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Abstract
In this work, we study message authentication code (MAC) schemes supporting variable
tag lengths. We provide a formalisation of such a scheme. Several variants of the classical
Wegman-Carter MAC scheme are considered. Most of these are shown to be insecure by
pointing out detailed attacks. One of these schemes is highlighted and proved to be secure.
We further build on this scheme to obtain single-key variable tag length MAC schemes
utilising either a stream cipher or a short-output pseudo-random function. These schemes
can be efficiently instantiated using practical well known primitives.

Keywords MAC · Variable tag length · Wegman-Carter · Security bound

Mathematics Subject Classification 94A60

1 Introduction

Message authentication code (MAC) is the cryptographic mechanism to ensure the authen-
ticity of messages transmitted across a public channel. A MAC scheme typically appends a
short length tag to the message which is then transmitted. At the receiving end, a verification
algorithm is run on the message-tag pair to confirm the authenticity. In such a set-up, the
sender and the receiver share a previously agreed upon secret key.

MostMAC schemes specify a single value for the tag length. The question that we address
in this work is the following. Is it possible to have MAC schemes where the tag length can
vary? While the question seems to be a natural one, there does not appear to have been much
discussion about this issue in the literature. The only material we could locate is an almost
15-year old CFRG [26] discussion pertaining to different tag lengths suggested for the MAC
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scheme UMAC [15]. This scheme had the possibility of using 32-bit, 64-bit, 96-bit and 128-
bit tags. Finney [12], crediting “Dan Bernstein’s poly1305-aes mailing list”, had pointed out
that this feature would allow forging a 64-bit tag using about 233 queries. A later post [13]
explains the issue further and suggests how a valid 128-bit tag can be obtained with only
about 234 queries. Wagner [27] supporting the issue raised by Finney, had mentioned that
to fix the problem “it suffices to ensure that the tag length is a parameter that is immutably
bound to the key and never changed. In other words, never use the same key with different
parameter sizes.” Following this suggestion, Section 6.5 of the UMAC specification [15]
states that a “UMAC key (or session) must have an associated and immutable tag length”.
Another suggestion put forward by Finney [13] to handle the issue requires “stealing two
bits of input into the block cipher from the nonce and using them to encode tag size”. Apart
from the interesting discussion on variable tag lengths for the UMAC scheme, we know of
no other place where the issue of variable tag length MAC schemes has been considered.

The question of variable tag length received some attention in the past few years in the
context of authenticated encryption (AE) schemes and the CAESAR [9] competition.Manger
[18] pointed out that for the AE scheme OCB, 64-bit, 96-bit and 128-bit tags are defined
where the “64-bit and 96-bit tags are simply truncated 128-bit tags”. This leads to simple
truncation attacks on the scheme. An earlier paper by Rogaway and Wagner [23] had also
discussed the problem of variable tag lengths in the context of the AE schemeCCM.A formal
treatment of variable tag length AE schemes has been given by Reyhanitabar, Vaudenay and
Vizár [22].

Two concrete motivations are provided in [22] as to why a variable tag length AE scheme
may indeed be desirable in practice. The first mentions that variable tag lengths may be
used with the same key due to “misuse and poorly engineered security systems”. The second
reason is that for resource constrained devices, variable tag lengths may be desirable though
changing the key for every tag length may be infeasible due to limited bandwidth and low
power.

While the above two reasons have been put forward in the context of AE schemes, they
are equally valid for MAC schemes. More generally, the issue of “mis-implementation” (also
called “footguns”) [21] of cryptographic primitives has been extensively discussed as part of
the discussion forum on post-quantum cryptography.

More concretely, Auth256 [7] is a Wegman-Carter type construction targeted at the 256-
bit security level. Similarly, a 256-bit secure universal hash function has been proposed in
[10], which can be mated to a 256-bit secure PRF using the Wegman-Carter template to
obtain a 256-bit secure MAC. Such MAC schemes would be appropriate for high-security
applications, or, for a post-quantumworld. On the other hand, bandwidth limited applications
would require shorter tags. Also, the possibility of mis-implementation using tag truncation
remains. So, the question of designing a MAC scheme which can support various tag lengths
up to 256 bits is of practical interest.

To summarise, the problem of variable tag length MAC schemes has been briefly men-
tioned about 15 years ago. Since then, there has neither been any formal treatment of the topic
and nor has there been any variable tag lengthMAC schemewhich is accompanied by a proof
of security. The problem of constructing such MAC schemes, though, is of contemporary
and future practical interest.
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Our contributions

We provide a formalisation of the notion of security for a variable tag length MAC scheme.
For the same key, the desired tag length is to be provided as part of the input to the tag
generation algorithm. Consequently, in the security model, we allow the adversary to control
the tag length as well as the message. This is an extension of the usual security model for
MAC schemes.

We consider the problem of obtaining secure variable tag length MAC schemes. The
Wegman-Carter [29] scheme is the classical nonce-based MAC scheme. A naive approach to
obtain a variable tag length MAC scheme is to truncate tags produced by theWegman-Carter
scheme.We showan easy attack on such a truncation scheme.Next,we consider eight possible
“natural” variants that arise from the Wegman-Carter MAC scheme. We show attacks on six
of these schemes. These attacks do not repeat nonces for tag generation queries. Among
the attacked schemes is the scheme obtained by nonce stealing following the suggestion of
Finney [12] as mentioned above. One of the eight schemes is generically secure since it uses
independent keys for different tag lengths. The last of the eight schemes is proved to be
secure. This scheme uses nonce stealing but, for different tag lengths, it uses independent
keys for the universal hash function component of the Wegman-Carter scheme.

From a practical point of view, it is desirable to have a scheme which uses a single key.
The key for the hash function is then derived from the key of the scheme and the tag length.
The manner in which such derivation is made depends upon the primitive used to derive the
hash key. We show two methods of deriving the hash key. The first method uses a stream
cipher while the second method uses a short output length pseudo-random function (PRF).
So, in effect, we obtain two constructions of single key variable tag length MAC scheme.

All the schemes that we describe can be instantiated by readily available concrete cryp-
tographic primitives. For example, either of the 256-bit secure universal hash functions in
[7,10] can be combined with Salsa20 [3] to obtain nonce-based MAC schemes supporting
variable tag lengths up to 256 bits. So, our work provides templates for designing efficient
and practical MAC schemes which support variable tag lengths.

Previous and related works

The notion of MAC is several decades old. So, there is an extensive literature on this topic.
Here we mention the papers which are directly related to our work.

TheWegman-Carter [29] scheme is four decades old. Several important and practicalMAC
schemes, such asUMAC [8] and Poly1305 [4] are based on theWegman-Carter scheme. From
a theoretical point of view, the security of the Wegman-Carter scheme was later analysed by
Shoup [25] and Bernstein [5]. Recently, the optimality of Bernstein’s bound was established
in [17,20].

The point that tag lengths can vary depending on the application has been noted in [24]
where the problem of determining an economically optimal tag length has been considered
from a game theoretic point of view. This is completely different from the work reported in
the present paper.
Relation to the work of Reyhanitabar et al. [22]: The notion of authenticated encryption
with associated data (AEAD) which can support variable tag lengths was introduced in [22].
An AEAD scheme has two algorithms, namely encryption and decryption. The encryption
algorithm takes as input a nonce, a plaintext, an associated data and a tag length and returns the
corresponding ciphertext; while the decryption algorithm takes as input a nonce, a ciphertext,

123



712 S. Ghosh, P. Sarkar

an associated data and a tag length and either returns ⊥ indicating that the input is improper,
or, returns the corresponding plaintext. Such an AEAD scheme can be considered to be a
nonce-based MAC scheme where the plaintext is always fixed to the empty string and the
message to be authenticated is provided as the associated data. With this modification, the
formalisation of the authenticity of the AEAD scheme in [22] turns out to be the same as the
formalisation of the variable tag length nonce-based MAC scheme introduced in this work.
The difference between our formalisation and that of [22] is in the treatment of adversarial
resources. We have considered the notion of query profile, while the usual notion of query
complexity has been considered in [22]. In terms of construction, the contribution of [22] is
different from ours. A variant of OCB [16] is considered in [22], while we describe variants
of the Wegman-Carter scheme.

2 Definitions

Let x be a binary string: len(x) denotes the length of x ; for a non-negative integer λ,msbλ(x)
denotes the λ most significant bits of x . Given an integer i in the range 0 ≤ i < 2k − 1,
bink(i) denotes the k-bit binary representation of i .

Throughout this paper, n is a fixed positive integer.

2.1 Hash function

LetM and � be finite non-empty sets. Let {Hτ }τ∈� be an indexed family of functions such
that for each τ ∈ �, Hτ : M → {0, 1}n . The sets M and � are respectively the message
and the key spaces. Typically, a message is a binary string of some maximum length.

For distinct x, x ′ ∈ M and any n-bit string y, the differential probability of Hτ for the
triplet (x, x ′, y) is defined to be Prτ [Hτ (x) ⊕ Hτ (x ′) = y], where the probability is taken
over the uniform random choice of τ from �. The differential probability may depend on
the lengths of x and x ′. Suppose L is the maximum of the lengths of the binary strings in
M. Let ε : {0, . . . , L}2 → [0, 1] be a function such that the differential probability for any
(x, x ′, y) is at most ε(len(x), len(x ′)). Then the family {Hτ }τ∈� is said to be ε-AXU.

2.2 Pseudo-random function

Let D and R be finite non-empty sets of binary strings and K be a finite non-empty set.
Let {FK }K∈K be a keyed family of functions with FK : D → R. Informally speaking, the
function family {FK }K∈K is considered to be pseudo-random if a resource limited adversary
is unable to distinguish it from a uniform random function from D to R. This is formalised
in the following manner.

We consider an adversary A which has access to an oracle O, which is written as AO . A
adaptively sends queries toO and receives appropriate responses.At the end of the interaction,
A outputs a bit. The adversary is allowed to perform computations and also has access to
private random bits.

Let (K
$← K : AFK (·) ⇒ 1) denote the event that K is chosen uniformly at random from

K and the adversary produces 1 after interacting with the oracle FK (·). Let $(·) be a function
chosen uniformly at random from the set of all functions from D to R. Let (A$(·) ⇒ 1)
denote the event that the adversary produces 1 after interacting with the oracle $(·).
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The advantage ofA in breaking the pseudo-randomness of {FK }K∈K is defined as follows.

AdvprfF (A) = Pr

[
K

$← K : AFK (·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]
. (1)

The probabilities are over the randomness ofA, the choice of K and the randomness of $(·).
Suppose that A makes a total of q queries sending a total of σ bits in all the queries. By

AdvprfF (t, q, σ ) we will denote the maximum advantage of any adversary taking time at most
t , making at most q queries and sending at most σ bits in all its queries.

2.3 Variable tag length nonce-basedmessage authentication code

AMAC scheme has two algorithms, namely, the tag generation algorithm and the verification
algorithm. Typically, in a MAC scheme, tags are binary strings of some fixed length. The
definition of MAC schemes, however, does not require tags to have the same length. So, it is
possible to consider variable length tags within the ambit of the currently used definition of
MAC schemes.

Our goal, on the other hand, is different. We would like the tag length to be provided as
part of the input to the tag generation and verification algorithms. So, for the same message,
by providing different values of the tag length, it is possible to generate tags of different
lengths. This feature is not covered by the presently used definition of MAC schemes. We
extend the syntax of MAC schemes and the definition of security to incorporate this feature.

A nonce-based MAC scheme is given by the message space M, the nonce space N ,
the key space K, the allowed set L of tag lengths, the tag space T ; and two algorithms
nvMAC.Gen(K , N , x, λ) and nvMAC.Verify(K , N , x, tag, λ), where K ∈ K, N ∈ N , x ∈
M, λ ∈ L and tag ∈ T . We considerM,N ,K and L to be finite non-empty sets and T to be
equal to ∪i∈L{0, 1}i . We write nvMAC.GenK (N , x, λ) to denote nvMAC.Gen(K , N , x, λ),
and similarly nvMAC.VerifyK (N , x, tag, λ) to denote nvMAC.Verify(K , N , x, tag, λ).
The inputs and outputs of nvMAC.GenK (N , x, λ) and nvMAC.VerifyK (N , x, tag, λ) are as
follows.

• nvMAC.GenK (N , x, λ):
input: K ∈ K; N ∈ N ; x ∈ M; and λ ∈ L.
output: tag ∈ T is a binary string of length λ.

• nvMAC.VerifyK (N , x, tag, λ):
input: K ∈ K; N ∈ N ; x ∈ M; tag ∈ T ; and λ ∈ L such that tag is of length λ.
output: an element from the set {true, false}. The value true indicates that the input is
accepted while the value false indicates that the input is rejected.

The following correctness condition must hold.

nvMAC.VerifyK (N , x,nvMAC.GenK (N , x, λ), λ) = true.

Security: The security for a (nonce-based) MAC scheme against an adversaryA is modelled
as follows. Suppose K is chosen uniformly at random from K and the tag generation and
verification algorithms are instantiated with K .A is given oracle access to the tag generation
and the verification algorithms.Amakes a total of qg queries to the tag generation oracle and
a total of qv queries to the verification oracle. The queries are made adaptively and queries
to the tag generation oracle can be interleaved with those to the verification oracle.

Let the queries to the tag generation oracle be(
N (1)
g , x (1)

g , λ(1)
g

)
, . . . ,

(
N

(qg)
g , x

(qg)
g , λ

(qg)
g

)
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and the corresponding responses be tag(1)
g , . . . , tag

(qg)
g respectively. Similarly, let the queries

to the verification oracle be(
N (1)

v , x (1)
v , tag(1)

v , λ(1)
v

)
, . . . ,

(
N (qv)

v , x (qv)
v , tag(qv)

v , λ(qv)
v

)

and the corresponding responses be xxx(1)
v , . . . , xxx(qv)

v respectively, where for 1 ≤ j ≤ qv ,
xxx( j)

v is either true or false. The query profile of A is the list

C = (qg, qv, (n
(1)
g ,m(1)

g , λ(1)
g ), . . . , (n

(qg)
g ,m

(qg)
g , λ

(qg)
g ), (n(1)

v ,m(1)
v , λ(1)

v ),

. . . , (n(qv)
v ,m(qv)

v , λ(qv)
v )) (2)

where for 1 ≤ s ≤ qg , n
(s)
g = len(N (s)

g ),m
(s)
g = len(x (s)

g ) and for 1 ≤ s ≤ qv , n
(s)
v =

len(N (s)
v ),m

(s)
v = len(x (s)

v ).
There are two restrictions on the adversary. The first is a weaker form of nonce-respecting

behaviour, namely,
(
N (i)
g , λ

(i)
g

)
�=

(
N ( j)
g , λ

( j)
g

)
for 1 ≤ i < j ≤ qg . Note that the adversary

is allowed to repeat (nonce, tag-length) pair for verification queries and it is also allowed to
re-use a (nonce, tag-length) pair used in a tag generation query in one or more verification
queries. Usual nonce-respecting behaviour requires the nonces in the tag generation queries
to be distinct. By relaxing this condition, we provide the adversary with more power. So,
a scheme proved secure against the weaker form of nonce-respecting behaviour maintains
security even if nonces are repeated in tag generation queries as long as the (nonce, tag-length)
pairs are distinct. The second restriction on the adversary is that it should notmake any useless
query. A query is useless if its response can be computed by the adversary. This means that
the adversary should not repeat a query to the tag generation oracle or the verification oracle;

and it should not query the verification oracle with
(
N (i)
g , x (i)

g , tag(i)
g , λ

(i)
g

)
for any i in

{1, . . . , qg}.
The adversary makes a number of verification queries. The tag lengths of these queries

could be different. There is no restriction on the adversary to choose a target tag length
before making the queries to its oracles. For any tag length λ, the adversary is successful
if a verification query for this tag length returns true. So, for any value of the tag length,
there is a corresponding event that the adversary is successful for a particular tag length.
Formally, for λ ∈ L, let succA(λ) be the event that there is some j ∈ {1, . . . , qv} such that

λ
( j)
v = λ and nvMAC.VerifyK

(
N ( j)

v , x ( j)
v , tag( j)

v , λ
( j)
v

)
returns true. For each λ ∈ L, the

adversary’s advantage in breaking the authenticity of nvMAC is defined to be Pr[succA(λ)].
This is written as follows.

AdvauthnvMAC[λ](A) = Pr [succA(λ)] . (3)

The above probability is taken over the uniform random choice of K from K and over the
possible internal randomness of the adversary A.

Given a query profile C, AdvauthnvMAC[λ](t,C) is the maximum of AdvauthnvMAC[λ](A) taken
over all adversaries running in time t and having query profile C.

Remark The security model allows nonces to be repeated with different tag lengths. As
explained above, this provides the adversary with more power. We further note that allowing
nonces to be reused with different tag lengths permits generation of fewer nonces which may
be of interest in some resource-constrained applications. At this point though, we are unable
to provide a concrete example.
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Security in terms of query complexity:The query complexity is the total number of bits sent
by the adversary in all its queries. For tag generation queries, this consists of the number of bits
sent as part of the nonces, the messages and the λg’s; for verification queries, this consists of
the number of bits sent as part of the nonces, themessages, the tags and the λv’s. Let the qg tag
generation queries require a total of σg bits and the qv verification queries require a total of σv

bits. So,σg = ∑
1≤i≤qg (len(N (i)

g )+len(x (i)
g )+len(λ

(i)
g )) = ∑

1≤i≤qg (n
(i)
g +m

(i)
g +len(λ

(i)
g ))

and σv = ∑
1≤i≤qv

(len(N (i)
v )+ len(x (i)

v )+ len(tag(i)
v )+ len(λ

(i)
v )) = ∑

1≤i≤qv
(n

(i)
v +m

(i)
v +

λ
(i)
v +len(λ

(i)
v )), as len(tag(i)

v ) = λ
(i)
v . If the elements ofL are expressed as t-bit binary strings,

thenσg = ∑
1≤i≤qg (n

(i)
g +m

(i)
g )+qgt andσv = ∑

1≤i≤qv
(n

(i)
v +m

(i)
v +λ

(i)
v )+qvt.Given query

complexity (σg, σv), Adv
auth
nvMAC[λ](t, σg, σv) is the maximum of AdvauthnvMAC[λ](A) taken over

all adversaries A running in time t and having query complexity (σg, σv).
Given a query profile C of any adversary A the corresponding query complexity (σg, σv)

can be readily derived in the above manner. On the other hand, it is to be noted that, various
query profiles can have the same query complexity. Hence, in the security definition above in
terms of query complexity, when one maximises over query complexity, the value obtained
is the maximum over all possible query profiles which have that same query complexity. This
gives us the following proposition.

Proposition 1 Let us fix a query complexity (σg, σv) and let Ç(σg ,σv) be the set of all query
profiles having query complexity (σg, σv), i.e.,

Ç(σg ,σv) := {C : the query complexity of C is (σg, σv)}.
Then,

AdvauthnvMAC[λ](t, σg, σv) = maxC∈Ç(σg ,σv )
AdvauthnvMAC[λ](t,C). (4)

Later we explain the rationale for considering query profiles.

Information theoretic security: This consists of analysing the security of a MAC scheme
against a computationally unbounded adversary. In other words, the probability in (3) is
considered for an adversary A without any reference to the run time of A. For such a
computationally unbounded adversary A, without loss of generality, we may assume A
to be deterministic. In the context of information theoretic security, given a query profile C,
AdvauthnvMAC[λ](C) is the maximum of AdvauthnvMAC[λ](A) taken over all adversaries A having
query profile C.

3 Towards building a variable tag lengthMAC

It may appear that a variable tag length nonce-based MAC scheme can be obtained simply
by truncating the output of the Wegman-Carter MAC algorithm. This, however, does not
work as we show in this section. We further consider several “natural” extensions of the
Wegman-Carter MAC algorithm and show that most of them are insecure. Only two of these
extensions are secure: one of them is a generic construction, while we prove the security of
the other in the next section. Overall, the discussion in the present section may be considered
as showing the subtlety involved in constructing a variable tag length nonce-based MAC
scheme.

Let N be the nonce space and M be the message space. Let {FK }K∈K be a PRF such
that FK : N → {0, 1}n ; let {Hashτ }τ∈� be an AXU hash function such that Hashτ : M →
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{0, 1}n . Given {FK }K∈K and {Hashτ }τ∈�, the Wegman-Carter MAC [29] is the following. A
nonce-message pair (N , x) is mapped under a key (K , τ ) to FK (N ) ⊕ Hashτ (x), i.e.,

WC-nvMAC : (N , x)
(K ,τ )−→ FK (N ) ⊕ Hashτ (x). (5)

Below we argue that several natural extensions ofWC-nvMAC are not secure. We assume
that binary representation of tag lengths fit within a byte. The attacks are shown for the
following specific choice of the hash function. Under a fixed representation of the elements
of the finite field F2n , we identify the elements of F2n with the set {0, 1}n . The specific hash
function that we consider is Hashτ (x) = τ x , i.e., the output of Hashτ (x) is the n-bit string
representing the product of τ and x considered as elements of F2n . This hash function is
known to be AXU. Attacks on schemes built using this specific hash function is sufficient to
show that the schemes described below are not secure for an arbitrary AXU hash function.
The choice of the hash function fixes the key space of the hash function to be � = F2n and
the message space M to be either F2n or F2n−8 , depending on the scheme.

We will use the following simple fact about the specific hash function that we consider.

Proposition 2 Consider the AXU hash function {Hashτ }τ∈F2n where Hashτ (x) = τ x. Let x1
and x2 be distinct elements of F2n and c be such that Hashτ (x1) ⊕ Hashτ (x2) = c, then
τ = c(x1 ⊕ x2)−1.

The most obvious approach to obtain a variable tag length scheme from (5) is to truncate
the output, i.e.,

trunc : (N , x, λ)
(K ,τ )−→ msbλ(WC-nvMACK ,τ (N , x)) = msbλ(FK (N ) ⊕ Hashτ (x)).

The scheme trunc is not secure as can be seen from the following attacks. Note that in this
case the message space is F2n .

Attack 1 on trunc: Let x be a message and N be a nonce. The adversary makes a tag
generation query (N , x, n) and gets in response t . Now the adversary makes a verification
query (N , x,msbn−1(t), n − 1) and it is successful with probability 1. Thus the adversary
makes a successful forgery with only one tag generation query.

Attack 2 on trunc: Another attack which repeats nonces in tag generation queries and reveals
more information is the following. Let x1, x2 and x3 be distinct messages and N be a
nonce. The adversary makes two tag generation queries (N , x1, n) and (N , x2, n − 1) and
gets in response t1 and t2 respectively. So, we have the following relations: FK (N ) ⊕
Hashτ (x1) = t1 and msbn−1(FK (N ) ⊕ Hashτ (x2)) = t2. From the second relation, it
follows that either FK (N ) ⊕ Hashτ (x2) = t2||0 or FK (N ) ⊕ Hashτ (x2) = t2||1. Using
Proposition 2, the adversary solves the equations Hashτ (x1) ⊕ Hashτ (x2) = t1 ⊕ (t2||0)
andHashτ (x1)⊕Hashτ (x2) = t1⊕(t2||1) for τ to obtain the solutions τ0 and τ1 respectively.
As FK (N ) ⊕ Hashτ (x2) takes exactly one of the two values t2||0 or t2||1, τ takes exactly one
of the two values τ0 or τ1. Let y0 = t1 ⊕ Hashτ0(x1). The adversary makes a verification
query (N , x3, y0 ⊕ Hashτ0(x3), n). If the verification query is successful then τ0 is the
correct value of τ . If the verification query fails, then τ1 is the correct value of τ . Thus the
adversary recovers the hash key with two tag generation and one verification queries.

The first attack shows that a simple truncation of the Wegman-Carter MAC scheme does
not work while the second attack shows that by repeating nonces in tag generation queries
the hash key can be obtained. One possibility of modifying trunc is to apply FK a second
time before applying truncation, i.e., the tag is obtained asmsbλ(FK (FK (N ) ⊕ Hashτ (x))).
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The resulting scheme is also not secure. The first simple attack on trunc also works for this
modified scheme.

In the scheme trunc, the output of neither F norHash depends onλ. To rectify this situation,
one may introduce λ as part of the input of one or both of F and Hash. Another possibility is
to have one or both of the keys K and τ to depend on λ. Key dependencies are achieved by
using a family of independent keys {Kλ}λ∈L and/or a family of independent keys {τλ}λ∈L.
The various schemes that arise from such considerations are as follows.

nvMAC-t1K ,τ : (N , x, λ)
(K ,τ )−→ msbλ(FK (bin8(λ)||N ) ⊕ Hashτ (x)). (6)

nvMAC-t2K ,τ : (N , x, λ)
(K ,τ )−→ msbλ(FK (N ) ⊕ Hashτ (bin8(λ)||x)). (7)

nvMAC-t3K ,τ : (N , x, λ)
(K ,τ )−→ msbλ(FK (bin8(λ)||N ) ⊕ Hashτ (bin8(λ)||x)).

(8)

nvMAC-Generic(Kλ,τλ)λ∈L : (N , x, λ)
(Kλ,τλ)−→ msbλ(FKλ (N ) ⊕ Hashτλ (x)). (9)

nvMAC-t4(Kλ,τ )λ∈L : (N , x, λ)
(Kλ,τ )−→ msbλ(FKλ (N ) ⊕ Hashτ (x)). (10)

nvMAC-t5(Kλ,τ )λ∈L : (N , x, λ)
(Kλ,τ )−→ msbλ(FKλ (N ) ⊕ Hashτ (bin8(λ)||x)). (11)

nvMAC-t6(K ,τλ)λ∈L : (N , x, λ)
(K ,τλ)−→ msbλ(FK (N ) ⊕ Hashτλ (x)). (12)

nvMAC(K ,τλ)λ∈L : (N , x, λ)
(K ,τλ)−→ msbλ(FK (bin8(λ)||N ) ⊕ Hashτλ (x)). (13)

Dependencies of input and/or key on λ for the above schemes are summarised in Table 1.

Nonce stealing: Finney [12] had suggested that the nonce may be reduced by a few bits
and a binary encoding of the tag length be inserted. In the present context, this refers to
letting the input of F depend on the tag length. From Table 1, we see that the schemes
nvMAC-t1, nvMAC-t3 and nvMAC use nonce stealing. While nvMAC is secure (as proved
later), schemes nvMAC-t1 and nvMAC-t3 are insecure. So, nonce stealing by itself does not
guarantee security.

For the ensuing discussion,wewill consider themessage space for the schemesnvMAC-t1,
nvMAC-Generic, nvMAC-t4 and nvMAC-t6 to be F2n , and that for the schemes nvMAC-t2,
nvMAC-t3 and nvMAC-t5 to be F2n−8 .

Algorithm 1 describes an attack on nvMAC-t1 which uses findTag as a subroutine. In the
attack, the tag generation and verification oracles are denoted by Og and Ov respectively.

Table 1 For the schemes in (6)
to (13), a summary of whether the
input and/or the key of F and/or
Hash depend on the tag length λ

Scheme F Hash Secure?
i/p key i/p key

nvMAC-t1 yes no no no no

nvMAC-t2 no no yes no no

nvMAC-t3 yes no yes no no

nvMAC-Generic no yes no yes yes

nvMAC-t4 no yes no no no

nvMAC-t5 no yes yes no no

nvMAC-t6 no no no yes no

nvMAC yes no no yes yes
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On being supplied with input (N , x, λ), the function findTag(N , x, λ) finds tag such that
(N , x, tag, λ) passes the test by the verification oracle. To do this, findTag repeatedly queries
the verification oracle, until a suitable tag is obtained. The expected number of queries made
by findTag(N , x, λ) is 2λ. Algorithm 1 invokes findTag with values of the tag length which
are less than the target tag length.

The intuition behind the attack in Algorithm 1 is the following. The key (K , τ ) of the
scheme does not depend on λ. In particular, as the hash key τ does not depend on λ, the attack
retrieves τ using a smaller value of λ and uses it for the forgery with the target λ successfully.
Retrieving τ using a smaller value of λ requires significantly less number of oracle queries
than that required for an attack by exhaustive search for the target λ. The analysis of the attack
is given in Proposition 3. This divide-and-conquer attack strategy of using shorter tag length
to learn information, with low cost, which is useful for longer tag lengths has previously been
used in the context of AE [11,22].

Algorithm 1 Attack on nvMAC-t1 for λ = n.
1: set λ ← n;
2: choose λ1 ∈ L, such that λ1 < λ;
3: choose distinct N1, N2 ∈ N and distinct x1, x2, x3, x4 ∈ M;
4: tag(1) ← Og(N1, x1, λ1);
5: tag(2) ← findTag(N1, x2, λ1);
6: set C ← {};
7: do
8: choose c ← {0, 1}n−λ1 \ C;
9: set C ← C ∪ {c};
10: using Proposition 2 solve Hashτ (x1) ⊕ Hashτ (x2) = (tag(1) ⊕ tag(2))||c
11: for τ and let the solution be τc;
12: set xc ← tag(1) ⊕ msbλ1 (Hashτc (x1));

13: R(3)
v ← Ov(N1, x3, xc ⊕ msbλ1 (Hashτc (x3)), λ1);

14: while R(3)
v = false;

15: tag(4) ← Og(N2, x4, λ);
16: choose any x ∈ M \ {x4};
17: return (N2, x,Hashτc (x) ⊕ Hashτc (x4) ⊕ tag(4), λ).

findTag(N , x, λ)

1: set D ← {};
2: do
3: choose tag ← {0, 1}λ \ D;
4: set D ← D ∪ tag;
5: Rv ← Ov(N , x, tag, λ);
6: while Rv = false
7: return tag.

Proposition 3 The attack given in Algorithm 1 on the scheme nvMAC-t1 given in (6) produces
a forgery for tag length λ which is correct with probability 1. It requires one tag generation
query and at most 2λ1 + 2n−λ1 verification queries on tag length λ1 and one tag generation
query and one verification query on tag length λ.
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Proof That the attack mentioned in Algorithm 1 forges with probability 1 is proved if it can
be shown that the forgery returned by the attack in Step 17 is accepted, i.e. the corresponding
response from Ov is true.
From Step 4 we get,

msbλ1(FK (bin8(λ1)||N1) ⊕ Hashτ (x1)) = tag(1). (14)

The tag(2) returned by Step 5 satisfies

msbλ1(FK (bin8(λ1)||N1) ⊕ Hashτ (x2)) = tag(2). (15)

So, from (14) and (15) we get,

msbλ1(Hashτ (x1) ⊕ Hashτ (x2)) = tag(1) ⊕ tag(2). (16)

Here tag(1) ⊕ tag(2) is a λ1-bit binary string. Following Proposition 2, for each choice of c
in the do-while loop in Steps 7 to 14, the equation in Step 10 can be solved to get τc and xc.
The fact that Hashτ (x1)⊕Hashτ (x2) ∈ {0, 1}n and (16) suggest that there is a correct c, such
that the equation in Step 10 holds and we consider that iteration of the do-while loop which
deals with this particular c. The τc obtained in this iteration is the actual hash key used in the
scheme. So,

nvMAC-t1(N1, x3, λ1)

= msbλ1(FK (bin8(λ1)||N1) ⊕ Hashτc (x3))

= tag(1) ⊕ msbλ1(Hashτc (x1)) ⊕ msbλ1(Hashτc (x3)) (17)

= xc ⊕ msbλ1(Hashτc (x3)). (18)

The expression in (17) comes from (14) and that in (18) comes fromStep 12 inAlgorithm1.
Hence, in this particular iteration of the do-while loop,R(3)

v = true and the loop terminates.
Since λ = n, from Step 15 we obtain FK (bin8(λ)||N2) = Hashτc (x4) ⊕ tag(4). For the

choice of x in Step 16, i.e., x ∈ M \ {x4} we have
nvMAC-t1(N2, x, λ) = FK (bin8(λ)||N2) ⊕ Hashτc (x)

= Hashτc (x4) ⊕ tag(4) ⊕ Hashτc (x), (19)

which is returned as the tag for (N2, x, λ) in the forgery and hence, the corresponding response
from Ov is true with probability 1, which proves the first part of the result.

In the attack, there are 2 tag generation queries in Steps 4 and 15. The subroutine findTag
makes a maximum of 2λ1 verification queries on tags of lengths λ1. The do-while loop in
Steps 7 to 14 iterates atmost 2n−λ1 times for different values of cmaking amaximumof 2n−λ1

verification queries on tags of lengths λ1. The forgery returned in Step 17 is a verification
query on a tag of length λ. Hence, the attack requires 2 tag generation queries and at most
2λ1 + 2n−λ1 + 1 verification queries including the forgery. �
Remarks 1. One may note that this work considers variable length tags. So, the adversary

can make verification queries for a particular tag length and provide a forgery for another
tag length. The attack given in Algorithm 1 on the scheme nvMAC-t1, forges the scheme
with an n-bit tag, i.e. the attack is for tag length n; whereas, as shown in Proposition 3,
the attack requires 2 tag generation queries and 2λ1 + 2n−λ1 + 1 verification queries
including the forgery, where λ1 < λ. Among these queries, 1 tag generation query and
2λ1 + 2n−λ1 verification queries are with tag length λ1. For example, suppose n = 128,
and let λ1 = 64. So, the attack uses 265 + 1 < 2128 verification queries and produces a
forgery for tag length 128. This constitutes a valid attack for tag length 128.
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2. The security model for variable length tag nonce-basedMAC allows nonces in tag genera-
tion queries to be repeated as long as the tag lengths are distinct. The attack in Algorithm 1
does not repeat nonces in tag generation queries. So, the scheme nvMAC-t1 is insecure
even under the restriction that nonces in tag generation queries are distinct.

Insecurities of the schemes nvMAC-t1 to nvMAC-t5 follow from applications of Algorithm 1.

Attack on nvMAC-t2: Algorithm 1 works with the only modification that the forgery is
changed to (N2, x,Hashτc (bin8(λ)||x4) ⊕ tag(4) ⊕ Hashτc (bin8(λ)||x), λ).

Attack on nvMAC-t3: Algorithm 1 works with the only modification that the forgery is
changed to (N2, x,Hashτc (bin8(λ)||x) ⊕ Hashτc (bin8(λ)||x4) ⊕ tag(4), λ).

Attack on nvMAC-t4: Algorithm 1 works with the only modification that the forgery is
changed to (N2, x,Hashτc (x) ⊕ Hashτc (x4) ⊕ tag(4), λ).

Attack on nvMAC-t5: Algorithm 1 works with the only modification that the forgery is
changed to (N2, x,Hashτc (bin8(λ)||x) ⊕ Hashτc (bin8(λ)||x4) ⊕ tag(4), λ).

The insecurity of nvMAC-t6 is discussed in Appendix A.
The scheme nvMAC-Generic can be considered to be a collection of #L independent

WC-nvMAC schemes, one for each value of λ. Each of the individual schemes for fixed values
of λ are already known to be secure, since the proof from [5] applies to the individual schemes
where the values of λ are fixed. Since the keys of the various schemes are independent, it
can be argued that the collection is also secure. The problem, however, is that size of the
key increases by a factor of #L. So, nvMAC-Generic cannot be considered to be a practical
solution to the problem of obtaining a variable tag length MAC scheme.

The first step towards reducing key size is taken in the scheme nvMACwhich uses a single
key K for F and independent keys τλ. In the next section, we prove nvMAC to be secure and
also consider further variants with smaller keys.

Remark Suppose nvMAC-t1 is modified to obtain a scheme nvMAC-t1′ in the followingman-
ner. The tag is obtained asmsbλ(FK (FK (bin8(λ)||N )⊕Hashτ (x))), i.e., a second application
of FK is made before truncating. It is not difficult to show that the schememapping (N , x, λ),
under the key (K , τ ), to the quantity FK (FK (bin8(λ)||N ) ⊕ Hashτ (x)) is a PRF. It can be
argued that nvMAC-t1′ is a secure variable tag length MAC scheme. However, the security
bound for nvMAC-t1′ will be in the order of q2ε, where the total number of queries is q and
the hash function is ε-AXU. This bound is higher than the bounds obtained for the schemes
that we consider. Hence, we do not consider nvMAC-t1′. In the above discussion, we have
considered modification of nvMAC-t1 to nvMAC-t1′. The same comments apply to similar
modifications of the other insecure schemes, namely nvMAC-t2 to nvMAC-t6.

4 Secure and efficient MAC schemes with variable length tag

We start with the scheme nvMAC given in (13).We carry out an information theoretic analysis
of this scheme. To this end, we consider the scheme obtained by replacing FK with a random
function f : {0, 1}n → {0, 1}n . The tag generation algorithm for this scheme is shown in
Table 2.We require a hash family {Hashτ }τ∈�, where for each τ ∈ �,Hashτ : M → {0, 1}n ,
with M = ∪L

i=0{0, 1}i for some sufficiently large positive integer L .
The nonce space for the scheme nvMAC is N = {0, 1}n−8 and the message space is M.

Let L ⊆ {1, . . . ,min(256, n)} be the allowed set of tag lengths. Note that tag length equal to
zero is not allowed and there are 256 possible values of the tag length that are supported. If
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Table 2 A secure and efficient
nvMAC scheme from a random
function

nvMAC.Gen(τλ)λ∈L (N , x, λ)

Q = f (bin8(λ − 1)||N );

R = Q ⊕ Hashτλ (x);

tag = msbλ(R);

return tag.

λ is the tag length, then λ − 1 is at most 255 and consequently fits within a byte. So, instead
of encoding λ, we encode λ − 1. This is a modification that we make to the scheme given
in (13). Note that larger (or smaller) values of #L can be considered by suitably adjusting the
length of the nonces. From a practical point of view, however, it is difficult to think of any
application which would require #L to be more than 256.

The key space for nvMAC is �#L, i.e., a particular key is a tuple (τλ)λ∈L. The key
generation algorithm consists of choosing τλ independently and uniformly at random from
� for each λ. The verification algorithm is as follows. Given (N , x, tag, λ), compute tag′ =
nvMAC.Gen(τλ)λ∈L(N , x, λ); if tag = tag′ then return true, else return false.

Here f is a random function but, not necessarily a uniform random function. Given
q pairs (a1, b1), . . . , (aq , bq), the q-interpolation probability [5] of f is defined to be
Pr[ f (a1) = b1, . . . , f (aq) = bq ]. Following the analysis in [5], the security bound for the
resulting scheme is obtained in terms of the interpolation probability of f . Known bounds on
the interpolation probability of uniform random function and uniform random permutation
provide the corresponding bounds on the security of the resulting nvMAC schemes.

Theorem 1 In the scheme nvMAC defined in Table 2, suppose that the hash function
{Hashτ }τ∈� is ε-AXU, where ε(�, �′) ≥ 1/2n for all �, �′ ≤ L.

Fix a query profile C. For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation
(resp. verification) queries for λ which are in C. Let λ be such that qv,λ ≥ 1 and for 1 ≤
i ≤ qv,λ, let Q

(i)
v,λ = (N (i)

v,λ, x
(i)
v,λ, tag

(i)
v,λ, λ) be the i-th verification query with tag length

λ. Let �
(i)
v,λ = len(x (i)

v,λ). Corresponding to Q(i)
v,λ, there is at most one tag generation query

Q(i�)
g,λ = (N (i�)

g,λ , x (i�)
g,λ , λ) such that N (i)

v,λ = N (i�)
g,λ . Let �

(i�)
g,λ = len(x (i�)

g,λ ) if there is such a

Q(i�)
g,λ , otherwise �

(i�)
g,λ is undefined.

Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the
verification queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most
q distinct (nonce, tag-length) values. Further, suppose δi be such that the i-interpolation
probability of f is at most δi/(2n)i . Then

AdvauthnvMAC[λ0](t,C) ≤ 1

2λ0
×

∑
1≤i≤qv,λ0

γi (20)

where γi = 2nδqε
(
�
(i)
v,λ0

, �
(i�)
g,λ0

)
if there is a Q(i�)

g,λ0
corresponding to Q(i)

v,λ0
with N (i)

v,λ0
=

N (i�)
g,λ0

; otherwise γi = δq+1.

Remark It has been proved in [5], that for 1 ≤ j ≤ 2n , if f is a uniform random function,
then δ j = 1, and if f is a uniform random permutation, then δ j ≤ (1 − ( j − 1)/2n)− j/2.

Proof The proof builds upon and generalises ideas used in the security proof of theWegman-
Carter nonce-based MAC scheme given in [5].
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Let A be an adversary attacking the authenticity of nvMAC. The result concerns infor-
mation theoretic security and so we consider the adversary to be deterministic. A makes a
number of queries to its oracles and receives the appropriate responses. The interaction of
A with its two oracles is given by a transcript T which is a list of the queries made by A
and the responses it received in return. The adversary’s view of the oracles is completely
determined by the transcript T . By A(T ), we will denote the interaction of A with the ora-
cles as given by the transcript T . The responses to the queries made by A are computed
using the random function f and hence are random variables. Since A is deterministic, the
randomness in a transcript T arises only from these responses. By succ(A(T ), λ0) we will
denote the event that the adversary A with transcript T makes a verification query for tag
length λ0 which returns true. So, if the transcript T corresponds to the query profile C, then
AdvauthnvMAC[λ0](t,C) = Pr[succ(A(T ), λ0)].

The first reduction is to assume that qv,λ0 = 1. If qv,λ0 = 0, i.e., A does not make any
verification query, then clearly,A has advantage 0 so that the theorem is trivially proved. So,
suppose that A with transcript T makes qv,λ0 > 1 verification queries for tag-length λ0. Let
E be the event that the first verification query for the tag length λ0 is successful and S be the
event that one of the later verification queries for the tag length λ0 is successful. So,

AdvauthnvMAC[λ0](A) = Pr[succ(A(T ), λ0)] = Pr[E ∨ S] = Pr[E ∨ (E ∧ S)]
= Pr[E] + Pr[E ∧ S].

Given the adversary A and the transcript T , we define two adversaries A′ and A′′ and
correspondingly two transcripts T ′ and T ′′ in the following manner.

• Adversary A′ is the same as A up to and including the first verification query for tag
length λ0; the transcript T ′ is obtained from T by dropping from T all queries after the
first verification query for tag length λ0. So, Pr[succ(A′(T ′), λ0)] = Pr[E].

• Adversary A′′ is the same as A except for the first verification query for tag length λ0.
A′′ does not issue the first verification query for tag length λ0. The transcript T ′′ is the
same as that of T except that in T ′′, the answer to the first verification query for tag
length λ0 is set to be false1. The event E ∧ S captures the following situation for A
on the transcript T : the response to the first verification query for tag length λ0 is false
and A is successful on some later verification query for tag length λ0. Note that this
situation is exactly the event thatA′′ is successful for tag length λ0 on transcript T ′′. So,
Pr[succ(A′′(T ′′), λ0)] = Pr[E ∧ S].

Note thatA′′ makes qv,λ0 −1 verification queries for tag length λ0. So, the problem of proving
the result for qv,λ0 verification queries has been reduced to the problem of proving the result
for qv,λ0 − 1 verification queries. Proceeding by induction, to prove the bound given in (20),
it is sufficient to consider an adversary which makes exactly one verification query for tag
length λ0. Let the single verification query for tag length λ0 be (N , x, tag, λ0).

The second reduction is to ignore all queries in T after the verification query for tag length
λ0. Such queries have no effect on the success probability of the verification query for tag
length λ0.

The third reduction is the following. If the queries in Sλ0 give rise to less than q distinct
(nonce, tag-length) values, then insert additional tag generation queries to the transcript with

1 Bernstein’s proof in [5] for nonce-based MAC considers simulation of the first forgery attempt with the
simulator returning true if the provided tag is equal to the tag returned by a previous tag generation query on
the same nonce and message, and false otherwise. In our case, since we are disallowing useless queries, there
could not have been a previous tag generation query for the tag length λ0 with the same nonce and message as
that of the first verification query for tag length λ0. So, in our case, such a simulator would always return.false.
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(nonce, tag-length) values not equal to (N , λ0) such that the queries in the augmented Sλ0

give rise to exactly q distinct (nonce, tag-length) values. Such augmentation of the transcript
does not decrease the adversary’s advantage.

In view of the above reductions, it is sufficient to consider an adversaryAwith a transcript
T where the last query is the verification query (N , x, tag, λ0) for tag lengthλ0 and the queries
in Sλ0 give rise to exactly q distinct (nonce, tag-length) values. The transcript T can contain
any number of tag generation queries for the tag length λ0. However, by the restriction that
among the tag generation queries, the (nonce, tag-length) pair cannot repeat, T can contain
at most one tag generation query of the form (N , x ′, λ0). For λ �= λ0, the transcript T can
contain multiple verification queries with the same value for the (nonce, λ) pair. So, the total
number of queries in Sλ0 can be greater than q .

Let N = bin8(λ0 − 1)||N , Q = f (N) and τ0 = τλ0 . Let the q distinct values of (nonce,
tag-length) pairs arising from the queries in Sλ0 be (N (1), λ(1)), . . . , (N (q), λ(q)). For i =
1, . . . , q , letN(i) = bin8(λ(i) −1)||N (i) and Q(i) = f (N(i)). DefineQ = (Q(1), . . . , Q(q)).
Let q ′ be the number of distinct tag-length values arising from the queries in Sλ0 and let
λ(1), . . . , λ(q ′) be these tag lengths. For i = 1, . . . , q ′, define τi = τλ(i) and τ = (τ1, . . . , τq ′).
The entire randomness in the transcript arises from Q and τ .

Consider the final verification query (N , x, tag, λ0) and let � = len(x). Let �(�) =
len(x (�)) if there is a prior tag generation query (N (�), x (�), λ(�)) (with response tag(�))
such that N (�) = N and λ(�) = λ0; otherwise, �(�) is undefined. Let γ = 2nδqε(�, �(�)) if
�(�) is defined, otherwise, γ = δq+1. To prove the theorem, it is sufficient to show

Pr[succ(A(T ), λ0)] ≤ γ /2λ0 . (21)

The verification query is successful if tag = msbλ0(Q ⊕ Hashτ0(x)). So,

Pr[succ(A(T ), λ0)] = Pr[msbλ0(Q ⊕ Hashτ0(x)) = tag]. (22)

We consider the probability on the right hand side of (22) under two cases.
The first case is when there is no tag generation query having (nonce, tag-length) pair

to be equal to (N , λ0) in T . In this case, N(1), . . . ,N(q),N are distinct values to which f
is applied. Since the adversary is adaptive, the x and tag in the final verification query are
functions of the earlier responses it received and in turn are functions of Q and τ . We write
x ≡ x(Q, τ ) and tag ≡ tag(Q, τ ) to denote this functional dependence. We would like
to emphasise that the adversary does not have access to Q and τ and writing x and tag as
functions of Q and τ is only to help in the argument. Let a and a be arbitrary values of τ0
and τ . Let b1, . . . , bq be arbitrary n-bit strings and let b = (b1, . . . , bq). So,

Pr[msbλ0(Q ⊕ Hashτ0(x(Q, τ ))) = tag(Q, τ )]
= Pr[msbλ0(Q) = tag(Q, τ ) ⊕ msbλ0(Hashτ0(x(Q, τ )))]
=

∑
a,a

Pr[msbλ0(Q) = tag(Q, τ ) ⊕ msbλ0(Hashτ0(x(Q, τ ))) ∧ (τ = a) ∧ (τ0 = a)]

=
∑
a,a

Pr[msbλ0(Q) = tag(Q, a) ⊕ msbλ0(Hasha(x(Q, a))) ∧ (τ = a) ∧ (τ0 = a)]

=
∑
a,a

Pr[msbλ0(Q) = tag(Q, a) ⊕ msbλ0(Hasha(x(Q, a)))]Pr[(τ = a) ∧ (τ0 = a)].

(23)

Let c be an arbitrary (n − λ0)-bit binary string. We consider

Pr[msbλ0(Q) = tag(Q, a) ⊕ msbλ0(Hasha(x(Q, a)))]
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=
∑
b

Pr[msbλ0(Q) = tag(Q, a) ⊕ msbλ0(Hasha(x(Q, a))) ∧ (Q = b)]

=
∑
b

Pr[msbλ0(Q) = tag(b, a) ⊕ msbλ0(Hasha(x(b, a))) ∧ (Q = b)]

=
∑
b

Pr[msbλ0(Q) = b ∧ (Q = b)]
(
where b = tag(b, a) ⊕ msbλ0(Hasha(x(b, a)))

)
=

∑
b

Pr[msbλ0( f (N)) = b, f (N(1)) = b1, . . . , f (N(q)) = bq ]

=
∑
b

∑
c

Pr[ f (N) = b||c, f (N(1)) = b1, . . . , f (N(q)) = bq ]

≤
∑
b

2n−λ0δq+1/(2
n)q+1

= 2n−λ0δq+1/2
n = γ /2λ0 . (24)

Combining (23) and (24), we have

Pr[msbλ0(Q ⊕ Hashτ0(x(Q, τ ))) = tag(Q, τ )]
=

∑
a,a

Pr[msbλ0(Q) = tag(Q, a) ⊕ msbλ0(Hasha(x(Q, a)))]Pr[(τ = a) ∧ (τ0 = a)]

≤ γ /2λ0
∑
a,a

Pr[(τ = a) ∧ (τ0 = a)] = γ /2λ0 . (25)

This proves the first case.
In the second case, let the transcript T be such that there is a tag generation query
(N (�), x (�), λ(�)) (with response tag(�)) where N (�) = N and λ(�) = λ0. Note that by the
query restriction on the adversary, x (�) �= x . LetN(�) = bin8(λ(�)−1)||N (�), Q(�) = f (N(�))

and τ� = τλ(�) . Then Q(�) = Q and τ� = τ0. LetQ be the vector consisting of Q(1), . . . , Q(q)

but, not containing Q(�) and let τ be the vector consisting of τ1, . . . , τq ′ but, not containing
τ�. So, Q is a vector having q − 1 components and τ is a vector having q ′ − 1 components.
In this case, x ≡ x(Q, τ , tag(�)) and tag ≡ tag(Q, τ , tag(�)). As in the earlier argument,
we highlight that the adversary does not have access to Q and τ and writing x and tag as
functions ofQ and τ (and also tag(�)) is to help in the argument. Due to the adaptive nature of
the adversary, x (�) is also a function of portions ofQ and τ which corresponds to the queries
earlier to (N (�), x (�), λ(�)). Hence, we write x (�) ≡ x (�)(Q, τ ). Note that τ0 is independent
of τ .

Let a and t be arbitrary values for τ and tag(�) respectively. Then

Pr[msbλ0(Q ⊕ Hashτ0(x(Q, τ , tag(�)))) = tag(Q, τ , tag(�))]
=

∑
a,t

Pr[(msbλ0(Q ⊕ Hashτ0(x(Q, τ , tag(�)))) = tag(Q, τ , tag(�))) ∧ (τ = a)

∧(tag(�) = t)]
=

∑
a,t

Pr[(msbλ0(Q ⊕ Hashτ0(x(Q, a, t))) = tag(Q, a, t))

∧(msbλ0(Q ⊕ Hashτ0(x
(�)(Q, a))) = t) ∧ (τ = a)]
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=
∑
a

(∑
t

Pr[(msbλ0(Hashτ0(x(Q, a, t)) ⊕ Hashτ0(x
(�)(Q, a))) = tag(Q, a, t) ⊕ t)

∧(msbλ0(Q) = tag(Q, a, t) ⊕ msbλ0(Hashτ0(x(Q, a, t))))]
)

× Pr[τ = a]. (26)

Let b and a be an arbitrary value ofQ and τ0. Let c1 and c2 be arbitrary (n − λ0)-bit strings.
We consider

Pr[(msbλ0(Hashτ0(x(Q, a, t)) ⊕ Hashτ0(x
(�)(Q, a))) = tag(Q, a, t) ⊕ t)

∧(msbλ0(Q) = tag(Q, a, t) ⊕ msbλ0(Hashτ0(x(Q, a, t))))]
=

∑
b

Pr[(msbλ0(Hashτ0(x(Q, a, t)) ⊕ Hashτ0(x
(�)(Q, a))) = tag(Q, a, t) ⊕ t)

∧(msbλ0(Q) = tag(Q, a, t) ⊕ msbλ0(Hashτ0(x(Q, a, t)))) ∧ (Q = b)]
=

∑
b

Pr[(msbλ0(Hashτ0(x(b, a, t)) ⊕ Hashτ0(x
(�)(b, a))) = tag(b, a, t) ⊕ t)

∧(msbλ0(Q) = tag(b, a, t) ⊕ msbλ0(Hashτ0(x(b, a, t)))) ∧ (Q = b)]
To simplify notation, we write x(b, a, t) as x , x�(b, a) as x� and tag(b, a, t) as tag. So, we
have ∑

b

Pr[(msbλ0(Hashτ0(x) ⊕ Hashτ0(x
(�))) = tag ⊕ t)

∧(msbλ0(Q) = tag ⊕ msbλ0(Hashτ0(x))) ∧ (Q = b)]
=

∑
b,a

Pr[(msbλ0(Hasha(x) ⊕ Hasha(x (�))) = tag ⊕ t)

∧(msbλ0(Q) = tag ⊕ msbλ0(Hasha(x))) ∧ (Q = b) ∧ (τ0 = a)]
=

∑
b,a

Pr[(msbλ0(Hasha(x) ⊕ Hasha(x (�))) = tag ⊕ t) ∧ (τ0 = a)]

×Pr[(msbλ0(Q) = tag ⊕ msbλ0(Hasha(x))) ∧ (Q = b)]
=

∑
b,a

Pr[(msbλ0(Hasha(x) ⊕ Hasha(x (�))) = tag ⊕ t) ∧ (τ0 = a)]

×
(∑

c1

Pr[(Q = (tag ⊕ msbλ0(Hasha(x)))||c1) ∧ (Q = b)]
)

Let b = (tag ⊕ msbλ0(Hasha(x)))||c1). Then Pr[(Q = b) ∧ (Q = b)] is bounded from
above by the q-interpolation probability of f . So, we have

∑
b,a

Pr[(msbλ0(Hasha(x) ⊕ Hasha(x (�))) = tag ⊕ t) ∧ (τ0 = a)]

×
(∑

c1

Pr[(Q = b) ∧ (Q = b)]
)

≤
∑
b,a

Pr[(msbλ0(Hasha(x) ⊕ Hasha(x (�))) = tag ⊕ t) ∧ (τ0 = a)] × 2n−λ0
δq

(2n)q

= 2n−λ0
δq

(2n)q
×

∑
b,a

Pr[(msbλ0(Hasha(x) ⊕ Hasha(x (�))) = tag ⊕ t) ∧ (τ0 = a)]
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= 2n−λ0δq/(2
n)q ×

∑
b

Pr[msbλ0(Hashτ0(x) ⊕ Hashτ0(x
(�))) = tag ⊕ t]

= 2n−λ0δq/(2
n)q ×

∑
b

∑
c2

Pr[Hashτ0(x) ⊕ Hashτ0(x
(�)) = (tag ⊕ t)||c2]

≤ 2n−λ0δq/(2
n)q ×

∑
b

2n−λ0ε(�, �(�))

= 2n−λ0δq/(2
n)q × (2n)q−1 × 2n−λ0ε(�, �(�))

= 2n−2λ0δqε(�, �
(�)). (27)

Combining (26) and (27), we have,

Pr[msbλ0(Q ⊕ Hashτ0(x(Q, τ , tag(�)))) = tag(Q, τ , tag(�))]
≤

∑
a

(∑
t

2n−2λ0δqε(�, �
(�))

)
× Pr[τ = a]

=
∑
t

2n−2λ0δqε(�, �
(�)) ×

∑
a

Pr[τ = a]

= 2λ02n−2λ0δqε(�, �
(�))

= 2n−λ0ε(�, �(�))δq = γ /2λ0 . (28)

This proves the second case.
�

Tightness of the security bound:The schemenvMAC is obtained as a variant of theWegman-
Carter scheme. The statement and proof of Theorem 1 follows the bound on the Wegman-
Carter scheme established byBernstein [5]. Asmentioned earlier, Bernstein’s bound has been
proved to be tight [17,20]. A natural question is to consider whether the bound of Theorem 1
is also tight. We have considered this question for nvMAC. It does not seem possible to use
the proof approach used in [17,20] to show the tightness of the bound in Theorem 1. In fact,
the approach does not also seem to work for the generic scheme nvMAC-Generic.

The security bound of Theorem 1 in terms of query complexity: The statement of The-
orem 1 and the security bound provided in it are in terms of query profile. If it is to be
translated to terms of query complexity, the following point is to be noted. The hash function
{Hashτ }τ∈� may be such that, the differential probability of the hash function may depend
on the lengths of the particular queries. For example, if {Hashτ }τ∈� is a polynomial hash, the
degree of the polynomial formed from the messages and hence the corresponding differential
probability is a function of the lengths of the messages. The details of this variation in the
query lengths are lost when we move from the notion of query profile to the notion of query
complexity. As a result, the variability in the differential probability also cannot be captured
when the security is considered in terms of query complexity. In this case, a uniformity is
required in the probability and to attain that, the maximum of all the differential probabil-
ities is considered. As a result, the security bound obtained in terms of query complexity
is not precise and depending on the particular queries made by the adversary, it may be an
over-estimation by a large margin. Hence, in the detailed security analysis we consider the
notion of query profile and the security in terms of query complexity has been mentioned in
respective corollaries.

The statement of Theorem 1 and the security bound provided in it look as follows in terms
of query complexity.
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Corollary 1 In the scheme nvMAC defined in Table 2, suppose that the hash function
{Hashτ }τ∈� be such that for any distinct x, x ′ ∈ M and any y ∈ {0, 1}n, Pr[Hashτ (x) ⊕
Hashτ (x ′) = y] is at most ε ≥ 1/2n, i.e. ε is the maximum of the differential probabilities
for all combination of messages.

For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation (resp. verification) queries
forλ. Let the total number of bits in the tag generation queries beσg and that in the verification
queries be σv . Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than
the verification queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most
q distinct (nonce, tag-length) values. Further, suppose δq be such that the q-interpolation
probability of f is at most δq/(2n)q and (q + 1)-interpolation probability of f is at most
(δqε)/(2n)q . Then

AdvauthnvMAC[λ0](t, σg, σv) ≤ 2n−λ0qv,λ0δqε. (29)

Essentially, in this case the bound is similar to the bound given in the security proof of the
Wegman-Carter nonce-basedMAC scheme given in [5]. If in some case the actual queries are
such that the corresponding differential probabilities are much less than the maximum value,
then this bound becomes much higher than the actual advantage of the adversary, i.e. the
bound becomes more loose. Let us consider a numerical example to illustrate this scenario.

In this example,wewill considerHorner’s rule based hash function and the underlyingfield
to beF2n . The differential probability of theHorner’s rule based hash for twodistinctmessages
of length � and �′, where � ≥ �′, is given by ε(�, �′) = �/2n . For ease of understanding,
in this example let us consider δq = 1, which is true for a uniform random function. Let
n = 128, λ0 = 96, qv,λ0 = 1. Let us consider an (rather artificial) upper limit of 220 n-bit
blocks on the length of the message the adversary can query on. We consider some scenarios
and the corresponding query profile based advantages.

• Scenario 1: For tag length λ0, let the adversary make 1 tag generation query and 1
verification query, each on a message containing 512 blocks. The differential probability
reflected in the bound (20) is ε(512, 512) = 29/2128 and the corresponding bound
becomes 2−87.

• Scenario 2: For tag length λ0, let the adversary make 1023 tag generation queries and 1
verification query, each on a message containing 1 block. Let one of the tag generation
queries have the same nonce as the verification query. Then, the differential probability
reflected in the bound (20) is ε(1, 1) = 1/2128 and the corresponding bound becomes
2−96.

• Scenario 3: For tag length λ0, let the adversary make one tag generation query and
one verification query on messages having 220 blocks and the same nonce. Then, the
differential probability reflected in the bound (20) is ε(220, 220) = 220/2128 and the
corresponding bound becomes 2−76.

Let us now consider the query complexity based advantage for the above scenarios. Looking
at the bound in (29), we have no clue about which value of the differential probability to
be used here. The reason is, in this case, we only have the information regarding the total
query complexity, but we do not know the length of each message. As a result, we are forced
to use the maximum value of the differential probability which is obtained for 220-block
messages resulting in the differential probability to be 220/2128. The corresponding bound
given by (29) in all three scenarios becomes 2−76. So, we see that even though the query
complexities in Scenarios 1 and 2 is 1024 blocks and the query complexity in Scenario 3
is 221 blocks, the query complexity based advantage in all three cases are the same. This
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Table 3 A secure and efficient
nvMAC scheme using a stream
cipher supporting an initialisation
vector

SC-nvMAC.GenK (N , x, λ)

b = b(x);

(Q, τ ) = msb(b+1)n(SCK (bin8(λ − 1)||N ));

R = Q ⊕ Hashτ (x);

tag = msbλ(R);

return tag.

illustrates that compared to the query complexity based advantage, the query profile based
advantage provides a more granular information about the advantage.

It is to be noted that, the bound given by Bernstein [5] in the security proof of theWegman-
Carter nonce-based MAC scheme is qv,λ0δqε. This bound also lacks the information of
particular message lengths. Hence, the difficulty stated above in case of complexity based
advantage is applicable for this bound as well.

We have highlighted the differences between query profile based and query complexity
based advantages. Also, we have provided bounds for both kinds of advantages. Depending
on the requirement, one may use the appropriate kind of advantage and the corresponding
bound.

4.1 Reducing key size

In a practical instantiation of nvMAC, the random function f will be instantiated by a keyed
function FK . The key for the entire scheme will consist of the key K along with the #L keys
(τλ)λ∈L for the hash function Hash. Depending on the size of L, for certain applications, the
size of the key may be too large. Our next constructions show how to obtain nvMAC schemes
with short keys.

The hash family {Hashτ }τ∈�, the nonce spaceN , the message spaceM, the set of allowed
tag lengths L and the tag space remain the same as in the case of nvMAC.

Our goal is to derive the key for the hash function by applying a PRF to the concatenation
of the tag length and the nonce. Depending upon the actual choice of the hash function, the
key could either be an n-bit string (or, a string of some fixed length which is at least n), or,
it could be a variable length string which depends upon the length of the message. Typical
examples of hash function where the key is a fixed length string is the polynomial hash or
the BRW hash [4,6,19] while typical examples of hash function where the key depends upon
the length of the message is either the multi-linear hash [14], or the pseudo-dot product [30],
or the UMAC [8] construction.

We consider the key of the hash function to be a sequence of n-bit blocks with the last
block possibly being a partial block. Given the hash function Hash and a message x , let b(x)
denote the number of n-bit blocks of key material required by Hash to process the message
x . As mentioned above, depending upon the choice of Hash, b(x) could be independent of
x (i.e., Hash uses fixed length keys), or, it could depend upon x (i.e., Hash uses a key which
depends upon the length of x).

We start by constructing a nonce-based MAC scheme from a stream cipher supporting an
initialisation vector. The assumption on such a stream cipher is that it is a PRF [2]. Formally,
we use the PRF {SCK }K∈K, where SCK is a stream cipher which maps an n-bit string under
the key K to an output keystream. We will assume that the output keystream is of some fixed
length which is sufficiently big for all practical applications. An appropriate length prefix
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of the output keystream is used in a particular context. We denote the nvMAC scheme built
from SC as SC-nvMAC. The tag generation algorithm for the SC-nvMAC scheme is shown
in Table 3. The verification algorithm SC-nvMAC.VerifyK (N , x, tag, λ) works as follows:
compute tag′ = SC-nvMAC.GenK (N , x, λ); return true if tag = tag′, else return false.

The key space for SC-nvMAC is K. The key generation algorithm consists of sampling K
uniformly at random from K.

The security of SC-nvMAC is given by the following result.

Theorem 2 In SC-nvMAC defined in Table 3, suppose that the hash function {Hashτ }τ∈� is
ε-AXU, where ε(�, �′) ≥ 1/2n for all �, �′ ≤ L.

Fix a query profileC. For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation (resp.
verification) queries for λ which are in C. Let qg = ∑

λ∈L qg,λ and qv = ∑
λ∈L qv,λ. Let σg

(resp. σv) be the total number of bits in all the tag generation (resp. verification) queries in
C.
Let λ be such that qv,λ ≥ 1 and for 1 ≤ i ≤ qv,λ, let Q

(i)
v,λ = (N (i)

v,λ, x
(i)
v,λ, tag

(i)
v,λ, λ) be the

i-th verification query with tag length λ. Let �(i)
v,λ = len(x (i)

v,λ). Corresponding to Q(i)
v,λ, there

is at most one tag generation query Q(i�)
g,λ = (N (i�)

g,λ , x (i�)
g,λ , λ) such that N (i)

v,λ = N (i�)
g,λ . Let

�
(i�)
g,λ = len(x (i�)

g,λ ) if there is such a Q(i�)
g,λ , otherwise �

(i�)
g,λ is undefined.

Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the
verification queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most q
distinct (nonce, tag-length) values. Then

AdvauthSC-nvMAC[λ0](t,C) ≤ AdvprfSC (t + t ′, qg + qv, n(qg + qv)) + 1

2λ0
×

∑
1≤i≤qv,λ0

γi (30)

where γi = 2nε(�(i)
v,λ0

, �
(i�)
g,λ0

) if there is a Q(i�)
g,λ0

corresponding to Q(i)
v,λ0

with N (i)
v,λ0

= N (i�)
g,λ0

;
otherwise γi = 1. Here t ′ is the time required to hash qv + qg messages of total length at
most σg + σv , plus some bookkeeping time.

Proof The proof is similar to the proof of Theorem 1. We mention the differences.
The first reduction is to replace SCK by a uniform random function ρ from {0, 1}n to

{0, 1}L . The advantage of the adversary in detecting this change is captured by the term
AdvprfSC (t + t ′, qg + qv, n(qg + qv)) in (30). Let the scheme resulting from the replacement
be denoted as ρ-nvMAC.

Since SCK has been taken care of, the ensuing analysis is information theoretic. LetA be
a deterministic and computationally unbounded adversary attacking ρ-nvMAC and having
query profile C. It is required to upper bound Advauthρ-nvMAC[λ0](A).

As in the proof of Theorem 1, the task reduces to analysing the probability of the event
succ(A(T ), λ0) for a transcript T whose query profile is C.

The second reduction is to assume that qv,λ0 = 1; the third reduction is to assume that all
queries after the single verification query for tag length λ0 are discarded. These reductions are
also used in the proof of Theorem 1 and the justifications for these reductions in the present
context are the same as those described in the proof of Theorem 1. As in Theorem 1, consider
the set Sλ0 which consists of all queries made byA other than the verification queries for λ0.
Further, similar to the proof of Theorem 1, insert queries to the transcript T , to ensure that
the number of distinct (nonce, tag-length) pairs arising from the queries in Sλ0 is q .

In view of the above reductions, it is sufficient to consider an adversaryAwith a transcript
T where the last query is the verification query (N , x, tag, λ0) for tag length λ0. Also,
let (N (1), λ(1)), . . . , (N (q), λ(q)) be the distinct (nonce, tag-length) pairs arising from the
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queries in Sλ0 . For 1 ≤ i ≤ q , define N(i) = bin8(λ(i) − 1)||N (i), (Q(i), τi ) = ρ(N(i))

(considering the full length output of ρ), Q = (Q(1), . . . , Q(q)) and τ = (τ1, . . . , τq). The
entire randomness in the transcript arises from Q and τ .

At this point, we would like to mention a small difference with the proof of Theorem 1. In
the schemenvMAC, the hash key depends upon the tag length,whereas in SC-nvMAC, the hash
key is determined by (nonce, tag-length) pair. As a consequence, the vector τ defined above
has q components, while the vector τ defined in the proof of Theorem 1 has q ′ components,
where q ′ is the number of distinct tag lengths arising from the queries in Sλ0 .

Modulo this small difference, the rest of the proof is the same as the proof of Theorem 1.
In particular, the proof divides into two cases. The first case is where the adversary does not
make any previous tag generation querywith (nonce, tag-length) pair equal to (N , λ0) and the
second case is where the adversary does make such a query. The probability calculations for
these two cases are almost the same as those in the proof of Theorem 1. The only difference
is that in the present case, ρ is uniform random function and so δ j = 1. Using these values of
δ j , the calculations done in the two cases of the proof of Theorem 1 show the bound stated
in (30). �

The following corollary provides the translation of Theorem 2 in terms of query complex-
ity.

Corollary 2 In SC-nvMAC defined in Table 3, suppose that the hash function {Hashτ }τ∈� be
such that for any distinct x, x ′ ∈ M and any y ∈ {0, 1}n, Pr[Hashτ (x) ⊕ Hashτ (x ′) = y] is
at most ε ≥ 1/2n, i.e. ε is the maximum of the differential probabilities for all combination
of messages.

For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation (resp. verification) queries
for λ. Let qg = ∑

λ∈L qg,λ and qv = ∑
λ∈L qv,λ. Let σg (resp. σv) be the total number of

bits in all the tag generation (resp. verification) queries.
Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the

verification queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most q
distinct (nonce, tag-length) values. Then

AdvauthSC-nvMAC[λ0](t, σg, σv) ≤ AdvprfSC (t + t ′, qg + qv, n(qg + qv)) + 2n−λ0qv,λ0ε. (31)

Here t ′ is the time required to hash qv + qg messages of total length at most σg + σv , plus
some bookkeeping time.

In the scheme SC-nvMAC, the pair (Q, τ ) is derived by applying the stream cipher to
bin8(λ−1)||N . Since a stream cipher produces a long enough keystream, a single application
of SC is sufficient to obtain the pair (Q, τ ). Suppose that wewish to use a PRF Fwhose output
is an n-bit string (or, a short fixed length string). Clearly, then a single invocation of F will
not be sufficient to obtain the pair (Q, τ ). The PRF F will have to be invoked repeatedly to
obtain an output bit string of desired length from which the pair (Q, τ ) can be obtained.

Formally, we use a PRF family {FK}K∈K, where for each K ∈ K, FK : {0, 1}n → {0, 1}n .
Similar to the case of SC-nvMAC, the hash family {Hashτ }τ∈�, the nonce space N , the
message space M, the set of allowed tag lengths L and the tag space remain the same as in
the case of nvMAC. The key space for the scheme isK. The key generation algorithm consists
of sampling K uniformly at random from K.

The tag generation algorithmof an nvMACschemebuilt from thePRF F is shown inTable 4
and is denoted as F-nvMAC.Gen. The verification algorithm F-nvMAC.Verify(N , x, tag, λ)

works as follows. Given (N , x, tag, λ), compute tag′ = F-nvMAC.GenK (N , x, λ); if tag =
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Table 4 A secure and efficient
nvMAC scheme using a short
output length PRF

F-nvMAC.GenK (N , x, λ)

b = b(x);

S = FK (bin8(λ − 1)||N );

(Q, τ ) = FK (S ⊕ binn(1))|| · · · ||FK (S ⊕ binn(b + 1));

R = Q ⊕ Hashτ (x);

tag = msbλ(R);

return tag.

tag′, return true, else return false. In Table 4, F is used in a counter type mode of operation
which was proposed in [28].
Instantiation of Fmay be done by a fixed output length PRF such as Siphash [1]. Alternatively,
it can also be done using the encryption function EK (·) of a block cipher. Since E is a
bijection, the PRF assumption on EK (·) does not hold beyond the birthday bound. While
using EK (·), it would have been better to perform the analysis under the assumption that
EK (·) is a pseudo-random permutation (PRP). This, however, is problematic. The key τ to
the hash function is derived by applying EK (·). Under the assumption that EK (·) is a PRP, it
would not be possible to assume that τ is uniformly distributed. The differential probability
determining the AXU property of the hash function is computed based on uniform random τ .
So, if τ cannot be considered to be uniform random, the AXU property of the hash function
cannot be invoked. As a result, the proof would not go through. On the other hand, up to
the birthday bound, it is reasonable to assume that the encryption function of a secure block
cipher behaves like a PRF.

The security of F-nvMAC is given by the following result.

Theorem 3 In F-nvMAC defined in Table 4, suppose that the hash function {Hashτ }τ∈� is
ε-AXU, where ε(�, �′) ≥ 1/2n for all �, �′ ≤ L.

Fix a query profileC. For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation (resp.
verification) queries for λ which are in C. Let qg = ∑

λ∈L qg,λ and qv = ∑
λ∈L qv,λ. Let σg

(resp. σv) be the total number of bits in all the tag generation (resp. verification) queries in
C.
Let λ be such that qv,λ ≥ 1 and for 1 ≤ i ≤ qv,λ, let Q

(i)
v,λ = (N (i)

v,λ, x
(i)
v,λ, tag

(i)
v,λ, λ) be the

i-th verification query with tag length λ. Let �(i)
v,λ = len(x (i)

v,λ). Corresponding to Q(i)
v,λ, there

is at most one tag generation query Q(i�)
g,λ = (N (i�)

g,λ , x (i�)
g,λ , λ) such that N (i)

v,λ = N (i�)
g,λ . Let

�
(i�)
g,λ = len(x (i�)

g,λ ) if there is such a Q(i�)
g,λ , otherwise �

(i�)
g,λ is undefined.

Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the
verification queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most q
distinct (nonce, tag-length) values. Then

AdvauthF-nvMAC[λ0](t,C) ≤ AdvprfF (t + t ′, Bg + Bv, n(Bg + Bv))

+ (Bg + Bv)
2

2n
+ 1

2λ0
×

∑
1≤i≤qv,λ0

γi (32)

where

• γi = 2nε(�(i)
v,λ0

, �
(i�)
g,λ0

) if there is a Q(i�)
g,λ0

corresponding to Q(i)
v,λ0

with N (i)
v,λ0

= N (i�)
g,λ0

;
otherwise γi = 1;
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• b(i)
v,λ = b(x (i)

v,λ), Bv = ∑
λ

∑
1≤i≤qv,λ

(b(i)
v,λ + 2);

• b(i)
g,λ = b(x (i)

g,λ), Bg = ∑
λ

∑
1≤i≤qg,λ

(b(i)
g,λ + 2).

Here t ′ is the time required to hash qv + qg messages of total length at most σg + σv , plus
some bookkeeping time.

Proof The proof is very similar to the proofs of Theorems 1 and 2. We briefly discuss the
differences. There are two differences in the bound.

The first difference is in the number of queries to the PRF F in the expression AdvprfF . In
the present case, if a query requires b + 1 n-bit blocks to obtain the pair (Q, τ ), the number
of times F is invoked is b+2. The rest of the analysis proceeds by replacing Fwith a uniform
random function ρ from {0, 1}n to {0, 1}n .

The main argument requires that for distinct values of (N , λ), the random variables (Q, τ )

are independent and uniformly distributed. The pair (Q, τ ) is derived by successively apply-
ing ρ to S⊕binn(1), . . . , S⊕binn(b+1)where S itself is obtained by applying ρ to bin8(λ−
1)||N . If for distinct values of (N , λ), the quantities S, S⊕ binn(1), . . . , S⊕ binn(b+ 1) are
distinct, then the independent and uniform random distribution of (Q, τ ) is ensured.

Let the q distinct values of (nonce, tag-length) pairs arising from the queries in Sλ0 be
(N (1), λ(1)), . . . , (N (q), λ(q)). LetD(i) = {S(i), S(i) ⊕binn(1), . . . , S(i) ⊕binn(b(i) + 1)} be
the set of random variables in the input of ρ corresponding to (N (i), λ(i)). LetD = ∪q

i=1D(i)

and so #D ≤ Bg+Bv . Let bad be the event that any two of the variables inD are equal. Using
the fact thatρ is a uniform randomfunction, it is standard to see that Pr[bad] ≤ (Bg+Bv)

2/2n .
LetA be an adversary attacking the scheme where F is replaced with ρ. We assume thatA

is deterministic and computationally unbounded. Let succ(A) be the event that an adversary
A is successful. Then

Pr[succ(A)] ≤ Pr[bad] + Pr[succ(A)|bad]
≤ (Bg + Bv)

2

2n
+ Pr[succ(A)|bad].

Conditionedon the eventbad, the pairs (Q(i), τ (i)) are independent anduniformlydistributed.
From this point onwards, the rest of the proof is exactly the same as the proof of Theorem 2
and provides the same bound. We skip these details. �

The following corollary provides the translation of Theorem 3 in terms of query complex-
ity.

Corollary 3 In F-nvMAC defined in Table 4, suppose that the hash function {Hashτ }τ∈� be
such that for any distinct x, x ′ ∈ M and any y ∈ {0, 1}n, Pr[Hashτ (x) ⊕ Hashτ (x ′) = y] is
at most ε ≥ 1/2n, i.e. ε is the maximum of the differential probabilities for all combination
of messages.

For λ ∈ L, let qg,λ (resp. qv,λ) be the number of tag generation (resp. verification) queries
for λ. Let qg = ∑

λ∈L qg,λ and qv = ∑
λ∈L qv,λ. Let σg (resp. σv) be the total number of

bits in all the tag generation (resp. verification) queries.
Let λ be such that qg,λ, qv,λ ≥ 1 and for 1 ≤ i ≤ qg,λ, let Q

(i)
g,λ = (N (i)

g,λ, x
(i)
g,λ, λ) be the i-

th tag generation query with tag length λ; for 1 ≤ i ≤ qv,λ, let Q
(i)
v,λ = (N (i)

v,λ, x
(i)
v,λ, tag

(i)
v,λ, λ)

be the i-th verification query with tag length λ.
Fix λ0 ∈ L. Let Sλ0 be the set of all queries made by the adversary other than the

verification queries for tag length λ0. Suppose that the queries in Sλ0 give rise to at most q
distinct (nonce, tag-length) values. Then
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AdvauthF-nvMAC[λ0](t, σg, σv) ≤ AdvprfF (t + t ′, Bg + Bv, n(Bg + Bv))

+ (Bg + Bv)
2

2n
+ 2n−λ0 × qv,λ0ε, (33)

where b(i)
v,λ = b(x (i)

v,λ), b(i)
g,λ = b(x (i)

g,λ), Bv = ∑
λ

∑
1≤i≤qv,λ

(b(i)
v,λ + 2) and Bg =

∑
λ

∑
1≤i≤qg,λ

(b(i)
g,λ + 2). Here t ′ is the time required to hash qv + qg messages of total length

at most σg + σv , plus some bookkeeping time.

5 Conclusion

In this paper, we have considered the problem of constructing variable tag length MAC
schemes. Several variants obtained from theWegman-Carter MAC scheme have been shown
to be insecure. One of these variants is proved to be secure. This scheme is extended to
obtain constructions of single-key nonce-based variable tag length MAC schemes using
either a stream cipher or a short-output PRF.

Acknowledgements We are grateful to the reviewers for their detailed reading of the paper and for providing
helpful comments.

A Attack on nvMAC-t6

The attack is described in Algorithm 2.

Proposition 4 The attack given in Algorithm 2 on the scheme nvMAC-t6 produces a forgery
for tag length λ which is correct with probability 1. It requires at most 2λ1+1 + 2n−λ1 verifi-
cation queries on tag length λ1 and one tag generation query and at most 2n−λ1 verification
queries on tag length λ.

Proof That the attackmentioned inAlgorithm 2 forges with probability 1 is proved if it can be
shown that there is an iteration of the do-while loop in Steps 17 to 24 such thatR(5)

v = true,
i.e. there is a verification query in Step 23 which succeeds.

From Steps 4 and 5, we get that

msbλ1(FK (N1) ⊕ Hashτλ1
(x1)) = tag(1). (34)

msbλ1(FK (N1) ⊕ Hashτλ1
(x2)) = tag(2). (35)

So,

msbλ1(Hashτλ1
(x1) ⊕ Hashτλ1

(x2)) = tag(1) ⊕ tag(2). (36)

Here tag(1) ⊕ tag(2) is a λ1-bit binary string.
Following Proposition 2, for each choice of c1 in the do-while loop in Steps 17 to 24, the

equation in Step 10 can be solved to get τc1 and xc1 . The fact thatHashτλ1
(x1)⊕Hashτλ1

(x2) ∈
{0, 1}n and (36) suggest that there is a correct c1, such that the equation in Step 10 holds and
we consider that iteration of the do-while loop which deals with this particular c1. The τc1
obtained in this iteration is the actual hash key used in the scheme. So,
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Algorithm 2 Attack on nvMAC-t6 for λ = n:
1: set λ ← n;
2: choose λ1 ∈ L, such that λ1 < λ;
3: choose any N1 ∈ N and distinct x1, x2, x3, x4, x ∈ M;
4: tag(1) ← findTag(N1, x1, λ1);
5: tag(2) ← findTag(N1, x2, λ1);
6: set C1 ← {};
7: do
8: choose c1 ← {0, 1}n−λ1 \ C1;
9: set C1 ← C1 ∪ {c1};
10: using Proposition 2 solve Hashτλ1

(x1) ⊕ Hashτλ1
(x2) = (tag(1) ⊕ tag(2))||c1

11: for τλ1 and let the solution be τc1 ;

12: set xc1 ← tag(1) ⊕ msbλ1 (Hashτc1
(x1));

13: R(3)
v ← Ov(N1, x3, xc1 ⊕ msbλ1 (Hashτc1

(x3)), λ1);

14: while R(3)
v = false;

15: tag(4) ← Og(N1, x4, λ);
16: set C2 ← {};
17: do
18: choose c2 ← {0, 1}n−λ1 \ C2;
19: set C2 ← C2 ∪ {c2};
20: solve Hashτλ (x4) = msbλ1 (tag

(4)) ⊕ xc1 ||c2
21: for τλ and let the solution be τc2 ;

22: set xc2 ← (msbλ1 (tag
(4)) ⊕ xc1 ||c2) ⊕ tag(4);

23: R(5)
v ← Ov(N1, x, xc2 ⊕ Hashτc2

(x), λ);

24: while R(5)
v = false.

nvMAC-t6(N1, x3, λ1)

= msbλ1(FK (N1) ⊕ Hashτc1
(x3))

= tag(1) ⊕ msbλ1(Hashτc1
(x1)) ⊕ msbλ1(Hashτc1

(x3)) (37)

= xc1 ⊕ msbλ1(Hashτc1
(x3)). (38)

The expression in (37) comes from (34) and that in (38) comes from Step 12 in Algorithm 2.
Hence, in this particular iteration of the do-while loop,R(3)

v = true and the loop terminates.
Noting that λ = n, from Step 15, we get

FK (N1) ⊕ Hashτλ (x4) = tag(4) ⇒ Hashτλ (x4) = tag(4) ⊕ FK (N1). (39)

Here, the n bits of tag(4) andmsbλ1(·) of FK (N1), which is xc1 , are known. As Hashτλ (x4) ∈
{0, 1}n , there is a c2 ∈ {0, 1}n−λ1 , such that,

Hashτλ (x4) = msbλ1(tag
(4) ⊕ FK (N1))||c2 = (msbλ1(tag

(4)) ⊕ xc1)||c2. (40)

For the correct choice of c2, the correct values of τc2 and xc2 are obtained in Steps 21 and 22
respectively. For the correct c2, from (39) and (40), we get,

FK (N1) = Hashτλ (x4) ⊕ tag(4) = ((msbλ1(tag
(4)) ⊕ xc1)||c2) ⊕ tag(4), (41)

which equals xc2 according to Step 22 in Algorithm 2. Hence,

nvMAC-t6(N1, x, λ) = FK (N1) ⊕ Hashτc2
(x) = xc2 ⊕ Hashτc2

(x). (42)
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The last equality follows from (41). From (42), it is clear that for the iteration of the do-while
loop in Steps 17 to 24, in which the correct c2 is used,R(5)

v = true with probability 1, which
proves the first part of the Lemma.

Steps 4 and 5 each require at most 2λ1 verification queries for tag length λ1. Step 13
requires at most 2n−λ1 verification queries for tag length λ1. A tag generation query for tag
length λ is made in Step 15 and at most 2n−λ1 verification queries are made for tag length λ

in Step 23. This shows the complexity of the attack. �

Remarks 1. With λ = n suppose λ1 = n/2. Then the adversary makes a maximum of
3 · 2n/2 verification queries for tag length n/2, one tag generation query and at most 2n/2

verification queries for tag length n. It produces a forgery for tag length n which is correct
with probability 1. So, this is a valid forgery attack for tag length n.

2. Algorithm 2 makes a single tag generation query. Hence, the issue of repeating nonces in
tag generation queries does not arise.
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