
Designs, Codes and Cryptography (2021) 89:1509–1534
https://doi.org/10.1007/s10623-021-00885-5

Equivalence classes of Niho bent functions

Kanat Abdukhalikov1

Received: 5 October 2020 / Revised: 28 March 2021 / Accepted: 24 April 2021 / Published online: 8 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Equivalence classes of Niho bent functions are in one-to-one correspondence with equiva-
lence classes of ovals in a projective plane. Since a hyperoval can produce several ovals, each
hyperoval is associated with several inequivalent Niho bent functions. For all known types of
hyperovals we described the equivalence classes of the corresponding Niho bent functions.
For some types of hyperovals the number of equivalence classes of the associated Niho bent
functions are at most 4. In general, the number of equivalence classes of associated Niho bent
functions increases exponentially as the dimension of the underlying vector space grows. In
small dimensions the equivalence classes were considered in detail.

Keywords Niho bent functions · Bent functions · Hyperovals · Ovals · Line ovals

Mathematics Subject Classification 51E15 · 51E21 · 51E23 · 94A60

1 Introduction

Bent functions were introduced by Rothaus [50] and then they were studied by Dillon [30].
A bent function is a Boolean function with an even number of variables which achieves
the maximum possible distance from affine functions [17]. They give rise to Hadamard
difference sets in elementary abelian 2-groups. Bent functions have relations to coding theory,
cryptography, sequences, combinatorics and design theory [1,2,17,20,31].

Dillon [30] introduced bent functions related to partial spreads of F × F , F = F2m .
He constructed bent functions that are constant on the elements of a spread. Dillon also
studied a class of bent functions that are linear on the elements of a Desarguesian spread.
These functions were thoroughly studied in [14,18,32,35,39] as Niho bent functions. In [3–
5,21,40] these investigations were extended to other types of spreads, and bent functions
which are affine on the elements of spreads, were studied.
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Carlet and Mesnager showed [18] that any bent function which is linear on the elements
of a Desarguesian spread (they are equivalent to Niho bent functions in a bivariate form)
determines an o-polynomial (oval polynomial). Every o-polynomial defines a hyperoval,
therefore Carlet and Mesnager revealed a general connection between Niho bent functions
and hyperovals in Desarguesian planes of even order.

However there are several equivalence classes of Niho bent functions associated with a
fixed hyperoval. In [15,16] there were constructed several newNiho bent functions associated
with some o-polynomials and hyperovals. In this paper we address the question of finding
all equivalence classes of Niho bent functions corresponding to a hyperoval. This question
was mentioned as Open Problem 6 in [19]. We describe equivalence classes of Niho bent
functions for all known types of hyperovals. We show that the hyperconics, irregular trans-
lation hyperovals, Segre and Glynn hyperovals have respectively 2, 3, 4 and 4 equivalence
classes of Niho bent functions (excluding some exceptional cases in small dimensions) and
describe these classes. The Lunelli–Sce hyperoval has one class and the O’Keefe–Penttila
hyperoval has 12 classes. For the Payne, Cherowitzo, Subiaco and Adelaide hyperovals the
number of equivalence classes of associated Niho bent functions increases exponentially as
the dimension of the underlying vector space grows. Note that hyperovals are not classified
yet, and the list of known hyperovals can be found in [10,22–24].

In [3,6] it was shown that bent functions linear on the elements of a Desarguesian spread
are in one-to-one correspondence with line ovals in an affine plane. Points of the line oval
completely define the dual bent function. More precisely, the zeros of the dual function of a
Niho bent function are exactly the points of the line oval (in other words, the dual function
of a Niho bent function is obtained from the characteristic function of the set of points of the
line oval by adding all-one constant function). Hence this gives a general formula [3,6] for
the dual function for any Niho bent function (this question was mentioned as Open Problem
10 in [19]). Furthermore, Niho bent functions are in one-to-one correspondence with ovals
with nucleus at a designated point. Therefore, we have geometric characterization of Niho
bent functions and of their duals.

In [3,6] special g-functions were introduced as a new analog of o-polynomials in case of
univariate presentation of functions and hyperovals. Using g-functions allow us to implement
methods which do not employ the “unusual magic action” defined by O’Keefe and Penttila
[45]. A criteria for existence of g-functions is presented in [6].

We note that there are no analogs of such bent functions in case of odd characteristic:
Çeşmelioğlu et al. [21] showed that bent functions which are affine on elements of Desar-
guesian spreads over a field of odd characteristic will be constant on the elements of the
spread.

The paper is organized as follows. We recall first in Sect. 2 definitions and notation
concerning bent functions, ovals and line ovals. In Sect. 3 we study connections between
g-functions and o-polynomials, and establish general formulas for all g-functions and Niho
bent functions corresponding to a fixed hyperoval (Theorems 5 and 6). Theorem 2 gives
a formula for calculation of the g-function corresponding to a given o-polynomial. In
Sect. 4 we study equivalence classes of Niho bent functions corresponding to all known
hyperovals. Finally, in dimensions up to m = 6 the equivalence classes are considered in
detail.

An initial version of this paper was presented in [8] on March 11, 2019.
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Equivalence classes of Niho bent functions 1511

2 Preliminary considerations and notation

In this section we recall some definitions and notation.

2.1 Bent functions

Let K = F2n and F2 be finite fields of orders 2n and 2 respectively. The field F2n can be also
seen as an F2-vector space of dimension n. A Boolean function on F2n is a mapping from
F2n to the prime field F2.

If f is a Boolean function defined on F2n , then the Walsh transform of f is defined as
follows:

W f (b) =
∑

x∈F2n
(−1) f (x)+b·x , (1)

where b · x is a scalar product from F2n × F2n to F2. A Boolean function f on F2n is said
to be bent if its Walsh transform satisfies W f (b) = ±2n/2 for all b ∈ F2n . Then n is an even
integer.

Given a bent function f over F2n , one can define its dual function, denoted by f̃ , by
considering the signs of the values of the Walsh transform W f (b) of f . More precisely, f̃ is
defined by the equation:

(−1) f̃ (x)2n/2 = W f (x).

The dual of a bent function is bent again, and ˜̃f = f .

2.2 Polar representations

Let F = F2m be a finite field of order q = 2m . Consider F as a subfield of K = F2n , where
n = 2m, so K is a two dimensional vector space over F . Let F0 = F2 be a prime field.

As usually, TrM/L(x) is the trace function with respect to a finite field extension M/L .
For particular field extensions we denote the corresponding trace functions by

Tr(x) = TrK/F0(x), T (x) = TrK/F (x), tr(x) = TrF/F0(x).

The conjugate of x ∈ K over F is

x̄ = xq .

Then the trace and the norm maps from K to F are

T (x) = TrK/F (x) = x + x̄ = x + xq ,

N (x) = NK/F (x) = x x̄ = x1+q .

The unit circle of K is the set of elements of norm 1:

S = {u ∈ K : uū = 1} .

Therefore, S is the multiplicative group of (q + 1)st roots of unity in K and |S| = q + 1.
Since F ∩ S = {1}, each non-zero element of K has a unique polar coordinate representation

x = λu
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1512 K. Abdukhalikov

with λ ∈ F∗ and u ∈ S. For any x ∈ K ∗ we have

λ = √
x x̄,

u = √
x/x̄ .

One can define a nondegenerate bilinear form 〈·, ·〉 : K × K → F by

〈x, y〉 = T (x ȳ) = x ȳ + x̄ y.

Then the form 〈·, ·〉 is alternating and symmetric:

〈a, a〉 = 0,

〈a, b〉 = 〈b, a〉.

2.3 Affine and projective planes

Consider points of a projective plane PG(2, q) in homogeneous coordinates as triples (x : y :
z), where x, y, z ∈ F , (x, y, z) 	= (0, 0, 0), and we identify (x : y : z) with (λx : λy : λz),
λ ∈ F∗. Then points of PG(2, q) are

{(x : y : 1) | x ∈ F, y ∈ F} ∪ {(x : 1 : 0) | x ∈ F} ∪ {(1 : 0 : 0)} ,

For a, b, c ∈ F , (a, b, c) 	= (0, 0, 0), the line [a : b : c] in PG(2, q) is defined as

[a : b : c] = {(x : y : z) ∈ PG(2, q) | ax + by + cz = 0} .

Triples [a : b : c] and [λa : λb : λc] with λ ∈ F∗ define same lines. Then any line in
PG(2, q) is one of the following lines:

[a : b : 1] = {(x : y : 1) | ax + by + 1 = 0} ∪ {(b : a : 0)}, (a, b) 	= (0, 0),

[0 : 0 : 1] = {(x : 1 : 0) | x ∈ F} ∪ {(1 : 0 : 0)},
[a : 1 : 0] = {(x : ax : 1) | x ∈ F} ∪ {(1 : a : 0)}, a ∈ F,

[1 : 0 : 0] = {(0 : y : 1) | y ∈ F} ∪ {(0 : 1 : 0)}.
The point (x : y : z) is incident with the line [a : b : c] if and only if ax + by + cz = 0.

The map (x : y : z) �→ [x : y : z] defines a duality [36] for PG(2, q).
We shall call points of the form (x : y : 0) the points at infinity. Then [0 : 0 : 1]

indicates the line at infinity (it consists of all points at infinity). We define the affine plane
AG(2, q) = PG(2, q) \ [0 : 0 : 1], so points of this affine plane AG(2, q) are

{(x : y : 1) | x, y ∈ F} .

Associating (x : y : 1) with (x, y) we can identify points of the affine plane AG(2, q) with
elements of the vector space

V (2, q) = {(x, y) | x, y ∈ F} ,

and we will write AG(2, q) = V (2, q).
Lines in AG(2, q) = V (2, q) are {(c, y) | y ∈ F} and {(x, xb+a) | x ∈ F}, a, b, c ∈ F .

These lines can be described by equations x = c and y = xb + a.
We introduce now another representation of PG(2, q) using the field K . Consider pairs

(x : z), where x ∈ K , z ∈ F , x 	= 0 or z 	= 0, and we identify (x : z)with (λx : λz), λ ∈ F∗.
Then points of PG(2, q) are

{(x : 1) | x ∈ K } ∪ {(u : 0) | u ∈ S} .
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Equivalence classes of Niho bent functions 1513

For α ∈ K and β ∈ F we define lines [α : β] in PG(2, q) as

[α : β] = {(x : z) ∈ PG(2, q) | 〈α, x〉 + βz = 0}.
Pairs [α : β] and [λα : λβ] with λ ∈ F∗ define same lines. Then any line in PG(2, q) is one
of the following lines:

[α : 1] = {(x : 1) | 〈α, x〉 + 1 = 0} ∪ {(α : 0)}, α 	= 0,

[0 : 1] = {(u : 0) | u ∈ S},
[u : 0] = {(λu : 1) | λ ∈ F} ∪ {(u : 0)}, u ∈ S.

The point (x : z) is incident with the line [α : β] if and only if 〈α, x〉 + βz = 0. The map
(x : z) �→ [x : z] defines a duality [36] for PG(2, q).

Element u∞ = (u : 0), u ∈ S, will be referred to as the point at infinity in the direction
of u. So [0 : 1] indicates the line at infinity.

We define the affine plane AG(2, q) = PG(2, q) \ [0 : 1], so points of this affine plane
AG(2, q) are

{(x : 1) | x ∈ K } .

Associating (x : 1) with x ∈ K we can identify points of the affine plane AG(2, q) with
elements of the field K , and we will write AG(2, q) = K .

Lines of AG(2, q) = K can be considered as the zeroes of an equation 〈a, x〉 + b = 0.
Normalizing a to u ∈ S, we see that lines of AG(2, q) can be considered as the zeroes of an
equation 〈u, x〉 + μ = 0:

L(u, μ) = {x ∈ K : 〈u, x〉 + μ = 0} ,

where u ∈ S and μ ∈ F (see for details [9, Sect. 2.1]). L(u, μ) can be considered as a
line in the direction of u. Note that there are (q + 1)q = q2 + q such lines. Lines L(u, λ)

and L(u, μ) are parallel, and L(u, 0) = {λu | λ ∈ F}. Lines L(u, λ) and L(v, μ) are not
parallel for distinct u, v ∈ S, since 〈x, y〉 is a nondegenerate alternating bilinear form on K ,
considered as a two dimensional vector space over F .

Throughout the paper, we will consider these two representations of projective planes
PG(2, q), and for each of such projective planes we consider a fixed affine plane AG(2, q),
described above. They will be written as AG(2, q) = V (2, q) and AG(2, q) = K .

2.4 Ovals and line ovals

Let PG(2, q) be a finite projective plane of order q = 2m . An oval is a set of q + 1 points,
no three of which are collinear. Dually, a line oval is a set of q + 1 lines no three of which
are concurrent. Any line of the plane meets the oval O at either 0, 1 or 2 points and is called
exterior, tangent or secant, respectively. All the tangent lines to the ovalO concur [36] at the
same point N , called the nucleus of O. The setH = O ∪ {N } becomes a hyperoval, that is a
set of q + 2 points, no three of which are collinear. Conversely, by removing any point from
a hyperoval one gets an oval. If O′ is a line oval, then there is exactly one line � such that
on each of its points there is only one line of O′. This line is called the (dual) nucleus of O′.
The (q + 2)-set H′ = O′ ∪ {�} is a line hyperoval or dual hyperoval.

By a line oval O in an affine plane AG(2, q) we mean a set of q + 1 nonparallel lines in
AG(2, q), such that these lines, extended by the corresponding points at infinity, determine
a line oval in PG(2, q) whose nucleus is the line at infinity.
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1514 K. Abdukhalikov

For any oval in PG(2, q) there are q(q + 1)/2 secants and q(q − 1)/2 exterior lines. Let
O be a line oval in the affine plane AG(2, q) = V (2, q) and E(O) the set of points which
are on the lines of the line oval O:

E(O) = {(x, y) ∈ V (2, q) | (x, y) is on a line of O}.
Then each point of E(O) belongs to two lines of O,

|E(O)| = q(q + 1)/2

and there are q(q − 1)/2 points in AG(2, q) that do not belong to O (see, for example,
[28,36]). Note that Kantor [37, Theorem 7] showed that E(O) is a difference set.

Any line oval in AG(2, q) = K can be represented [6] as O = {L(u, g(u)) : u ∈ S} for
some function g : S → F .

2.5 Niho bent functions

Desarguesian spread on V (2, q) is a collection of q+1 one-dimensional subspaces {(x, xt) |
x ∈ F}, t ∈ F , and {(0, y) | y ∈ F}. So every nonzero element of V (2, q) lies in a unique
subspace of those subspaces [28].

The field K can be considered as a two dimensional vector space over F . Then the set

{uF : u ∈ S}
is a spread on this vector space. We consider Boolean functions f : K → F2, which are
F2-linear on each element of the spread {uF : u ∈ S}. Then for any x = λu ∈ K , where
λ ∈ F , u ∈ S, the function f can be defined by

f (x) = tr(λg(u)) (2)

for some function g : S → F . If such a function is bent then it is called Niho bent function.
These functions can be written with the help of Niho power functions, so is the name.

Let Boolean function f : K → F2 be linear on elements of the spread {uF : u ∈ S}. Now
we consider bent functions, and we use the scalar product a · b = tr(〈a, b〉) in the formula
(1) for the Walsh transform (as it was introduced in [6]).

The following result [6] explains the connection between Niho bent functions, ovals and
line ovals:

Theorem 1 Let function f : K → F2 be defined by f (λu) = tr(λg(u)), for some function
g : S → F. Then the following statements are equivalent:

1. The function f is bent;
2. The set {L(u, g(u)) | u ∈ S} is a line oval in K = AG(2, q);
3. The set { u

g(u ) | u ∈ S} is an oval in PG(2, q) whose nucleus is the origin.

Here we assume that if g(u) = 0 then u
g(u)

= u∞ is an element at infinity in the direction
u.

Therefore, Niho bent functions are in one-to-one correspondence with the ovals in
PG(2, q) with nucleus at the origin. A function g : S → F is said to be a g-function
if it satisfies conditions of Theorem 1.

Boolean functions f , f ′ : F2n → F2 are extended-affine equivalent if there exist an affine
permutation L ofF2n and an affine function � : F2n → F2 such that f ′(x) = ( f ◦L)(x)+�(x).
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Equivalence classes of Niho bent functions 1515

In our paper we will call such functions just equivalent. If Boolean functions f and f ′ are
equivalent and f is bent then f ′ is bent too.

We recall that the automorphism (collineation) group of PG(2, q) is the group
PΓ L(3, q) = PGL(3, q)〈σ 〉 and the automorphism group of AG(2, q) is AΓ L(2, q) =
AGL(2, q)〈σ 〉, where 〈σ 〉 is the Galois group of F , and AGL(2, q) = F2 · GL(2, q) is the
affine group. Hyperovals (and ovals) are called (projectively) equivalent if they are equivalent
under the action of the group PΓ L(3, q).

Niho bent functions are equivalent if and only if the corresponding ovals (with nucleus at
the origin) are projectively equivalent [3,49]. Note also that functions g(u) and g(u)+〈c, u〉,
where c ∈ K , lead to equivalent ovals [6].

Remark 1 In thesis [29], following ideas from [33], the ρ-polynomials were introduced.
We note that the ρ-polynomials and our g-functions are connected in the following way:
g(u) = 1/ρ(u).

3 O-polynomials, g-functions and Niho bent functions

Following [33], consider an element i ∈ K with property T (i) = i+ iq = 1. Then K = F(i)
and i is a root of a quadratic equation

z2 + z + δ = 0,

where δ = N (i) ∈ F . Any element z ∈ K can be represented as z = x+ yi , where x, y ∈ F .
For z = x + yi we have x = 〈i, z〉 and y = 〈1, z〉.

Note that if m is odd then one can choose i = ω, ω2 + ω + 1 = 0. So if w ∈ K is a
generator of S then we can take i = ω = w(q+1)/3.

Every hyperoval is equivalent to one, given by

D(h) = {(t : h(t) : 1) | t ∈ F} ∪ {(1 : 0 : 0)} ∪ {(0 : 1 : 0)},
where h(t) is an o-polynomial. We can describe ovals in a similar way, but ensuring that the
nucleus of the oval is the point (1 : 0 : 0):

E(h) = {(t : h(t) : 1) | t ∈ F} ∪ {(0 : 1 : 0)} .

Now we would like to find an equivalent representation of this oval in PG(2, q) using the
field K , namely, we would like to write the oval E(h) in the form

{
u

g(u)
| u ∈ S

}

for some function g : S → F .

Theorem 2 Let h(t) be an o-polynomial. Define an oval E(h) with nucleus (1 : 0 : 0) by
E(h) = {(t : h(t) : 1) | t ∈ F} ∪ {(0 : 1 : 0)}.

Then corresponding function g(u) can be determined by

g(u) = h−1
( 〈i, u〉

〈1, u〉
)

〈1, u〉 + 〈i, u〉, g(1) = 1.
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1516 K. Abdukhalikov

Proof We apply a collineation to the hyperoval D(h) in order to get a hyperoval without
points on infinity, such that the point (1 : 0 : 0) is mapped to (0 : 0 : 1) and the point
(0 : 1 : 0) is mapped to (1 : 0 : 1). Define

α((a : b : c)) = (b : c : (a + b + cd))

for some d ∈ F . Then α((1 : 0 : 0)) = (0 : 0 : 1), α((0 : 1 : 0)) = (1 : 0 : 1) and
α((h−1(t) : t : 1)) = (t : 1 : (t + h−1(t) + d)). We want to have t + h−1(t) + d 	= 0 for all
t ∈ F . It happens if we choose d ∈ F in such a way that the line x + y + dz = 0 does not
intersect the hyperoval H′ = {(t : h−1(t) : 1) | t ∈ F} ∪ {(1 : 0 : 0)} ∪ {(0 : 1 : 0)}.

Now we associate the point (x : y : 1) with the point z = x + yi ∈ K . Then (1 : 0 : 1)
corresponds to 1 ∈ K and (0 : 0 : 1) corresponds to 0 ∈ K . Assume that the oval α(E(h))

corresponds to the oval
{

u
g(u)

| u ∈ S
}
. If z = u

g(u)
= x + yi then x = 1

g(u)
〈i, u〉 and

y = 1
g(u)

〈1, u〉. Considering points

(
t

t + h−1(t) + d
: 1

t + h−1(t) + d
: 1

)

from the oval α(E(h)) we see that

t

t + h−1(t) + d
= 1

g(u)
〈i, u〉,

1

t + h−1(t) + d
= 1

g(u)
〈1, u〉.

Therefore,

t = 〈i, u〉
〈1, u〉 ,

g(u) = (t + h−1(t) + d) · 〈1, u〉 = h−1
( 〈i, u〉

〈1, u〉
)

〈1, u〉 + 〈i, u〉 + 〈d, u〉.

Since the point (1 : 0 : 1) belongs to the oval α(E(h)), the corresponding point 1 ∈ { u
g(u)

|
u ∈ S}. The equality 1 = u

g(u)
implies u = 1, g(u) = 1. Hence g(1) = 1. Finally, we

can subtract from g(u) the linear part 〈d, u〉, since adding linear function 〈d, u〉 to g(u) will
produce an equivalent function. ��

Remark 2 In place of the function g(u) = h−1
( 〈i,u〉

〈1,u〉
)

〈1, u〉+〈i, u〉one can consider g′(u) =
h−1

( 〈i,u〉
〈1,u〉

)
〈1, u〉. They produce equivalent ovals and equivalent Niho bent functions, but in

this case one has g′(1) = 0.

Corollary 1 Let h(t) = t s be an o-polynomial. Then its corresponding g-function and Niho
bent function can be written respectively as

g(u) = 〈i, u〉s−1 · 〈1, u〉q−s−1
,

f (x) = tr
(
〈i, x〉s−1 · 〈1, x〉q−s−1

)
= tr

((
ī x + i x̄

)s−1 · (x + x̄)q−s−1
)

,

where s−1 is the inverse of s modulo q − 1.
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Equivalence classes of Niho bent functions 1517

Proof We have

g(u) = h−1
( 〈i, u〉

〈1, u〉
)

〈1, u〉 =
( 〈i, u〉

〈1, u〉
)s−1

〈1, u〉 = 〈i, u〉s−1 · 〈1, u〉q−s−1
.

Further, since x = λu, λ = √
x x̄ , u = √

x/x̄ , we have

f (x) = tr(λg(u))

= tr
(√

x x̄ · 〈i,√x/x̄〉s−1 · 〈1,√x/x̄〉q−s−1
)

= tr

(√
x x̄ ·

(
ī
√
x/x̄ + i

√
x̄/x

)s−1

·
(√

x/x̄ + √
x̄/x

)q−s−1)

= tr

⎛

⎝√
x x̄ ·

(
ī x + i x̄√

x̄ x

)s−1

·
(
x + x̄√

x̄ x

)q−s−1
⎞

⎠

= tr

((
ī x + i x̄

)s−1 · (x + x̄)q−s−1
)

,

which completes the proof. ��
Remark 3 In place of the oval E(h) one can consider the oval E ′(h) = {(t, h(t), 1) | t ∈
F} ∪ {(1, 0, 0)} with nucleus (0, 1, 0). Then corresponding g-function can be written as

g(u) = h
( 〈i,u〉

〈1,u〉
)

〈1, u〉 + 〈i, u〉, g(1) = 1. However this approach is less convenient for our

reasonings in Sect. 4.

Next we derive formulas for Niho bent functions and g-functions obtained from ovals in
K .

Theorem 3 Let O be an oval in K whose nucleus is the origin. Then the associated Niho
bent function is

f (x) =
m−1∑

j=0

q∑

i=0

(
∑

v∈O

1

vi(q−1)+2 j

)
xi(q−1)+2 j

.

Proof By [3, Theorem 3.8] we have

f (x) =
∑

v∈O

[(
xq

2−q + vq
2−q

)q2−1 + 1

] m−1∑

j=0

(x/v)2
j
.

It is clear that f (0) = 0. Let x 	= 0. Then

f (x) =
∑

v∈O

[(
xq

2−1−(q−1) + vq
2−1−(q−1)

)q2−1 + 1

] m−1∑

j=0

(x/v)2
j

=
∑

v∈O

[(
1

xq−1 + 1

vq−1

)q2−1

+ 1

]
m−1∑

j=0

(x/v)2
j

=
∑

v∈O

⎡

⎣
(
xq−1 + vq−1

xq−1vq−1

)q2−1

+ 1

⎤

⎦
m−1∑

j=0

(x/v)2
j
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1518 K. Abdukhalikov

=
∑

v∈O

[(
xq−1 + vq−1)q2−1 + 1

] m−1∑

j=0

(x/v)2
j

=
∑

v∈O

⎡

⎣
q2−1∑

i=0

(
xq−1)i (vq−1)q2−1−i + 1

⎤

⎦
m−1∑

j=0

(x/v)2
j
.

We note that some terms of the second sum are the same:
(
xq−1)k(q+1)+i = (

xq−1)i ,
(
vq−1)k(q+1)+i = (

vq−1)i .

Therefore,

f (x) =
∑

v∈O

⎡

⎣
q2−1∑

i=0

(
xq−1)i (vq−1)q2−1−i + 1

⎤

⎦
m−1∑

j=0

(x/v)2
j

=
∑

v∈O

[ q∑

i=0

(
xq−1)i (vq−1)q+1−i

]
m−1∑

j=0

(x/v)2
j

=
∑

v∈O

q∑

i=0

(
(x/v)q−1)i

m−1∑

j=0

(x/v)2
j

=
m−1∑

j=0

q∑

i=0

(
∑

v∈O

1

vi(q−1)+2 j

)
xi(q−1)+2 j

,

which establishes the formula. ��
Theorem 4 Let O =

{
u

g(u)
| u ∈ S

}
be an oval in K whose nucleus is the origin. Then

g(u) =
q∑

i=0

∑

v∈O
v(q−1)i/2−1ui+1.

Proof If v ∈ O then v = z/g(z) for some z ∈ S. Then we have

v(q−1)/2 = (z/g(z))(q−1)/2 = z(q−1)/2 = z̄.

Now fix u ∈ S. If v ∈ O, v = z/g(z) and z = u then

q∑

i=0

(
uv(q−1)/2

)
)i
u

v
=

q∑

i=0

(uz̄)i
u

v
= u

v
= g(u).

If v ∈ O, v = z/g(z) and z 	= u then

q∑

i=0

(
uv(q−1)/2

)i u
v

=
q∑

i=0

(uz̄)i
u

v
= 0.

Therefore,

g(u) =
∑

v∈O

q∑

i=0

(
uv(q−1)/2

)
)i
u

v
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=
q∑

i=0

∑

v∈O
v(q−1)i/2−1ui+1,

which proves the theorem. ��
Given a hyperoval in a projective plane PG(2, q), an oval can be obtained by deleting

one of the points of the hyperoval. This deleted point is the nucleus of the resulting oval.
There are q + 2 ovals which can be obtained in this way, but some of them will be equivalent
under the action of the automorphism group PΓ L(3, q) of PG(2, q). If P and Q are points
of a hyperoval H, then ovals H \ {P} and H \ {Q} are equivalent if and only if P and Q
lie in the same orbit of the stabilizer of H on H. (The stabilizer of H in PΓ L(3, q) is also
called automorphism group of H.) Therefore, the number of projectively inequivalent ovals
obtained from hyperoval H is equal to the number of orbits of H under the action of the
stabilizer of H.

Assume that g(u) 	= 0 for all u ∈ S. Function g(u) determines an hyperoval

H =
{

u

g(u)
| u ∈ S

}
∪ {0}

in K . Consider an oval H \ {s/g(s)}, s ∈ S, whose nucleus is s/g(s), and shift it by the
element s/g(s) in order to get an oval Os , whose nucleus is the origin:

Os =
{

v

g(v)
+ s

g(s)
| v ∈ S, v 	= s

}
∪

{
s

g(s)

}
.

AnyNiho bent function associated with the hyperovalH is equivalent to a Niho bent function
obtained from one of the ovalsOs , and two such bent functions fs(x) and ft (x) are equivalent
[3,49] if and only if the points s/g(s) and t/g(t) are in the same orbit under action of
automorphism group of the hyperoval H.

Theorem 5 Let H be a hyperoval in K defined by a function g(u). Then the function gs(u)

associated with the oval Os , whose nucleus is the origin, is equal to

gs(u) =
q∑

i=0

aiu
i+1,

ai = g(s)s(q−1)i/2−1 + g(s)
∑

v∈S,v 	=s

g(v) (g(s)v + sg(v))(q−1)i/2−1 .

Proof From Theorem 4 we have

ai =
∑

z∈Os

z(q−1)i/2−1

=
(

s

g(s)

)(q−1)i/2−1

+
∑

v∈S,v 	=s

(
v

g(v)
+ s

g(s)

)(q−1)i/2−1

=
(

s

g(s)

)(q−1)i/2−1

+
∑

v∈S,v 	=s

(
g(s)v + sg(v)

g(s)g(v)

)(q−1)i/2−1

= g(s)s(q−1)i/2−1 + g(s)
∑

v∈S,v 	=s

g(v) (g(s)v + sg(v))(q−1)i/2−1 ,

which is our claim. ��
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1520 K. Abdukhalikov

Theorem 6 LetH be a hyperoval in K defined by a function g(u). Then the Niho bent function
f (x) associated with the oval Os , whose nucleus is the origin, is equal to

fs(x) =
m−1∑

j=0

q∑

i=0

⎛

⎝ g(s)2
j

si(q−1)+2 j +
∑

v∈S,v 	=s

g(s)2
j
g(v)2

j

(g(s)v + sg(v))i(q−1)+2 j

⎞

⎠ xi(q−1)+2 j
.

Proof From Theorem 3 we have

fs(x) =
m−1∑

j=0

q∑

i=0

(
∑

z∈O

1

zi(q−1)+2 j

)
xi(q−1)+2 j

=
m−1∑

j=0

q∑

i=0

⎛

⎝
(

s

g(s)

)−i(q−1)−2 j

+
∑

v∈S,v 	=s

(
v

g(v)
+ s

g(s)

)−i(q−1)−2 j
⎞

⎠ xi(q−1)+2 j

=
m−1∑

j=0

q∑

i=0

⎛

⎝
(
g(s)

s

)i(q−1)+2 j

+
∑

v∈S,v 	=s

(
g(s)g(v)

g(s)v + sg(v)

)i(q−1)+2 j
⎞

⎠ xi(q−1)+2 j

=
m−1∑

j=0

q∑

i=0

⎛

⎝ g(s)2
j

si(q−1)+2 j +
∑

v∈S,v 	=s

g(s)2
j
g(v)2

j

(g(s)v + sg(v))i(q−1)+2 j

⎞

⎠ xi(q−1)+2 j
,

which completes the proof. ��
Theorems 5 and 6 allow us to find all possible g-functions and Niho bent functions

associated with a fixed hyperoval. For small values of m Magma [12] can produce explicit
list of such functions.

4 Equivalence classes of Niho bent functions

In this section we describe the equivalence classes of Niho bent functions for all known
hyperovals. If h(t) is an o-polynomial then its corresponding hyperoval is

D(h) = {(t : h(t) : 1) | t ∈ F} ∪ {(0 : 1 : 0), (1 : 0 : 0)}. (3)

Hyperoval D(h) contains all points of the fundamental quadrangle {X , Y , Z ,W }, where
Y = (1 : 0 : 0), Z = (0 : 1 : 0), X = (0 : 0 : 1) and W = (1 : 1 : 1). Conversely, any
hyperoval containing the fundamental quadrangle can be written in the form (3). With this
hyperoval we associate the oval

E(h) = {(t : h(t) : 1) | t ∈ F} ∪ {(0 : 1 : 0)},
whose nucleus is the point Y = (1 : 0 : 0).

To obtain each of the ovals contained in a given hyperoval H, we choose a point of each
orbit of the stabilizer of H, and map this point to the point Y = (1 : 0 : 0), ensuring that the
resulting image of H contains the fundamental quadrangle. The image of H can be written
as H′ = D(h′) and the corresponding oval is E(h′) = {(t : h′(t) : 1) | t ∈ F} ∪ {(0 : 1 : 0)}
and has nucleus Y = (1 : 0 : 0) as required.

Each permutation of the points {X , Y , Z ,W } defines a collineation of PG(2, q). These
24 maps were considered in [23]. In particular, let us consider the maps [41], defined by

π1 ((a : b : c)) = (b : a : c),
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Equivalence classes of Niho bent functions 1521

π2 ((a : b : c)) = (c : b : a),

π3 ((a : b : c)) = (a : (a + b) : (a + c)).

They map hyperoval D(h) to the equivalent hyperoval D(hi ), where

h1(t) = h−1(t),

h2(t) = t h(1/t), h(0) = 0,

h3(t) = t + (t + 1)h(t/(t + 1)), h(1) = 1.

Note that π1(Z) = Y , π2(X) = Y and π3(W ) = Y . Therefore, π1 maps the oval D(h) \ {Z}
to the equivalent oval E(h1), π2 maps the oval D(h) \ {X} to the equivalent oval E(h2) and
π3 maps the oval D(h) \ {W } to the equivalent oval E(h3).

4.1 Niho bent functions associated with the hyperconic

In [39] there were introduced Niho bent functions of the form

fr (x) = Tr

⎛

⎝ax2
m+1 +

2r−1−1∑

i=1

xdi

⎞

⎠ ,

where 1 < r < m, gcd(r ,m) = 1, 2r di = (2m − 1)i + 2r and a ∈ K , a + ā = 1. It
was shown in [14] that fr (x) is associated with the translation hyperoval determined by the
o-polynomial h(t) = t2

m−r
. Recall that the o-polynomials h(t) = t2

r
and h(t) = t2

m−r

determine equivalent hyperovals [36]. To unify the notations, we introduce

f1(x) = Tr
(
ax2

m+1
)

.

Proposition 1 Let fr (x) = tr(λgr (u)), where x = λu, λ ∈ F, u ∈ S. Then

g1(u) = 1,

gr (u) =
(
uu2

m−r + ūū2
m−r

)
/
(
u2

m−r + ū2
m−r

)
, gr (1) = 1

for r > 1.

Proof For f1(x) we clearly have g1(u) = 1. If r > 1 then we have

fr (λu) = Tr

⎛

⎝aλ2 +
2r−1−1∑

i=1

λudi

⎞

⎠ = tr

⎛

⎝λ

⎛

⎝1 +
2r−1−1∑

i=1

udi +
2r−1−1∑

i=1

ūdi

⎞

⎠

⎞

⎠ .

Therefore,

gr (u) = 1 +
2r−1−1∑

i=1

udi +
2r−1−1∑

i=1

ūdi

and gr (1) = 1. Since di = (2m − 1)i/2r + 1 ≡ −2i/2r + 1 (mod 2m + 1), for u 	= 1 we
have

gr (u) = 1 +
2r−1−1∑

i=1

u−2i/2r+1 +
2r−1−1∑

i=1

ū−2i/2r+1
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1522 K. Abdukhalikov

= 1 + u−2/2r+1 · 1 − (
u−2/2r

)2r−1−1

1 − u−2/2r + ū−2/2r+1 · 1 − (
ū−2/2r

)2r−1−1

1 − ū−2/2r

= 1 + u−2/2r+1 − 1

1 − u−2/2r + ū−2/2r+1 − 1

1 − ū−2/2r

= 1 + ū2/2
r−1 − 1

1 − ū2/2r
+ u2/2

r−1 − 1

1 − u2/2r

= u + ū + uū2/2
r + ūu2/2

r

u2/2r + ū2/2r

=
(
u2

−r + ū2
−r

) (
uū2

−r + ūu2
−r

)

u21−r + ū21−r

= uū2
−r + ūu2

−r

u2−r + ū2−r

= uu2
m−r + ūū2

m−r

u2m−r + ū2m−r ,

which completes the proof. ��
In particular,

gm−1(u) = uu2 + ūū2

u2 + ū2
= u3 + ū3

u2 + ū2
= 1 + u2 + ū2

u + ū
= 1

u + ū
+ u + ū.

The hyperconic is given by the function g(u) = 1:

H = {u | u ∈ S} ∪ {0}.
Theorem 7 Let m ≥ 3. Then there are exactly two equivalence classes of Niho bent functions
associated with the hyperconic. Their representatives are the functions f1(x) and fm−1(x),
and corresponding g-function representatives are g1(u) and gm−1(u).

Proof Hyperconic is defined by the o-polynomial h0(t) = t2. The stabilizer of the hyperconic
H = D(t2) has two orbits [36,41,43] on H, one orbit contains the point Y , and the second
one contains points Z , X ,W . Therefore, there are exactly two inequivalent ovals E(h) with
nucleus Y . They are defined by the o-polynomials h0(t) = t2 and h1(t) = t1/2 (obtained by
using the map π1). Their g-functions by Theorem 2 are

g(u) = h−1
0

( 〈i, u〉
〈1, u〉

)
〈1, u〉 =

( 〈i, u〉
〈1, u〉

)1/2

〈1, u〉

= (
ī u + i ū

)1/2
(u + ū)1/2 = (

ī u2 + iu2 + 1
)1/2 = 〈i1/2, u〉 + 1,

g′(u) = h−1
1

( 〈i, u〉
〈1, u〉

)
〈1, u〉 =

( 〈i, u〉
〈1, u〉

)2

〈1, u〉

= ī2u2 + i2ū2

u + ū
= 1

u + ū
+ (

ī2u + i2u
)
,

which are equivalent to the functions g1(u) = 1 and gm−1(u) = 1
u+ū + u + ū respectively.

Therefore, there are exactly two equivalence classes of Niho bent functions associated with
the hyperconic and their representatives are functions f1(x) and fm−1(x). ��
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4.2 Niho bent functions associated with the translation hyperovals

The irregular translation hyperoval is defined by the o-polynomial h(t) = t2
r
, 1 < r < m−1,

gcd(r ,m) = 1. Recall that the o-polynomials h(t) = t2
r
and h(t) = t2

m−r
determine

equivalent hyperovals [36].

Theorem 8 Let m ≥ 5, 1 < r < m − 1, gcd(r ,m) = 1. There are exactly three equivalence
classes of Niho bent functions associated with the translation hyperovalD(t2

r
). Their repre-

sentatives are the functions fr (x), fm−r (x) and f (x) = tr
(
〈i, x〉(1−2r )−1〈1, x〉q−(1−2r )−1

)
,

where (1 − 2r )−1 is the inverse of (1 − 2r ) modulo q − 1. Corresponding g-function repre-
sentatives are gr (u), gm−r (u) and g(u) = 〈i, u〉(1−2r )−1〈1, u〉q−(1−2r )−1

.

Proof The stabilizer of the translation hyperoval H = D(t2
r
) has three orbits [36,41,43] on

H, one orbit contains the point Y , the second one contains the point Z , and the third one
contains the points X ,W . Therefore, there are exactly three inequivalent ovals E(h) with
nucleus Y . They are defined by the o-polynomials h0(t) = t2

r
, h1(t) = t2

m−r
(obtained by

using the map π1) and h2(t) = t1−2r (obtained by using the map π2). Their g-functions by
Theorem 2 are respectively

g(u) = h−1
0

( 〈i, u〉
〈1, u〉

)
〈1, u〉

=
( 〈i, u〉

〈1, u〉
)2m−r

〈1, u〉

=
(
ī u + i ū

)2m−r

(u + ū)

u2m−r + ū2m−r

= uu2
m−r + ūū2

m−r

u2m−r + ū2m−r +
(
i2

m−r
u + ī2

m−r
ū
)

= gr (u) + 〈ī2m−r
, u〉,

g′(u) = h−1
1

( 〈i, u〉
〈1, u〉

)
〈1, u〉 =

( 〈i, u〉
〈1, u〉

)2r

〈1, u〉 = gm−r (u) + 〈ī2r , u〉,

g′′(u) = h−1
2

( 〈i, u〉
〈1, u〉

)
〈1, u〉 =

( 〈i, u〉
〈1, u〉

)(1−2r )−1

〈1, u〉

= 〈i, u〉(1−2r )−1〈1, u〉q−(1−2r )−1
.

First two g-functions are equivalent to gr (u) and gm−r (u) respectively. ��
We note that for the third function we have

(
1 − 2r

)−1 ≡ −
s−1∑

j=0

2r j (mod q − 1),

where rs ≡ 1 (mod m).

Example 1 Let m = 5. Then there is only one (irregular) translation hyperoval (up to equiv-
alency). It is defined by the o-polynomial h(t) = t4. There are exactly three equivalence
classes of Niho bent functions associated with this translation hyperoval. Their associated
g-functions are g2(u) = 1 + u16 + ū16, g3(u) = 1 + u8 + u9 + u16 + ū8 + ū9 + ū16,
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1524 K. Abdukhalikov

g′(u) = 1+ωu4+ωu5+ωu8+ωu9+ωu12+ωu13+ω̄ū4+ω̄ū5+ω̄ū8+ω̄ū9+ω̄ū12+ω̄ū13.
Hence correspondingNiho bent functions are f2(x), f3(x) and f ′(x) = Tr(ωx528+ωx466+
ωx962 + ωx404 + ωx900 + ωx342 + ωx838).

We recall that if g(u) = 0 then we assume that u/g(u) = u∞ is the element on infinity in
direction u. We can ensure g(u) 	= 0 for all u ∈ S, by taking in place of g(u) an equivalent
function g(u) + 〈c, u〉, with appropriate c ∈ K , see [3]. Then all elements of the hyperoval
H = {u/g(u) | u ∈ S}∪{0}will be in K . In our current case we will see that if gr (u) = 0 for
some u, then we can take the equivalent function g(u) = gr (u)+u+ ū. Functions gr (u) and
gr (u) + u + ū produce equivalent hyperovals. We study now when the equations gr (u) = 0
and gr (u) + u + ū = 0 have solutions in S.

First we consider the following

Lemma 1 Let gcd(m, r) = 1. Then gcd(2m + 1, 2r + 1) (respectively, gcd(2m + 1, 2r − 1))
is equal to either 1 or 3. Moreover, gcd(2m + 1, 2r + 1) = 3 if and only if m is odd and r is
odd. In addition, gcd(2m + 1, 2r − 1) = 3 if and only if m is odd and r is even.

Proof Let m > r . Consider transformations of the form

gcd
(
2m + 1, 2r + 1

) = gcd
(
2m − 2r , 2r + 1

) = gcd
(
2m−r − 1, 2r + 1

)
,

gcd
(
2m + 1, 2r − 1

) = gcd
(
2m + 2r , 2r − 1

) = gcd
(
2m−r + 1, 2r − 1

)
.

Using consecutively such transformations, we will finally get at the end of the chain gcd(2+
1, 2 − 1) = 1 or gcd(2 + 1, 2 + 1) = 3, since gcd(m, r) = 1.

We note that 3 divides gcd(2m + 1, 2r + 1) if and only if m is odd and r is odd, and 3
divides gcd(2m + 1, 2r − 1) if and only if m is odd and r is even. ��
Lemma 2 Let 1 < r < m − 1, gcd(m, r) = 1, and let S = 〈w〉. Then
1. The equation gr (u) = 0 has a solution in S if and only if m is odd and r is even. In this

case u = w(q+1)/3 or u = w̄(q+1)/3.
2. The equation gr (u) + u + ū = 0 has a solution in S if and only if m is odd and r is odd.

In this case u = w(q+1)/3 or u = w̄(q+1)/3.

Proof 1. We have gr (u) = 0 if and only if uu2
m−r + ūū2

m−r = 0 if and only if uu2
m−r =

u1+2m−r ∈ F . Denoting u = wt 	= 1, we have t(1 + 2m−r ) ≡ 0 (mod q + 1). This
congruence has a nontrivial solution if and only if gcd(2m−r + 1, 2m + 1) 	= 1. By Lemma 1
we see that gcd(2m−r + 1, 2m + 1) = 3, which means that m is odd and r is even. Therefore,
t = ±(q + 1)/3.

2. Since

gr (u) + u + ū = uu2
m−r + ūū2

m−r

u2m−r + ū2m−r + u + ū = ūu2
m−r + uū2

m−r

u2m−r + ū2m−r ,

we see that gr (u) + u + ū = 0 if and only if ūu2
m−r + uū2

m−r = 0 if and only if ūu2
m−r =

u2
m−r−1 ∈ F . Denoting u = wt , we have t(2m−r − 1) ≡ 0 (mod q + 1). This congruence

has a nontrivial solution if and only if gcd(2m−r − 1, 2m + 1) 	= 1. By Lemma 1 we see
that gcd(2m−r − 1, 2m + 1) = 3, which means that m is odd and r is odd. Therefore,
t = ±(q + 1)/3. ��

We can calculate now the bent function fr (x) in other terms. Let x = λu, λ ∈ F , u ∈ S.
Then λ = √

x x̄ , u = √
x/x̄ .
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If x ∈ F , then u = 1 and

fr (x) = fr (λu) = tr (λgr (u)) = tr(λ) = tr
(√

x x̄
)

.

If x /∈ F , then u 	= 1 and

fr (x) = fr (λu) = tr(λgr (u)) = tr

⎛

⎝√
x x̄ ·

(√
x/x̄

)2m−r+1 + (√
x̄/x

)2m−r+1

(√
x/x̄

)2m−r + (√
x̄/x

)2m−r

⎞

⎠

= tr

(
xx2

m−r + x̄ x̄2
m−r

x2m−r + x̄2m−r

)
.

Therefore,

fr (x) =
{
tr(

√
x x̄), if x ∈ F,

tr
(
xx2

m−r +x̄ x̄2
m−r

x2m−r +x̄2m−r

)
, if x /∈ F .

In other words,

fr (x) = tr

(√
x x̄ + √

x x̄ (x + x̄)q
2−1 +

(
xx2

m−r + x̄ x̄2
m−r

) (
x2

m−r + x̄2
m−r

)q2−2
)

.

4.3 Niho bent functions associated with the Segre hyperovals

The Segre hyperoval [51,52] is defined by the o-polynomial h(t) = t6, where m ≥ 5 and m
is odd. Since m is odd, in place of i ∈ K we can take ω ∈ K , ω2 + ω + 1 = 0.

Following [15], we make use of Dickson polynomials. Dickson polynomial Ds(x) is a
permutation polynomial if s is relatively prime with 2n − 1, and since Ds ◦ Ds′ = Dss′ , the
inverse of Ds is Ds′ where s′ is the inverse of s modulo 2n − 1. Denoting the inverse of 5
modulo 2n − 1 by 1

5 we get D−1
5 = D 1

5
. Note that D5(x) = x + x3 + x5.

Theorem 9 If m > 5, m odd, then there are exactly four equivalence classes of Niho bent
functions associated with the Segre hyperoval. Their g-function representatives are (ω̄u +
ωū)1/6(u + ū)5/6, (ω̄u + ωū)6(u + ū)q−6, (ω̄u + ωū)−1/5(u + ū)6/5 and

(
D1/5

(
(ωu + ω̄ū) (u + ū)q−2))q2−2 〈1, u〉.

If m = 5, then there are exactly two equivalence classes of Niho bent functions associated
with the Segre hyperoval. Their g-function representatives are (ω̄u + ωū)1/6(u + ū)5/6 and

(
D1/5

(
(ωu + ω̄ū) (u + ū)q−2))q2−2 〈1, u〉.

Proof Ifm > 5 then the stabilizer of theSegre hyperovalH = D(t6)has four orbits [41,43] on
H, each orbit contains one point from the set {X , Y , Z ,W }. Therefore, there are exactly four
inequivalent ovals E(h) with nucleus Y . They are defined by the o-polynomials h0(t) = t6,
h1(t) = t1/6, h2(t) = t1−6, and h3(t) = t + (t + 1)(t/(t + 1))6 (obtained by using the maps
π1, π2 and π3). Their g-functions by Theorem 2 are respectively

g0(u) = h−1
0

( 〈ω, u〉
〈1, u〉

)
〈1, u〉 =

( 〈ω, u〉
〈1, u〉

)1/6

〈1, u〉 = (ω̄u + ωū)1/6(u + ū)5/6,

g1(u) = h−1
1

( 〈ω, u〉
〈1, u〉

)
〈1, u〉 =

( 〈ω, u〉
〈1, u〉

)6

〈1, u〉 = (ω̄u + ωū)6(u + ū)q−6,
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1526 K. Abdukhalikov

g2(u) = h−1
2

( 〈ω, u〉
〈1, u〉

)
〈1, u〉 =

( 〈ω, u〉
〈1, u〉

)−1/5

〈1, u〉 = (ω̄u + ωū)−1/5(u + ū)6/5.

For calculation of g3(u)we need to find the inverse of the function h3(t). Let h3(t) = t+(t+
1)(t/(t+1))6 = z. Put s = t+1.Then z = 1+s+s((s+1)/s)6 = 1+ 1

s + 1
s3

+ 1
s5

= 1+D5(
1
s ).

Therefore, 1
s = D1/5(z + 1) and t = s + 1 = (D1/5(z + 1))q

2−2 + 1. Hence,

h−1
3 (t) = (

D1/5(t + 1)
)q2−2 + 1.

It follows that

g3(u) = h−1
3

( 〈ω, u〉
〈1, u〉

)
〈1, u〉

=
(
D1/5

( 〈ω, u〉
〈1, u〉 + 1

))q2−2

〈1, u〉 + 〈1, u〉

=
(
D1/5

( 〈ω̄, u〉
〈1, u〉

))q2−2

〈1, u〉 + 〈1, u〉

= (
D1/5

(
(ωu + ω̄ū) (u + ū)q−2))q2−2 〈1, u〉 + 〈1, u〉.

If m = 5 then the stabilizer of the Segre hyperovalD(t6) has two orbits [41,43] onD(t6),
one orbit contains points X , Y , Z , and the second one contains the pointW . Therefore, there
are exactly two inequivalent ovals E(h) with nucleus Y . They are defined by o-polynomials
h0(t) = t6 and h3(t) = t + (t + 1)(t/(t + 1))6. ��

Note that 6−1 modulo q − 1 is (5q − 4)/6 and 5−1 modulo q − 1 is (3q2 − 2)/5.
Form = 5 the two classes of inequivalent ovals for the Segre hyperoval are represented by

E(t6) and E(h3(t)). Their corresponding g-functions can be taken as ωu4 + ω̄ū4 +u5 + ū5 +
ωu8 + ω̄ū8 +u9 + ū9 +ωu12 + ω̄ū12 +u13 +u20 and 1+ωu9 + ω̄ū9 + ω̄u12 +ωū12. Ovals
E(t6), E(t1/6) and E(t1−6) are equivalent, and this fact was first observed in [15] implicitly
in the language of Niho bent functions.

4.4 Niho bent functions associated with the Glynn hyperovals

Let m ≥ 7 be odd. Also let σ = 2(m+1)/2, and

γ =
{
2k, if m = 4k − 1,
23k+1, if m = 4k + 1.

Hence γ 4 ≡ σ 2 ≡ 2 (mod q − 1). The Glynn hyperovals [34] are defined by the o-
polynomials h(t) = t3σ+4 and h(t) = tσ+γ .

Theorem 10 If m ≥ 7, m odd, then there are exactly four equivalence classes of Niho bent
functions associatedwith theGlynn hyperovalD(t3σ+4). Their g-function representatives are
(ω̄u+ωū)3σ/2−2(u+ū)3−3σ/2, (ω̄u+ωū)3σ+4(u+ū)−3σ−3, (ω̄u+ωū)(1−σ)/3(u+ū)(2+σ)/3

and h−1
3

( 〈ω,u〉
〈1,u〉

)
〈1, u〉, where h3(t) = t + (t + 1)(t/(t + 1))3σ+4.

If m ≥ 9, m odd, then there are exactly four equivalence classes of Niho bent functions
associated with the Glynn hyperoval D(tσ+γ ). Their g-function representatives are (ω̄u +
ωū)−γ −1+σ−γ+1(u+ū)γ

−1−σ+γ , (ω̄u+ωū)σ+γ (u+ū)1−σ−γ , (ω̄u+ωū)(−2γ −1−γ+1)/3(u+
ū)(2γ

−1+γ+2)/3 and h−1
3

( 〈ω,u〉
〈1,u〉

)
〈1, u〉, where h3(t) = t + (t + 1)(t/(t + 1))σ+γ .
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If m = 7, then there are exactly two equivalence classes of Niho bent functions asso-
ciated with the Glynn hyperoval D(tσ+γ ). Their g-function representatives are (ω̄u +
ωū)−γ −1+σ−γ+1(u + ū)γ

−1−σ+γ and h−1
3

( 〈ω,u〉
〈1,u〉

)
〈1, u〉.

Proof The stabilizer of the Glynn hyperoval H = D(t3σ+4) has four orbits [41,43] on H,
each orbit contains one point from the set {X , Y , Z ,W }. Therefore, there are exactly four
inequivalent ovals E(h) with nucleus Y . They are defined [34] by o-polynomials h0(t) =
t3σ+4, h1(t) = t (3σ+4)−1 = t3σ/2−2, h2(t) = t1−(3σ+4), and h3(t) = t + (t + 1)(t/(t +
1))3σ+4 (obtained by using the maps π1, π2 and π3). Their g-functions by Theorem 2 are
respectively

g0(u) = h−1
0

( 〈ω, u〉
〈1, u〉

)
〈1, u〉 =

( 〈ω, u〉
〈1, u〉

)3σ/2−2

〈1, u〉 = (ω̄u + ωū)3σ/2−2 (u + ū)3−3σ/2,

g1(u) = h−1
1

( 〈ω, u〉
〈1, u〉

)
〈1, u〉 =

( 〈ω, u〉
〈1, u〉

)3σ+4

〈1, u〉 = (ω̄u + ωū)3σ+4 (u + ū)−3σ−3,

g2(u) = h−1
2

( 〈ω, u〉
〈1, u〉

)
〈1, u〉=

( 〈ω, u〉
〈1, u〉

)(1−σ)/3

〈1, u〉=(ω̄u + ωū)(1−σ)/3 (u + ū)(2+σ)/3,

g3(u) = h−1
3

( 〈ω, u〉
〈1, u〉

)
〈1, u〉.

For m ≥ 9 the stabilizer of the Glynn hyperovalH = D(tσ+γ ) has four orbits [41,43] on
H, each orbit contains one point from the set {X , Y , Z ,W }. Therefore, there are exactly four
inequivalent ovals E(h) with nucleus Y . They are defined [34] by o-polynomials h0(t) =
tσ+γ , h1(t) = t (σ+γ )−1 = t−γ −1+σ−γ+1, h2(t) = t1−(σ+γ ), and h3(t) = t + (t + 1)(t/(t +
1))σ+γ (obtained by using the maps π1, π2 and π3). Their g-functions by Theorem 2 are
respectively

g0(u) = h−1
0

( 〈ω, u〉
〈1, u〉

)
〈1, u〉 =

( 〈ω, u〉
〈1, u〉

)−γ −1+σ−γ+1

〈1, u〉

= (ω̄u + ωū)−γ −1+σ−γ+1 (u + ū)γ
−1−σ+γ ,

g1(u) = h−1
1

( 〈ω, u〉
〈1, u〉

)
〈1, u〉 =

( 〈ω, u〉
〈1, u〉

)σ+γ

〈1, u〉 = (ω̄u + ωū)σ+γ (u + ū)1−σ−γ ,

g2(u) = h−1
2

( 〈ω, u〉
〈1, u〉

)
〈1, u〉 =

( 〈ω, u〉
〈1, u〉

)(−2γ −1−γ+1
)
/3

〈1, u〉

= (ω̄u + ωū)
(−2γ −1−γ+1

)
/3 (u + ū)(2γ

−1+γ+2)/3,

g3(u) = h−1
3

( 〈ω, u〉
〈1, u〉

)
〈1, u〉.

If m = 7 then the stabilizer of the Glynn hyperoval H = D(tσ+γ ) has two orbits [41,
43] on H, one orbit contains points X , Y , Z , and the second one contains the point W .
Therefore, there are exactly two inequivalent ovals E(h) with nucleus Y . They are defined
by o-polynomials h0(t) = tσ+γ and h3(t) = t + (t + 1)(t/(t + 1))σ+γ . ��
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1528 K. Abdukhalikov

4.5 Niho bent functions associated with the Payne, Cherowitzo, Subiaco and
Adelaide hyperovals

The orders of the automorphism groups of the Payne, Cherowitzo, Subiaco and Adelaide
hyperovals are at most 10m. Therefore, the action of the automorphism group on the points
of the hyperoval hasmore than 2m/(10m) orbits. Hence, the number of equivalence classes of
Niho bent functions associated with these hyperovals increases exponentially as the dimen-
sion of the underlying vector space grows.

Nevertheless we can get some information on these equivalence classes. First of all, in
case of odd m, there are some distinguished classes related to the points of the fundamental
quadrangle.

The Payne hyperoval [46] is defined by the o-polynomial h(t) = t1/6 + t1/2 + t5/6, where
m ≥ 5 and m is odd. The stabilizer of the Payne hyperoval has order 2m and has about
2m/(2m) orbits. These are {Z}, {W }, {X , Y }, and sets

Ms =
{(

vs2
j
, h

(
vs2

j
)

, 1
)

| j = 1, . . . ,m
}

∪
{(

1, h
(
vs2

j
)

, vs2
j
)

| j = 1, . . . ,m
}

of size 2d where d divides m and v is a primitive element of F (see [41,43,53]). So we can
get g-functions using maps π1 and π3, and applying Theorem 2 (classes coming from the
map π2 and from the original o-polynomial are glued together since t · h(1/t) = h(t)), and
additionally points from the orbits Ms provide g-functions and Niho bent functions by using
Theorems 3, 4, 5, 6. In order to use these theorems we need a presentation of the Payne
hyperoval in the affine plane K = AG(2, q). The Payne hyperoval can be given [33] as

{
u + u3 + u−3 | u ∈ S

} ∪ {0}. (4)

The stabilizer of the hyperoval is Gal(K/F2). Then short orbits are {0}, {1}, {ω, ω̄}.
The Cherowitzo hyperoval [26] is defined by the o-polynomial h(t) = tσ + tσ+2 + t3σ+4,

where m ≥ 5, m is odd, and σ = 2(m+1)/2, so σ 2 ≡ 2 (mod q − 1). The stabilizer of the
Cherowitzo hyperoval has orderm and has about 2m/m orbits. These are {X}, {Y }, {Z}, {W },
and sets (see [11,41,43,44])

Ms =
{(

vs2
j
, h

(
vs2

j
)

, 1
)

| j = 1, . . . ,m
}

.

Note [18] that for the Payne o-polynomial h(t) = t1/6 + t1/2 + t5/6 the inverse is

h−1(t) = (
D1/5(t)

)6
,

and for the Cherowitzo o-polynomial h(t) = tσ + tσ+2 + t3σ+4, σ = 2(m+1)/2, the inverse
is

h−1(t) = t
(
tσ+1 + t3 + t

)σ/2−1
.

These formulas allow us to find explicit expressions for g(u) = h−1
( 〈ω,u〉

〈1,u〉
)

〈1, u〉.
The Adelaide hyperovals [27] are given by o-polynomials

h(t) = T
(
bk

)

T (b)
(t + 1) +

T
(
(bt + bq)k

)

T (b)

(
t + T (b)t1/2 + 1

)1−k + t1/2,
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where m even, b ∈ S, b 	= 1 and k = ± q−1
3 . Description of the Adelaide hyperovals with

the help of functions g(u) looks much more simpler. The set

H =
{

u

1 + u(q−1)/3 + ū(q−1)/3
| u ∈ S

}
∪ {0}

gives representation of the Adelaide hyperoval [3,6] in K . The stabilizer of the hyperoval
[3,6,48] has order 2m and is equal to Gal(K/F2).

Note that the Adelaide hyperoval can be written [33] in the form (4) as well, by taking
even m.

The Subiaco [25] o-polynomial is given by

h(t) = d2t4 + d2
(
1 + d + d2

)
t3 + d2

(
1 + d + d2

)
t2 + d2t

(
t2 + dt + 1

)2 + t1/2

where d ∈ F , tr(1/d) = 1, and d /∈ F4 for m ≡ 2 (mod 4). This o-polynomial gives rise to
two inequivalent hyperovals when m ≡ 2 (mod 4) and to a unique hyperoval when m 	≡ 2
(mod 4). The stabilizer group of the Subiaco hyperoval was calculated in [44,47]. There is
other description [3,6] of the Subiaco hyperovals by using functions g(u) which looks much
more simpler.

Let m 	≡ 2 (mod 4). Then q + 1 	≡ 0 (mod 5) and the Subiaco hyperoval given by

g(u) = 1 + u5 + ū5.

Its stabilizer has order 2m and is equal to Gal(K/F2) = 〈τ 〉, τ(x) = x2.
Let m ≡ 2 (mod 4). Then q + 1 ≡ 0 (mod 5). Let S = 〈w〉. Then we take

gi (u) = 1 + wi u5 + w̄i ū5,

where i = 0 or i = 1. Let τ(x) = x2, v = w(q+1)/5 and ϕv(x) = vx .
If the Subiaco hyperoval given by the function g0(u) = 1+ u5 + ū5 then its stabilizer has

order 10m and is equal to the semidirect product 〈ϕv〉〈τ 〉.
If the Subiaco hyperoval given by g1(u) = 1 + wu5 + w̄ū5 then its stabilizer has order

5m/2 and is equal to the cyclic group 〈ϕw3τ 4〉.

4.6 Niho bent functions in small dimensions

In this section we consider Niho bent functions in dimensions up to m = 6. Let a be an
element from K with property a + ā = 1. Calculations are done with the help of Magma
[12].

Letm = 1. Then there is only one hyperoval (the hyperconic) and its automorphism group
is transitive on the points of the hyperoval [36]. Therefore, there is only one oval and only
one Niho bent function up to equivalence, which is obtained from the function g(u) = 1.
Hence the bent function is equivalent to f (x) = tr(x3) = Tr(ax3).

Letm = 2. Then there is again only one hyperoval (the hyperconic) and its automorphism
group is transitive on the points of the hyperoval [36]. Therefore, there is only one oval and
only one Niho bent function up to equivalence, they are obtained from the function g(u) = 1,
and the bent function is equivalent to f (x) = tr(x10) = Tr(ax10).

Letm = 3. Then there is only one hyperoval (the hyperconic) and its automorphism group
has twoorbits on the points of the hyperoval [36]. Therefore, there are twoovals (consequently
two Niho bent functions) up to equivalence, they are obtained from the functions g(u) = 1
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1530 K. Abdukhalikov

and g′(u) = 1 + u4 + ū4. Bent functions are f (x) = tr(x36) = Tr(ax36) and f ′(x) =
tr(x36 + x22 + x50) = Tr(ax36 + x22).

Let m = 4. Then there are two inequivalent hyperovals, the hyperconic and the Lunelli–
Sce hyperoval. The automorphism group of the hyperconic has two orbits on the points of the
hyperoval [36]. Therefore, there are two related ovals (consequently twoNiho bent functions)
up to equivalence, obtained from functions g(u) = 1 and g′(u) = 1+ u4 + ū4 + u5 + ū5 +
u8 + ū8. The automorphism group of the Lunelli–Sce hyperoval is transitive on the points
of the hyperoval [7,13,38]. Therefore, it determines only one oval (consequently one Niho
bent function) with the function g′′(u) = 1+ u5 + ū5 (the Lunelli–Sce hyperoval is the first
non-trivial member of the Subiaco [13,25] and the Adelaide families [27]). Bent functions
associated with the hyperconic are f (x) = tr(x136) = Tr(ax136) and f ′(x) = tr(x136 +
x106+x226+x76+x̄106+x̄226+x̄76) = Tr(ax136+x106+x46+x76). Bent function associated
with the Lunelli–Sce hyperoval is f ′′(x) = tr(x136 + x226 + x̄226) = Tr(ax136 + x46).

Let m = 5. Then there are 6 hyperovals, they are listed in Table 1. The hyperconic (2
orbits), translation (3 orbits) and Segre (2 orbits) hyperovals were analyzed in the previous
subsections. The Subiaco and Payne hyperovals are equivalent for m = 5. The stabilizer of
this hyperoval is generated by automorphism τ , where τ(x) = x2. The orbits of the stabilizer
are: {0}, {1}, {ω, ω̄}, and three other sets each containing 10 elements. Short orbits have the
following g-functions: g0 = 1+ u + u5 + ū + ū5, g1(u) = 1+ u5 + u8 + u12 + u13 + ū5 +
ū8 + ū12 + ū13, gω(u) = u4 + ωu5 + ω̄u9 + u12 + ω̄u16 + ū4 + ω̄ū5 + ωū9 + ū12 + ωū16.

For the Cherowitzo hyperoval the orbits are: {0}, {1}, {ω}, {ω̄} and six other sets with
5 elements. The stabilizer of the Cherowitzo hyperoval is generated by automorphism τ 2.
Short orbits have the following g-functions: g0 = u5 + u8 + u9 + ωu12 + ωu13 + ωu16 +
ū5 + ū8 + ū9 + ω̄ū12 + ω̄ū13 + ω̄ū16, g1(u) = 1+ ω̄u4 +ωu5 + u8 + ω̄u9 +ωu12 +ωu13 +
ωu16 +ωū4 + ω̄ū5 + ū8 +ωū9 + ω̄ū12 + ω̄ū13 + ω̄ū16, gω(u) = ωu4 +ωu8 + u9 + ω̄u12 +
ωu13 + ωu16 + ω̄ū4 + ω̄ū8 + ū9 + ωū12 + ω̄ū13 + ω̄ū16, gω̄(u) = 1 + ω̄u4 + u5 + ω̄u8 +
ω̄u9 + ωu12 + ω̄u13 + u16 + ωū4 + ū5 + ωū8 + ωū9 + ω̄ū12 + ωū13 + ū16.

For the O’Keefe–Penttila hyperoval [42] the orbits are: {0} and 11 other sets each
containing 3 elements. Stabilizer of the O’Keefe–Penttila hyperoval is generated by the
automorphism ϕω(x) = ωx .

Let m = 6. Then there are 4 hyperovals [54], they are listed in Table 2. The hyperconic
was analyzed in the previous sections. The stabilizer of the Subiaco hyperoval defined by
g(u) = 1 + u5 + ū5 has 3 orbits, containing 1, 5 and 60 elements respectively. g-function
for the orbit with 5 elements is g1(u) = 1+ u4 + u5 + u9 + u13 + u17 + u21 + u24 + u25 +
u29 + ū4 + ū5 + ū9 + ū13 + ū17 + ū21 + ū24 + ū25 + ū29.

The stabilizer of the Subiaco hyperoval defined by g(u) = 1 + wu5 + w̄ū5 has 6 orbits:
one orbit is {0}, the second orbit contains 5 elements, and four other orbits each containing
15 elements.

The stabilizer of the Adelaide hyperoval defined by g(u) = 1+u21+ ū21 has 8 orbits, two
orbits are {0} and {1} (which has corresponding function g1(u) = 1+u4+u5+u9+u12+u13+
u16+u17+u20+u24+u25+u32+ū4+ū5+ū9+ū12+ū13+ū16+ū17+ū20+ū24+ū25+ū32),
one orbit contains 4 elements, and five orbits each containing 12 elements.

5 Conclusion

We considered equivalence classes of Niho bent functions associated with hyperovals. For
all known types of hyperovals we described the equivalence classes of the corresponding
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Table 2 Hyperovals in
AG(2, 64) and associated
g-functions

Hyperoval function g(u) |Aut |
Hyperconic 1 1572480

Subiaco 1 + u5 + ū5 60

Subiaco 1 + wu5 + w̄ū5, S = 〈w〉 15

Adelaide 1 + u21 + ū21 12

Niho bent functions. For some types of hyperovals the number of equivalence classes of the
associated Niho bent functions are at most 4. In general, the number of equivalence classes
of associated Niho bent functions increases exponentially as the dimension of the underlying
vector space grows. The equivalence classes were considered in detail in small dimensions.
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