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Abstract
In this paper, we construct codes for local recovery of erasures with high availability and
constant-bounded rate from the Hermitian curve. These new codes, called Hermitian-lifted
codes, are evaluation codes with evaluation set being the set of Fq2 -rational points on the
affine curve. The novelty is in terms of the functions to be evaluated; they are a special set of
monomials which restrict to low degree polynomials on lines intersected with the Hermitian
curve. As a result, the positions corresponding to points on any line through a given point act
as a recovery set for the position corresponding to that point.

Keywords Hermitian curve · Codes with availability · Locally recoverable codes ·
Algebraic geometry codes · Lifted codes

Mathematics Subject Classification 94B05 · 11T71 · 94B27

1 Introduction

Let C ⊂ F
n be a linear code of length n over a finite field F. For a coordinate i ∈ [n], we

say that a set R ⊆ [n]\{i} is a recovery set for the index i in the code C if the i th symbol ci
of a codeword c ∈ C can be recovered from the symbols

{
c j : j ∈ R

}
. We say that C has
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locality r and availability t if for each i ∈ [n], there are t disjoint recovery sets for i in C,
each of size at most r .

Constructing codes with locality and availability is desirable for several reasons. Codes
with extremely large availability, t = �(n), are known to be equivalent to locally decod-
able codes (LDCs) [10,19], which are objects of interest in theoretical computer science,
complexity theory, and cryptography; see [22] for a survey. Codes with smaller availabil-
ity, t = O(1), have been studied recently in the context of distributed storage: if data is
encoded and distributed over multiple nodes in a distributed system, then a small piece of
data can be accessed efficiently by many users simultaneously. There are also variants on
codes with locality and availability, such as batch codes and PIR codes, with applications
in cryptography and private information retrieval; we refer the reader to the survey [18] for
more details. Finally, codes with intermediate availability—where t is sublinear in n but still
growing—have been studied as a bridge between the two settings above, and as an interesting
problem in itself [12–14].

In this work we introduce a new type of lifted code. Lifted codes are a class of codes
which have given rise to codes with good locality and intermediate availability. Lifted codes,
introduced byGuo, Kopparty and Sudan [1], are evaluation codes ofmultivariate polynomials
over large fields. The lift of a univariate evaluation code C0 to m variables is the evaluation
code corresponding to the set of all m-variate polynomials whose restriction to every line
corresponds to a codeword in C0. For example, the lifted Reed-Solomon code is the code
corresponding to all m-variate polynomials whose restriction to every line is a low-degree
univariate polynomial. Surprisingly, the set of all such polynomials can be much larger
than the corresponding Reed-Muller code (corresponding to multivariate polynomials of
small total degree) when the characteristic of the base field is small, and can even have rate
approaching one [1]. Several variants of the lifting operation have been proposed, with the
goal ofmaking the constructionmore flexible, for example: workingwith different base codes
[1,2,5]; including derivative information about the polynomials [14,20]; and only restricting
to certain sets of lines [12].

In this paper we introduce a novel variant on the lifted code construction, by considering
evaluation codes not on

(
Fq

)n , but rather on the rational points of the Hermitian curve Hq

over Fq2 ; that is, our code corresponds to all bivariate polynomials, evaluated onHq , so that
the restriction to any line agrees with some low-degree univariate polynomial on the points
of Hq intersected with that line. We call such a code a Hermitian-Lifted Code, because we
are taking the lift with respect to a Hermitian curve.

For any even prime power q , Hermitian-lifted codes have length q3 with locality q and
availability q2−1. Just aswith the example of liftedReed-Solomon codesmentioned above—
and perhaps just as surprisingly—these codes have rate much larger than one would expect.
More precisely, it is not hard to see that the code described above contains the one-point
Hermitian code Cq,q2−1 (see below for notation); but this one-point code has rate that tends
to 0 as q tends to infinity. Our main mathematical result is that in fact Hermitian-lifted codes
have rate bounded below by a positive constant independent of q .

Evaluation codes on the points of geometric objects offer an elegant and flexible way to
create codeswith good parameters, bounded through geometry, with locality arising naturally
from algebraic and geometric relationships. The rich structure of certain curves and their
associated function fields enable a wide variety of geometric and algebraic perspectives
that might create excellent codes. Our construction combines the extremely effective curve-
centered approach that began in [6] and extended to locally recoverable codes in [3,11] with
the lifting perspective of [1] to obtain novel codes which are not special cases of either
approach.
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Hermitian-lifted codes 499

In summary, our contributions are as follows. First, we introduce the notion of curve-
lifted codes. This is a novel approach that combines ideas from curve-based codes and lifted
codes in order to obtain good locally recoverable codes. Specifically, the evaluation points
are simply rational points on the curve, as in the one-point code case, while the collection
of functions to be evaluated is expanded to obtain a better code rate while guaranteeing
locality and availability. We instantiate this idea by studying Hermitian-lifted codes. While
Hermitian-lifted codes do offer good locality and availability, the quantitative parameters are
not better than the existing state-of-the-art. Rather, we view the primary contribution of this
work as introducing a new paradigm: we view our construction as a proof of concept that
combining these two views can result in novel codes, providing an important addition to the
literature and introducing an approach that could lead to new insights and may eventually
improve the state-of-the-art.

Second, we provide a positive lower bound on the rate of Hermitian-lifted codes as q →
∞. Such a bound is surprising, since the corresponding one-point Hermitian code has a
rate that tends to zero as q → ∞. Our approach is to study the set of “good” monomials
whose restriction to any line, intersected with the Hermitian curve, agrees with a low-degree
polynomial. We give a sufficient condition for a monomial to be good, and establish via a
counting argument that there are many such monomials. This establishes a lower bound on
the dimension of the code.

For the rest of the introduction, we review the Hermitian curve and related code construc-
tions. The rest of the paper, after the Introduction, is organized as follows. Hermitian-lifted
codes are introduced in Sect. 2, and information about their recovery sets is found there. The
main theorem, providing the lower bound on the code rate, and proof are given in Sect. 3.
Examples are given in Sects. 4 and 5 provides a brief conclusion.

1.1 The Hermitian curve and prior code constructions

An algebraic geometric perspective has proven useful in coding theory, particularly in the
case of evaluation codes using the points of curves (dimension 1 varieties) defined over
finite fields. These codes can be viewed as generalizations of Reed-Solomon codes, with the
advantage that the length of the code is not bounded above by the field size, allowing for
much longer codes with more codewords than a RS code over the same field. The length of
the evaluation code is bounded by the number of points on the curve over the given field;
thus curves with as many points as possible over a given field are useful in this context. The
Hermitian curve is extremal among maximal curves and is almost certainly the best-studied
maximal curve of positive genus.

1.1.1 The Hermitian curve

For a curve X defined over a field k and K/k any field extension, let X (K ) denote the set of
points on X defined over K . A curve’s genus is a non-negative integer that is one measure of
its complexity. The number of points possible for a curve over a finite field is limited by the
Hasse-Weil bound of the curve’s genus and the field size as follows: for a smooth, projective
X of genus g defined over a finite field Fq of cardinality q , we have that

q + 1 − 2g
√
q ≤ |X (Fq)| ≤ q + 1 + 2g

√
q.

A curve which obtains the upper bound over a given field is said to be maximal over that
field.
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The Hermitian curve Hq is defined over Fq by the affine equation

xq + x = yq+1.

This curve is smooth, irreducible, has genus g = q(q−1)
2 , and has a single point at infinity,

denoted by P∞.
Let k be any natural number. We consider the points onHq over the corresponding degree

k extension field of Fq , given explicitly by

Hq(Fqk ) = {(x, y) ∈ (
Fqk

)2 : xq + x = yq+1} ∪ {P∞}.
In this paper, we focus on the field Fq2 . Note that Hq has q3 + 1 points over Fq2 , so Hq is
maximal over Fq2 .

The Hermitian curveHq is extremal in many ways: it is the unique curve with the largest
possible genus for a curve maximal over the field Fq2 , and thus is the maximal curve with
the largest number of points for that field. The curve is also as symmetrical as possible in
that the automorphism group of Hq is PGU(3, q2), which makesHq the only curve of genus
g with automorphism group of order greater than 16g4 [7].

This exceptional symmetry is apparent in the geometry of Hq . The intersection of Hq

with lines in the projective plane P
2 will be very important to our construction.

Fact 1 Every line inP
2 that is not tangent toHq intersectsHq in exactly q+1 distinct places.

Tangent lines to Hq intersect Hq in exactly one place [9].

We consider only lines defined over Fq2 which do not pass through the point P∞, which
can be parameterized by the affine equations x = αt + β and y = t for α, β ∈ Fq2 . Note
that each line tangent to Hq at an affine point does not pass through P∞, so such a line is of
the given form. Thus, for each P a point ofHq(Fq2)\{P∞}, there are exactly q2 − 1 distinct,
non-tangent lines passing through P and q other affine points of the curve defined over Fq2 .

1.1.2 Evaluation codes and one-point codes on Hermitian curves

V.D. Goppa first defined evaluation codes on curves over finite fields in the early 1980s [6].
The basic idea is to choose a set of points on the curve X as evaluation points, and a disjoint
set of points as the support of a pole divisor. Codewords are created by evaluating functions
which take on poles only in the support of the pole divisor on the evaluation points. The
simplest case of Goppa’s construction is a one-point code, where the pole divisor is D = mP
for some natural number m and P a point on X . More concretely, we use the following
definition.

Definition 1 Let X be a smooth curve defined over Fq . Let P be a point on X (Fq) and m be
a natural number. Let B = {P1, P2, . . . , Pn} be a set of points in X (Fq) not containing P ,
and let D be the divisor D := P1 + P2 + · · · + Pn . Let L(mP) be the Riemann-Roch space
of functions on X with poles only at P of order at most m. The one-point code C(D,mP)

is the set {( f (P1), f (P2), . . . f (Pn)) ∈ (
Fq

)n : f ∈ L(mP)}.
For simplicity, we define a one-point code on the Hermitian curve to take mP∞ as the

pole divisor. These codes have been well-studied, beginning with work by Tiersma [17] and
Stichtenoth [16]. The Riemann-Roch space L(mP∞) on Hq can be explicitly written down
with basis

{xi y j : 0 ≤ j ≤ q − 1, iq + j(q + 1) ≤ m}.
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We use evaluation set B = Hq(Fq2)\{P∞}, to obtain the evaluation divisor D. Adapting the
notation of [4], we define the code Cq,m to be one-point code C(D,mP∞) with choices as
above.

The length of Cq,m is n = q3. The dimension k of Cq,m is given by dim(L(mP∞)) for
m < q3 and k can be determined using the Riemann-Roch theorem. If m > 2g − 2 we
have k = dim(L(mP∞)) = m − g + 1; in general, k = dim(L(mP∞)) ≥ m − g + 1. The
minimum distance d of the code can be bounded by d ≥ n − m, since any function with a
single pole of at most order m can have at most m zeros. The exact minimum distance has
been determined for all values of m [8,21].

Evaluation codes with locality from algebraic curves appear in [3]. The authors define
locally recoverable codes on curves, with locality arising from covering maps and recovery
based on polynomial interpolation, and define a locally recoverable code with availability
t = 2 onHq by viewing the curve as a fiber product. In [11], the fiber product construction is
utilized to define codes on curves with higher availability, with arbitrarily large availability
possible for codes over large fields. A code of length q3 on Hq is defined with availability

t = log q
log p , where p is any prime and q = pt . In this paper, we use an entirely different

approach define codes of the same length onHq (with q even) with vastly higher availability
t = q2 − 1.

1.1.3 Contrast of Hermitian-lifted codes with related literature

Hermitian-lifted codes have some similarities with constructions in the literature, but are
distinct in a few important ways. The locally recoverable codes in [3] and [11] are based on
fiber products of curves, an algebraic geometry construction which builds a curve Y by the
product of several other curves Yi , 1 ≤ i ≤ t , each with maps to a shared base curve X . The
functions evaluated in these codes are multivariate polynomials of bounded degree in each of
the generators of the corresponding extensions of function fields. The t disjoint recovery sets
in these codes correspond to fibers of the induced covering maps from Y to Yi . In Hermitian-
lifted codes, the recovery sets correspond to the intersection points of the Hermitian curve
with non-tangent lines. These could be viewed as the fibers of projection maps along each
non-horizontal slope from Hq to a copy of the projective line P

1, but these projection maps
are not induced by a fiber product construction and there is not an obvious construction
of the functions evaluated in Hermitian-lifted codes as any simple class of functions in the
compositum of the function fields of the projective lines. For these codes to arise from the
fiber product construction, we would need to construct the Hermitian curve Hq as a fiber
product of q2 projective lines. Each map Yi → X would need to be degree q + 1, and could
ramify above at most two points. By counting points, we see this could not lead toHq . Thus
our construction creates a code which could not arise from the fiber product approach.

We also contrast Hermitian-lifted codes with other constructions based on lifted codes.
Lifted codes and their variations [1,2,5,12,14,20] have provided constructions of codes with
good locality and availability. It might be tempting to think that Hermitian-lifted codes are
identical to bivariate lifts of Reed-Solomon codes, punctured to the Hermitian curve, but this
is not the case. Indeed, Hermitian-lifted codes correspond to bivariate polynomials over Fq2

whose restriction to every line intersectedwith theHermitian curve have degree at most q−1.
The relevant lifted code, corresponding to bivariate polynomials whose restriction to every
line has degree at most q−1, is known to be equal to the bivariate Reed-Muller code of degree
q − 1 [15]. In particular, this code has dimension O(q2) and in particular the puncturing
to the Hermitian code (of size q3) has rate O( 1q ). Thus, the Hermitian-lifted code is much
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larger than the corresponding lifted Reed-Solomon code, punctured to the Hermitian curve.
We also note that Hermitian-lifted codes are different from the notions of lifted Hermitian
codes given in [2,5]. The main difference is that in those works, the Hermitian code can be
seen as the “base code,” while in our work, the Hermitian code is used in the definition of
the lifting process.

2 Code Construction

In this section, we give a few preliminary definitions and define Hermitian-lifted codes. For
the rest of the paper, let X = Hq(Fq2)\{P∞}.

As discussed in the introduction, Hermitian-lifted codes are codes that are lifted with
respect to Hermitian curves. More precisely, a Hermitian-lifted code is the evaluation code
of all bivariate polynomials that agree with low-degree polynomials on all lines intersected
with X . We formalize this below.

First, we make the observation that one-point Hermitian codes are themselves naturally
locally recoverable with locality q and availability q2 − 1.

Observation 2 The one-point codeCq,m is locally recoverablewith locality q and availability
q2 − 1 for all m ≤ q2 − 1.

Proof Each index i of a position in Cq,m corresponds to a point Pi in Hq(Fq2)\{P∞}. For
any α, β ∈ Fq2 , we define the function Lα,β : Fq2 → (

Fq2
)2 so that

Lα,β(t) = (αt + β, t).

For each such line Im(Lα,β) passing through Pi which is not tangent to Hq at Pi , let Ri,α

be the set of indices corresponding to points in the set (Hq
(
Fq2) ∩ Im(Lα,β)

) \{Pi }. We see
that |Ri,α| = q and there are q2 − 1 such mutually disjoint sets for each i .

Any codeword in Cq,m is the evaluation of a function f (x, y) which is a Fq2 -linear
combination of monomials of the form xa yb where b ≤ q − 1 and aq + b(q + 1) ≤ q2 − 1.
Thus

a + b + b
1

q
≤ q − 1

q
,

so

a + b ≤ q − b + 1

q
.

Since a and b are non-negative integers, for eachmonomial in f (x, y)we have a+b ≤ q−1.
Thus for all points on the line Im(Lα,β), the function f is identical to a univariate polynomial
gα(t) of degree at most q − 1.

If the symbol in position i of the codeword corresponding to f is erased, the value of f (Pi )
may be recovered by interpolating the polynomial gα(t) from its values on the q points with
indices in Ri,α . �

It is worth noting that the one-point codes considered in Observation 2 have rate

m + 1 − g + dim L(K − mP∞)

q3
≤ m + 1

q3
→ 0

as q → ∞, where K denotes a canonical divisor on Hq . In what follows, we develop
Hermitian-lifted codes, which have rate bounded away from 0 as q → ∞.
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Definition 2 For polynomials f ∈ Fq2 [x, y] and g ∈ Fq2 [t], and for a function L : Fq2 [t] →
F
2
q2
, we say that f ◦ L agrees with g on X if f (L(t)) = g(t) for all t ∈ Fq2 with L(t) ∈ X .

Definition 3 Given a prime power q , let

F =
{
f ∈ Fq2 [x, y] : ∀L ∈ L, ∃g ∈ Fq2 [t] so that deg(g) ≤ q − 1

and so that f ◦ L agrees with g on X
}

,

where above

L = {
Lα,β : α ∈ Fq2 , β ∈ Fq2

}

is the set of all lines of the form Lα,β(t) = (αt + β, t).

Definition 4 (Hermitian-lifted codes) Let q be a prime power and let F be as in Definition 3.

Define the Hermitian-lifted code C ⊆ (
Fq2

)q3 as the evaluation code

C = {
( f (x, y))(x,y)∈X : f ∈ F}

.

We note that X , F and C depend on the choice of q; we suppress this in the notation since
it will be clear from context. It is evident that Cq,m is a subcode of C.
Remark 1 (Horizontal lines) We ignore horizontal lines in our definition of L because they
only intersect X in q affine places, rather than q + 1. In particular, horizontal lines are
different than non-horizontal lines because the point at ∞ is not an evaluation point in the
code construction. As we see below, this will affect the locality of our resulting code.

It is easy to see (Observation 3 below) that Hermitian-lifted codes have locality and
availability; the challenging task is to analyze the rate.

Observation 3 Let q be any prime power, and let C be the Hermitian-lifted code as defined
in Definition 4. Then C has locality q and availability q2 − 1.

Proof For any point (x, y) ∈ X , there are q2 − 1 lines Lα,β(t) ∈ L that pass through (x, y),
that are not tangent to X , and that are not horizontal. Any two of these lines intersect only in
the point (x, y), and each has q points on X other than (x, y). These q points form a repair
group for the coordinate of C indexed by (x, y). Indeed, let f ∈ F , and suppose that L(t) is
such a line. Let t0 ∈ Fq2 be so that L(t0) = (x0, y0). As f ∈ F , let g(t) be a polynomial of
degree at most q − 1 so that f (L(t)) = g(t) for any t so that L(t) ∈ X . Given the q values

{ f (x, y) : (x, y) ∈ (Im(L) ∩ X )\{(x0, y0)}} = {
g(t) : t ∈ Fq2\{t0}

}

of f (x, y) on (Im(L) ∩ X )\{(x0, y0)}, one can use Lagrange interpolation to recover the
polynomial g, and hence g(t0) = f (L(t0)) = f (x0, y0). Thus the symbol f (x0, y0) of the
codeword corresponding to f can be recovered by the q other symbols in the repair group
corresponding to points in (Im(L) ∩ X )\{(x0, y0)}. �

3 Main Theorem and Proof

Our main result is that Hermitian-lifted codes have rate bounded below by a constant inde-
pendent of q . It is an immediate observation that C has rate at least q(q+1)

2q3
≥ 1

2q , since

Cq,q2−1 is a subcode of C and the dimension of Cq,q2−1 is q(q+1)
2 . However, what may be

surprising is that in fact there are many functions f ∈ F\L (
(q2 − 1)P∞

)
, enough so that

the rate of the code C is actually bounded below by a constant independent of q .
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Theorem 4 Suppose that q ≥ 4 is a power of 2, and let C be as in Definition 4. Then the rate
of C is at least 0.007.

For the rest of this section, we will assume that q = 2� is a power of two, as in the
hypotheses of Theorem 4. The strategy will be to find a large set of monomials Ma,b(x, y) :=
xa yb for a ≤ q − 1 and b ≤ q2 − 1 so that xa yb ∈ C.

It is not hard to see that such monomials lead to linearly independent codewords as shown
in the next result.

Proposition 5 Let Ma,b(x, y) = xa yb. Then the set of vectors
{(

Ma,b(x, y)
)
(x,y)∈X : 0 ≤ a ≤ q − 1, 0 ≤ b ≤ q2 − 1

}

are linearly independent.

Proof The kernel of the evaluationmap of the affine points of theHermitian curve is generated
by yq+1 − xq − x, yq

2 − y, xq
2 − x . Under any monomial ordering where yq+1 < xq , the

polynomials yq+1 − xq − x, yq
2 − y are a Gröbner basis for the kernel. Hence the monomial

set Ma,b(x, y), 0 ≤ a ≤ q − 1, 0 ≤ b ≤ q2 − 1 can not contain any element from the kernel
of the evaluation map, which implies the evaluations of Ma,b are linearly independent. �
Since such monomials lead to linearly independent codewords by Proposition 5, bounding
the number of them in C will give us a lower bound on the dimension of C.

The proof proceeds in two steps. We give a brief overview below, after we introduce some
necessary notation.

Definition 5 (pα,β, degα,β ) Given α, β ∈ Fq2 , define

pα,β(t) := tq+1 + αq tq + αt + (β + βq) = tq+1 + αq tq + αt + γ, (1)

where above we are defining γ := β + βq . For a polynomial g(t) ∈ Fq2 [t], let ḡ(t) be the
remainder obtained when g(t) is divided by pα,β(t), and define

degα,β(g) := deg(ḡα,β(t)).

Notice that degα,β(g) ≤ q for all g ∈ Fq2 [t].
To see why Definition 5 is relevant, consider a line Lα,β(t) = (αt + β, t). Notice that

Ma,b ◦ Lα,β agrees with a polynomial g of degree strictly less than q on X if and only if

degα,β(Ma,b ◦ Lα,β) < q.

Indeed, write

(Ma,b ◦ Lα,β)(t) = h(t)pα,β(t) + g(t)

for some polynomial g(t) of degree at most q . Then for any t so that Lα,β(t) ∈ X , we have
by definition that tq+1 = (α + βt)q + α + βt, or in other words that pα,β(t) = 0. Thus,
Ma,b ◦ Lα,β agrees with g(t) on X , and since there are q + 1 such values of t , g(t) is the
unique polynomial of degree at most q for which this is true.

We say that a monomial Ma,b is good if for all lines Lα,β ∈ L,
degα,β(Ma,b ◦ Lα,β) < q.

The reasoning above leads to the following observation.
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Observation 6 If Ma,b is good, then Ma,b ∈ F .

Thus, our goal will be to find a big set of good monomials. Our approach proceeds in two
steps. In the first step (Sect. 3.1), we give a condition for when the monomial tk has degree
at most q − 1 modulo pα,β(t). In the second step (Sect. 3.2), we use this condition, along
with Lucas’ theorem, to show that there are many good monomials.

3.1 Behavior of monomials tk modulo p˛,ˇ(t)

In this section, we give a condition on k for the monomial tk to be low-degree modulo pα,β(t)
and prove Theorem 10 at the end of this section after we develop the necessary ingredients.
Let α, β be elements of Fq2 such that the line Lα,β(t) = (αt + β, t) is not tangent to the
Hermitian curve X . As α, β are fixed for the rest of this section, for notational convenience
the polynomial pα,β(t) will be denoted by p(t) and Lα,β(t) will be denoted by L(t). As in
Definition 5, we let γ := β + βq . Notice that γ ∈ Fq .

Let σ0, . . . , σq be the roots of p(t). There are q + 1 distinct roots of p(t) because there
are q + 1 distinct points in Im(L) ∩ X . Thus

p(t) = tq+1 + αq tq + αt + γ =
q∏

i=0

(t − σi ) = c0t
q+1 + c1t

q + · · · + cq t + cq+1,

where ck = ∑
S⊂{0,...,q},|S|=k

∏
�∈S σ�, for k = 0, . . . , q. In particular we have

c0 = 1 (2)

c1 =
q∑

i=0

σi = αq (3)

ck = 0 ∀1 < k < q (4)

cq =
q∑

i=0

σ0 · · · σq
σi

= α (5)

cq+1 = σ0 · · · σq = γ. (6)

For any k ≥ 0 we define the element Pk =
q∑

i=0

σ k
i . We show below that the values Pk

provide a sufficient condition to guarantee degα,β(tk) < q .

Proposition 7 Let q be a power of 2 and let α, β ∈ Fq2 . Then Pk+1 = αq Pk if and only if

degα,β(tk) < q.

Proof Write

tk = gk(t)p(t) + ḡk(t)

for some polynomial gk(t) so that the polynomial ḡk(t) has degree at most q . Our goal is to
show that deg(ḡk(t)) < q if and only if Pk+1 = αq Pk .

As σ0, . . . , σq are the roots of p(t), we have ḡk(σi ) = σ k
i . Thus, we know q + 1 values

of ḡk . Since ḡk has degree less than q , we may use Lagrange interpolation to write

ḡk(t) =
q∑

i=0

σ k
i

∏

��=i

(
t − σ�

σi − σ�

)
=

⎛

⎝
q∑

i=1

σ k
i

∏

��=i

1

σi − σ�

⎞

⎠ tq + r(t),
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where deg(r) < q . Since

p(t) = tq+1 + αq tq + αt + γ = (t − σ0) · · · (t − σq),

taking the derivative of both sides yields

p′(t) = tq + α =
q∑

i=0

∏

��=i

(t − σ�).

Thus,

p′(σi ) = σ
q
i + α =

∏

��=i

(σi − σ�).

Because σi is a root of p(t), we have σ
q+1
i + αqσ

q
i + ασi = γ ; hence,

(
σ
q
i + α

) (
σi + αq) = αq+1 + γ.

Thus, we get

∏

��=i

(σi − σ�) = αq+1 + γ

σi + αq
.

As a consequence the coefficient of tq in ḡk(t) is given by

q∑

i=1

σ k
i (σi + αq)

αq+1 + γ
= Pk+1 + αq Pk

αq+1 + γ
.

Thus, this coefficient is zero exactly when Pk+1 = αq Pk , as desired. �

The goal now is to find k such that Pk+1 = αPk . We begin with an observation about Pk
for 0 ≤ k < q .

Lemma 8 Let q be a power of 2. For 0 ≤ k < q, Pk = αqk and Pkq = αk .

Proof Since q is even, we have P0 = 1. Take 1 ≤ k < q. Newton’s identities imply that

kck =
k∑

i=1

(−1)i−1ck−i Pk,

and replacing the ci with the values given in (2)-(6), we see that for 0 ≤ k < q, Pk = αq Pk−1.

Thus Pk = αqk .

Because we are working over Fq2 ,

Pkq =
q∑

i=0

σ
kq
i =

( q∑

i=0

σ k
i

)q

=
(
αqk

)q = αk,

which completes the proof. �

We recall the Kronecker product of two matrices.

123



Hermitian-lifted codes 507

Definition 6 Let A = [ai j ] be an r × s matrix and B = [bi j ] an m1 × m2 matrix. The
Kronecker product of A and B is the rm1 × sm2 matrix that can be expressed in block form
as

A ⊗ B =

⎛

⎜⎜⎜
⎝

a11B a12B · · · a1s B
a21B a22B · · · a2s B

...
...

...

ar1B ar2B · · · ars B

⎞

⎟⎟⎟
⎠

.

Proposition 9 Assume q = 2�. Then
⎛

⎜⎜⎜
⎝

P0 Pq · · · P(q−1)q
P1 Pq+1 · · · P(q−1)q+1
...

...
...

Pq−1 P2q−1 · · · Pq2−1

⎞

⎟⎟⎟
⎠

=
(

1 α2�−1

α(2�−1)q γ 2�−1

)

⊗ · · · ⊗
(

1 α2

α2q γ 2

)
⊗

(
1 α

αq γ

)
.

Proof Denote by �q the matrix of the left side and by �′
q the matrix of the right side of the

proposed equality. For a root σ of p(t) = tq+1 + αq tq + αt + γ, σ k = αqσ k−1 + ασ k−q +
γ σ k−q−1 for k ≥ q + 1. Thus we obtain that the Pk values satisfy the recurrence relation

Pk = αq Pk−1 + αPk−q + γ Pk−q−1. (7)

As a consequence, the (i, j) entry on the matrix �q depends on the (i −1, j), (i, j −1), (i −
1, j −1) entries of �q . This implies that the matrix �q is fully determined by its first row and
its first column. It is clear that the first row of �′

q is (1, α, . . . , αq) and the first column of �′
q

is (1, αq , . . . , αq(q−1))T . Moreover, Lemma 8 implies that the same is true for �q ; thus the
first rows and first columns of �q and �′

q are the same. In order to show that �q = �′
q , we

just need to verify that matrix �′
q satisfies (7). It is equivalent to show that every 2× 2 block

M of �′
q satisfies the relation

M22 = αqM12 + αM21 + γ M11. (8)

We proceed by induction. It is clear that the matrix

(
1 α

αq γ

)
satisfies (8). Let i > 1 and

assume that every 2 × 2 block of the matrix

B =
(

1 α2i−1

α(2i−1)q γ 2i−1

)

⊗ · · · ⊗
(

1 α2

α2q γ 2

)
⊗

(
1 α

αq γ

)

satisfies (8). We will show that the matrix

(
1 α2i

α(2i )q γ 2i

)

⊗ B satisfies (8). Observe that the

first row, first column, last row and last column of B are as shown:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 α α2 . . . α2i−1

αq α2i−2γ

α2q α2i−3γ 2

...
...

α(2i−1)q α(2i−2)qγ α(2i−3)qγ 2 . . . γ 2i−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (9)
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Now it is straightforward to check that the matrix

(
1 α2i

α(2i )q γ 2i

)

⊗ B =
(

B α2i B

α(2i )q B γ 2i B

)

satisfies the desired property (8). Indeed, take any 2 × 2 block M . If M belongs to any of
the four blocks B, α2i B, α(2i )q B or γ 2i B, then we are finished by induction. Otherwise, we
have the following five cases:

(i) When M intersects the blocks B and α2i B, M =
(

α2i− jγ j−1 α2i α jq

α2i−( j+1)γ j α2i α( j+1)q

)

for some j .

(ii) When M intersects the blocks B and α(2i )q B, M =
(

α(2i− j)qγ j−1 α(2i−( j+1))qγ j

α jα(2i )q α j+1α(2i )q

)

for

some j .

(iii) WhenM intersects the blocks α2i B and γ 2i B, M =
(

α2i α(2i− j)qγ j−1 α2i α(2i−( j+1))qγ j

α jγ 2i α j+1γ 2i

)

for some j .

(iv) When M intersects the blocks α(2i )q B and γ 2i B, M =
(

α(2i )qα2i− jγ j−1 γ 2i α jq

α(2i )qα2i−( j+1)γ j γ 2i α( j+1)q

)

for some j .
(v) When M intersects the four blocks—that is, M is the 2 × 2 matrix in the center—we have

M =
(

γ 2i−1 α2i α(2i−1)q

α(2i )qα2i−1 γ 2i

)

.

It is not hard to check that in all five cases, we have M22 = αqM12 + αM21 + γ M11. �
Finally, we are ready to prove Theorem 10, stated below, which provides a sufficient

condition for degα,β(tk) < q .

Theorem 10 Assume q = 2�. Let 0 ≤ k < q2, and write k = wq + z where z < q. Let
α, β ∈ Fq2 . Suppose that either w = 0, or that there exists 1 ≤ i ≤ � such that w ≡ 0
mod 2i and z �≡ −1 mod 2i . Then degα,β(tk) < q.

Proof of Theorem 10 Suppose that k = wq+ z as in the theorem statement. By Proposition 7,
we just need to check that Pk+1 = αq Pk . When w = 0, it is clear that Pk+1 = αq Pk because
by Lemma 8, for 0 ≤ k ≤ q , Pk = αqk .

Suppose that there exists an i so that w ≡ 0 mod 2i and z �≡ −1 mod 2i . Then let

A =
(

1 α2�−1

α(2�−1)q γ 2�−1

)

⊗ · · · ⊗
(

1 α2i

α(2i )q γ 2i

)

and B =
(

1 α2i−1

α(2i−1)q γ 2i−1

)

⊗ · · · ⊗
(

1 α

αq γ

)
,

so that A ∈ F
2�−i×2�−i

q2
and B ∈ F

2i×2i

q2
. By Proposition 9

⎛

⎜⎜⎜
⎝

P0 Pq · · · P(q−1)q
P1 Pq+1 · · · P(q−1)q+1
...

...
...

Pq−1 P2q−1 · · · Pq2−1

⎞

⎟⎟⎟
⎠

= A ⊗ B =

⎛

⎜⎜⎜
⎝

a11B a12B · · · a1s B
a21B a22B · · · a2s B

...
...

...

as1B as2B · · · ass B

⎞

⎟⎟⎟
⎠

where s = 2�−i . Suppose that Pk lies in the block acd B for some c, d ∈ {1, . . . , 2�−i }. The
fact that w ≡ 0 mod 2i means that the element Pk is in the first column of the block acd B.

The fact that z �≡ −1 mod 2i means that Pk is not in the last row of the block acd B. In
particular, Pk+1 is also in the block acd B. Because of the structure of the first column of B,
shown in (9), we have Pk+1 = αq Pk . Thus by Proposition 7, we have degα,β(tk) < q . �
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3.2 Bound on the rate of the code

In this section we use Theorem 10 in order to bound the rate of our code construction below,
completing the proof of Theorem 4.

Asdiscussed above, the strategywill be tofind a large set ofmonomialsMa,b(x, y) = xa yb

for a ≤ q − 1 and b ≤ q2 − 1 so that Ma,b is good, and hence, by Observation 6, Ma,b ∈ F .
Since such monomials lead to linearly independent codewords by Proposition 5, this will
give us a lower bound on the dimension of C.

If a + b < q , then clearly Ma,b is good. Indeed, in this case deg(Ma,b ◦ Lα,β) < q for all
α, β, and so reducing modulo pα,β does not change this.

If a + b ≥ q , there are two mechanisms that contribute to Ma,b(x, y) being good. To see
this, we may expand Ma,b ◦ Lα,β as follows:

(Ma,b ◦ Lα,β)(t) = Ma,b(αt + β, t) = (αt + β)atb =
∑

j≤a

(
a

j

)
α jβa− j tb+ j . (10)

The first mechanism that can contribute to the goodness of Ma,b is that the terms tb+ j in (10)
could have small degree mod pα,β(t), such as per Theorem 10. The second mechanism is
that the binomial coefficients

(a
j

)
could vanish mod 2. To understand this second mechanism,

we will use Lucas’ Theorem, stated below.

Definition 7 Let a and b be integers between 0 and 2d − 1, and let bin(a) ∈ {0, 1}d denote
the binary expansion of a. We say that a lies in the 2-shadow of b, denoted a ≤2 b, if

Supp(bin(a)) ⊆ Supp(bin(b)).

Theorem 11 (Lucas) Let 0 ≤ a ≤ b be integers. Then
(b
a

)
is zero mod 2 if and only if a �2 b,

meaning a does not lie in the 2-shadow of b.

Before continuing, we give an example to illustrate how both mechanisms come into play.

Example 1 Let q = 4 and consider M2,8(x, y) = x2y8. This is a high-degree polynomial on
the curve X . However, on every line Lα,β(t) = (αt + β, t), we have

M2,8(Lα,β(t)) = (αt + β)2t8

= (α2t2 + β2)t8

= α2t10 + β2t8.

In the second line above when the cross-terms βαt + βαt = 0 canceled, Lucas’ theorem
was in action, as the binomial coefficient

(2
1

)
vanishes. Now in the third line, we are left with

the two monomials t10 and t8. By Theorem 10, both of these reduce to something of degree
less than q . Indeed, we have 10 = 2 + 2 · q. As 2 ≡ 0 mod 2 and 2 �≡ −1 mod 2, we
have degα,β(t10) < q. We have that 8 = 0 + 2 · q. As 0 ≡ 0 mod 2 and 2 �≡ −1 mod 2,
we obtain degα,β(t8) < q. We conclude that degα,β(M2,8(Lα,β(t))) < q , and hence M2,8 is
good.

Notice that bothmechanisms were important here. In particular, if the binomial coefficient(2
1

)
had not disappeared, we would be left with a term t9. One can check that degα,β(t9) = 4

for some α, β, and so this would result in a t4 term in (M2,8 ◦ Lα,β)(t) mod pα,β(t) and
Ma,b would not be good.
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Finally,we canproveourmain theorem,Theorem4,which says that the rate of aHermitian-
lifted code is bounded below by a positive constant.

Proof of Theorem 4 As per Observation 6, we will come up with a large set of monomials
Ma,b that are good. By Proposition 5, the resulting codewords are linearly independent, and
this will yield a lower bound on the dimension of C.

Let q = 2� as in the theorem statement. Below, for an integer x , write x = ∑
r xr2

r , so
that xr denotes the r ’th least significant bit in the binary expansion of x .

Claim 12 Suppose that a ≤ q − 1 and b ≤ q2 − 1 satisfy the following properties.

(i) b = wq + b′ for some w < q and some b′ < 2�−1, so that w ≡ 0 mod 2i for some
1 ≤ i ≤ �;

(ii) a < 2�−1;
(iii) there is some 0 ≤ s ≤ i − 1 so that as = b′

s = 0.

Then Ma,b is good.

Proof Suppose that a, b satisfy (i)-(iii). Let Lα,β(t) = (αt + β, t) be a line in L and write

(Ma,b ◦ Lα,β)(t) =
∑

j≤a

(
a

j

)
α jβa− j t j+b =

∑

j≤2a

α jβa− j t j+b (11)

using Lucas’ theorem in the second equality. Notice that for any j ≤2 a, we have j < 2�−1

and js = 0, using properties (ii) and (iii). Then the only monomials that appear in (11) are
of the form tk where k = wq + b′ + j for w, b′ as in (i) and for j ≤2 a. Let i be as in (i), so
that w ≡ 0 mod 2i . We claim that b′ + j �≡ −1 mod 2i . Indeed, we can write

b′ = 2s+1b′′ + b′′′ and j = 2s+1 j ′′ + j ′′′

for some b′′′, j ′′′ < 2s , using the fact that b′
s = js = 0. Note that there exists some

c ≤ 2i − 2s+1 so that

2s+1(b′′ + j ′′) ≡ c mod 2i .

(Indeed, this is true for any integer multiple of 2s+1.) Thus,

b′ + j ≡ c + b′′′ + j ′′′ mod 2i .

Since b′′′, j ′′′ < 2s , we have

c + b′′′ + j ′′′ < (2i − 2s+1) + (2s+1 − 1) = 2i − 1,

which means that b′ + j �≡ −1 mod 2i , as claimed.
Thus, k is of the form k = wq + z (where z = b′ + j) so that w ≡ 0 mod 2i and z �≡ −1

mod 2i . By Theorem 10, degα,β(tk) < q . Since this is true for every power tk that appears
in (11), degα,β(Ma,b ◦ Lα,β) < q for all α, β, and hence Ma,b is good. �

Finally, we count the number of pairs a, bmeeting the description in Claim 12. We iterate
over all s, where we take s to be the smallest index so that as = b′

s = 0. For a given s,
there are 4s − 3s ways to assign the bits a0, . . . , as−1 and b′

0, . . . , b
′
s−1, since there are only

3s ways to never have ar = b′
r = 0 for any 0 ≤ r ≤ s − 1. Then there are 4�−s−2 ways

to assign the bits as+1, . . . , a�−2, b′
s+1, . . . , b

′
�−2. Finally, there are 2

�−s−1 ways to assign
the bits ws+1, . . . , w�−1. Notice that we will choose w0, . . . , ws = 0, ensuring that w ≡ 0
mod 2s+1 and in particular w ≡ 0 mod 2i for some i > s.
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Thus, the total number of monomials meeting the description in Claim 12 is

�−1∑

s=0

(
4s − 3s

)
4�−s−22�−s−1 = 23�

32

�−1∑

s=0

(
4s − 3s

)
8−s

= 23�

32
· 2
5

(

1 + 4

(
3

8

)�

− 5

(
1

2

)�
)

≥ 0.007 · q3

using the fact that q = 2� and the assumption that � ≥ 2. Since the length of C is q3 = |X |,
this implies that the rate of C is at least 0.007. �

We note that Claim 12 does not take into account all of the good monomials; in particular,
Ma,b with a = b = 2�−1 − 1 is a good monomial that is not covered. In the examples in
Sect. 4, we see higher rates.

We conclude this section about the rate of the code with a very loose bound on another
parameter, namely the minimum distance.

Proposition 13 The minimum distance d of the code C is bounded by q2 ≤ d ≤ q3 −q2 + 1.

Proof The upper bound given by the fact that Cq,q2−1 is contained in C, and the minimum
distance of Cq,q2−1 is given in Theorem 5 of [16]. The lower bound is based on our recovery
procedure. If V is a codeword with a non-zero symbol in position i , this corresponds to a
function fV which is non-zero on the point Pi . Position i has q2−1 disjoint recovery sets, and
for each recovery set, at least one symbol in V must be non-zero (since the zero polynomial
will be interpolated if all symbols in the recovery set positions are zero). Thus any codeword
with any non-zero symbol must have non-zero symbols in at least q2 positions. �

4 Examples

In computed examples, the actual code C has rate much higher than the asymptotic lower
bound computed in Sect. 3.2. The following examples illustrate how much higher.

4.1 The code C when q = 4

When q = 4, we work with the Hermitian curve x4 + x = y5, which has 65 points over F16

including one point at infinity, giving a code of length n = 64. The code C has dimension
13, with basis the set of monomials xa yb where

(a, b) ∈ {(0, 0), (0, 1), (0, 2), (0, 3), (0, 8), (0, 10), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1),
(2, 8), (3, 0)}.

These exponent pairs are plotted in Fig. 1. In contrast, the comparable non-lifted one-point
Hermitian code C4,15 has dimension 10. Thus the rate of C is 13

64 ≈ 0.20, while the rate of
C4,15 is 10

64 ≈ 0.16.
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Fig. 1 Exponent pairs (a, b) with xa yb ∈ C for q = 4 (a is on horizontal axis)

Fig. 2 Exponent pairs (a, b) with xa yb ∈ C for q = 8 (a is on horizontal axis)

4.2 The code C when q = 8

When q = 8, we work with the Hermitian curve x8 + x = y9, which has 513 points over F64

including one point at infinity, giving a code of length n = 512. The code C has dimension
75, with basis the set of monomials xa yb where

(a, b) ∈ {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 16), (0, 18), (0, 20),
(0, 22), (0, 32), (0, 33), (0, 34), (0, 36), (0, 37), (0, 38), (0, 48), (0, 50), (0, 52),

(0, 54), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 32), (1, 33), (1, 36),

(1, 37), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 16), (2, 18), (2, 20),

(2, 32), (2, 34), (2, 36), (2, 48), (2, 50), (2, 52),

(3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (4, 0),

(4, 1), (4, 2), (4, 3), (4, 16), (4, 18), (4, 32), (4, 33), (4, 34), (4, 48), (4, 50),
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Fig. 3 Exponent pairs (a, b) with xa yb ∈ C for q = 16 (a is on horizontal axis)

Fig. 4 Exponent pairs (a, b) with xa yb ∈ C for q = 32 (a is on horizontal axis)

(5, 0), (5, 1), (5, 2), (5, 32), (5, 33),

(6, 0), (6, 1), (6, 16), (6, 32), (6, 48), (7, 0)}.
These exponent pairs are plotted in Fig. 2. In contrast, the comparable non-lifted one-point
Hermitian code C8,63 has dimension 36. Thus the rate of C is 75

512 ≈ 0.15. The rate of C8,63

is 36
512 ≈ 0.07.

4.3 The code C when q = 16

When q = 16, we work with the Hermitian curve x16 + x = y17, which has 4097 points
over F256 including one point at infinity, giving a code of length n = 4096. The code C has
dimension 505, with basis the set of monomials xa yb where (a, b) are as depicted in Fig. 3.
In contrast, the comparable non-lifted one-point Hermitian code C16,255 has dimension 136.
Thus the rate of C is 505

4096 ≈ 0.123. The rate of C16,255 is 136
4096 ≈ 0.033.
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4.4 The code C when q = 32

When q = 32, we work with the Hermitian curve x32 + x = y33, which has 32,769 points
over F256 including one point at infinity, giving a code of length n = 32, 768. The code C has
dimension 3675, with basis the set of monomials xa yb where (a, b) are as depicted in Fig. 4.
In contrast, the comparable non-lifted one-point Hermitian codeC32,1025 has dimension 528.
Thus the rate of C is 3675

32768 ≈ 0.112. The rate of C32,1025 is 528
32768 ≈ 0.016.

5 Conclusion

In this paper, we define Hermitian-lifted codes, which are codes defined on the Hermitian
curve with small locality, high availability, and rate bounded below by a constant. They are
the evaluation code of polynomials whose restrictions to lines, intersected with the Hermitian
curve, are all low-degree. We study these codes as a first example of curve-lifted codes. We
establish the lower bound on the rate via a counting argument applied to certain “good”
monomials.

We conclude with a few open questions. First, it is an interesting question to completely
characterize the “good” monomials for Hermitian-lifted codes; determining their number
would pin down the rate of these codes. Second, it is interesting to explore other constructions
of curve-lifted codes. We view one of the main contributions of this work as introducing this
paradigm for code constructions, and it is our hope that our construction and analysis of
Hermitian-lifted codes may serve as a prototype for the construction and analysis of other
families of curve-lifted codes.

Acknowledgements The authors thank American Institute of Mathematics (AIM) for hosting this collabora-
tion through its SQuaREs program.
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