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Abstract
Let q = 2m . The projective general linear group PGL(2, q) acts as a 3-transitive permutation
group on the set of points of the projective line. The first objective of this paper is to prove
that all linear codes over GF(2h) that are invariant under PGL(2, q) are trivial codes: the
repetition code, the whole space GF(2h)2

m+1, and their dual codes. As an application of this
result, the 2-ranks of the (0,1)-incidence matrices of all 3 − (q + 1, k, λ) designs that are
invariant under PGL(2, q) are determined. The second objective is to present two infinite
families of cyclic codes over GF(2m) such that the set of the supports of all codewords of any
fixed nonzero weight is invariant under PGL(2, q), therefore, the codewords of any nonzero
weight support a 3-design. A code from the first family has parameters [q + 1, q − 3, 4]q ,
where q = 2m , and m ≥ 4 is even. The exact number of the codewords of minimum weight
is determined, and the codewords of minimum weight support a 3-(q + 1, 4, 2) design. A
code from the second family has parameters [q +1, 4, q −4]q , q = 2m ,m ≥ 4 even, and the
minimum weight codewords support a 3-(q + 1, q − 4, (q − 4)(q − 5)(q − 6)/60) design,
whose complementary 3-(q + 1, 5, 1) design is isomorphic to the Witt spherical geometry
with these parameters. A lower bound on the dimension of a linear code over GF(q) that can
support a 3-(q + 1, q − 4, (q − 4)(q − 5)(q − 6)/60) design is proved, and it is shown that
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the designs supported by the codewords of minimum weight in the codes from the second
family of codes meet this bound.

Keywords Cyclic code · Linear code · t-design · Projective general linear group ·
Automorphism group

Mathematics Subject Classification 05B05 · 51E10 · 94B15

1 Introduction

A t − (ν, k, λ) design is an incidence structure (X ,B), where X is a set of ν points and B a
set of b k-subsets of X called blocks, such that any t points are contained in exactly λ blocks,
where λ > 0. A t-design is a t − (ν, k, λ) design for some parameters ν, k, λ. A t − (v, k, λ)

design is also an s − (v, k, λs) design for every 0 ≤ s < t , where

λs =
(
v−s
t−s

)

(k−s]
t−s

)λ.

In particular, the number of blocks is equal to

b = λ0 =
(
v
t

)

(k
t

)λ.

The incidence matrix A = (ai, j ) of a design D is a (0,1)-matrix with rows indexed by the
blocks, and columns indexed by the points ofD, where ai, j = 1 if the j th point belongs to the
i th block, and ai, j = 0 otherwise. If q is a prime power, the q-rank ofD (or rankqD) is defined
as the rank of its incidence matrix A over a finite field GF(q) of order q: rankqD = rankq A.
Equivalently, the q-rank of a design is the dimension of the linear q-ary code spanned by the
rows of its (0,1)-incidence matrix.

A generalized incidence matrix of a design D over a finite field GF(q), or shortly, an
GF(q)-incidence matrix of D, is any matrix obtained by replacing the nonzero entries of the
(0,1)-incidence matrix of D with arbitrary nonzero elements of GF(q). The dimension of a
t − (v, k, λ) design D over GF(q) (or the q-dimension of D, or dimq D), is defined in [21] as
the minimum among the dimensions of all linear codes of length v over GF(q) that contain
the blocks ofD among the supports of codewords of weightw. Equivalently, the q-dimension
of D is equal to

dimq D = min rankqM,

where M runs over the set of all (q − 1)bk generalized GF(q)-incidence matrices of D, and
b is the number of blocks. Clearly, dimq D ≤ rankqD. For example, if D is the 4-(11, 5, 1)
design supported by the codewords of minimum weight in the ternary Golay code of length
11 and dimension 6, dim3 D = 6, while rank3D = 11. A generalization of this definition of
the q-dimension of a design is given in [15].

The importance of interactions between groups, linear codes and t-designs has been well
recognized for decades. For example, Assmus and Mattson [1] pointed out in 1969 that
5-designs arise from certain extremal self-dual codes, including the extended Golay codes
that are closely related to the 5-transitive Mathieu groups. Linear codes that are invariant
under groups acting on the set of code coordinates have found important applications for the
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construction of combinatorial t-designs. Examples of such codes are the Golay codes, the
quadratic-residue codes, and the affine-invariant codes [7, Chapter 6].

This paper presents a number of new results about 3-designs arising from linear codes
associated with the projective general linear group PGL(2, q).

Let PGL(2, q) be the projective general linear group acting as a permutation group on the
set of points of the projective line PG(1, q) over a finite field GF(q) with q elements. Every
vector in the (q + 1)-dimensional vector space GF(r)q+1 can be written as (cx )x∈PG(1,q),
where cx ∈ GF(r) and r is a prime power. In other words, the coordinates of the vectors in
GF(r)q+1 can be indexed by the points in PG(1, q). Consider the induced action of PGL(2, q)

on GF(r)q+1 by the left translation:

π : (cx )x∈PG(1,q) �→ (cπ(x))x∈PG(1,q),

where (cx )x∈PG(1,q) ∈ GF(r)q+1 and π ∈ PGL(2, q). Let C be a linear code of length q + 1
over GF(r). We say that C is invariant under PGL(2, q) if each element of PGL(2, q) carries
each codeword of C into a codeword of C. In other words, C is invariant under PGL(2, q)

if C admits PGL(2, q) as a subgroup of the permutation automorphism group of C. For a
codeword c = (cx )x∈PG(1,q) in C, the support of c is defined as

Supp(c) = {x ∈ PG(1, q) : cx �= 0}.
Let Aw(C) = | {c ∈ C : wt(c) = w} | andBw(C) = {Supp(c) : wt(c) = w and c ∈ C}, where
wt(c) denotes the Hamming weight of c. Bw(C) is said to be invariant under PGL(2, q) if the
support Supp

(
(cπ(x))x∈PG(1,q)

)
belongs toBw(C) for everyπ ∈ PGL(2, q) and any codeword

(cx )x∈PG(1,q) ofweightw in C. It is easily seen that if C is invariant under PGL(2, q), then so is
Bw(C) for each w. Moreover, if Bw(C) is invariant under PGL(2, q), then (PG(1, q),Bw(C))

holds a 3-design provided Aw(C) �= 0, since the action of PGL(2, q) on PG(1, q) is 3-
transitive (see [2, Propositions 4.6 and 4.8] or [22, Proposition 1.27]). For more related
results on linear codes and t-designs, we refer the reader to [7,9].

The first objective of this paper is to investigate the possible parameters of linear codes
that are invariant under PGL(2, q). We focus on the case when q and r are powers of 2. We
prove in Sect. 4, Theorem 11, that the only linear codes of length 2m + 1 over GF(2h) that
are invariant under PGL(2, q) are trivial codes: the zero code, the whole space GF(2h)2

m+1,
the repetition code, and its dual code. As an application of this result, the 2-ranks of the
(0,1)-incidence matrices of all 3 − (q + 1, k, λ) designs that are invariant under PGL(2, q)

are determined, and it is proved in Theorem 12 that any such design has 2-rank equal to q+1
if the block size k is odd, and q if k is even.

The second objective of this paper is to investigate the question whether there are any
nontrivial linear codes of length 2m + 1 over GF(2m), such that the set of the supports of all
codewords of any fixed nonzero weight is invariant under PGL(2, q). In Sect. 5, we answer
this question in the affirmative by presenting two infinite families of cyclic codes of length
2m + 1 over GF(2m), such that the set of the supports of the codewords of any fixed weight
is invariant under PGL2(GF(2m)), therefore, the codewords of any nonzero weight support
a 3-design. These codes are obtained as subfield subcodes and trace codes of certain cyclic
codes over GF(22m) and their dual codes (Theorems 21 and 22).

A code from the first family has parameters [q + 1, q − 3, 4]q , where q = 2m , and m ≥ 4
is even. The exact number of the codewords of minimum weight is determined, and the
codewords of minimum weight support a 3-(q + 1, 4, 2) design. To the best knowledge of
the authors, this is the first infinite family of linear codes that support an infinite family of
3 − (v, 4, 2) designs. The codewords of every other nonzero weight also support 3-designs.
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A code from the second family has parameters [q + 1, 4, q − 4], q = 2m , m ≥ 4 even.
The exact number of the codewords of minimum weight is determined, and the minimum
weight codewords support a 3-(2m + 1, q − 4, λ) design with

λ = (q − 4)(q − 5)(q − 6)

60
,

whose complementary 3-(q + 1, 5, 1) design is shown to be isomorphic to the Witt spherical
geometry with these parameters. In Sect. 6, a lower bound on the q-dimension of a 3-
(q + 1, (q − 4), (q − 4)(q − 5)(q − 6)/60) design is proved in Theorem 30, and it is shown
that the infinite family of 3-designs described in Theorem 25 meet this bound.

2 Preliminaries

2.1 Group actions and t-designs

A permutation group is a subgroup of the symmetric group Sym(X), where X is a finite
set. More generally, an action σ of a finite group G on a set X is a homomorphism σ from
G to Sym(X). We denote the image σ(g)(x) of x ∈ X under g ∈ G by g(x) when no
confusion can arise. The G-orbit of x ∈ X is Orbx = {g(x) : g ∈ G}. The stabilizer of x is
Stabx = {g ∈ G : g(x) = x}. The length of the orbit of x is given by

|Orbx | = |G| / |Stabx | .

One criterion to measure the level of symmetry is the degree of transitivity and homo-
geneousity of the group. Recall that a group G acting on a set X is t-transitive if for any
two ordered t-tuples (x1, . . . , xt ), (x ′

1, . . . , x
′
t ) of distinct elements from X there is some

g ∈ G such that
(
x ′
1, . . . , x

′
t

) = (g(x1), . . . , g(xt )). And it is t-homogeneous if for any
two unordered t-subsets {x1, . . . , xt }, {x ′

1, . . . , x
′
t } of X there is some g ∈ G such that{

x ′
1, . . . , x

′
t

} = {g(x1), . . . , g(xt )}.
We recall a well-known general fact (see, e.g. [2, Proposition 4.6]), that for a t-

homogeneous group G on a finite set X with |X | = ν and a subset B of X with |B| = k > t ,
the pair (X ,OrbB) is a t − (ν, k, λ) design, where OrbB is the set of images of B under the

group G, λ = (kt)|G|
(ν
t)|StabB | and StabB is the setwise stabilizer of B in X . Let

(X
k

)
be the set

of subsets of X consisting of k elements. A nonempty subset B of
(X
k

)
is called invariant

under G if OrbB ⊆ B for any B ∈ B. If this is the case, it means that the pair (X ,B) is
a t − (ν, k, λ) design admitting G as an automorphism group for some λ. For some recent
works on t-designs from group actions, we refer the reader to [19,24].

2.2 Projective general linear groups of degree two

The projective linear group PGL(2, q) of degree two is defined as the group of invertible

2×2 matrices with entries in GF(q), modulo the scalar matrices,

[
a 0
0 a

]
, where a ∈ GF(q)∗.

Note that the group PGL(2, q) is generated by the matrices

[
a 0
0 1

]
,

[
1 b
0 1

]
and

[
0 1
1 0

]
, where

a ∈ GF(q)∗ and b ∈ GF(q).
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Table 1 Subgroups of PGL(2, q)

Type Maximal order Number of conjugacy classes Condition

2-group 2m – –

Frobenius 2m (2m − 1) – –

Cyclic 2m + 1 one –

Dihedral 2(2m − 1) one –

Dihedral 2(2m + 1) one –

PGL2(GF(2m
′
)) 2m

′
(4m

′ − 1) one m′|m
A4 12 – 2|m
A5 60 – 2|m

Here the following convention for the action of PGL(2, q) on the projective line PG(1, q)

is used. A matrix

[
a b
c d

]
∈ PGL(2, q) acts on PG(1, q) by

(x0 : x1) �→
[
a b
c d

]
(x0 : x1) = (ax0 + bx1 : cx0 + dx1), (1)

or, via the usual identification of GF(q) ∪ {∞} with PG(1, q), by linear fractional transfor-
mation

x �→ ax+b
cx+d . (2)

This is an action on the left, i.e., for π1, π2 ∈ PGL(2, q) and x ∈ PG(1, q) the following
holds:π1(π2(x)) = (π1π2)(x). The action of PGL(2, q) on PG(1, q) defined in (2) is sharply
3-transitive, i.e., for any distinct a, b, c ∈ GF(q) ∪ {∞} there is π ∈ PGL(2, q) taking ∞ to
a, 0 to b, and 1 to c. In fact, π is uniquely determined and it equals

π =
[
a(b − c) b(c − a)

b − c c − a

]
.

Thus, PGL(2, q) is in one-to-one correspondence with the set of ordered triples (a, b, c) of
distinct elements in GF(q) ∪ {∞}, and in particular

|PGL(2, q)| = (q + 1)q(q − 1). (3)

Two subgroups H1 and H2 of a group G are said to be conjugate if there is a g ∈ G such
that gH1g−1 = H2. It is easily seen that this conjugate relation is an equivalence relation
on the set of all subgroups of G, and is called the conjugacy. The conjugacy classification of
subgroups of PGL(2, q) is well known [5]. Table 1 specifies all the subgroups of PGL(2, q)

up to conjugacy.
We recall here the classification of sharply 3-transitive finite permutation groups on finite

sets of odd cardinality (see for instance [17]).

Theorem 1 Let G be a sharply 3-transitive permutation group on the finite set X of odd
cardinality. Then it is possible to identify the elements of X with the points of the projective
line PG(1, 2m) in such a way that G = PGL(2, q) holds.
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2.3 Linear codes and cyclic codes

Let GF(r) be the finite field with r elements. An [n, k]r linear code C is a k-dimensional
vector subspace of GF(r)n . If it has minimum distance d it is also called an [n, k, d]r code.
The dual code C⊥ of C is the set of vectors orthogonal to all codewords of C:

C⊥ = {w ∈ GF(r)n : 〈c,w〉 = 0 for all c ∈ C},
where 〈c,w〉 is the usual Euclidean inner product of c and w. Let a = (a0, . . . , an−1) ∈
(GF(r)∗)n . Here and subsequently, a · C stands for the linear code
{(a0c0, . . . , an−1cn−1) : (c0, . . . , cn−1) ∈ C}. It is a simple matter to check that

(a · C)⊥ = a−1 · C⊥, (4)

where a−1 = (a−1
0 , . . . , a−1

n−1).
There are two classical ways to construct a code over GF(r) from a given code over

GF(rh). Let C be a code of length n over GF(rh). Then the subfield subcode C|GF(r) equals
C ∩ GF(r)n , the set of those codewords of C all of whose coordinate entries belong to the
subfield GF(r). The trace code of C is given by

Trrh/r (C) = {(
Trrh/r (c0), . . . ,Trrh/r (cn−1)

) : (c0, . . . , cn−1) ∈ C} ,

where Trrh/r denotes the trace function fromGF(rh) to GF(r). A celebrated result of Delsarte
[6] states that the subfield code C⊥∣∣

GF(r) and the trace code Trrh/r (C) are duals of each other,
namely,

(
Trrh/r (C)

)⊥ = C⊥
∣∣∣
GF(r)

. (5)

Conversely, given a linear code C of length n and dimension k over GF(r), we define a
linear code GF(rh) ⊗ C over GF(rh) by

GF(rh) ⊗ C =
{

k∑

i=1

aici : (a1, a2, . . . , ak) ∈ GF(rh)k
}

, (6)

where {c1, c2, . . . , ck} is a basis of C over GF(r). This code is independent of the choice of the
basis {c1, c2, . . . , ck} of C, is called the lifted code of C to GF(rh). Clearly, GF(rh)⊗C and C
have the same length, dimension and minimum distance, but different weight distributions.
A trivial verification shows that if (c0, . . . , cn−1) ∈ GF(rh) ⊗ C, then (cr0, . . . , c

r
n−1) ∈

GF(rh) ⊗ C. Applying [10, Lemma 7], one has

Trrh/r
(
GF(rh) ⊗ C

)
=
(
GF(rh) ⊗ C

)∣∣∣
GF(r)

.

Let n be a positive integer with gcd(n, r) = 1. The order ordn(r) of r modulo n is the
smallest positive integer h such that rh ≡ 1 (mod n). Let Zn denote the ring of residue
classes of integers modulo n. The r -cyclotomic coset of e ∈ Zn is the set [e](r ,n) = {r i e :
0 ≤ i ≤ ordn(r) − 1}. Then any two r -cyclotomic cosets are either equal or disjoint. A
subset E of Zn is called r -invariant if the set {re : e ∈ E} equals E , that is, E is the union
of some r -cyclotomic cosets. A subset Ẽ = {e1, . . . , et } of an r -invariant set E is called
a complete set of representatives of r -cyclotomic cosets of E if [e1](r ,n), . . . , [et ](r ,n) are
pairwise distinct and E = ∪t

i=1[ei ](r ,n).
An [n, k]r code C is cyclic if (c0, c1, . . . , cn−1) ∈ C implies that (cn−1, c0, . . . , cn−2) ∈ C.

Let γ be a primitive n-th root of unity in GF(rh), where h = ordn(r). It is known [12] that
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any r -ary cyclic code of length n with gcd(n, r) = 1 has a simple description by means of
the trace function.

Theorem 2 Let C be an [n, k]r cyclic code with gcd(n, r) = 1 and γ be a primitive n-th root
of unity in GF(rh), where h = ordn(r). Then there exists a unique r-invariant set E ⊆ Zn

such that

C =
⎧
⎨

⎩

(
t∑

i=1

Trrhi /r

(
aiγ

ei j
)
)n−1

j=0

: ai ∈ GF
(
rhi
)
⎫
⎬

⎭
,

where {e1, . . . , et } is any complete set of representatives of r-cyclotomic cosets of E and
hi = |[ei ](r ,n)|. Moreover, k = |E | = ∑t

i=1 hi .

Theorem 2 states that there is a one-to-one correspondence between cyclic linear codes
over GF(r) with length n and r -invariant subsets of Zn with respect to a fixed n-th root of
unity γ . We will call the set E in Theorem 2 the cyclicity-defining set of C with respect to γ .

The following corollary is an immediate consequence of Theorem 2.

Corollary 3 Let n be a positive integer such that gcd(n, r) = 1. Let C be an [n, k]r cyclic
code with cyclicity-defining set E and GF(r�) ⊗ C be the lifted code of C to GF(r�). Then
GF(r�)⊗C is an [n, k]r� cyclic code defined by the cyclicity-defining set E of C. In particular,

GF(rh) ⊗ C =
⎧
⎨

⎩

(
∑

e∈E
aeγ

je

)n−1

j=0

: ae ∈ GF
(
rh
)
⎫
⎬

⎭
,

where h = ordn(r) and γ is a primitive n-th root of unity in GF(rh).

Since the set E also defines the code GF(r�) ⊗ C in Corollary 3, the set E is also called
the cyclicity-defining set of the lifted code GF(r�) ⊗ C.

Let n be a positive integer with gcd(n, r) = 1 and h = ordn(r). Let Un be the cyclic
multiplicative group of all n-th roots of unity in GF(rh). By polynomial interpolation, every
function f from Un to GF(r) has a unique univariate polynomial expansion of the form

f (u) =
n−1∑

i=0

aiu
i ,

where a j ∈ GF(rh), u ∈ Un .
As a direct result of Theorem 2, we have the following conclusion concerning cyclicity-

defining sets of cyclic codes.

Corollary 4 Let n be a positive integer with gcd(n, r) = 1, h = ordn(r) and γ a primitive
n-th root of unity in GF(rh). Let C be an [n, k]r cyclic code with cyclicity-defining set E. Let
f (u) = ∑n−1

i=0 aiui ∈ GF(rh)[u]. If ( f (γ j )
)n−1
j=0 ∈ C and ai �= 0, then i ∈ E.

3 Another representation of the action of PGL(2,q) on the projective
line PG(1, 2m)

In this section we give another representation of the action of PGL(2, q) on the projective
line PG(1, 2m). This new representation will play an important role in Sects. 4 and 5.
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Let Uq+1 be the subset of the projective line PG(1, q2) = GF(q2) ∪ {∞} consisting of
all the (q + 1)-th roots of unity. Denote by StabUq+1 the setwise stabilizer ofUq+1 under the
action of PGL2(GF(q2)) on PG(1, q2).

Proposition 5 Let q = 2m. Then the setwise stabilizer StabUq+1 of Uq+1 consists of the
following three types of linear fractional transformations:

(I) u �→ u0u, where u0 ∈ Uq+1;
(II) u �→ u0u−1, where u0 ∈ Uq+1;

(III) u �→ u+cqu0
cu+u0

, where u0 ∈ Uq+1 and c ∈ GF(q2)∗ \Uq+1.

Proof First, the transformations listed in (I)–III) are easily seen to belong to the stabilizer
StabUq+1 .

Conversely, let π be a translation in PGL2(GF(q2)) given by ax+b
cx+d , where a, b, c, d ∈

GF(q2) and ad + bc �= 0. Then π ∈ StabUq+1 if and only if the following holds

(
au + b

cu + d

)q+1

= 1, for all u ∈ Uq+1. (7)

Multiplying both sides of (7) by (cu + d)q+1 yields

(aq+1 + cq+1)uq+1 + (aqb + cqd)uq + (abq + cdq)u + (bq+1 + dq+1) = 0.

Substituting u−1 for uq in the equation above yields

(abq + cdq)u2 + (aq+1 + bq+1 + cq+1 + dq+1)u + (aqb + cqd) = 0. (8)

Since the quadratic equation in (8) has at least q+1 roots: u ∈ Uq+1, all its coefficients must
be zero, that is

⎧
⎨

⎩

abq + cdq = 0,
aqb + cqd = 0,

aq+1 + bq+1 + cq+1 + dq+1 = 0.
(9)

We investigate the following three cases for (9).
If b = 0, (9) clearly forces c = 0. Thus π = u0x for some u0 ∈ Uq+1.
If a = 0, (9) clearly forces d = 0. Thus π = u0x−1 for some u0 ∈ Uq+1.

If ab �= 0, we can certainly assume that a = 1, because ax+b
cx+d and x+a−1b

a−1cx+a−1d
determine

the same translation. Substituting 1 for a in (9) we conclude that
{

b + cqd = 0
1 + bq+1 + cq+1 + dq+1 = 0

.

This gives b = cqd and (cq+1+1)(cq+1+1) = 0. If cq+1 = 1, wewould have ad+bc = 0, a
contradiction. It follows that b = cqd , dq+1 = 1 and c ∈ GF(q2)∗ \Uq+1 from ad+bc �= 0.
This completes the proof. ��

The following result follows from Proposition 5 directly.

Corollary 6 Let q = 2m. Then the setwise stabilizer StabUq+1 of Uq+1 is generated by the
following three types of linear fractional transformations:

(I) u �→ u0u, where u0 ∈ Uq+1;
(II) u �→ u−1;
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(III) u �→ u+cq
cu+1 , where c ∈ GF(q2)∗ \Uq+1.

The following proposition shows that the action of StabUq+1 on Uq+1 and the action of
PGL(2, q) on PG(1, 2m) are equivalent.

Proposition 7 Let q = 2m and StabUq+1 the setwise stabilizer of Uq+1. Then StabUq+1 is
conjugate in PGL2(GF(22m)) to the group PGL(2, q), and its action on Uq+1 is equivalent
to the action of PGL(2, q) on PG(1, 2m).

Proof We begin by proving that the group StabUq+1 acts sharply 3-transitively on Uq+1. It
suffices to show that this action is 3-transitive as PGL2(GF(22m)) acts sharply 3-transitively
on PG(1, 22m). Let (u1, u2, u3), (u′

1, u
′
2, u

′
3) be any two 3-tuples of distinct elements from

Uq+1. Since the action of PGL2(GF(22m)) on PG(1, 22m) is 3-transitive, there exists a linear
fractional transformation ax+b

cx+d ∈ PGL2(GF(22m)) such that

aui + b

cui + d
= u′

i for i = 1, 2, 3.

This gives
(
aui + b

cui + d

)q+1

= 1, where i = 1, 2, 3.

Using a similar argument to Proposition 5, we can prove that the transformation given
by u �→ au+b

cu+d belongs to StabUq+1 , which says that the action of StabUq+1 on Uq+1 is 3-
transitive. Therefore the action of StabUq+1 onUq+1 is equivalent to the action of PGL(2, q)

on PG(1, 2m) by Theorem 1. Now Table 1 shows that StabUq+1 is conjugate to the subgroup
PGL(2, q) in PGL2(GF(22m)). This completes the proof. ��

4 Linear codes invariant under PGL(2,q)

The main objective of this section is to classify all linear codes over GF(2h) of length 2m +1
that are invariant under PGL(2, q). As an immediate application, we derive the 2-rank of the
incidence matrices of t − (2m + 1, k, λ) designs that are invariant under PGL(2, q).

Let C be a [2m + 1, k]2h linear code. We can regard U2m+1 as the set of the coordinate
positions of C andwrite the codeword of C as (cu)u∈U2m+1

. Then the set of coordinate positions
of C could be endowedwith the action of StabU2m+1 . According to Proposition 7, we only need
to find all linear codes over GF(2h) of length 2m + 1 which are invariant under StabU2m+1 .

The following lemma gives the polynomial expansion of the linear fractional transforma-
tion u+cq

cu+1 , where c ∈ GF(q2)∗ \Uq+1.

Lemma 8 Let q = 2m with m ≥ 2 and c ∈ GF(q2)∗ \ Uq+1. Then for any u ∈ Uq+1, the
following holds

u + cq

cu + 1
=

q∑

i=1

ci−1ui .

Proof An easy computation shows that
∑q

i=1 c
i−1ui = 1+(cu)q

1+cu u

= u+cquq+1

1+cu
= u+cq

cu+1 ,

123



1722 C. Ding et al.

which completes the proof. ��
The following lemma expresses the coefficients of the polynomial expansion of a function

f over Uq+1 in terms of the sums over Uq+1 of the product function of f and the power
functions u j .

Lemma 9 Let f be a function from Uq+1 to GF(q2h) with h ≥ 1. Let
∑q

i=0 aiu
i be the

polynomial expansion of f , where ai ∈ GF(q2h). Then ai = ∑
u∈Uq+1

f (u)u−i , where
0 ≤ i ≤ q.

Proof A straightforward computation yields that

∑

u∈Uq+1

ue =
{
1, if q + 1 divides e,
0, otherwise,

(10)

where e is an integer.
A standard calculation shows that

∑
u∈Uq+1

f (u)u−i = ∑
u∈Uq+1

u−i ∑q
j=0 a ju j

= ∑q
j=0 a j

∑
u∈Uq+1

u j−i

= ai ,

where the last equality comes from (10). The desired conclusion then follows. ��
The following lemma gives the first two terms of the polynomial expansion for the function(

u+cq
cu+1

)e
over Uq+1.

Lemma 10 Let q = 2m with m ≥ 2, and c ∈ GF(q2)∗ \ Uq+1. Let e be an integer such that
1 ≤ e ≤ q. Let a0 + a1u + · · · + aquq be the polynomial expansion of the function from

Uq+1 to GF(q2) given by u �→
(
u+cq
cu+1

)e
. Then a0 = 0 and a1 = cq(e−1).

Proof Applying Lemma 9 to the function f (u) =
(
u+cq
cu+1

)e
, we obtain

a1 = ∑
u∈Uq+1

(
u+cq
cu+1

)e
u−1

= ∑
u∈Uq+1

(
u−1+cq

cu−1+1

)e
u Substituting u−1 with u

= ∑
u∈Uq+1

(
1+cqu
c+u

)e
u

= ∑
u∈Uq+1

(
u+c

cqu+1

)−e
u

= ∑
u∈Uq+1

u−e
(

u+c
cqu+1

)
Substituting u+c

cqu+1 with u

= cq(e−1),

where the last equality follows from Lemmas 8 and 9.

Employing Lemma 9 on
(
u+cq
cu+1

)e
again, we have

a0 = ∑
u∈Uq+1

(
u+cq
cu+1

)e

= ∑
u∈Uq+1

ue Substituting u+cq
cu+1 with u

= 0,

where the last equality follows from (10). This completes the proof. ��
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Now we are ready to prove the main result of this section.

Theorem 11 Let q = 2m with m ≥ 2. If C is a linear code over GF(2h) of length 2m + 1 that
is invariant under the permutation action of PGL(2, q), then C must be one of the following:

(I) the zero code C0 = {(0, 0, . . . , 0)}; or
(II) the whole space GF(2h)q+1, which is the dual of C0; or
(III) the repetition code C1 = {(c, c, . . . , c) : c ∈ GF(2h)} of dimension 1; or
(IV) the code C⊥

1 , given by

C⊥
1 =

{
(c0, . . . , cq) ∈ GF(2h)q+1 : c0 + · · · + cq = 0

}
.

Proof It is evident that the four trivial 2h-ary linear codes C0, C⊥
0 , C1 and C⊥

1 of length 2m +1
are invariant under PGL(2, q).

Let C be a 2h-ary linear code of length q + 1 which is invariant under PGL(2, q), which
amounts to saying that C is invariant under StabUq+1 by Proposition 7. By Part (I) of Proposi-
tion 5, the translation π(u) = u0u belongs to StabUq+1 , where u0 ∈ Uq+1. This clearly forces
C to be a cyclic code. Let E be the cyclicity-defining set of C. We consider the following four
cases for E .

If E = ∅, then C = C0
If E = {0}, then C = C1
If {0} � E , then there exists an e ∈ E \ {0}. Applying Corollary 3, the lifted code

GF(q2h) ⊗ C to GF(q2h) is the cyclic code over GF(q2h) with respect to the cyclicity-
defining set E . We see at once that GF(q2h)⊗C also stays invariant under StabUq+1 from the
definition of lifting of a cyclic code. Combining Corollary 3 with Proposition 5 we obtain((

u+cq+1

cu+1

)e)

u∈Uq+1
∈ GF(q2h) ⊗ C, where c ∈ GF(q2)∗ \Uq+1. Applying Corollary 4 and

Lemma 10 we can assert that 1 ∈ E . Thus
(
u+cq+1

cu+1

)

u∈Uq+1
∈ GF(q2h) ⊗ C. Combining

Corollary 4 and Lemma 8 we deduce E = {0, 1, · · · , q}. We thus get C = GF(2h)q+1 = C⊥
0 .

If E �= ∅ and 0 /∈ E , then there exists an e ∈ E \ {0}. An analysis similar to that in the
proof of the case of {0} � E shows that E = {1, . . . , q} and C = C⊥

1 . This completes the
proof. ��

The remainder of this section will be devoted to determining the 2-rank of some special
incidence structures. Let D = (X ,B) be an incidence structure. The points of X are usually
indexed with p1, p2, . . . , pv , and the blocks of B are normally denoted by B1, B2, . . . , Bb.
The incidence matrix MD = (mi j ) of D is a b × v matrix where mi j = 1 if p j ∈ Bi and
mi j = 0 otherwise. The p-rank of an incidence structure D is defined as the rank of its
incidence matrix over a finite field of characteristic p and denoted by rank p(D). The binary
matrix MD can be viewed as a matrix over GF(q) for any prime power q , and its row vectors
span a linear code of length v over GF(q), which is denoted by Cq(D) and called the code of
D over GF(q). The p-rank of incidence structures, i.e., the dimension of the corresponding
codes, can be used to classify incidence structures of certain type. For example, the 2-rank
and 3-rank of Steiner triple and quadruple systems were intensively studied and employed
for counting and classifying Steiner triple and quadruple systems [14], [16], [18] [25], [26],
[27], [28].

For any set A and a positive integer k, recall that
(A
k

)
denotes the set of all k-subsets of A.

The following theorem is an important corollary of Theorem 11.
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Theorem 12 Let B ⊆ (PG(1,2m )
k

)
such that m ≥ 2, 1 ≤ k ≤ 2m and B is invariant under the

action of PGL(2, q). Then the 2-rank of the incidence structure D = (PG(1, 2m),B) is given
by

rank2(D) =
{

2m, if k is even,
2m + 1, if k is odd.

Proof Since B is invariant under the action of PGL(2, q), then so is the code C2(D) of D.
It then follows from Theorem 11 that C2(D) = C⊥

1 or C2(D) = GF(2)2
m+1. The desired

conclusion then follows. ��

5 Linear codes of length 2m + 1 with sets of supports invariant under
PGL(2,q)

Throughout this section, let q = 2m , and let Uq+1 be the set of all (q + 1)-th roots of unity
in GF(q2), where m ≥ 2 is a positive integer. In this section, we describe two families of
nontrivial linear codes with the set of the supports of all codewords of any fixed weight being
invariant under PGL(2, q).

We define a cyclic code over GF(q2) of length q + 1 by

C{3,5} =
{(

a3u3 + aq−2uq−2 + a5u5 + aq−4uq−4
)
u∈Uq+1

:
a3, aq−2, a5, aq−4 ∈ GF(q2)

}

. (11)

We index the coordinates of the codewords in C{3,5} and related codes with the elements in
Uq+1. It is evident that the dual of C{3,5} is given as

C{3,5}⊥ =
{

(cu)u∈Uq+1 ∈ GF(q2)q+1 : ∑u∈Uq+1
cuhu = 0

}
, (12)

where hu is the transpose of the row vector (u−5, u−3, u3, u5).
It is obvious that if (cu)u∈Uq+1

∈ C{3,5} (resp., (cu)u∈Uq+1
∈ C{3,5}⊥), then

(
cqu
)
u∈Uq+1

∈
C{3,5} (resp.,

(
cqu
)
u∈Uq+1

∈ C{3,5}⊥). From [10, Lemma 7] we deduce that

Trq2/q
(C{3,5}

) = C{3,5}
∣∣
GF(q)

, (13)

and

Trq2/q
(
C{3,5}⊥

)
= C{3,5}⊥

∣∣∣
GF(q)

. (14)

In fact, C{3,5} is the lifted code of Trq2/q
(C{3,5}

)
to GF(q2) and has cyclicity-defining set

{3, 5, q − 2, q − 4}. Similarly, C⊥{3,5} is the lifted code of Trq2/q
(C{3,5}⊥

)
to GF(q2). The

reader is referred to Theorem 2 and Corollary 3 for further clarification.
In order to describe the supports of the codewords of Trq2/q

(C{3,5}
)
and C{3,5}⊥

∣∣
GF(q)

, we
need to employ symmetric polynomials and elementary symmetric polynomials. A polyno-
mial f is said to be symmetric if it is invariant under any permutation of its variables. The
elementary symmetric polynomial (ESP) of degree � in k variables u1, u2, · · · , uk , written
σk,�, is defined by

σk,�(u1, . . . , uk) =
∑

I⊆[k],|I |=�

∏

j∈I
u j , (15)
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where [k] = {1, 2, . . . , k}. Already known to Newton, the fundamental theorem of symmet-
ric polynomials asserts that any symmetric polynomial is a polynomial in the elementary
symmetric polynomials. For any k-variable symmetric polynomial f with coefficients in
GF(q2), write

B f ,q+1 =
{
{u1, . . . , uk} ∈

(
Uq+1

k

)
: f (u1, . . . , uk) = 0

}
. (16)

In general, it is difficult to determine |B f ,q+1|. However, it was shown in [20] that

|Bσ5,2,q+1| =
{

1
10

(q+1
3

)
, if m is even,

0, if m is odd.
(17)

To determine the parameters of Trq2/q
(C{3,5}

)
and C{3,5}⊥

∣
∣
GF(q)

, we prove several lemmas
below. To simplify notation and expressions below, we use σk,� to denote σk,�(u1, . . . , u�)

for any {u1, . . . , uk} ∈ (Uq+1
k

)
whenever {u1, . . . , uk} is specified.

Lemma 13 Let σ3,1, σ3,2, σ3,3 be the ESPs given by (15) with {u1, u2, u3} ∈ (Uq+1
3

)
. Then

(I) σ3,1σ3,2 + σ3,3 = (u1 + u2)(u2 + u3)(u3 + u1);
(II) σ3,1σ3,2 + σ3,3 �= 0; and

(III) σ 2
3,2 + σ3,1σ3,3 = σ 2

3,3

(
σ 2
3,1 + σ3,2

)q
.

Proof The proofs are straightforward and omitted.

Lemma 14 Let q = 2m with m even. Let σ3,1, σ3,2, σ3,3 be the ESPs given by (15) with
{u1, u2, u3} ∈ (Uq+1

3

)
. Then

(I) σ 2
3,1 + σ3,2 �= 0; and

(II) σ 2
3,2 + σ3,1σ3,3 �= 0.

Proof The proof can be found in [20].

For a positive integer � ≤ q + 1, define a 4 × � matrix M� by
⎡

⎢⎢
⎣

u−5
1 u−5

2 · · · u−5
�

u−3
1 u−3

2 · · · u−3
�

u+3
1 u+3

2 · · · u+3
�

u+5
1 u+5

2 · · · u+5
�

⎤

⎥⎥
⎦ , (18)

where u1, . . . , u� ∈ Uq+1. For r1, . . . , ri ∈ {±5,±3}, let M�[r1, . . . , ri ] denote the subma-
trix of M� obtained by deleting the rows (ur11 , ur12 , . . . , ur1� ), . . . , (uri1 , uri2 , . . . , uri� ) of the
matrix M�, where 1 ≤ i ≤ 4.

Lemma 15 Let M� be the matrix given by (18) with {u1, . . . , u�} ∈ (Uq+1
�

)
. Consider the

system of homogeneous linear equations defined by

M�(x1, . . . , x�)
T = 0. (19)

Then (19) has a nonzero solution (x1, . . . , x�) in GF(q)� if and only if rank(M�) < �, where
rank(M�) denotes the rank of the matrix M�.

Proof The proof is similar to that in [20, Lemma 29] and thus omitted. ��
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Lemma 16 Let m be an even positive integer and M3 be the matrix given by (18) with
{u1, u2, u3} ∈ (Uq+1

3

)
. Then rank(M3) = 3.

Proof Suppose that rank(M3) < 3. Then det(M3[5]) =
∏

1≤i< j≤3(ui+u j )
2

σ 5
3,3

(
σ 2
3,1 + σ3,2

)2
=0,

which is contrary to Lemma 14. This completes the proof.

Lemma 17 Let m be an even positive integer and M4 be the matrix given by (18) with
{u1, . . . , u4} ∈ (Uq+1

4

)
. Then rank(M4) = 3 if and only if σ 2

4,2 + σ4,1σ4,3 = 0.

Proof Note that

det(M4) =
∏

1≤i< j≤4(ui + u j )
2

σ 5
4,4

(
σ 2
4,2 + σ4,1σ4,3

)2
,

which completes the proof. ��
The following lemma is immediate from [20, Lemmas 18 and 20].

Lemma 18 Let q = 2m with m even and {u1, u2, u3} ∈ (Uq+1
3

)
. Let a = σ 2

3,1 + σ3,2, b =
σ3,1σ3,2+σ3,3 and c = σ 2

3,2+σ3,1σ3,3. Then the quadratic polynomial au2+bu+c has exactly

two roots u4, u5 in Uq+1 such that {u1, u2, u3, u4, u5} ∈ (Uq+1
5

)
. Moreover, {u1, u2, u3, u4}

satisfies σ 2
4,2 + σ4,1σ4,3 = 0.

Lemma 19 Let q = 2m with m even and M4 be the matrix given by (18) with {u1, . . . , u4} ∈(Uq+1
4

)
. If there exists a vector (x1, . . . , x4) ∈ (GF(q)∗)4 such that M4(x1, . . . , x4)T = 0,

then {u1, . . . , u4} ∈ Bσ 2
4,2+σ4,1σ4,3,q+1, where Bσ 2

4,2+σ4,1σ4,3,q+1 is defined by (16).

Proof The proof is similar to that in [20, Lemma 34] and thus omitted. ��
The minimum-weight codewords in Trq2/q

(C{3,5}
)
are described in the following lemma.

Lemma 20 Let f (u) = Trq2/q
(
au5 + bu3

)
where (a, b) ∈ GF(q2)2 \ {0}. Define

zero( f ) = {
u ∈ Uq+1 : f (u) = 0

}
.

Then |zero( f )| ≤ 5. Moreover, |zero( f )| = 5 if and only if a = τ
σ5,5(u1,...,u5)

and b =
τσ 2

5,1(u1,...,u5)
σ5,5(u1,...,u5)

, where {u1, . . . , u5} ∈ Bσ5,2,q+1 and τ ∈ GF(q)∗. In particular, the dimension
of Trq2/q

(C{3,5}
)
equals 4.

Proof When u ∈ Uq+1, one has

f (u) = 1

u5

(√
au5 + √

bu4 + √
bqu + √

aq
)2

. (20)

Thus |zero( f )| ≤ 5.
Assume that |zero( f )| = 5. From (20), there exists {u1, . . . , u5} ∈ (Uq+1

5

)
such that

f (u) = a
∏5

i=1(u+ui )2

u5
. By Vieta’s formula, aσ 2

5,1 = b, aσ 2
5,2 = 0, aσ 2

5,3 = 0, aσ 2
5,4 = bq and

aσ 2
5,5 = aq . One obtains a = τ

σ5,5
from aq−1 = σ 2

5,5, where τ ∈ GF(q)∗. Thus b = τσ 2
5,1

σ5,5
.

Conversely, assume that a = τ
σ5,5

and b = τσ 2
5,1

σ5,5
, where {u1, . . . , u5} ∈ Bσ5,2,q+1 and τ ∈

GF(q)∗. Then f (u) = a
∏5

i=1(u+ui )2

u5
. Consequently, zero( f ) = {u1, . . . , u5} and |zero( f )| =

5. This completes the proof. ��
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Theorem 21 Let q = 2m with m ≥ 4 being an even integer. Then the subfield subcode
C{3,5}⊥

∣
∣
GF(q)

has parameters [q + 1, q − 3, 4]q .

Proof Recall that (5) says that

C{3,5}⊥
∣
∣
∣
GF(q)

= (
Trq2/q(C{3,5})

)⊥
.

Thus C{3,5}⊥
∣∣
GF(q)

has dimension q − 3 by Lemma 20.
Since m is even, we have d ≥ 4 by Lemma 16. Applying Lemmas 18 and 19, we assert

that there must exist a codeword of weight 4. Consequently, d = 4. ��

As Theorem 21 showed, the subfield subcode C{3,5}⊥
∣
∣
GF(q)

almost meets the Griesmer
bound.

Theorem 22 Let q = 2m with m ≥ 4 being even. Then the trace code Trq2/q
(C{3,5}

)
has

parameters [q + 1, 4, q − 4]q .

Proof Note that any codeword of Trq2/q
(C{3,5}

)
can be written as

c(a3, a5) = Trq2/q(a3u
3 + a5u

5).

Then the dimension of Trq2/q
(C{3,5}

)
is equal to 4 by Lemma 20. The desired conclusion on

the minimum weight for even m then follows from (17) and Lemma 20. This completes the
proof. ��

The invariance of the set of the supports of all the codewords of any fixed weight in
Trq2/q

(C{3,5}
)
under the action of PGL(2, q) is established by the following theorem.

Theorem 23 Let q = 2m with m ≥ 2. Let k be an integer with 1 ≤ k ≤ q + 1 and
Ak
(
Trq2/q

(C{3,5}
))

> 0. Then Bk
(
Trq2/q

(C{3,5}
))

is invariant under the action of StabUq+1 .
In particular, the incidence structure

(
Uq+1,Bk

(
Trq2/q

(C{3,5}
)))

is a 3-design when k > 3.

Proof We only need to show that if c ∈ Trq2/q
(C{3,5}

)
and π is a linear fractional trans-

formation listed in Corollary 6, then there exists a codeword c′ ∈ Trq2/q
(C{3,5}

)
such that

Supp(π(c)) = Supp(c′). Denote by c(a3, a5) the codeword
(
Trq2/q(a3u

3 + a5u5)
)
u∈Uq+1

of

Trq2/q
(C{3,5}

)
, where a3, a5 ∈ GF(q2). We investigate the following three cases for π .

If π is the transformation given by u �→ u0u, where u0 ∈ Uq+1, then it is clear that
π(c(a3, a5)) = c(a3u30, a5u

5
0). Thus Supp (π(c(a3, a5))) = Supp

(
c(a3u30, a5u

5
0)
)
.

If π is the transformation given by u �→ u−1, then it is obvious that π(c(a3, a5)) =
c(a3, a5). Thus Supp (π(c(a3, a5))) = Supp (c(a3, a5)).
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Let π be the translation given by u �→ u+cq
cu+1 where c ∈ GF(q2)∗ \ Uq+1. Write f (u) =

Trq2/q(a3u
3 + a5u5) and A = cu + 1. Then u + cq = uAq . A standard computation gives

f
(
u+cq
cu+1

)

= Trq2/q

(
a3
(
u+cq
cu+1

)3 + a5
(
u+cq
cu+1

)5)

= Trq2/q
(
a3(u+cq )3(cu+1)2+a5(u+cq )5

(cu+1)5

)

= Trq2/q
(
a3A3q A2u3+a5A5qu5

A5

)

= a3A3q A2u3+a5A5qu5

A5 + aq3 A
3A2qu3q+aq5 A

5u5q

A5q

= a3A8q A2u3+a5A10qu5+aq3 A
8A2qu3q+aq5 A

10u5q

A5A5q

= a3A8q A2u3+a5A10qu5+(a3A8q A2u3+a5A10qu5
)q

A5A5q

= 1
A5A5q Trq2/q

(
a3A8q A2u3 + a5A10qu5

)
.

(21)

Expanding a3A8q A2u3 yields

a3A8q A2u3

= a3(c8qu8q + 1)(c2u2 + 1)u3

= a3u3(c8q+2u8q+2 + c8qu8q + c2u2 + 1)
= a3(u3 + c8q+2u−3 + c2u5 + c8qu−5).

(22)

Expanding a5A10qu5 yields
a5A10qu5

= a5(c10qu10q + 1)u5

= a5(u5 + c10qu−5).

(23)

Combining (22) and (23) gives

Trq2/q
(
a3A8q A2u3 + a5A10qu5

)

= Trq2/q
((
a3 + aq3 c

8+2q
)
u3 + (

a5 + aq5 c
10 + a3c2 + aq3 c8

)
u5
)
.

(24)

Plugging (24) into (21) yields

f

(
u + cq

cu + 1

)
= 1

A5A5q
Trq2/q

(
a′
3u

3 + a′
5u

5
)

,

where a′
3 = a3 + aq3 c

8+2q and a′
5 = a5 + aq5 c

10 + a3c2 + aq3 c8. This clearly forces
Supp (π(c(a3, a5))) = Supp

(
c(a′

3, a
′
5)
)
. The desired conclusion then follows. ��

The proof of Theorem 23 gives more, namely

trq2/q

(
a3
(
u+cq
cu+1

)3 + a5
(
u+cq
cu+1

)5)

= 1
(cu+1)5(cu+1)5q

Trq2/q
(
a′
3u

3 + a′
5u

5
)
,

(25)

where a3, a5 ∈ GF(q2), c ∈ GF(q2) \ Uq+1, a′
3 = a3 + aq3 c

8+2q and a′
5 = a5 + aq5 c

10 +
a3c2 + aq3 c8.

The following theorem shows the invariance of the set of the supports of all the codewords
of any fixed weight in C{3,5}⊥

∣∣
GF(q)

under the action of PGL(2, q).
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Theorem 24 Let q = 2m with m ≥ 2. Let k be any integer with 1 ≤ k ≤ q + 1 and

Ak

(
C{3,5}⊥

∣
∣
GF(q)

)
> 0. Then Bk

(
C{3,5}⊥

∣
∣
GF(q)

)
is invariant under the action of StabUq+1 .

In particular, the incidence structure
(
Uq+1, C{3,5}⊥

∣
∣
GF(q)

)
is a 3-design when k > 3.

Proof Recall that by (5) we have

C{3,5}⊥
∣
∣
∣
GF(q)

= (
Trq2/q(C{3,5})

)⊥
.

Let w be any codeword of C{3,5}⊥
∣
∣
GF(q)

= (
Trq2/q(C{3,5})

)⊥ and π be any linear fractional
translations listed in Corollary 6. It is easily seen that if π is a transformation given by
u �→ u0u or u �→ 1/u, where u0 ∈ Uq+1, then

π(w) ∈ C{3,5}⊥
∣
∣
∣
GF(q)

. (26)

Assume π is a translation given by u �→ u+cq
cu+1 where c ∈ GF(q2)∗ \Uq+1. It is obvious that

π(w) ∈ (π (Trq2/q(C{3,5})
))⊥. From (25) we conclude that

π
(
Trq2/q(C{3,5})

) =
(

1

(cu + 1)5q+5

)

u∈Uq+1

· Trq2/q(C{3,5}).

By (4) we have that

(
π
(
Trq2/q(C{3,5})

))⊥ =
(
(cu + 1)5q+5

)

u∈Uq+1
· (Trq2/q(C{3,5})

)⊥
.

Consequently,

π(w) ∈
(
(cu + 1)5q+5

)

u∈Uq+1
· (Trq2/q(C{3,5})

)⊥
. (27)

Combining (26) and (27) with Corollary 6 we can assert that the set of all the supports of
C{3,5}⊥

∣∣
GF(q)

stays invariant under StabUq+1 . This completes the proof. ��
The remainder of this section is devoted to determining the parameters of certain 3-designs

held in the subfield subcodes C{3,5}⊥
∣∣
GF(q)

and the trace codes Trq2/q(C{3,5}).

Theorem 25 Let q = 2m with m ≥ 4 even. Then the incidence structure
(
Uq+1,Bq−4

(
Trq2/q

(C{3,5}
)))

is a 3 − (q + 1, q − 4, λ) design with

λ = (q − 4)(q − 5)(q − 6)

60
,

and its complementary incidence structure is a 3 − (q + 1, 5, 1) design.

Proof ByTheorems 23 and 22,
(
Uq+1,Bq−4

(
Trq2/q

(C{3,5}
)))

is a 3−(q+1, q−4, λ) design.
To determine the value of λ, we consider its complementary design. Lemma 20 shows that
the complementary incidence structure of

(
Uq+1,Bq−4

(
Trq2/q

(C{3,5}
)))
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is isomorphic to the incidence structure of (Uq+1,Bσ5,2,q+1), which is a 3 − (2m + 1, 5, 1)
design by [20, Theorem 5]. It the follows that

λ =
(q+1−3

5

)

(q+1−3
5−3

) = (q − 4)(q − 5)(q − 6)

60
.

This completes the proof. ��

The complementary design D̄ of the 3-design D from Theorem 25 has parameters 3-(2m +
1, 5, 1). These parameters correspond to a spherical geometry design [2, Volume I, page 193].
If a linear code C supports a t-design D, it is in general an open question how to construct
a linear code C′ that supports the complementary design of D. We note that an isomorphic
version of the complementary 3 − (2m + 1, 5, 1) design D̄ of the design D from Theorem
25 is supported by a linear code described in [20]. According to Magma experiments, D̄ is
isomorphic to a spherical geometry design with the same parameters when m ∈ {4, 6}. The
following theorem asserts that the 3− (2m + 1, 5, 1) design D̄ is isomorphic to the spherical
geometry design found by Witt [23] in general. For a short description of the spherical
geometry designs found by Witt [23] we refer the reader to [2, Volume I, 6.9 and 6.10, page
193].

Theorem 26 Let q = 2m with m ≥ 4 even. Then the complementary design D̄ of the 3-design
D from Theorem 25 is isomorphic to theWitt spherical geometry design [23] with parameters
3 − (2m + 1, 5, 1).

Proof By definition, D̄ = (
Uq+1, B̄

)
, where B̄ is given by

B̄ =
{
B ∈

(
Uq+1

5

)
: (Uq+1 \ B

) ∈ Bq−4
(
Trq2/q

(C{3,5}
))}

.

Theorem 23 now implies that B̄ is invariant under StabUq+1 . Applying Proposition 7 we
conclude that D̄ is isomorphic to a 3 − (2m + 1, 5, 1) design (PG(1, 2m),B) with B being
invariant under PGL(2, q). Hence we can write B as B = ∪̇�

i=1OrbBi , where Bi ∈ (PG(1,2m )
5

)

and OrbBi is the PGL(2, q)-orbit of Bi . Let StabBi denote the stabilizer of Bi under the action
of PGL(2, q) on

(PG(1,2m )
5

)
. Let B be any 5-subset of PG(1, 2m). Let us recall that |StabB | ∈

{1, 4, 60} and all 5-subsets B of PG(1, 2m) with |StabB | = 60 form exactly one PGL(2, q)-
orbit (see Huber05). A trivial verification shows that the 5-subset PG(1, 4) = GF(4)∪{∞} of
PG(1, 2m) is stabilized by PGL2(GF(4)). As the cardinality of the group PGL2(GF(4)) is 60

we have
∣∣OrbPG(1,4)

∣∣ = |PGL(2, q)| /60 and
{
B ∈ (PG(1,2m )

5

) : |StabB | = 60
}

= OrbPG(1,4).

Let us observe that
∣∣OrbBi

∣∣ = |PGL(2, q)| /60, |PGL(2, q)| /4, or |PGL(2, q)| and there
is exactly one orbit OrbPG(1,4) with size = |PGL(2, q)| /60. It follows that � = 1 and
B = OrbPG(1,4) from |B| = |PGL(2, q)| /60. The desired conclusion then follows from the
definition of spherical geometry designs (see for instance [2, Volume I, page 193]). ��

Theorem 27 Let q = 2m with m ≥ 4 being even. Then, the incidence structure
(
Uq+1,B4

(
C{3,5}⊥

∣∣∣
GF(q)

))

supported by the minimum-weight codewords in C{3,5}⊥
∣∣
GF(q)

is a 3 − (q + 1, 4, 2) design.
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Proof By Theorems 24 and 21,
(
Uq+1,B4

(
C{3,5}⊥

∣
∣
GF(q)

))
is a 3− (q + 1, 4, λ) design. It

remains to determine the value of λ. But combining Lemmas 19 and 18 yields directly that
it is a 3 − (q + 1, 4, 2) design. ��

It would be interesting to determine parameters for more 3-designs held in Trq2/q
(C{3,5}

)

and C{3,5}⊥
∣
∣
GF(q)

. To the best knowledge of the authors, Theorem 27 documents the first
infinite family of linear codes supporting an infinite family of 3−(v, 4, 2) designs. According
to [4, Table 4.37, page 83], a class of 3 − (q + 1, 4, 2) designs with q ≡ 1 (mod 3) were
found by Hughes [13]. We checked with Magma [3] that in the cases m = 4 and m = 6, the
3-(17, 4, 2) design from Theorem 27 and the design with these parameters found in [13] are
isomorphic. In case the two 3 − (q + 1, 4, 2) designs are isomorphic for every even m ≥ 4,
the contribution of Theorem 27will be a coding-theoretic construction of the 3−(q+1, 4, 2)
designs.

Example 28 Let q = 24. Then Trq2/q(C{3,5}) has parameters [17, 4, 12]16 and weight enu-
merator

1 + 1020z12 + 24480z15 + 15555z16 + 24480z17,

and
(
Uq+1,Bq−4

(
Trq2/q

(C{3,5}
)))

is a 3 − (17, 12, 22) design.
The code C{3,5}⊥

∣∣
GF(q)

has parameters [17, 13, 4]16 and weight enumerator

1 + 5100z4 + 42840z5 + 2244000z6 + 50669520z7 + 949969350z8 +
14262976200z9 + 171117027840z10 + 1633451574240z11 +
12250821846060z12 + 70677865367400z13 + 302905113919200z14 +
908715349415760z15 + 1703841278658465z16 + 1503389363654520z17,

and
(
Uq+1,B4

(
C{3,5}⊥

∣∣
GF(q)

))
is a 3 − (17, 4, 2) design.

6 On the q-dimension of 3− (q+ 1,q− 4, (q− 4)(q− 5)(q− 6)/60)
and 3− (q+ 1, 4, 2) designs

In this section, we discuss the q-dimension of the 3-designs documented in Sect.5. Recall the
q-dimension of t-designs introduced in [21] and the introduction of this paper. An obvious
upper bound on the q-dimension is the dimension of the supporting code. We will use the
following lemma to derive a lower bound.

Lemma 29 Let f (x) = x3 − 60x2 − 61x − 60. Then f (x) > 0 for every x ≥ 62, and
f (x) < 0 for 0 ≤ x ≤ 61.

Proof The derivative f ′(x) = 3x2 − 120x − 61 has roots 20 ± √
3783/3. It follows that

f (x) is decreasing on the interval (20 − √
3783/3, 20 + √

3783/3), and increasing on the
interval (20+ √

3783/3,∞). Note that
√
3783/3 ≈ 20.5. Hence, f (x) is decreasing on the

interval (0, 40), and increasing on the interval (41,∞). Since

f (0) = f (61) = −60, f (62) = 3846,

the lemma follows.
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Theorem 30 Suppose that D is a 3-(q + 1, q − 4, (q − 4)(q − 5)(q − 6)/60) design, where
q is a prime power. If q > 63 then

dimq D ≥ 4,

where dimq D is the dimension of D over the finite field GF(q) of order q.

Proof The number of blocks of D is

b = (q + 1)q(q − 1)

60
= q3 − q

60
. (28)

If C is a linear code over GF(q) of length q + 1, such that every block of D is the support
of a codeword of weight q − 4, C must contain at least b(q − 1) codewords of weight q − 4.
It is sufficient to show that

b(q − 1) > q3 − 1, (29)

which would imply that |C| ≥ q4, hence, the dimension of C is greater that or equal to 4.
Substituting b in (29) by the right-hand side of eq. (28) implies that the inequality (29) is
equivalent to

q3 − 60q2 − 61q − 60 > 0. (30)

Since q > 63, the inequality (30) holds by Lemma 29. ��
As a corollary of Theorem 30, we have the following.

Theorem 31 The 3-(q + 1, q − 4, (q − 4)(q − 5)(q − 6)/60) design D from Theorem 25 has
dimension 4 over GF(2m) for every even m ≥ 6.

Proof The blocks of the design D are supprts of minimum weight codwords in the [q +
1, 4, q − 4]q code C with q = 2m , m ≥ 4 even, from Theorem 22. Since the dimension of C
is 4, it follows that dimq D ≤ 4. On the other hand, according to Theorem 30, dimq D ≥ 4
for q = 2m ≥ 64, that is, for every even m ≥ 6. ��

In the smallest case, m = 4, the 3-(17, 12, 22) design D supported by the [17, 4, 12]24
code C from Theorem 22 does not satisfy the hypothesis of Theorem 30, thus, we only have
dim16 D ≤ dim C = 4.

It turns out that the subfield subcodeC′ = C|GF(4) of the [17, 4, 12]24 codeC is a [17, 4, 12]4
code with weight distribution

A0 = 1, A12 = 204, A16 = 51.

The 68 distinct supports of codewords of weight 12 in C′ are the blocks of a 3-(17, 12, 22)
design D

′ identical with the design D supported by C. Since
3 · 68 > 3 · 43,

it follows that

dim4 D
′ = 4.

A lower bound 4 on the q-dimension of a 3-(q + 1, 4, 2) design for any prime power
q > 26 can be proved as in Theorem 30. However, this bound is far below the upper bound
provided by the dimension q − 3 of the supporting code from Theorem 21. The following
analysis of the 3 − (17, 4, 2) design, the smallest design in the infinite family of 3-designs
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from Theorem 27, suggests that the q-dimension is likely to be equal to the dimension of the
supporting code.

The [17, 13, 4]16 code C from Theorem 21 is a cyclic code with generator polynomial
x4 + x3 + β10x2 + x + 1, where β is a primitive element of GF(16). The following vector
is a codeword of weight 4:

u = (1, 0, β5, β5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

The twelve cyclic shifts of u form a 12 × 17 matrix M of rank 12 in echelon form. Clearly,
replacing the nonzero entries of M by arbitrary nonzero elements of GF(16) changes M to
another matrix of rank 12. It follows that the rank of every generalized GF(16)-incidence
matrix of the 3 − (17, 4, 2) design D from Theorem 27 is greater than or equal to 12. Thus,
we have the following.

Theorem 32 Let D be the 3 − (17, 4, 2) design before. Then

12 ≤ dim16 D ≤ 13.

7 Summary and concluding remarks

The main contributions of this paper are the following:

• A complete classification of linear codes over GF(2h) of length 2m + 1 that are invariant
under the action of the projective general group PGL(2, q) is established in Theorem 11.

• The 2-ranks of 3− (2m +1, k, λ) designs that are invariant under the action of PGL(2, q)

are determined in Theorem 12.
• A family of trace codes and a family of subfield subcodes, such that the set of the supports

of all codewords of any fixed weight being invariant under PGL(2, q), are constructed in
Theorems 23 and 24.

• The parameters of the 3-designs supported by the codewords of minimumweight in these
linear codes are presented in Theorems25 and 27.

• It is proved in Theorem 26 that the complementary design D̄ of the 3-design D from
Theorem 25 is isomorphic to the Witt spherical geometry with parameters 3 − (2m +
1, 5, 1) [23].

• A lower bound on the q-dimension of of 3-designswith parameters 3-(q+1, (q−4), (q−
4)(q − 5)(q − 6)/60), q > 63, is derived in Theorem 30, and it is shown that an infinite
family of 3-designs described in Theorem 25 meet this bound.

We remark that the methodology of this paper may be extended to codes of length pm +1
over GF(p), where p is an odd prime. New linear codes supporting new t-designs may be
found.
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