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Abstract
In the present paper, we give Assmus–Mattson type theorems for codes and lattices.We show
that a binary doubly even self-dual code of length 24m with minimum weight 4m provides a
combinatorial 1-design and an even unimodular lattice of rank 24m with minimum norm 2m
provides a spherical 3-design. We remark that some of such codes and lattices give t-designs
for higher t . As a corollary, we give some restrictions on the weight enumerators of binary
doubly even self-dual codes of length 24m withminimumweight 4m. Ternary and quaternary
analogues are also given.

Keywords Self-dual code · Combinatorial t-design · Assmus–Mattson theorem · Harmonic
weight enumerator · Unimodular lattice · Spherical t-design · Venkov’s theorem · Spherical
theta series

Mathematics Subject Classification Primary 94B05 · Secondary 05B05

1 Introduction

Let C be a code over Fq and C� := {c ∈ C | wt(c) = �}. Let L ⊂ R
n be a lattice and

L� := {x ∈ L | (x, x) = �}. In this paper, we call C� (resp. L�) a shell of the code C (resp.
lattice L) whenever it is non-empty.

Shells of extremal self-dual codes are known to support combinatorial designs by the
Assmus–Mattson theorem. More precisely, the set B(C�) := {supp(x) | x ∈ C�} forms the
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set of blocks of a combinatorial design. Note that B(C�) is not a multiset, so combinatorial
designs in this papers are always without repeated blocks. Similarly, shells of extremal even
unimodular lattices are known to give spherical designs by a theoremofVenkov. In the present
paper, we give analogues of these theorems with relaxed assumptions; the minimum weight
of a self-dual code is allowed to be slightly smaller than the extremal case, the minimum
norm of an even unimodular lattice is allowed to be smaller by 2 than the extremal case.
The conclusions we obtain are necessarily weaker than the extremal cases, but still they are
nontrivial, and give a restriction on weight enumerators for the binary case.

To explain our results, we review some results on codes and lattices. Let C be a binary
doubly even self-dual code of length n. Then we have the following bound on the minimum
weight of C [21]:

min(C) ≤ 4
⌊ n

24

⌋
+ 4. (1.1)

We say that C meeting the bound (1.1) with equality is extremal. Let C be an extremal code
of length n. Identifying codewords with their support, C� forms a combinatorial t-design,
where

t =

⎧⎪⎨
⎪⎩

5 if n ≡ 0 (mod 24),

3 if n ≡ 8 (mod 24),

1 if n ≡ 16 (mod 24),

provided C� �= ∅ [1]. Ternary and quaternary analogues of this fact were also given in [1].
Let C be a ternary or quaternary self-dual code of length n. Then we have the following
bound on the minimum weight of C [19,21]:

min(C) ≤
{
3

⌊ n
12

⌋ + 3 if C is ternary,

2
⌊ n
6

⌋ + 2 if C is quaternary.
(1.2)

We say that C meeting the bound (1.2) with equality is extremal. Let C be an extremal code
of length n and w be the largest integer satisfying

w −
⌊

w + q − 2

q − 1

⌋
< d.

Then for � ≤ w, C� forms a combinatorial t-design, where

t =

⎧
⎪⎨
⎪⎩

5 if n ≡ 0 (mod 12),

3 if n ≡ 4 (mod 12),

1 if n ≡ 8 (mod 12),

if C is ternary, and

t =

⎧
⎪⎨
⎪⎩

5 if n ≡ 0 (mod 6),

3 if n ≡ 2 (mod 6),

1 if n ≡ 4 (mod 6),

if C is quaternary, provided C� �= ∅ [1].
Let L be an even unimodular lattices of rank n. Then we have the following bound on the

minimum norm of L [20]:

min(L) ≤ 2
⌊ n

24

⌋
+ 2. (1.3)
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We say that L meeting the bound (1.3) with equality is extremal. Let L be an extremal lattice
of length n. After normalization, L� forms a spherical t-design, where

t =

⎧
⎪⎨
⎪⎩

11 if n ≡ 0 (mod 24),

7 if n ≡ 8 (mod 24),

3 if n ≡ 16 (mod 24),

provided L� �= ∅ [27,28] (see also [24]).
Themain results of the present paper is to give an analogue of these results for non-extremal

codes and lattices, as follows:

Theorem 1.1 (1) Let C be a binary doubly even self-dual code of length 24m with minimum
weight 4m. Then every shell of C is a combinatorial 1-design.

(2) Let C be a ternary self-dual code of length 12m with minimum weight 3m. Then for
� ≤ 6m − 3, C� is a combinatorial 1-design.

(3) Let C be a quaternary self-dual code of length 6m with minimum weight 2m. Then for
� ≤ 3m − 1, C� is a combinatorial 1-design.

(4) Let L be an even unimodular lattice of rank 24m with minimum norm 2m. Then every
shell of L supports a spherical 3-design.

Remark 1.1 Theorem 1.1 (1) and (4) were firstly obtained by B. Venkov and the second
named author using modular forms. We remark that the proof of Theorem 1.1 (1) in the
present paper is different from their original proof.

As an application of Theorem 1.1, we give some restrictions on the weight enumerators
of self-dual codes.

Corollary 1.2 (1) Let C be a binary doubly even self-dual code of length 24m with minimum
weight 4m. Then the coefficient of x24m−4m y4m in the weight enumerator of C is divisible
by 6.

(2) Let C be a ternary self-dual code of length 12m with minimum weight 3m. Then the
coefficient of x12m−3m y3m in the weight enumerator of C is divisible by 4.

(3) Let C be a quaternary self-dual code of length 6m with minimum weight 2m. Then the
coefficient of x6m−2m y2m in the weight enumerator of C is divisible by 3.

The following theoremgives a strengthening ofTheorem1.1 (1) and (4) for someparticular
cases.

Theorem 1.3 (1) Let C be a binary doubly even self-dual code of length 96 with minimum
weight 16. Then C20 (also C76) is a combinatorial 2-design.

(2) Let L be an even unimodular lattice of rank 240 with minimum norm 20. Then L22

supports a spherical 5-design.

On the other hand, we give an upper bound on the value t of combinatorial t-designs
formed by a shell of a binary doubly even self-dual code of length 96 with minimum weight
16. For convenience, let

L = {� ∈ Z | 16 ≤ � ≤ 80, � ≡ 0 (mod 4)}. (1.4)

Theorem 1.4 Let C be a binary doubly even self-dual code of length 96with minimumweight
16, and let � ∈ L. Assume that C� is a combinatorial t-design. Then the following statements
hold:
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(1) If t = 2 and � �= 20, 76, then every shell of C is a combinatorial 2-design.
(2) If t ≥ 3 and � �= 20, 48, 76, then every shell of C is a combinatorial t-design.
(3) We have

t ≤

⎧
⎪⎨
⎪⎩

7 if � = 48,

5 if � = 20, 76.

4 otherwise.

This paper is organized as follows. In Sect. 2, we give definitions and some basic properties
of self-dual codes, unimodular lattices, combinatorial t-designs and spherical t-designs used
in this paper. In Sects. 3 and 4, we give proofs of Theorem 1.1 and 1.3, respectively. In Sect. 5,
we give a proof of Theorem 1.4, give the known examples of binary doubly even self-dual
codes of length 96 with minimum weight 16 and investigate their designs. Finally, in Sect. 6,
we give concluding remarks.

All computer calculations in this paper were done with the help of Magma [5] and Math-
ematica [29].

2 Preliminaries

2.1 Codes and combinatorial t-designs

A linear code C of length n is a linear subspace of Fn
q . For q = 2 and q = 3, an inner product

(x, y) on Fn
q is given by

(x, y) =
n∑

i=1

xi yi ,

where x, y ∈ F
n
q with x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The Hermitian inner

product (x, y) on F
n
4 is given by

(x, y)H =
n∑

i=1

xi y
2
i ,

where x, y ∈ F
n
4 with x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The dual of a linear

code C is defined as follows: for q = 2 and q = 3,

C⊥ = {y ∈ F
n
q | (x, y) = 0 for all x ∈ C},

for q = 4,

C⊥,H = {y ∈ F
n
q | (x, y)H = 0 for all x ∈ C}.

A linear code C is called self-dual if C = C⊥ for q = 2 and q = 3 and if C = C⊥,H for
q = 4. For x ∈ F

n
q , the weight wt(x) is the number of its nonzero components. In this paper,

we consider the following self-dual codes [7]:

Doubly even: A code is defined over Fn
2 with all weights divisible by 4,

Ternary: A code is defined over Fn
3 with all weights divisible by 3,

Quaternary: A code is defined over Fn
4 with all weights divisible by 2.
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A note on Assmus–Mattson type theorems 847

A combinatorial t-design is a pair D = (�,B), where � is a set of points of cardinality
v, and B a collection of k-element subsets of � called blocks, with the property that any t
points are contained in precisely λ blocks.

The support of a vector x := (x1, . . . , xn), xi ∈ Fq is the set of indices of its nonzero
coordinates: supp(x) = {i | xi �= 0}. Let� := {1, . . . , n} andB(C�) := {supp(x) | x ∈ C�}.
Then for a code C of length n, we say that C� is a combinatorial t-design if (�,B(C�)) is a
combinatorial t-design.

2.2 Harmonic weight enumerators

In this section, we extend the method of harmonic weight enumerators which were used
by Bachoc [2] and Bannai et al. [4]. For the readers convenience we quote from [2,8] the
definitions and properties of discrete harmonic functions (for more information the reader is
referred to [2,8]).

Let � = {1, 2, . . . , n} be a finite set (which will be the set of coordinates of the code) and
let X be the set of its subsets, while, for all k = 0, 1, . . . , n, Xk is the set of its k-subsets.
We denote by RX and RXk the real vector spaces spanned by the elements of X and Xk ,
respectively. An element of RXk is denoted by

f =
∑
z∈Xk

f (z)z

and is identified with the real-valued function on Xk given by z 
→ f (z).
An element f ∈ RXk can be extended to an element f̃ ∈ RX by setting, for all u ∈ X ,

f̃ (u) =
∑

z∈Xk ,z⊂u

f (z).

If an element g ∈ RX is equal to f̃ for some f ∈ RXk , then we say that g has degree k. The
differentiation γ is the operator defined by linearity from

γ (z) =
∑

y∈Xk−1,y⊂z

y

for all z ∈ Xk and for all k = 0, 1, . . . , n, and Harmk is the kernel of γ :

Harmk = ker(γ |RXk ).

Lemma 2.1 ([8, Theorem 7], [25, Lemma 2.5]) Let C be a code of length n with minimum
weight d. Let w0 be the largest integer satisfying

w0 −
⌊

w0 + q − 2

q − 1

⌋
< d,

where, if q = 2, we take w0 := n. Let i be a weight of C such that d ≤ i ≤ w0. Then the
subset of {1, 2, . . . , n} which support codewords of weight i in C form a t-design if and only
if

∑
u∈C,wt(u)=i

f̃ (u) = 0,

for all f ∈ Harmk , 1 ≤ k ≤ t .

123



848 T. Miezaki et al.

In [2], the harmonic weight enumerator associated to a linear code C was defined as
follows:

Definition 2.2 ([2, Definition 2.1], [3, Definition 4.1]) Let C be a linear code of length n and
let f ∈ Harmk . The harmonic weight enumerator associated to C and f is

WC, f (x, y) =
∑
c∈C

f̃ (c)xn−wt(c)ywt(c).

Then the submodules of harmonic weight enumerators are described as follows:

Theorem 2.3 ([2, Lemma 3.1], [3, Lemma 6.1 and 6.2]) Let C be a linear code of length n,
and let f ∈ Harmk .

(1) Suppose C is a binary doubly even self-dual code. Then

WC, f (x, y) ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(xy)kC[P8, P24] if k ≡ 0 (mod 4),

(xy)k P12C[P8, P24] if k ≡ 2 (mod 4),

(xy)k P18C[P8, P24] if k ≡ 3 (mod 4),

(xy)k P30C[P8, P24] if k ≡ 1 (mod 4),

where

P8 = x8 + 14x4y4 + y8,

P12 = x2y2(x4 − y4)2,

P18 = xy(x8 − y8)(x8 − 34x4y4 + y8),

P24 = P2
12,

P30 = P12P18.

(2) Suppose C is a ternary self-dual code. Then

WC, f ∈
{
xyp14C[g4, g12], if k = 1,

(xy)2 p4C[g4, g12], if k = 2,

where

p4 = y(x3 − y3),

p14 = y2(x3 − y3)2(x6 − 20x3y3 − 8y6),

g4 = x4 + 8xy3,

g12 = y3(x3 − y3)3.

(3) Suppose C is a quaternary self-dual code. Then

WC, f ∈
{
xyq6C[h2, h6], if k = 1,

(xy)2C[h2, h6], if k = 2,

where

h2 = x2 + 3y2,

h6 = y2(x2 − y2)2,

q6 = y(x2 − y2)(x3 − 9xy2).
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A note on Assmus–Mattson type theorems 849

Remark 2.4 In [2, Lemma 3.1] and [3, Lemma 6.1 and 6.2], explicit sets of generators of the
submodules for general k were given. We omit listing them here, since we do not need them.

2.3 Lattices and spherical t-designs

A lattice in Rn is a subgroup L ⊂ R
n with the property that there exists a basis {e1, . . . , en}

of Rn such that L = Ze1 ⊕ · · · ⊕ Zen . The dual lattice of L is the lattice

L� := {y ∈ R
n | (y, x) ∈ Z, ∀x ∈ L},

where (x, y) is the standard inner product. In this paper, we assume that the lattice L is
integral, that is, (x, y) ∈ Z for all x , y ∈ L . An integral lattice L is called even if (x, x) ∈ 2Z
for all x ∈ L . An integral lattice L is called unimodular if L� = L .

The concept of a spherical t-design is due to Delsarte–Goethals–Seidel [9]. For a positive
integer t , a finite nonempty set X in the unit sphere

Sn−1 = {x = (x1, . . . , xn) ∈ R
n | x21 + · · · + x2n = 1}

is called a spherical t-design in Sn−1 if the following condition is satisfied:

1

|X |
∑
x∈X

f (x) = 1

|Sn−1|
∫

Sn−1
f (x)dσ(x),

for all polynomials f (x) = f (x1, . . . , xn) of degree not exceeding t . A finite subset X in
Sn−1(r), the sphere of radius r centered at the origin, is also called a spherical t-design if
(1/r)X is a spherical t-design in the unit sphere Sn−1. Then we say that L� is a spherical
t-design if (1/

√
�)L� is a spherical t-design.

Let Harm j (R
n) denote the set of homogeneous harmonic polynomials of degree j :

Harm j (R
n) = { f ∈ C[x1, . . . , xn] | deg( f ) = j and

n∑
i=1

∂2

∂2xi
f = 0}.

It is well known that X is a spherical t-design if and only if the condition
∑
x∈X

P(x) = 0

holds for all P ∈ Harm j (R
n) with 1 ≤ j ≤ t . If the set X is antipodal, that is −X = X , and

j is odd, then the above condition is fulfilled automatically. So we reformulate the condition
of spherical t-design for antipodal sets as follows:

Proposition 2.5 A nonempty finite antipodal subset X ⊂ Sn−1
m is a spherical (2s+1)-design

if and only if the condition
∑
x∈X

P(x) = 0

holds for all P ∈ Harm2 j (R
n) with 1 ≤ j ≤ s.

2.4 Spherical theta series

Let H := {z ∈ C | Im(z) > 0} be the upper half-plane.

123



850 T. Miezaki et al.

Definition 2.6 Let L be an integral lattice in R
n . For a polynomial P , the function on H

defined by

ϑL,P (z) :=
∑
x∈L

P(x)eπ i z(x,x)

is called the theta series of L weighted by P .

Remark 2.7 (i) When P = 1, we get the classical theta series

ϑL(z) = ϑL,1(z) =
∑
m≥0

|Lm |qm, where q = eπ i z .

(ii) The weighted theta series can be written as

ϑL,P (z) =
∑
m≥0

a(P)
m qm, where a(P)

m :=
∑
x∈Lm

P(x). (2.1)

Lemma 2.8 ([24, Lemma 5],[27,28]) Let L be an integral lattice in Rn. Then, for m > 0, the
non-empty shell Lm is a spherical (2s + 1)-design if and only if

a(P)
m = 0 for every P ∈ Harm2 j (R

n) and 1 ≤ j ≤ s,

where a(P)
m is the Fourier coefficient of the weighted theta series (2.1).

For example, we consider an even unimodular lattice L . Then the weighted theta series
ϑL,P (z) of L weighted by a harmonic polynomial P , is a modular form with respect to
SL2(Z). In general, we have the following:

Lemma 2.9 ([24, Theorem 12, Proposition 16]) Let L ⊂ R
n be an even unimodular lattice

of of rank n = 8N and of minimum norm 2M. Let

E4(z) := 1 + 240
∞∑
n=1

σ3(n)q2n,

E6(z) := 1 − 504
∞∑
n=1

σ5(n)q2n,

�(z) := E4(z)3 − E6(z)2

1728
= q2 − 24q4 + · · · ,

where σk−1(n) := ∑
d|n dk−1, and q = eπ i z . Then we have for P ∈ Harm2 j (Rn),

ϑL,P ∈
{
C[E4,�] if j is even,

E6C[E4,�] if j is odd.

More precisely, there exist ci ∈ C such that

ϑL,P =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[(N+ j/2)/3]∑
i=M

ci�
i E N+ j/2−3i

4 if j is even,

[(N+ j/2)/3]∑
i=M

ci E6�
i E N+( j−3)/2−3i

4 if j is odd.

In particular, ϑL,P = 0 if j is even and 3M > N+ j/2, or j is odd and 3M > N+( j−3)/2.
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3 Proof of Theorem 1.1 and Corollary 1.2

In this section, we give proofs of Theorem 1.1 and Corollary 1.2.

3.1 Proof of Theorem 1.1 (1)

Let C be a binary doubly even self-dual code of length n = 24m, and let f ∈ Harm1. It is
enough to show that WC, f (x, y) = 0 by Theorem 2.1. By Theorem 2.3 (1) we have

WC, f (x, y) = xyP30Q,

where Q ∈ C[P8, P24]. Because of min(C) = 4m, WC, f (x, y) is divisible by y4m . This
implies that Q is divisible by y4m−4, and hence Q = Pm−1

24 Q′ for some Q′ ∈ C[P8, P24]. If
this polynomial is nonzero, then

24m = degWC, f (x, y) = 32 + deg Q ≥ 32 + 24(m − 1).

This contradiction proves Q = 0, and hence WC, f (x, y) = 0.

3.2 Proof of Theorem 1.1 (2)

Let C be a ternary self-dual code of length n = 12m, and let f ∈ Harm1. It is enough to
show that WC, f (x, y) = 0 by Lemma 2.1. By Theorem 2.3 (2) we have

WC, f (x, y) = xyp14Q,

where Q ∈ C[g4, g12]. Because of min(C) = 3m, WC, f (x, y) is divisible by y3m . This
implies that Q is divisible by y3m−3, and hence Q = gm−1

12 Q′ for some Q′ ∈ C[g4, g12]. If
this polynomial is nonzero, then

12m = degWC, f (x, y) = 16 + deg Q ≥ 16 + 12(m − 1).

This contradiction proves Q = 0, and hence WC, f (x, y) = 0.

3.3 Proof of Theorem 1.1 (3)

Let C be a quaternary self-dual code of length n = 6m, and let f ∈ Harm1. It is enough to
show that WC, f (x, y) = 0 by Lemma 2.1. By Theorem 2.3 (3) we have

WC, f (x, y) = xyq6Q,

where Q ∈ C[h2, h6]. Because of min(C) = 2m, WC, f (x, y) is divisible by y2m . This
implies that Q is divisible by y2m−1, and hence Q = hm−1

6 Q′ for some Q′ ∈ C[h2, h6]. If
this polynomial is nonzero, then

6m = degWC, f (x, y) = 8 + deg Q ≥ 8 + 6(m − 1).

This contradiction proves Q = 0, and hence WC, f (x, y) = 0.

123



852 T. Miezaki et al.

3.4 Proof of Theorem 1.1 (4)

Let L be an even unimodular lattice of rank 24m with minimum norm 2m. Let us assume
that P ∈ Harm2(R

24m). Then by Lemma 2.9 we have ϑL,P (z) = 0. Thus, the result follows
from Lemma 2.8.

3.5 Proof of Corollary 1.2

The following lemma is easily seen.

Lemma 3.1 ([6, Page 3, Proposition 1.4]) Let λ(S) be the number of blocks containing a
given set S of s points in a combinatorial t-(v, k, λ) design, where 0 ≤ s ≤ t . Then

λ(S)

(
k − s

t − s

)
= λ

(
v − s

t − s

)
.

In particular, the number of blocks is

v(v − 1) · · · (v − t + 1)

k(k − 1) · · · (k − t + 1)
λ.

We give the proof of Corollary 1.2 (1). The other cases can be proved similarly.
LetC be a binary doubly even self-dual code of length 24m with minimumweight 4m. By

Theorem 1.1 (1), C4m is a combinatorial 1-design. Then by Lemma 3.1, |C4m | is divisible by
6. This means that the coefficient of x24m−4m y4m in the weight enumerator of C is divisible
by 6. This completes the proof of Corollary 1.2 (1).

4 Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3.

4.1 Proof of Theorem 1.3 (1)

Let C be a binary doubly even self-dual code of length n = 24m, and let f ∈ Harm2. Then
by Theorem 2.3 (1) we have WC, f (x, y) = (xy)2P12Q for some Q ∈ C[P8, P24]. Because
of min(C) = 4m, WC, f is divisible by y4m . This implies that Q is divisible by y4m−4, and
hence Q is divisible by Pm−1

24 . Since Q has degree 24m − 16, this forces WC, f to be a
constant multiple of (xy)2P8P

2m−1
12 . The coefficient of y4m+4 in (xy)2P8P

2m−1
12 is equal to

the coefficient of y4 in
(x8 + 14x4y4 + y8)(x4 − y4)4m−2 (4.1)

which is 16 − 4m. This vanishes when m = 4. Therefore, C4m+4 = C20 is a 2-design by
Lemma 2.1.

4.2 Proof of Theorem 1.3 (2)

Let L be an even unimodular lattice of rank 24m with minimum norm 2m. Let us assume
that P ∈ Harm4(R

24m). Then by the Lemma 2.9 we have ϑL,P (z) ∈ C[E4,�]. Since L has
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A note on Assmus–Mattson type theorems 853

minimum norm 2m, ϑL,P (z) is a constant multiple of �mE4. The coefficient of q2m+2 in
�mE4 is equal to the coefficient of q2 in

(1 − 24q2)m(1 + 240q2),

which is 240 − 24m. This vanishes when m = 10. Therefore, L22 supports a spherical
5-design by Lemma 2.8.

5 Binary doubly even self-dual codes of length 96

In order to prove Theorem 1.4, let us introduce the fundamental equation for combinatorial
designs in [18]. Let � = {1, . . . , n}, and suppose that (�,B) is a combinatorial t-(n, k, λ)

design. Let c′ ∈ F
n
2 and

u j (c
′) := |{x ∈ B | |supp(c′) ∩ x | = j}|.

Then the following holds:

wt(c′)∑
j=μ

(
j

μ

)
u j (c

′) = λμ

(
wt(c′)

μ

)
, μ = 1, . . . , t, (5.1)

where we denote by λμ the number of blocks which contain a given set of μ points. Here we
note that

λμ = k(k − 1) · · · (k − μ + 1)

n(n − 1) · · · (n − μ + 1)
|B|

by Lemma 3.1. Another consequence of Lemma 3.1 is the following.

Lemma 5.1 If (�,B) is a combinatorial t-(n, k, λ) design, then |B| is divisible by the numer-
ator of

n(n − 1) · · · (n − s + 1)

k(k − 1) · · · (k − s + 1)
(s = 1, . . . , t)

as an irreducible fraction.

For the remainder of this section, we letC be a binary doubly even self-dual code of length
96 with minimum weight 16. In [11], the weight enumerator of C is determined to be

WC (x, y)

= 1 + (−28086 + a)y16 + (3666432 − 16a)y20

+ (366474560 + 120a)y24 + (18658567680 − 560a)y28

+ (422018863695 + 1820a)y32 + (4552989336064 − 4368a)y36

+ (24292464652992 + 8008a)y40 + (65727332943360 − 11440a)y44

+ (91447307757260 + 12870a)y48 + · · · , (5.2)

where
28086 < a ≤ 229152. (5.3)
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Since C has minimum weight 16,WC, f (x, y) is divisible by y16 for f ∈ Harmk with k ≥ 1.
By Theorem 2.3 (1), this implies

WC, f (x, y) ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cx2y2P8P7
12 if f ∈ Harm2,

Cx3y3P6
12P18 if f ∈ Harm3,

Cx4y4P2
8 P

6
12 if f ∈ Harm4,

Cx5y5P8P5
12P18 if f ∈ Harm5 .

(5.4)

We first investigate the coefficients of the polynomials appearing above. Note that the coef-
ficient of x96−�y� in the harmonic weight enumerator (5.4) is 0 unless � ∈ L, where the set
L is defined in (1.4).

Lemma 5.2 (1) Let x2y2P8P7
12 = ∑

c�x96−�y�. Then c� �= 0 for � ∈ L \ {20, 76}.
(2) Let x3y3P6

12P18 = ∑
c�x96−�y�. Then c� �= 0 for � ∈ L \ {48}.

(3) Let x4y4P2
8 P

6
12 = ∑

c�x96−�y�. Then c� �= 0 for � ∈ L.
(4) Let x5y5P8P5

12P18 = ∑
c�x96−�y�. Then c� �= 0 for � ∈ L \ {48}.

Proof We can check directly that c� �= 0 for � in the range specified in (1)–(4). ��
Proof of Theorem 1.4 (1) By Lemma 5.2 (1) and (5.4), we have WC, f (x, y) = 0 for f ∈
Harm2. Since every shell of C is a combinatorial 1-design by Theorem 1.1 (1), it is also a
combinatorial 2-design by Lemma 2.1.

(2) By Lemma 5.2 (2) and (5.4), we have WC, f (x, y) = 0 for f ∈ Harm3. Thus, every
shell of C is a combinatorial 3-design by Lemma 2.1. Similarly, if t = 4, 5, every shell of C
is a combinatorial t-design. The proof is complete if we show t ≤ 4 which, at the same time
proves the inequality in (3) for the case � �= 20, 48, 76. If t ≥ 5, then, in particular, C16 is a
combinatorial 5-design. Since

96 · 95 · 94 · 93 · 92
16 · 15 · 14 · 13 · 12 = 2 · 19 · 23 · 31 · 47

7 · 13 ,

Lemma 5.1 implies that |C16| = a − 28086 is divisible by 2 · 19 · 23 · 31 · 47 = 1273418.
Then we have a ≥ 1301504, contrary to (5.3).

(3) First, we give the proof for the case � = 48. Suppose t ≥ 8. We use the fundamental
equation (5.1). Take c′ ∈ C16 and write x j := u j (c′) for simplicity. Note that x j = 0 if
j > 16 or j = odd. Note also that |C48| = 91447307757260+ 12870a. Solving the system
of equations

(
16

i

)
λi =

8∑
j=0

(
2 j

i

)
x2 j (i = 0, 1, . . . , 8),

we obtain the solution x0 = 8112261172015/13528 + 70785a/838736, and x0 /∈ Z for all
integers a ∈ Z in the range (5.3). This is a contradiction.

Next, we give the proof for the cases � = 20, 76. Suppose t ≥ 6. Then C20 is a combina-
torial 6-design. Since

96 · 95 · 94 · 93 · 92 · 91
20 · 19 · 18 · 17 · 16 · 15 = 2 · 7 · 13 · 23 · 31 · 47

3 · 5 · 17 ,

Lemma 5.1 implies that |C20| is divisible by 2 · 7 · 13 · 23 · 31 · 47 = 6099002. Since
6099002 > 3666432 − 16a = |C20|, this is a contradiction.

The inequality for the case � �= 20, 48, 76 has already been proved in part (2). ��
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Recall that C is a binary doubly even self-dual code of length 96 with minimum weight
16. For each � ∈ L, we denote by t�(C) the largest integer t such that C� is a combinatorial
t-design. Let

δ(C) = min{t�(C) | � ∈ L},
s(C) = max{t�(C) | � ∈ L}.

In [22,23], the first and third authors considered the possible occurrence of δ(C) < s(C). By
Theorems 1.1 (1) and 1.4, we have

1 ≤ δ(C) ≤ 4, 2 ≤ s(C) ≤ 7.

We will show in Example 5.4 that, for all the known codes C , δ(C) = 1 < 2 = s(C) holds.
More precisely,

t�(C) =
{
2 if � ∈ {20, 76},
1 if � ∈ L \ {20, 76}. (5.5)

To do this, let us begin with the following lemma:

Lemma 5.3 (1) If t20(C) ≥ 3, then a = 141k+28086 for some integer k with 1 ≤ k ≤ 1426.
(2) If t�(C) ≥ 2 for some � ∈ L \ {20, 76}, then a = 114k + 28086 for some integer k with

1 ≤ k ≤ 1763.

Proof (1) Since

96 · 95 · 94
20 · 19 · 18 = 8 · 47

3
,

96 · 95
20 · 19 = 8 · 3,

Lemma 5.1 implies that |C20| = 3666432 − 16a is divisible by 8 · 3 · 47 = 1128. Thus
a ≡ 27 (mod 141). The result then follows from (5.3).

(2) By Theorem 1.4 (1), we have t16(C) ≥ 2. Since

96 · 95
16 · 15 = 2 · 19, 96

16
= 6,

Lemma 5.1 implies that |C16| = a − 28086 is divisible by 2 · 3 · 19 = 114. The result then
follows from (5.3). ��

The known examples of a binary doubly even self-dual code of length 96 with minimum
weight 16 are as follows:

Example 5.4 (a) Feit [13]: a = 37722.
(b) Dougherty, Gulliver and Harada [11]: a ∈ {37584, 37500, 37524, 37596}.
(c) Dontcheva [10]: a ∈ {36918, 37884, 37332}.
(d) Harada, Kiermaier, Wassermann and Yorgova [16]: a = 37194.
(e) Gulliver and Harada [14, Table 5, 6]: there are 639 values of a.

It is claimed in [11] that there exists a code with a = 37598. However, this value is
incorrect, as it contradicts Corollary 1.2. We verified that the correct value is a = 37596.

IfC is one of the codes in Example 5.4 (a)–(d), Lemma 5.3 implies immediately that (5.5)
holds.

For some codes in Example 5.4 (e), Lemma5.3 (1) does not rule out larger values of t20(C).
In fact, all the 1532 bordered double circulant codes in [14, Table 6], and 117 codes out of
4565 in [14, Table 5] satisfy the condition of Lemma 5.3 (1). We have checked, however, by
Magma that none of these codes C satisfies t20(C) ≥ 3.
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Some codes given in [14] satisfies the condition of Lemma 5.3 (2). More precisely, 92
bordered double circulant codes in [14, Table 6], and 246 codes out of 4565 in [14, Table 5]
satisfy the condition of Lemma 5.3 (2). We have checked, however, by Magma that none of
these codes C satisfies t16(C) ≥ 2. Therefore, for codes in (e), (5.5) holds as well.

We note that there is no known example C with C20 = ∅.

6 Concluding remarks

Remark 6.1 A code or lattice satisfying the assumption of Theorem 1.1 is called near-
extremal. In [20], it is shown that for sufficiently large n, there is no extremal or near-extremal
codes (resp. lattices) with length n (resp. rank n).

More precisely, it is shown in [30] that there is no extremal code with length n for

Doubly even: n = 24i (i ≥ 154), 24i + 8 (i ≥ 159), 24i + 16 (i ≥ 164),

Ternary: n = 12i (i ≥ 70), 12i + 4 (i ≥ 75), 12i + 8 (i ≥ 78),

Quaternary: n = 6i (i ≥ 17), 6i + 2 (i ≥ 20), 6i + 4 (i ≥ 22),

and it is shown in [15] that there is no near-extremal code with length n for

Doubly even: n = 24i (i ≥ 315), 24i + 8 (i ≥ 320), 24i + 16 (i ≥ 325),

Ternary: n = 12i (i ≥ 147), 12i + 4 (i ≥ 150), 12i + 8 (i ≥ 154),

Quaternary: n = 6i (i ≥ 38), 6i + 2 (i ≥ 41), 6i + 4 (i ≥ 43).

Moreover, it is shown in [17] that there is no extremal lattice with rank n > 163264. We
do not know whether it can be proved that there is no near-extremal lattice with sufficiently
large rank.

Remark 6.2 Our proof of Theorem 1.3 actually shows that, m = 4 is the only case where
we can show that t4m+4(C) ≥ 2. In fact, it can be easily verified by computer that nontrivial
vanishing of coefficients of the polynomial (4.1) for 1 ≤ m ≤ 314 (see Remark 6.1) occurs
only for the case mentioned in our proof.

Remark 6.3 Ternary and quaternary analogues of Theorem 1.3 do not exist. LetC be a ternary
(resp. quaternary) self-dual code of length 12m (resp. 6m) with minimum weight 3m (resp.
2m). By Theorem 2.3, for f ∈ Harm2, the harmonic weight enumerator is written as follows:

WC, f ∈
{
Cx2y2 p4g4g

m−1
12 if C is ternary,

Cx2y2h2h
m−1
6 if C is quaternary.

By Lemma 2.1, if the coefficient of x12m−3�y3� (resp. x6m−2�y2�) in WC, f is zero for 3m ≤
3� ≤ 12m (resp. 2m ≤ 2� ≤ 6m), thenC3� (resp.C2�) is a combinatorial 2-design. However,
no such coefficient vanishes.

Remark 6.4 An analogue of Theorem 1.4, parts (1) and (2) seems to hold. That is, for an
even unimodular lattice L of rank 240, and t = 5, 7, if L2� supports a spherical t-design for
some � �= 11, then L2� supports a spherical t-design for all nonzero � with L2� �= ∅. The
proof would require non-vanishing of coefficients of the modular forms �10E4 and �10E6

as formal power series.

123



A note on Assmus–Mattson type theorems 857

Remark 6.5 The case m = 1 in Theorem 1.1 (4) was essentially used in the proof of the
classification of even unimodular lattices of rank 24 [26] (see also [12, Proposition 3.3 and
Corollary 3.5]).
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