, the MILP model found two key values whose differential was
the differential of the key rounds for 14 rounds of SPECK48/96. So, the fourteenth round
of key expansion datapath can be effective in finding a contradiction. Note that the left input
differential of round 14 is the same as the left output differential of round 11 (see Fig. 5).
We denote the two n-bit vectors representing differentials at the input of modular addi-

tion in the round i where i = 11,14, as Ax' = (Ax! | ..., Ax], Ax{) and Ay' =
(Ayl’;_l, cee, Ay{, Ayé) and the n-bit output differential as A7l = (Azfl_], R Az’i, Azf))
and the n-bit vectors representing carry differential as Act = (Acﬁl_ Lo Ac’i, Acf)). It

should be noted that based on the third condition of Inequality (3), the differential of carry
bit ¢/ can be obtained as Ac! = Ax' @ Ay @ Azl

Therefore, the input/output differentials and the carry differentials of modular additions
for the 11-th and 14-th rounds based on Fig. 5, can be written as binary notation as follows.

Ax'" = 100000000000000000000000, Ax'* = 100000000000011111101100,
Ayl = 100000010010010010000000, Ay* = 001000111001000110000100,
Az =000001111110110010000000, Az'* = 100111001000110000100000,
Ac!'t = 000001101100100000000000, Ac'* = 001111110001101001001000.

As can be seen in Fig. 5, the modular addition operations in rounds 11 and 14 satisfy
the conditions of Theorem 1 and they hold with probabilities of 2=2 and 2~!7, respec-
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tively. Assuming independency, the differential probability of these two rounds should
hold with probability of 27%0; however, we show that it is an incompatibility differential.
To this end by considering the modular addition operation for the 11-th round, we have
(Ax}3, Ayld, Azld, Aclh, Acl)) = (0,1, 1,0, 1). It should be noted that the values that can
have this differential must be selected from the set (6). According to the set (6), the following
pairs have the differential (Ax13, Ayn, Azn, Acg, Ac ) =(0,1,1,0,1).

0,0,1,1
{(xn )’13’Zié’013’014)} H(O 1.0.1

So, for each pair we get the condition

213 =Cl4» (14)

where ¢ is the bit-wise NOT of c. Now, by considering the differential (Axm, Ay14, Az14, Ac}}t,
Ac%é) = (0,0, 1, 1, 1), for the 14-th bit, the following pairs can reach to this differential.

111 0,1,1,0,0) (1,0,1,0,0)
(xl“’yl“’zl“’cl“’c”)eH(,1,0, L[ )100,1,0 ([

So, these pairs conclude the condition
14 =Ty (15)
By combining the Egs. (14) and (8), we have

213 = 24 (16)

Now, in the modular addition operation for 14-th round, we have (AxSM, Ay Az14 Ac14
Acé“) = (1,0, 1,0, 1). Thus, the following pairs will lead to the differential (l 0,1,0, 1)

14 0,0,1,1,0) 0,1,1,0,0)
(XS vyS 725 » C5 766)6{{(1705071’1) s (1’1,0’071) .
Hence, for these pairs, we can get the condition

e (17)

Now, by considering the differential (AxGM, Ay614, Azé“, Acé“, Ac%‘*) = (1,0,0,1,0) for
the 6-th bit, the following pairs will lead to this differential.

14 14 14 0,0,1,1,0) 0,1,0,1,1)
(" yo' 26" o', ﬁ)eiLLQLQm 0.0
Therefore, we have the condition
xit =t (18)

By combining the Eqgs. (17) and (18), we have

xit =xh (19)
Sincex'# = (z!! > 8) (see Fig.5), we havez13 = x5 andz14 = x6 .Hence, by considering
the Egs. (16) and (19), we reach a contradiction. O
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