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Abstract
Boomerang connectivity table is a new tool to characterize the vulnerability of cryptographic
functions against boomerang attacks. Consequently, a cryptographic function is desired to
have boomerang uniformity as low as its differential uniformity. Based on generalized butter-
fly structures recently introduced by Canteaut, Duval and Perrin, this paper presents infinite
families of permutations of F22n for a positive odd integer n, which have the best known
nonlinearity and boomerang uniformity 4. Both open and closed butterfly structures are
considered. The open butterflies, according to experimental results, appear not to produce
permutations with boomerang uniformity 4. On the other hand, from the closed butterflies
we derive a condition on coefficients α, β ∈ F2n such that the functions

Vi (x, y) := (Ri (x, y), Ri (y, x)),

where Ri (x, y) = (x + αy)2
i+1 + β y2

i+1 and gcd(i, n) = 1, permute F
2
2n and have

boomerang uniformity 4. In addition, experimental results for n = 3, 5 indicate that the
proposed condition seems to cover all such permutations Vi (x, y) with boomerang unifor-
mity 4.
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1 Introduction

Substitution boxes, known as S-boxes for short, are crucial nonlinear building blocks in mod-
ern block ciphers. In accordance with known attacks in the literature, S-boxes used in block
ciphers are required to satisfy various cryptographic criteria, including high nonlinearity [6],
low differential uniformity [17] and bijectivity. In Eurocrypt’18, Cid, Huang, Peyrin, Sasaki
and Song [7] introduced a new tool of S-boxes, so-called the boomerang connectivity table
(BCT), which analyzes the dependency between the upper part and lower part of a block
cipher in a boomerang attack. This new tool quickly attracted researchers’ interest in study-
ing properties and bounds of BCT of cryptographic functions. Boura and Canteaut in [1]
investigated the relation between entries in BCT and the difference distribution table (DDT),
and introduced the notion of the boomerang uniformity, which is the maximum value in
BCT among all nonzero differences of inputs and outputs. They completely characterized
the BCTs of 4-bit S-boxes with differential uniformity 4 classified in [10], and also deter-
mined the boomerang uniformities of the inverse function and the Gold function. Later, Li,
Qu, Sun and Li in [12] provided an equivalent formula to compute the boomerang unifor-
mity of a cryptographic function. Using the new formula, they characterized the boomerang
uniformity by means of the Walsh transform, and computed the boomerang uniformities of
some permutations with low differential uniformity. Mesnager, Tang and Xiong considered
the boomerang uniformity of quadratic permutations in [16], where they presented a char-
acterization of quadratic permutations with boomerang uniformity 4 and showed that the
boomerang uniformity of certain quadratic permutations is preserved under extended affine
(EA) equivalence. Recently, Calderini and Villa [3] also investigated the boomerang uni-
formities of some non-quadratic permutations with differential uniformity 4. Very recently,
Tian, Boura and Perrin [20] studied the boomerang uniformity of some popular constructions
used for building large S-boxes, e.g. for eight variables from smaller ones.

It is shown that the boomerang uniformity of a cryptographic function is greater than
or equal to its differential uniformity, and that the lowest possible boomerang uniformity 2
is achieved by almost perfect nonlinear (APN) functions [1,7]. Clearly, APN permutations
operating on even number of variables are most interesting. The problem of existence of APN
permutations of F22n is referred to as the BIG APN problem in the community. Nonetheless,
by far no other instance for this problem, except for the Dillon APN permutation of F26 ,
has been found. Hence it is of great interest to construct permutations of F22n that have high
nonlinearity, differential and boomerang uniformity 4. Up to now, there are only three infinite
and inequivalent families of permutations over F22n that have boomerang uniformity 4 for
odd integers n ≥ 1:

(1) f (x) = x−1 over F22n [1];

(2) f (x) = x2
2i+1 over F2n , where gcd(i, n) = 1 [1];

(3) f (x) = αx2
2s+1 + α22k x2

−2k+22k+2s
over F22n , where n = 3k, 3 � k, 3 | (k + s),

gcd(3k, s) = 1, and α is a primitive element of F22n [16].

In Crypto’16, Perrin, Udovenko and Biryukov [19] investigated the only APN permu-
tation over F26 [2] by means of reverse-engineering and proposed the open butterfly and
the closed butterfly structures. A generalized butterfly structure was later proposed in [4].
The butterfly structures represent functions over F

2
2n in terms of bivariate form. It is shown

that the open butterfly structure produces permutations of F
2
2n , which are CCZ-equivalent

to the functions that are derived from the closed structure and are in simpler forms [19].
Since differential uniformity is an invariant under CCZ-equivalence, one may consider to
combine open and closed butterfly structures to construct permutations with low differential
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uniformity. As a matter of fact, by investigating differential uniformity of functions from the
closed butterfly structure, researchers constructed several infinite families of differentially
4-uniform permutations over F

2
2n with the open butterfly structure [4,5,8,14].

Motivated by recent works on the butterfly structure, this paper aims to construct infinite
families of permutations with boomerang uniformity 4 from generalized butterfly structures.
The main result of this paper is given as follows.

Theorem 1 Let q = 2n with n odd, gcd(i, n) = 1 and Ri (x, y) = (x + αy)2
i+1 + β y2

i+1

with α, β ∈ F
∗
q , where F

∗
q = Fq\{0}. Then the function

Vi (x, y) := (Ri (x, y), Ri (y, x))

from the closed butterfly structure permutes F
2
q and has boomerang uniformity 4 if (α, β) is

taken from the following set

Γ =
{
(α, β) ∈ F

∗
q × F

∗
q : ϕ2i

2 = ϕ1ϕ
2i−1
3 and ϕ3 �= 0

}
, (1)

where ϕ1, ϕ2, ϕ3 are given by
⎧
⎪⎪⎨
⎪⎪⎩

ϕ1 = (α + 1)2
i+1+2 + α2i+2 + α2i + αβ + β2

ϕ2 = (α + 1)2
i+1+2 + α2i+1+1 + α + α2i β + β2

ϕ3 = (α + 1)2
i+1+2 + β2.

(2)

For the statement in Theorem 1, we will compute the boomerang uniformity by directly
investigating the bivariate form Vi (x, y), and prove the permutation property of Vi (x, y) by
examining its univariate polynomial representation over Fq2 .

The rest of this paper is organized as follows. Section 2 firstly recalls the definitions
of differential uniformity, boomerang uniformity, butterfly structure and introduces some
auxiliary results. Sections 3 and 4 are devoted to proving the permutation property and the
boomerang uniformity in Theorem 1, respectively. Finally, Sect. 5 draws a conclusion of our
work.

2 Preliminaries

In this section, we assume n is an arbitrary positive integer and q = 2n . Let Trq(·) denote
the absolute trace function over Fq , i.e., Trq(x) = x + x2 + · · · + x2

n−1
for any x ∈ Fq . For

any set E , the nonzero elements of E is denoted by E\{0} or E∗.

2.1 Differential uniformity and Boomerang uniformity

The concept of differential uniformity was introduced to reveal the subtleties of differential
attacks.

Definition 2 [17] Let f (x) be a function from Fq to itself and a, b ∈ Fq . The difference
distribution table (DDT) of f (x) is given by a q ×q table D, in which the entry for the (a, b)
position is given by

DDT (a, b) = #{x ∈ Fq : f (x + a) + f (x) = b}.
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740 K. Li et al.

The differential uniformity of f (x) is given by

Δ f = max
a∈F∗

q ,b∈Fq
DDT (a, b).

It is straightforward for any function from Fq to itself, each entry in its DDT takes an even
value and its differential uniformity is no less than 2. A function with the minimum possible
differential uniformity 2 is called an almost perfect nonlinear (APN) function.

The concept of boomerang connectivity table of a permutation f from F
n
2 to itself was

introduced in [7], which clearly is also suitable for the case F2n . Later, Boura and Canteaut
introduced the concept of the boomerang uniformity, which is defined by the maximum value
in BCT excluding the first row and column.

Definition 3 [1,7] Let f be an invertible function from Fq to itself and a, b ∈ Fq . The
boomerang connectivity table (BCT) of f is given by a q × q table, in which the entry for
the (a, b) position is given by

BCT (a, b) = #
{
x ∈ Fq : f −1( f (x) + b) + f −1( f (x + a) + b) = a

}
. (3)

The boomerang uniformity of f is defined by

δ f = max
a,b∈F∗

q

BCT (a, b).

It is shown in [1,7] that BCT (a, b) ≥ DDT (a, b) for any a, b in Fq . In [12], Li et al.
presented an equivalent formula to compute BCT and the boomerang uniformity without
knowing f −1(x) and f (x) simultaneously as follows.

Proposition 4 [12] Let q = 2n and f (x) ∈ Fq [x] be a permutation polynomial over Fq .
Then the BCT of f (x) can be given by a q × q table BCT , in which the entry BCT (a, b)
for the (a, b) position is given by the number of solutions (x, y) in Fq × Fq of the following
equation system. {

f (x + a) + f (y + a) = b,

f (x) + f (y) = b.
(4)

Equivalently, the boomerang uniformity of f (x), given by δ f , is the maximum number of
solutions in Fq × Fq of (4) as a, b run through F

∗
q .

Let f be a quadratic function from Fq to itself with f (0) = 0. The associated symmetric
bilinear mapping is given by S f (x, y) = f (x + y) + f (x) + f (y), where x, y ∈ Fq . For
any a ∈ Fq , define

Im f ,a = {S f (a, x) : x ∈ Fq}.
Very recently, Mesnager et al. [16] presented a characterization about quadratic permutations
with boomerang uniformity 4 using the new formula (4).

Lemma 5 [16] Let q = 2n and f be a quadratic permutation of Fq with differential unifor-
mity 4. Then the boomerang uniformity of f equals 4 if and only if Im f ,a = Im f ,b for any
a, b ∈ F

∗
q satisfying S f (a, b) = 0.
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2.2 The butterfly structure

In Crypto’16, Perrin, Udovenko and Biryukov [19] analyzed the only known APN per-
mutation over F26 [2] and discovered that the APN permutation over F26 has a simple
decomposition relying on x3 over F23 . Based on the power permutation xe over F2n , they
presented the open butterfly structure and the closed butterfly structure, which were later
generalized in [4].

Definition 6 [19] Let q = 2n and α ∈ Fq , e be an integer such that xe is a permutation over
Fq and Rk[e, α] be the keyed permutation

Rk[e, α](x) = (x + αk)e + ke.

The following functions

Hα
e (x, y) =

(
R−1
Ry [e,α](x)(y), Ry[e, α](x)

)
,

V α
e (x, y) = (

Ry[e, α](x), Rx [e, α](y))

are called the open butterfly structure and closed butterfly structure respectively.

Definition 7 [4] Let q = 2n and R(x, y) be a bivariate polynomial of Fq such that Ry : x →
R(x, y) is a permutation of Fq for all y in Fq . The closed butterfly VR is the function of F

2
q

defined by

VR(x, y) = (R(x, y), R(y, x)),

and the open butterfly HR is the permutation of F
2
q defined by

HR(x, y) =
(
RR−1

y (x)(y), R
−1
y (x)

)
,

where Ry(x) = R(x, y) and R−1
y (Ry(x)) = x for any x, y.

Define a bivariate polynomial

Ri (x, y) = (x + αy)2
i+1 + β y2

i+1, gcd(i, n) = 1, α, β ∈ Fq .

Since n is odd, it is clear that the mapping x �→ Ri (x, y) is a permutation of Fq for any fixed
y ∈ Fq . According to experimental results, the permutation HRi (x, y) from Ri (x, y) and the
open butterfly structure seems not to have boomerang uniformity 4 of F

2
23
. Hence this paper

concentrates on the closed butterfly structure.

Lemma 8 [14] Let n be odd, q = 2n, i be an integer with gcd(i, n) = 1, α, β ∈ F
∗
q and

β �= (α + 1)2
i+1. Then the function

Vi := (Ri (x, y), Ri (y, x)) with Ri (x, y) = (x + αy)2
i+1 + β y2

i+1

has differential uniformity at most 4.

Recall that the boomerang uniformity of a function is no less than its differential uniformity.
The result about Vi (x, y) in Lemma 8 motivates our study on the coefficients α, β in F

∗
q that

can further result in permutations Vi (x, y) with boomerang uniformity 4.
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742 K. Li et al.

2.3 Useful Lemmas

This subsection summarizes some lemmas that will be used for proving the permutation
property of the function in Theorem 1.

Lemma 9 [18,21,22] Pick d, r > 0 with d | (q − 1), and let h(x) ∈ Fq [x]. Then f (x) =
xr h

(
x (q−1)/d

)
permutes Fq if and only if both

(1) gcd(r , (q − 1)/d ) = 1 and
(2) g(x) = xr h(x) (q−1)/d permutes μd , where μd := {x ∈ Fq : xd = 1}.

Let the unit circle of Fq2 be defined by

μq+1 := {x ∈ Fq2 : xq+1 = 1}.
The unit circle of Fq2 has the following relation with the finite field Fq .

Lemma 10 [9] Let γ be any fixed element in Fq2\Fq . Then we have

μq+1\{1} =
{

x + γ

x + γ q
: x ∈ Fq

}
.

The following lemma is about the solutions of a linear equation. The proof is easy and we
omit it.

Lemma 11 Let q = 2n and gcd(i, n) = 1. Then for any a ∈ Fq , the equation x2
i + x = a

has solutions in Fq if and only if Trq(a) = 0. Moreover, when Trq(a) = 0, the equation

x2
i + x = a has exactly two solutions x = x0, x0 + 1 in Fq .

Lemma 12 [15] LetR be a commutative ringwith identity. TheDickson polynomial Dk(x, a)

of the first kind of degree k

Dk(x, a) =
� k
2 	∑

j=0

k

k − j

(
k − j

j

)
(−a) j xk−2 j

has the following properties:

(1) Dk(x1 + x2, x1x2) = xk1 + xk2 , where x1, x2 are two indeterminates;
(2) Dk+2(x, a) = xDk+1(x, a) − aDk(x, a);
(3) Dk	(x, a) = Dk

(
D	(x, a), a	

)
;

(4) if R = F2n , then D2i (x, a) = x2
i
.

By the above lemma, the Dickson polynomial of degree k = 2i − 1 over F2n can be
explicitly given.

Lemma 13 For any positive integer i and element a ∈ F2n ,

D2i−1(x, a) =
i−1∑
j=0

a2
j−1x2

i−2 j+1+1. (5)
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Proof Weprove the statement by induction. It is clear that (5) holds for i = 1 since D1(x, a) =
x . Suppose that (5) holds for i − 1, namely,

D2i−1−1(x, a) =
i−2∑
j=0

a2
j−1x2

i−1−2 j+1+1. (6)

By Lemma 12 (3) and (4), we have

D2i−2(x, a) = D2i−1−1
(
D2(x, a), a2

)

= D2i−1−1
(
x2, a2

)

=
i−2∑
j=0

a2(2
j−1)x2(2

i−1−2 j+1+1)

=
i−1∑
j=1

a2
j−2x2

i−2 j+1+2.

In addition, according to Lemma 12 (2),

D2i (x, a) = xD2i−1(x, a) + aD2i−2(x, a).

Thus,

D2i−1(x, a) = x−1
(
x2

i + aD2i−2(x, a)
)

= x−1

⎛
⎝x2

i + a
i−1∑
j=1

a2
j−2x2

i−2 j+1+2

⎞
⎠

=
i−1∑
j=0

a2
j−1x2

i−2 j+1+1,

which implies that (5) holds for the i case. Therefore, the desired conclusion follows. 
�
Let γ be a primitive element of F22 , i.e, γ

2 = γ + 1. Let n be a positive odd integer and
q = 2n . The finite field Fq2 = Fq(γ ) and the basis 1, γ of Fq2 over Fq induces a one-to-one
correspondence between F

2
q and Fq2 as follows:

z = x + γ y ↔ (x, y) = (γ 2z + γ zq , zq + z).

According to the one-to-one correspondence between F
2
q and Fq2 , the closed butterfly

structure Vi (x, y) = (Ri (x, y), Ri (y, x)) overF2
q can be expressed in a univariate z = x+γ y

as

Vi (z) := Ri (x, y) + γ Ri (y, x) with x = γ 2z + γ zq , y = zq + z.

By substituting z with γ z when i is odd (resp. γ 2z when i is even), the above univariate
polynomial can be transformed into

fi (z) = ε1z
q·(2i+1) + ε2z

q·2i+1 + ε3z
2i+q + ε4z

2i+1, (7)

where the coefficients

(ε1, ε2, ε3, ε4) =
{

(ε1, ε2, ε3, ε4), for even i

(ε3, ε4, ε1, ε2), for odd i,
(8)
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744 K. Li et al.

with ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε1 = α2i + α + 1

ε2 = α2i+1 + α + β + 1

ε3 = α2i+1 + α2i + β + 1

ε4 = α2i+1 + α2i + α + β.

(9)

Further, we define ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ1 = ε1ε3 + ε2ε4

ϕ2 = ε1ε2 + ε3ε4

ϕ3 = ε21 + ε22 + ε23 + ε24

ϕ4 = ε21 + ε24 .

(10)

It’s easy to check that ϕi ’s, i = 1, 2, 3, match the ones defined in (2).
At the end of this section, we provide a lemma about some properties of the elements ϕi ’s

which are characterized in Theorem 1.
This result will be heavily used in the proof of the main theorem.

Lemma 14 Let q = 2n with n odd and gcd(i, n) = 1. Let ϕ1, ϕ2, ϕ3, ϕ4 be defined by (10)

satisfying ϕ2i
2 = ϕ1ϕ

2i−1
3 and ϕ3 �= 0. For α, β ∈ F

∗
q , they have the following properties:

(1) (ϕ1 + ϕ3)(ϕ2 + ϕ3)(ϕ3 + ϕ4)ϕ4 �= 0 and
(

ϕ3
ϕ2+ϕ3

)2i = ϕ3
ϕ1+ϕ3

;

(2) when i is even, Trq
(

ϕ4
ϕ3

)
= 1; moreover, the equation

x2
i + x + ϕ3 + ϕ4

ϕ3
= 0

has two solutions ϕ2+ϕ3
ϕ3

α and ϕ2+ϕ3
ϕ3

α + 1 in Fq ;

(3) when i is odd, Trq
(

ϕ4
ϕ3

)
= 0;

(4) Trq
(

ϕ2
ϕ3

)
= 0.

Proof Since
⎧
⎪⎪⎨
⎪⎪⎩

ϕ1 = α2i+1+2 + α2i+1 + α2i+2 + α2i + α2 + αβ + β2 + 1

ϕ2 = α2i+1+2 + α2i+1+1 + α2i+1 + α2 + α + α2i β + β2 + 1

ϕ3 = α2i+1+2 + α2i+1 + α2 + β2 + 1

(11)

and

ϕ4 =
{

α2i+1+2 + β2 + 1 for even i

α2i+1 + α2 for odd i,
(12)

it is clear that

ϕ1 + ϕ2 = α2i+2 + α2i + αβ + α2i+1+1 + α2i β + α = (α2i + α)(α2i+1 + β + 1) (13)

and {
ϕ4, ϕ3 + ϕ4

}
=
{
(α2i + α)2, (α2i+1 + β + 1)2

}
. (14)
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(1) It follows from (13) and (14) that

ϕ4(ϕ3 + ϕ4) = (ϕ1 + ϕ2)
2 = (α2i + α)2(α2i+1 + β + 1)2.

By the equality ϕ2i
2 = ϕ1ϕ

2i−1
3 , if either ϕ4(ϕ3 + ϕ4) = 0 or (ϕ1 + ϕ3)(ϕ2 + ϕ3) = 0, then

ϕ1+ϕ2 = 0 andϕ1 = ϕ2 = ϕ3. The equationϕ1+ϕ2 = (α2i +α)(α2i+1+β+1) = 0 implies
β = α2i+1 +1 or α2i +α = 0. In fact, if β = α2i+1 +1, then ϕ1 +ϕ3 = α2i+2 +α2i +αβ =
α2i + α = 0. Thus we always have α2i + α = 0, equivalently α = 0, 1. This implies
ϕ1 + ϕ3 = α2i+2 + α2i + αβ = αβ = 0, which is in contradiction with the assumption
αβ �= 0.

In addition, it is clear that the equality ϕ2i
2 = ϕ1ϕ

2i−1
3 implies

(
ϕ3

ϕ2 + ϕ3

)2i
= ϕ3

ϕ1 + ϕ3
.

(2) From (11) and (12), we have
⎧⎪⎨
⎪⎩

ϕ1 + ϕ3 = α2i+2 + α2i + αβ (15.1a)

ϕ2 + ϕ3 = α2i+1+1 + α2i β + α (15.1b)

ϕ3 + ϕ4 = α2i+1 + α2. (15.1c)

It is easy to verify that

α (ϕ2 + ϕ3) + α2i (ϕ1 + ϕ3) = ϕ3 + ϕ4. (16)

Moreover, using
(

ϕ3
ϕ2+ϕ3

)2i = ϕ3
ϕ1+ϕ3

, we have

ϕ3 + ϕ4

ϕ3
= ϕ2 + ϕ3

ϕ3
α + ϕ1 + ϕ3

ϕ3
α2i = ϕ2 + ϕ3

ϕ3
α +

(
ϕ2 + ϕ3

ϕ3
α

)2i

. (17)

Thus,

Trq

(
ϕ3 + ϕ4

ϕ3

)
= Trq

(
ϕ4

ϕ3

)
+ Trq(1) = 0.

Furthermore, from Lemma 11, the solutions in Fq of x2
i + x = ϕ3+ϕ4

ϕ3
are ϕ2+ϕ3

ϕ3
α and

ϕ2+ϕ3
ϕ3

α + 1.
(3) From the expressions of ϕ3, ϕ4 in (11), (12), it is clear that the values of ϕ4 for even i

and odd i add up to ϕ3. The fact that Trq(1) = 1 for odd integer n implies that the values of

Trq
(

ϕ4
ϕ3

)
for even i and odd i add up to 1. The desired assertion directly follows from (2) of

this lemma.
(4) From (13) and (14), it is easily seen that

(
ϕ1

ϕ3

)2
+
(

ϕ2

ϕ3

)2

=
(

ϕ4

ϕ3

)2

+ ϕ4

ϕ3
. (18)

Plugging ϕ1
ϕ3

=
(

ϕ2
ϕ3

)2i
into Eq. (18), we get

(
ϕ2

ϕ3

)2i+1

+
(

ϕ2

ϕ3

)2

=
(

ϕ4

ϕ3

)2

+ ϕ4

ϕ3
=
(

ϕ3 + ϕ4

ϕ3

)2

+ ϕ3 + ϕ4

ϕ3
.
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By the relation between ϕ3 and ϕ4 for even and odd i , it is clear that the expression on the
right side of the above equation is independent of the parity of the integer i . W.L.O.G., we
can assume that i is even, since the case i odd can be proved by just replacing ϕ4 by ϕ3 +ϕ4.
Together with (17), we have

(
ϕ2

ϕ3

)2i+1

+
(

ϕ2

ϕ3

)2

=
(

ϕ2 + ϕ3

ϕ3
α +

(
ϕ2 + ϕ3

ϕ3
α

)2
)2i

+ ϕ2 + ϕ3

ϕ3
α +

(
ϕ2 + ϕ3

ϕ3
α

)2

.

Therefore,

(
ϕ2

ϕ3

)2

= ϕ2 + ϕ3

ϕ3
α +

(
ϕ2 + ϕ3

ϕ3
α

)2

or (
ϕ2

ϕ3

)2

= ϕ2 + ϕ3

ϕ3
α +

(
ϕ2 + ϕ3

ϕ3
α

)2

+ 1. (19)

If Eq. (19) holds, then

(
1 + α2)

(
ϕ2

ϕ3

)2

+ α

(
ϕ2

ϕ3

)
+ α2 + α + 1 = 0. (20)

If α = 1, it is easy to obtain that β = 1 from the definition of Γ . Moreover, ϕ2 = 0 and thus

Trq
(

ϕ2
ϕ3

)
= 0. In the following, we assume that α �= 1. Then after multiplying Eq. (20) by

α2+1
α2 and simplifying, we get

(
α2 + 1

α
· ϕ2

ϕ3

)2

+ α2 + 1

α
· ϕ2

ϕ3
=
(

α2 + 1

α

)2
+ α2 + 1

α

and thus

ϕ2

ϕ3
= 1 or

α2 + α + 1

α2 + 1
.

It is clear that ϕ2 + ϕ3 �= 0. By
(

ϕ3
ϕ2+ϕ3

)2i = ϕ3
ϕ1+ϕ3

, one has

(
ϕ2 + ϕ3

ϕ3

)2i−1

= ϕ1 + ϕ3

ϕ3
· ϕ3

ϕ2 + ϕ3
= ϕ1 + ϕ3

ϕ2 + ϕ3
= α2i+2 + α2i + αβ

α2i+1+1 + α2i β + α
= 1

α2i−1
.

Since gcd(i, n) = 1, one has ϕ2+ϕ3
ϕ3

= 1
α
and ϕ2+ϕ3

ϕ3
= 1

α
+ 1 �= α2+α+1

α2+1
.

Therefore, Eq. (19) does not hold and thus

(
ϕ2

ϕ3

)2

= ϕ2 + ϕ3

ϕ3
α +

(
ϕ2 + ϕ3

ϕ3
α

)2

, (21)

which implies Trq
(

ϕ2
ϕ3

)
= 0. 
�
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3 The permutation property of Vi(x, y)

In this section, we firstly give a general necessary and sufficient condition on the permutation
property of the function Vi from the closed butterfly. Throughout what follows, we always
assume n is an odd integer.

Recall that the univariate representation of Vi have the following form

f (x) = ε1x
q·(2i+1) + ε2x

q·2i+1 + ε3x
2i+q + ε4x

2i+1, ε j ∈ Fq . (22)

Below we first present a necessary and sufficient conditions for f (x) to be a permutation of
Fq2 without imposing any additional restrictions on ε j .

The following proposition investigates the permutation property of f (x) defined by (22)
over Fq2 .

Proposition 15 Let q = 2n, f (x) be defined by (22), h(x) = ε1x2
i+1 + ε2x2

i + ε3x + ε4

and g(x) = x2
i+1h(x)q−1. Define μq+1 = {x ∈ Fq2 : xq+1 = 1} and

T =
{(

xy + 1

x + y
,

xy

x2 + y2

)
: x, y ∈ μq+1\{1}, y �= x, xq

}
⊂ F

2
q .

Then f (x) permutes Fq2 if and only if

(1) gcd
(
2i + 1, q − 1

) = 1;
(2) h(x) = 0 has no solution in μq+1;
(3) g(x) = 1 if and only if x = 1;
(4) there does not exist some (X , Y ) ∈ T such that the following equation holds:

ϕ1X
2i + ϕ2X + ϕ3

⎛
⎝

i−1∑
j=0

Y 2 j

⎞
⎠+ ϕ4 = 0, (23)

where ϕ j for j = 1, 2, 3, 4 are defined by (10).

Proof It is clear that f (x) = x2
i+1h

(
xq−1

)
. According to Lemma 9, f (x) permutes Fq2 if

and only if gcd
(
2i + 1, q − 1

) = 1 and

g(x) = x2
i+1h(x)q−1 = ε4x2

i+1 + ε3x2
i + ε2x + ε1

ε1x2
i+1 + ε2x2

i + ε3x + ε4

permutes μq+1, which obviously implies that h(x) = 0 has no solution in μq+1 and g(x) =
1 if and only if x = 1. In the following, we assume that the conditions (1),(2) and (3)
hold. Therefore, g(x) permutes μq+1 if and only if g(x) + g(y) = 0 has no solution for
x, y ∈ μq+1\{1} with x �= y. In fact, if g(x) + g(y) = 0 for some y = xq , then we
have g(x) = g(y) = g(xq) = g(x)q = g(x)−1 and thus g(x) = 1, which means that
x = 1. Thus we can only consider the conditions such that g(x) + g(y) = 0 has no solution
for x, y ∈ μq+1\{1} with y �= x, xq . Next, we prove the necessity and sufficiency of the
condition (4).

The sufficiency of (4). Suppose g(x) + g(y) = 0, i.e.,

ε4x2
i+1 + ε3x2

i + ε2x + ε1

ε1x2
i+1 + ε2x2

i + ε3x + ε4
= ε4y2

i+1 + ε3y2
i + ε2y + ε1

ε1y2
i+1 + ε2y2

i + ε3y + ε4
.
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After a routine calculation, we obtain

ϕ1(x + y)(xy + 1)2
i + ϕ2(x + y)2

i
(xy + 1) + ϕ4(x + y)2

i+1 + ϕ3

(
x2

i
y + xy2

i
)

= 0,

where ϕ j ’s for j = 1, 2, 3, 4 are defined as in (10). By the previous discussion, we now
only need to consider the case that (x + y)(xy + 1) �= 0. Therefore, the above equation is
equivalent to

ϕ1

(
xy + 1

x + y

)2i

+ ϕ2

(
xy + 1

x + y

)
+ ϕ4 + ϕ3

(
x2

i
y + xy2

i

(x + y)2i+1

)
= 0. (24)

Note that

x2
i
y + xy2

i

(x + y)2i+1
= x2

i+1 + y2
i+1

(x + y)2i+1
+ 1 =

(
x

x + y

)2i+1

+
(

y

x + y

)2i+1

+ 1.

It follows from Lemma 12 (1) that the coefficient of ϕ3 can be expressed in terms of Dickson
polynomial as

x2
i
y + xy2

i

(x + y)2i+1
= D2i+1

(
1,

xy

(x + y)2

)
+ 1.

In addition, by Lemma 12 (2), (4) and Lemma 13,

D2i+1(x, a) = D2i (x, a) + aD2i−1(x, a) = x2
i +

i−1∑
j=0

a2
j
x2

i−2 j+1+1. (25)

Denote X = xy+1
x+y and Y = xy

(x+y)2
. Then the coefficient of ϕ3 can be written as

D2i+1 (1, Y ) + 1 = 1 +
i−1∑
j=0

Y 2 j + 1 =
i−1∑
j=0

Y 2 j
.

It is straightforward that g(x) = g(y) can be rewritten as

ϕ1X
2i + ϕ2X + ϕ3

⎛
⎝

i−1∑
j=0

Y 2 j

⎞
⎠+ ϕ4 = 0. (26)

Thus, if there exist some x, y ∈ μq+1 with y �= x, xq such that g(x) + g(y) = 0 holds,
there must exist some (X , Y ) ∈ T such that Eq. (26) holds. Thus if the condition (4) holds,
g(x) permutes μq+1.

The necessity of (4). On the contrary, if the condition (4) does not hold, which means
that there exist some (X , Y ) ∈ T such that Eq. (26) holds, then there must exist some
x, y ∈ μq+1\{1} with y �= x, xq such that g(x) + g(y) = 0, which implies that g(x) does
not permute μq+1.

On combining the sufficiency and necessity, we have proved the desired conclusion. 
�

Proof of the permutation part in Theorem 1.
In the following, we will prove the permutation part in Theorem 1 by verifying the con-

ditions in Proposition 15.
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First of all, if α = 1, it is easy to obtain that β = 1 from the definition of Γ . In this case,
the function

fi (x) =
{
xq·(2i+1), when i is even

x2
i+q , when i is odd,

clearly permutes Fq2 . In the following, we assume α �= 1 and will show the four items of
Proposition 15.

(1) Since n is odd and gcd(i, n) = 1, we have gcd(2i + 1, 2n − 1) = 1 due to the fact
gcd(2i + 1, 2n − 1) | gcd(22i − 1, 2n − 1) = 2gcd(2i,n) − 1 = 1.

(2) Next we show that h(x) = 0 has no solution inμq+1\{1} (h(1) = √
ϕ3 �= 0 according

to the definition). Suppose that there exists some x0 ∈ μq+1\{1} satisfying
ε1x

2i+1
0 + ε2x

2i
0 + ε3x0 + ε4 = 0. (27)

Raising Eq. (27) to the q-th power and re-arranging it according to xq0 = x−1
0 , we obtain

ε4x
2i+1
0 + ε3x

2i
0 + ε2x0 + ε1 = 0. (28)

Summing ε4 × (27) and ε1 × (28) gives

ϕ1x
2i
0 + ϕ2x0 + ϕ4 = 0. (29)

Computing ϕ4 × (29) + ϕ1 × (29)q × x2
i

0 yields

ϕ1ϕ2x
2i−1
0 + ϕ2ϕ4x0 + ϕ2

1 + ϕ2
4 = 0. (30)

Furthermore, by computing (30) × x0 + (29) × ϕ2, we obtain

ϕ2ϕ4x
2
0 + (ϕ2

1 + ϕ2
2 + ϕ2

4

)
x0 + ϕ2ϕ4 = 0. (31)

Note that in the above equation ϕ2ϕ4 �= 0. Otherwise, we have ϕ2
1 + ϕ2

2 = ϕ2
4 . Recall

that ϕ2
1 + ϕ2

2 = ϕ4(ϕ3 + ϕ4) from (13) and (14). Thus we obtain ϕ3ϕ4 = 0, which is in
contradiction with ϕ3 �= 0 in the definition of Γ and ϕ4 �= 0 in Lemma 14 (1). Thus Eq. (31)
becomes

x20 + ϕ2
1 + ϕ2

2 + ϕ2
4

ϕ2ϕ4
x0 + 1 = 0. (32)

Note that

Trq

(
ϕ2ϕ4

ϕ2
1 + ϕ2

2 + ϕ2
4

)
= Trq

(
ϕ2ϕ4

ϕ4ϕ3

)
= Trq

(
ϕ2

ϕ3

)
= 0.

This implies that Eq. (32) has a solution x0 ∈ Fq , which contradicts μq+1\{1}. Therefore,
h(x) = 0 has no solution in μq+1.

(3) If there exists some x0 ∈ μq+1\{1} such that g(x0) = 1, then we have

(ε1 + ε4) x
2i+1
0 + (ε2 + ε3) x

2i
0 + (ε2 + ε3) x0 + ε1 + ε4 = 0. (33)

According to Lemma 10, we know that for any x0 ∈ μq+1\{1}, there exists a unique
element y0 ∈ Fq such that x0 = y0+γ

y0+γ 2 , where γ ∈ F22\F2. By plugging x0 = y0+γ

y0+γ 2 into
Eq. (33) and a routine rearrangement, we obtain

y2
i

0 + y0 + ε1 + ε4

ε1 + ε2 + ε3 + ε4
= 0, (34)
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where ε1, ε4 are defined as in (9) satisfying that ε1 + ε4 = ε1 + ε4 for even i and ε1 + ε4 =
ε2 + ε3 for odd i . In other words, ε1 + ε4 corresponds to

√
ϕ4 for even i and

√
ϕ3 + ϕ4 for

odd i . By Lemma 14 (2) and (3), we have

Trq

(
ε1 + ε4

ε1 + ε2 + ε3 + ε4

)
= 1.

This implies (34) has no solution in Fq . Hence g(x) = 1 if and only if x = 1.
(4) Recall that Y = xy

x2+y2
for some x, y ∈ μq+1\{1}with x �= y. Note that y

x+y ∈ Fq2\Fq

is a solution to the equation z2 + z + Y = 0. This implies Trq (Y ) = 1. It is clear that Eq.
(26) required in Proposition 15 is equivalent to

i−1∑
j=0

Y 2 j = ϕ1

ϕ3
X2i + ϕ2

ϕ3
X + ϕ4

ϕ3
=
(

ϕ2

ϕ3
X

)2i
+ ϕ2

ϕ3
X + ϕ4

ϕ3
.

By Trq(Y ) = 1 we have

Trq

⎛
⎝

i−1∑
j=0

Y 2 j

⎞
⎠ =

{
0, when i is even

1, when i is odd,
(35)

on the other hand, the expression on the right hand side satisfies

Trq

((
ϕ2

ϕ3
X

)2i
+ ϕ2

ϕ3
X + ϕ4

ϕ3

)
=
{
1, when i is even

0, when i is odd,

according to Lemma 14. It is clear that Eq. (26) does not hold for any X , Y ∈ Fq .
Up to now, all the four items in Proposition 15 are confirmed. Hence the function Vi (x, y)

in Theorem 1 permutes F
2
q .

4 The boomerang uniformity of Vi(x, y)

In this section, we will prove that the function

Vi := (Ri (x, y), Ri (y, x))

with Ri (x, y) = (x +αy)2
i+1 +β y2

i+1 has boomerang uniformity 4 when the pair (α, β) is
taken from the set Γ as in given in Theorem 1. Here and hereafter, we assume that n is odd,
q = 2n and (α, β) ∈ Γ .

First of all, the condition β �= (α + 1)2
i+1 in Lemma 8 corresponds to the condition

ϕ3 �= 0 in Γ . Hence the differential uniformity of Vi with Ri (x, y) = (x +αy)2
i+1+β y2

i+1

is at most 4 for any (α, β) ∈ Γ . Furthermore, Canteaut, Perrin and Tian [5] showed that if
Vi is APN then it operates on 6 bits. Therefore, the differential uniformity of Vi is equal to 4
in other cases. Since Vi in Theorem 1 permutes F

2
q and has differential uniformity 4, we can

use Lemma 5 to show the boomerang uniformity of Vi . For any (a, b) ∈ F
2
q , denote

SVi ,(a,b)(x, y) = Vi (x + a, y + b) + Vi (x, y) + Vi (a, b)

and

ImVi ,(a,b) =
{
SVi ,(a,b)(x, y) : (x, y) ∈ F

2
q

}
.
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According to Lemma 5, we need to determine (a1, b1), (a2, b2) ∈ F
2
q\{(0, 0)} satisfy-

ing SVi ,(a1,b1)(a2, b2) = (0, 0), and then to prove that for any such pairs the equation
ImVi ,(a1,b1) = ImVi ,(a2,b2) holds.

4.1 The solutions of SVi,(a1,b1)(a2, b2) = (0, 0)

The solution of the equation SVi ,(a1,b1)(a2, b2) = (0, 0) is studied in the following proposi-
tion.

Proposition 16 Let Vi be defined as in Theorem 1with (α, β) ∈ Γ and ϕ j ’s for j = 1, 2, 3, 4
be defined as in (10). Then the elements (a1, b1), (a2, b2) ∈ F

2
q\{(0, 0)}such that

Vi (a1 + a2, b1 + b2) + Vi (a1, b1) + Vi (a2, b2) = (0, 0)

satisfy (a2, b2) = X · (a1, b1), where X is a 2 × 2 matrix taken from the following set
{[

1 0
0 1

]
,

[
ϕ2+ϕ3

ϕ3
α + 1 ϕ2+ϕ3

ϕ3
ϕ2+ϕ3

ϕ3

ϕ2+ϕ3
ϕ3

α

]
,

[
ϕ2+ϕ3

ϕ3
α

ϕ2+ϕ3
ϕ3

ϕ2+ϕ3
ϕ3

ϕ2+ϕ3
ϕ3

α + 1

]}
. (36)

Proof Note that the equation

SVi ,(a1,b1)(a2, b2) = Vi (a1 + a2, b1 + b2) + Vi (a1, b1) + Vi (a2, b2) = (0, 0)

can be rewritten as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a1 + αb1)a2
i

2 + (a2
i

1 + α2i b2
i

1 )a2 + (α2i a1 + (α2i+1 + β)b1)b2
i

2 + (αa2
i

1 + (α2i+1 + β)b2
i

1 )b2 = 0

(37.1a)

((α2i+1 + β)a1 + α2i b1)a2
i

2 + ((α2i+1 + β)a2
i

1 + αb2
i

1 )a2 + (αa1 + b1)b2
i

2 + (α2i a2
i

1 + b2
i

1 )b2 = 0.

(37.1b)

Let ϕ j ’s for j = 1, 2, 3, 4 be defined as in (10). Eliminating the terms a2
i

2 in the above

equations by computing (37.1a) ×
((

α2i+1 + β
)
a1 + α2i b1

)
+ (37.1b) × (a1 + αb1), we

obtain
λ1a2 + λ2b

2i
2 + λ3b2 = 0, (38)

where the coefficients are given by
⎧⎪⎨
⎪⎩

λ1 = (ϕ1 + ϕ3) a2
i

1 b1 + (ϕ2 + ϕ3) a1b2
i

1 + (ϕ3 + ϕ4)b
2i+1
1

λ2 = (ϕ2 + ϕ3) a21 + ϕ3a1b1 + (ϕ2 + ϕ3) b21
λ3 = (ϕ1 + ϕ3) a

2i+1
1 + ϕ4a1b2

i

1 + (ϕ2 + ϕ3) b
2i+1
1 ,

ϕ1, ϕ2, ϕ3 are defined as in (10) and ϕ4 corresponds to the case that i is even. Hereafter, we
assume ϕ4 is restricted to the case of even i , i.e, ϕ4 = (α2i+1 + β + 1)2.

When b1 = 0, we have a1 �= 0, λ1 = 0, λ2 = (ϕ2 + ϕ3) a21 and λ3 = (ϕ1 + ϕ3) a
2i+1
1 .

Moreover, Eq. (38) becomes λ2b2
i

2 = λ3b2. This together with Lemma 14 (1) implies

b2 = 0 or b2 =
(

ϕ1 + ϕ3

ϕ2 + ϕ3

) 1
2i−1

a1 = ϕ2 + ϕ3

ϕ3
a1.

Note that in the case of b1 = 0, Eq. (37.1a) becomes
(
a2
a1

)2i

+ a2
a1

=
(

αb2
a1

)2i
+ αb2

a1
.
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Therefore, if b2 = 0, then a2 = a1; if b2 = ϕ2+ϕ3
ϕ3

a1, then a2 = ϕ2+ϕ3
ϕ3

αa1 or a2 =
ϕ2+ϕ3

ϕ3
αa1 + a1.

When b1 �= 0, after eliminating the terms b2
i

2 by computing (37.1) ×
(
(α2i+1 + β)a2

i

1

+αb2
i

1

)
+ (37.2) ×

(
a2

i

1 + α2i b2
i

1

)
, we obtain

η1a
2i
2 + η2b

2i
2 + η3b2 = 0, (39)

where ⎧
⎪⎪⎨
⎪⎪⎩

η1 = λ1

η2 = (ϕ2 + ϕ3) a
2i+1
1 + ϕ4a2

i

1 b1 + (ϕ1 + ϕ3) b
2i+1
1

η3 = (ϕ1 + ϕ3) a2
i+1

1 + ϕ3a2
i

1 b2
i

1 + (ϕ1 + ϕ3) b2
i+1

1 .

Furthermore, computing (38)2
i + λ2

i−1
1 × (39), we eliminate the term a2

i

2 and obtain

λ2
i

2 b
22i−1
2 +

(
λ2

i−1
1 η2 + λ2

i

3

)
b2

i−1
2 + λ2

i−1
1 η3 = 0. (40)

Here we note that λ2 �= 0. Otherwise one has (ϕ2 + ϕ3) a21 + ϕ3a1b1 + (ϕ2 + ϕ3) b21 = 0,
i.e.,

(
ϕ2 + ϕ3

ϕ3
· a1
b1

)2

+ ϕ2 + ϕ3

ϕ3
· a1
b1

+
(

ϕ2 + ϕ3

ϕ3

)2

= 0,

which is in contradiction with the fact Trq
(

ϕ2
ϕ3

)
= 0 by Lemma 14 (4).

In addition, since the differential uniformity of Vi is 4, Eq. (40) has three nonzero solutions

b2 = b1, b̄ and b̄ + b1 and we only need to obtain the expression of b̄. Clearly, b̃2 = b2
i−1

1
is a solution of

λ2
i

2 b̃
2i+1
2 +

(
λ2

i−1
1 η2 + λ2

i

3

)
b̃2 + λ2

i−1
1 η3 = 0. (41)

Hence, Eq. (41) can be written as

λ2
i

2

(
b̃2 + b2

i−1
1

)(
b̃2

i

2 + b2
i−1

1 b̃2
i−1

2 + b
2·(2i−1

)
1 b̃2

i−2
2 + · · · + b

(
2i−1

)·(2i−1
)

1 b̃2 + c

)
= 0,

where c = λ2
i−1
1 η3

λ2
i
2 b2

i−1
1

. Now we consider the equation

b̃2
i

2 + b2
i−1

1 b̃2
i−1

2 + b
2·(2i−1

)
1 b̃2

i−2
2 + · · · + b

(
2i−1

)·(2i−1
)

1 b̃2 + c = 0. (42)

Let b̂2 = 1

b̃2+b2
i−1

1

. Then Eq. (42) becomes

b̂2
i

2 + b2
i−1

1

c
b̂2 + 1

c
= 0,

i.e., ⎛
⎝c

1
2i−1

b1
b̂2

⎞
⎠

2i

+ c
1

2i−1

b1
b̂2 + c

1
2i−1

b2
i

1

= 0. (43)

123



Cryptographically strong permutations 753

In addition, we have

c
1

2i−1 =
(

λ2
i−1

1 η3

λ2
i

2 b
2i−1
1

) 1
2i−1

= λ1

b1

⎛
⎜⎜⎝

(ϕ1 + ϕ3)
(
a2

i+1

1 + ϕ3
ϕ1+ϕ3

a2
i

1 b2
i

1 + b2
i+1

1

)

(ϕ2 + ϕ3)
2i
(
a2

i+1

1 + ϕ2i
3

(ϕ2+ϕ3)
2i
a2

i

1 b2
i

1 + b2
i+1

1

)

⎞
⎟⎟⎠

1
2i−1

= λ1

b1

(
ϕ1 + ϕ3

(ϕ2 + ϕ3)
2i

) 1
2i−1

= λ1

b1ϕ3
,

where the last two equalities follow from Lemma 14 (1). Moreover,

c
1

2i−1

b2
i

1

= λ1

ϕ3b
2i+1
1

= (ϕ1 + ϕ3) a2
i

1 + (ϕ2 + ϕ3) a1b
2i−1
1 + (ϕ3 + ϕ4) b2

i

1

ϕ3b2
i

1

=
(

(ϕ2 + ϕ3) a1
ϕ3b1

)2i

+ (ϕ2 + ϕ3) a1
ϕ3b1

+ ϕ3 + ϕ4

ϕ3

=
(

(ϕ2 + ϕ3) a1
ϕ3b1

+ u

)2i
+ (ϕ2 + ϕ3) a1

ϕ3b1
+ u,

where u = ϕ2+ϕ3
ϕ3

α due to Lemma 14 (2). Hence, from Eq. (43), we have

c
1

2i−1

b1
b̂2 ∈

{
(ϕ2 + ϕ3) a1

ϕ3b1
+ u,

(ϕ2 + ϕ3) a1
ϕ3b1

+ u + 1

}
,

which means that there are exactly two solutions in Fq for Eq. (42). W.L.O.G., we only
consider the first expression here. Namely, we get

b̂2 = b1

c
1

2i−1

(
(ϕ2 + ϕ3) a1

ϕ3b1
+ u

)
= (ϕ2 + ϕ3) a1b1 + ϕ3ub21

λ1
.

Thus,

b̃2 = 1

b̂2
+ b2

i−1
1 = λ1

(ϕ2 + ϕ3) a1b1 + ϕ3ub21
+ b2

i−1
1

is one solution of Eq. (42). Furthermore, one solution of Eq. (40) is

b2 =
(
b̃2
) 1

2i−1

=
(

(ϕ1 + ϕ3) a2
i

1 + ϕ3u2
i
b2

i

1

(ϕ2 + ϕ3) a1 + ϕ3ub1

) 1
2i−1

123



754 K. Li et al.

=
(

ϕ1 + ϕ3

ϕ2 + ϕ3

) 1
2i−1 ·

⎛
⎝a2

i

1 + ϕ3
ϕ1+ϕ3

u2
i
b2

i

1

a1 + ϕ3
ϕ2+ϕ3

ub1

⎞
⎠

1
2i−1

= ϕ2 + ϕ3

ϕ3

(
a1 + ϕ3

ϕ2 + ϕ3
ub1

)
(by Lemma 14(1))

= ϕ2 + ϕ3

ϕ3
a1 + ϕ2 + ϕ3

ϕ3
αb1(recall that u = ϕ2 + ϕ3

ϕ3
α).

It follows directly from Eq. (38) that

a2 = λ2

λ1
b2

i

2 + λ3

λ1
b2 =

(
ϕ2 + ϕ3

ϕ3
α + 1

)
a1 + ϕ2 + ϕ3

ϕ3
b1.


�

4.2 The proof of ImVi,(a1,b1) = ImVi,(a2,b2)

In this subsection, we prove that for any (a1, b1), (a2, b2) ∈ F
2
q\{(0, 0)} satisfying

SVi ,(a1,b1)(a2, b2) = (0, 0), ImVi ,(a1,b1) = ImVi ,(a2,b2).
According to Eq. (37.1), we know that for any (a1, b1) ∈ F

2
q , SVi ,(a1,b1)(x, y) can be

represented as

SVi ,(a1,b1)(x, y) = A1

[
x2

i

x

]
+ B1

[
y2

i

y

]
,

where

A1 =
[

a1 + αb1, a2
i

1 + α2i b2
i

1

(α2i+1 + β)a1 + α2i b1, (α2i+1 + β)a2
i

1 + αb2
i

1

]
�
[
a11, a12
a13, a14

]

and

B1 =
[
α2i a1 + (α2i+1 + β)b1, αa2

i

1 + (α2i+1 + β)b2
i

1

αa1 + b1, α2i a2
i

1 + b2
i

1

]
�
[
b11, b12
b13, b14

]
.

For the three relations between (a1, b1), (a2, b2) ∈ F
2
q\{(0, 0)} presented in Proposition

16 such that SVi ,(a1,b1)(a2,b2) = (0, 0), it is clear that if a2 = a1 and b2 = b1, we have
ImVi ,(a1,b1) = ImVi ,(a2,b2). In addition, if we have proved that ImVi ,(a1,b1) = ImVi ,(a2,b2)

holds for the second relation in Proposition 16, then so does it for the third relation since
the sum of two same subspace equals to the subspace. Therefore, it suffices to show that
ImVi ,(a1,b1) = ImVi ,(a2,b2) holds for the second relation in Proposition 16. Below we will
again restrict ϕ4 to the case of even i .

Let u = ϕ2+ϕ3
ϕ3

α. Then u2
i = u + ϕ3+ϕ4

ϕ3
. Moreover, a2 = (u + 1)a1 + ϕ2+ϕ3

ϕ3
b1 and

b2 = ϕ2+ϕ3
ϕ3

a1 + ub1. Furthermore, we get

a2
i

2 =
(
u2

i + 1
)
a2

i

1 +
(

ϕ2 + ϕ3

ϕ3

)2i

b2
i

1 =
(
u + ϕ4

ϕ3

)
a2

i

1 + ϕ1 + ϕ3

ϕ3
b2

i

1

and

b2
i

2 =
(

ϕ2 + ϕ3

ϕ3

)2i

a2
i

1 + u2
i
b2

i

1 = ϕ1 + ϕ3

ϕ3
a2

i

1 +
(
u + ϕ3 + ϕ4

ϕ3

)
b2

i

1 .
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Therefore, in SVi ,(a2,b2)(x, y), we have

A2 =
[

a2 + αb2, a2
i

2 + α2i b2
i

2

(α2i+1 + β)a2 + α2i b2, (α2i+1 + β)a2
i

2 + αb2
i

2

]
�
[
a21, a22
a23, a24

]
,

and

B2 =
[
α2i a2 + (α2i+1 + β)b2, αa2

i

2 + (α2i+1 + β)b2
i

2

αa2 + b2, α2i a2
i

2 + b2
i

2

]
�
[
b21, b22
b23, b24

]
,

where the explicit expressions of entries in A2 and B2 in terms of a1, b1 are given as follows:

a21 = a2 + αb2

= (u + 1)a1 + ϕ2+ϕ3
ϕ3

b1 + ϕ2+ϕ3
ϕ3

αa1 + uαb1

=
(
u + 1 + ϕ2+ϕ3

ϕ3
α
)
a1 +

(
ϕ2+ϕ3

ϕ3
+ uα

)
b1

= a1 + (α2 + 1
)

ϕ2+ϕ3
ϕ3

b1 (recall that u = ϕ2+ϕ3
ϕ3

α),

a22 = a2
i

2 + α2i b2
i

2

= a2
i

1 +
(
α2i+1 + 1

)
ϕ1+ϕ3

ϕ3
b2

i

1 (due to Lemma 14(1)),

a23 = (α2i+1 + β)a2 + α2i b2

=
((

α2i+1 + β
)

(u + 1) + α2i ϕ2+ϕ3
ϕ3

)
a1 +

((
α2i+1 + β

)
ϕ2+ϕ3

ϕ3
+ α2i u

)
b1

=
(

(ϕ2+ϕ3)(ϕ1+ϕ3)
ϕ3

+ α2i+1 + β
)
a1 + ϕ2+ϕ3

ϕ3
βb1,

a24 = (α2i+1 + β)a2
i

2 + αb2
i

2

=
((

α2i+1 + β
) (

u + ϕ4
ϕ3

)
+ α

ϕ1+ϕ3
ϕ3

)
a2

i

1

+
((

α2i+1 + β
)

ϕ1+ϕ3
ϕ3

+ α
(
u + ϕ3+ϕ4

ϕ3

))
b2

i

1

=
(

(ϕ2+ϕ3)(ϕ1+ϕ3)
ϕ3

+ α2i+1 + β
)
a2

i

1 + ϕ1+ϕ3
ϕ3

βb2
i

1 (due to(15)and(16)),

b21 = α2i a2 + (α2i+1 + β)b2 =
(
α2i + ϕ2+ϕ3

ϕ3
β
)
a1 + (ϕ2+ϕ3)(ϕ1+ϕ3)

ϕ3
b1,

b22 = αa2
i

2 + (α2i+1 + β)b2
i

2 =
(
α + ϕ1+ϕ3

ϕ3
β
)
a2

i

1 + (ϕ2+ϕ3)(ϕ1+ϕ3)
ϕ3

b2
i

1 ,

b23 = αa2 + b2 =
(

ϕ2+ϕ3
ϕ3

(α2 + 1) + α
)
a1,

b24 = α2i a2
i

2 + b2
i

2 =
(

ϕ1+ϕ3
ϕ3

(α2i+1 + 1) + α2i
)
a2

i

1 .

Note that the determinants of A1 and B1 are

Det(A1) = a11a14 + a12a13

= (ϕ1 + ϕ3) a
2i
1 b1 + (ϕ2 + ϕ3) a1b

2i
1 + (ϕ3 + ϕ4) b

2i+1
1 ,

and

Det(B1) = b11b14 + b12b13
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= (ϕ3 + ϕ4) a
2i+1
1 + (ϕ2 + ϕ3) a

2i
1 b1 + (ϕ1 + ϕ3) a1b

2i
1 .

Now we consider the necessary and sufficient conditions such that Det(A1) = 0. Clearly,
from Det(A1) = 0, we have b1 = 0 or

(ϕ1 + ϕ3)

(
a1
b1

)2i

+ (ϕ2 + ϕ3)
a1
b1

+ ϕ3 + ϕ4 = 0,

namely,

(
ϕ2 + ϕ3

ϕ3
· a1
b1

)2i

+ ϕ2 + ϕ3

ϕ3
· a1
b1

= ϕ3 + ϕ4

ϕ3

and thus a1 = αb1 or
(
α + ϕ3

ϕ2+ϕ3

)
b1 due to Lemma 14. Therefore, Det(A1) = 0 if and

only if b1 = 0 or a1 = αb1 or
(
α + ϕ3

ϕ2+ϕ3

)
b1. Similarly, Det(B1) = 0 if and only if a1 = 0

or b1 = αa1 or
(
α + ϕ3

ϕ2+ϕ3

)
a1.

It is easy to verify that Det(A1) = 0 and Det(B1) = 0 holds at the same time if and only
if

(i) α = 1, a1 = b1;
(ii) α + ϕ3

ϕ2+ϕ3
= 1, a1 = b1;

(iii) α
(
α + ϕ3

ϕ2+ϕ3

)
= 1, a1 = αb1.

If α + ϕ3
ϕ2+ϕ3

= 1, then ϕ2
ϕ3

= α
α+1 . Recall that (21) holds, namely,

(
ϕ2

ϕ3

)2
= ϕ2 + ϕ3

ϕ3
α +

(
ϕ2 + ϕ3

ϕ3
α

)2

.

Plugging ϕ2
ϕ3

= α
α+1 into the above equation and simplifying, we obtain α = 1, implying

ϕ3
ϕ2+ϕ3

= 0, which is impossible. If α
(
α + ϕ3

ϕ2+ϕ3

)
= 1, then ϕ2

ϕ3
= α2+α+1

α2+1
= 1

α+1 +
1

α2+1
+ 1, which is also impossible since Trq

(
ϕ2
ϕ3

)
= 0. Therefore, Det(A1) = 0 and

Det(B1) = 0 holds at the same time if and only if α = 1, a1 = b1, under which it is clear
that ImVi ,(a1,b1) = ImVi ,(a2,b2).

Next, we consider the following two cases:

(I) Det(B1) �= 0;
(II) Det(A1) �= 0.

It is clear that ImVi ,(a1,b1) = ImVi ,(a2,b2) if there exists some invertible matrix P such that
PA1 = A2 and PB1 = B2.

As for (i), it suffices to show that

B2B
−1
1 A1 = A2. (44)

After computing, we know that (44) is
[
b21b14a11 + b21b12a13 + b22b13a11 + b22b11a13, b21b14a12 + b21b12a14 + b22b13a12 + b22b11a14
b23b14a11 + b23b12a13 + b24b13a11 + b24b11a13, b23b14a12 + b23b12a14 + b24b13a12 + b24b11a14

]

= Det(B1)

[
a21, a22
a23, a24

]
.
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By plugging the expression of B1 into the above equation and simplifying, we get
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b14a11 + b12a13 = (ϕ1 + ϕ3) a
2i+1
1 + ϕ4a1b2

i

1 + (ϕ2 + ϕ3) b
2i+1
1

b14a12 + b12a14 = (ϕ1 + ϕ3) a2
i+1

1 + ϕ3a2
i

1 b2
i

1 + (ϕ1 + ϕ3) b2
i+1

1

b13a11 + b11a13 = (ϕ2 + ϕ3) a21 + ϕ3a1b1 + (ϕ2 + ϕ3) b21

b13a12 + b11a14 = (ϕ2 + ϕ3) a
2i+1
1 + ϕ4a2

i

1 b1 + (ϕ1 + ϕ3) b
2i+1
1 .

Moreover, we have

1.

b21b14a11 + b21b12a13 + b22b13a11 + b22b11a13

= (ϕ3 + ϕ4) a
2i+2
1 +

(
ϕ4α

2i + ϕ4 (ϕ2 + ϕ3)

ϕ3
β + (ϕ2 + ϕ3)

2 (ϕ1 + ϕ3)

ϕ3

)
a21b

2i
1

+
(

(ϕ2 + ϕ3) α2i + (ϕ2 + ϕ3)
2

ϕ3
β + (ϕ3 + ϕ4) (ϕ2 + ϕ3) (ϕ1 + ϕ3)

ϕ3

)
a1b

2i+1
1

+
(

ϕ3α + (ϕ1 + ϕ3) β + (ϕ2 + ϕ3) (ϕ1 + ϕ3)
2

ϕ3

)
a2

i+1
1 b1

+
(

(ϕ2 + ϕ3) α + (ϕ2 + ϕ3) (ϕ1 + ϕ3)

ϕ3
β

)
a2

i

1 b21

= (ϕ3 + ϕ4) a
2i+2
1 + (ϕ1 + ϕ3) a

2
1b

2i
1 +

(
α2 + 1

)
(ϕ2 + ϕ3) (ϕ1 + ϕ3)

ϕ3
a1b

2i+1
1

+ (α4 + β2 + 1) (ϕ2 + ϕ3)

ϕ3
a2

i+1
1 b1 +

(
α2 + 1

)
(ϕ2 + ϕ3)

2

ϕ3
a2

i

1 b21,

2.

b23b14a11 + b23b12a13 + b24b13a11 + b24b11a13

= (ϕ1 + ϕ2)
2 β

ϕ3
a2

i+2
1 + ϕ4 (ϕ1 + ϕ3) β

ϕ3
a21b

2i
1 + (ϕ1 + ϕ3) (ϕ2 + ϕ3) β

ϕ3
a1b

2i+1
1

+ (ϕ2 + ϕ3) βa2
i+1

1 b1 + (ϕ2 + ϕ3)
2 β

ϕ3
a2

i

1 b21

3.

b23b14a12 + b23b12a14 + b24b13a12 + b24b11a14

= (ϕ1 + ϕ2)
2 β

ϕ3
a2

i+1+1
1 + (ϕ1 + ϕ3) βa2

i+1
1 b2

i

1 + (ϕ1 + ϕ3)
2 β

ϕ3
a1b

2i+1

1

+ϕ4 (ϕ2 + ϕ3) β

ϕ3
a2

i+1

1 b1 + (ϕ1 + ϕ3) (ϕ2 + ϕ3) β

ϕ3
a2

i

1 b2
i+1

1 .

4.

b21b14a12 + b21b12a14 + b22b13a12 + b22b11a14

= (ϕ3 + ϕ4) a
2i+1+1
1 +

(
ϕ3α

2i + (ϕ2 + ϕ3) β + (ϕ2 + ϕ3)
2 (ϕ1 + ϕ3)

ϕ3

)
a2

i+1
1 b2

i

1
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+
(

(ϕ1 + ϕ3)α
2i + (ϕ2 + ϕ3) (ϕ1 + ϕ3)

ϕ3
β

)
a1b

2i+1

1

+
(

(ϕ2 + ϕ3) (ϕ1 + ϕ3)
2

ϕ3
+ ϕ4α + ϕ4(ϕ1 + ϕ3)

ϕ3
β

)
a2

i+1

1 b1

+
(

(ϕ2 + ϕ3) (ϕ1 + ϕ3) + (ϕ1 + ϕ3) α + (ϕ1 + ϕ3)
2

ϕ3
β

+ϕ4 (ϕ2 + ϕ3) (ϕ1 + ϕ3)

ϕ3

)
a2

i

1 b2
i+1

1

= (ϕ3 + ϕ4) a
2i+1+1
1 +

(
α2i+2 + β2 + 1

)
(ϕ1 + ϕ3)

ϕ3
a2

i+1
1 b2

i

1

+
(
α2i+1 + 1

)
(ϕ1 + ϕ3)

2

ϕ3
a1b

2i+1

1

+ (ϕ2 + ϕ3) a
2i+1

1 b1 +
(
α2i+1 + 1

)
(ϕ1 + ϕ3) (ϕ2 + ϕ3)

ϕ3
a1b

2i+1

1 ,

Furthermore, after computing and simplifying, we have

1.

Det(B1)a21

= (ϕ3 + ϕ4) a
2i+2
1 + (ϕ1 + ϕ3) a

2
1b

2i
1

+
(
α2 + 1

)
(ϕ2 + ϕ3) (ϕ1 + ϕ3)

ϕ3
a1b

2i+1
1

+ (α4 + β2 + 1) (ϕ2 + ϕ3)

ϕ3
a2

i+1
1 b1 +

(
α2 + 1

)
(ϕ2 + ϕ3)

2

ϕ3
a2

i

1 b21,

2.

Det(B1)a22

= (ϕ3 + ϕ4) a
2i+1+1
1 +

(
α2i+2 + β2 + 1

)
(ϕ1 + ϕ3)

ϕ3
a2

i+1
1 b2

i

1

+
(
α2i+1 + 1

)
(ϕ1 + ϕ3)

2

ϕ3
a1b

2i+1

1

+ (ϕ2 + ϕ3) a
2i+1

1 b1 +
(
α2i+1 + 1

)
(ϕ1 + ϕ3) (ϕ2 + ϕ3)

ϕ3
a1b

2i+1

1 ,

3.

Det(B1)a23

= (ϕ1 + ϕ2)
2 β

ϕ3
a2

i+2
1 + ϕ4 (ϕ1 + ϕ3) β

ϕ3
a21b

2i
1 + (ϕ1 + ϕ3) (ϕ2 + ϕ3) β

ϕ3
a1b

2i+1
1

+ (ϕ2 + ϕ3) βa2
i+1

1 b1 + (ϕ2 + ϕ3)
2 β

ϕ3
a2

i

1 b21
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4.

Det(B1)a24

= (ϕ1 + ϕ2)
2 β

ϕ3
a2

i+1+1
1 + (ϕ1 + ϕ3) βa2

i+1
1 b2

i

1 + (ϕ1 + ϕ3)
2 β

ϕ3
a1b

2i+1

1

+ϕ4 (ϕ2 + ϕ3) β

ϕ3
a2

i+1

1 b1 + (ϕ1 + ϕ3) (ϕ2 + ϕ3) β

ϕ3
a2

i

1 b2
i+1

1 .

Hence, it follows that
[
b21b14a11 + b21b12a13 + b22b13a11 + b22b11a13, b21b14a12 + b21b12a14 + b22b13a12 + b22b11a14
b23b14a11 + b23b12a13 + b24b13a11 + b24b11a13, b23b14a12 + b23b12a14 + b24b13a12 + b24b11a14

]

= Det(B1)

[
a21, a22
a23, a24

]
.

and Eq. (44) holds.
As for (ii), we need to show that

A2A
−1
1 B1 = B2, (45)

whose proof can be obtained through just changing a1 and b1 in the proof of (44).
Therefore, for any (a1, b1), (a2, b2) ∈ F

2
q\{(0, 0)} satisfying BVi ,(a1,b1)(a2, b2) = (0, 0),

ImVi ,(a1,b1) = ImVi ,(a2,b2) holds and by Lemma 5, we know that the boomerang uniformity
of Vi is 4.

Remark 17 we are aware that Li, Hu, Xiong and Zeng in [13] are independently working on
the same problem as in this paper. Their techniques in the proof are different from ours in
the early version [11] of this paper.

Remark 18 It’s worth pointing out that from the experimental results by MAGMA for q =
23, 25, the set Γ in Theorem 1 covers all the coefficients α, β ∈ F

∗
q that yield permutations

Vi (x, y) with boomerang uniformity 4. We therefore propose the following conjecture and
invite interested readers to attack it.

Conjecture 19 Let q = 2n with n odd, gcd(i, n) = 1 and Vi := (Ri (x, y), Ri (y, x)) with
Ri (x, y) = (x+αy)2

i+1+β y2
i+1. If Vi is a permutation overF

2
q with boomerang uniformity

4, then the coefficients α, β are taken from the set Γ defined as in (1).

5 Conclusions

In this paper, we applied the butterfly structure in constructing cryptographically strong
permuations. The open butterfly does not seem to generate permutations with boomerang
uniformity 4 according to numerical results. Based on an intensive study on the coefficients
of Ri (x, y) = (x + αy)2

i+1 + β y2
i+1, gcd(i, n) = 1, over F2n , we provided a sufficient

condition on α, β such that Vi (x, y) = (Ri (x, y), Ri (y, x)) is a permutation over F22n with
boomerang uniformity 4. The proposed condition seems to be also necessary according to
numeric results and a conjecture on the observation was given.
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