
Designs, Codes and Cryptography (2020) 88:2433–2452
https://doi.org/10.1007/s10623-020-00794-z

Tightly CCA-secure encryption scheme in a multi-user setting
with corruptions

Youngkyung Lee1 · Dong Hoon Lee1 · Jong Hwan Park2

Received: 20 February 2019 / Revised: 25 March 2020 / Accepted: 19 August 2020 /
Published online: 2 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The security of public-key encryption (PKE) schemes in a multi-user setting is aimed at
capturing real-world scenarios in which an adversary could attackmultiple users andmultiple
ciphertexts of its choice. However, the fact that a real-world adversary can also mount key-
exposure attacks for a set ofmultiple public keys requires us to consider amore realistic notion
of security in multi-user settings. In this study, we establish the security notion of PKE in a
multi-user settingwith corruptions, where an adversary is able to issue (adaptive) encryption,
decryption, and corruption (i.e., private key) queries. We then propose the first practical PKE
scheme whose security is proven in a multi-user setting with corruptions. The security of
our scheme is based on the computational Diffie–Hellman (CDH) assumption and is proven
to be tightly chosen-ciphertext secure in a random oracle model. Our scheme essentially
follows the recently proposed modular approach of combining KEM and augmented DEM
in a multi-user setting, but we show that this modular approach works well in a multi-user
setting with corruptions.

Keywords Public-key encryption · Multi-user setting with corruptions · CDH · Tight
security · Random oracle model

Mathematics Subject Classification 94A60

Communicated by R. Steinfeld.

B Jong Hwan Park
jhpark@smu.ac.kr

Youngkyung Lee
dudrudve@korea.ac.kr

Dong Hoon Lee
donghlee@korea.ac.kr

1 Korea University, Seoul, Korea

2 Sangmyung University, Seoul, Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-020-00794-z&domain=pdf

2434 Y. Lee et al.

1 Introduction

The security of most public-key encryption (PKE) schemes is analyzed using securitymodels
that reflect real-world attack environments as closely as possible. The standard securitymodel
for PKE schemes has been formalized as the indistinguishability against adaptive chosen-
ciphertext attacks model (denoted as ‘IND-CCA’ security [5,12,26,27]), where a single user
and a single ciphertext become targets to an adversary. However, the IND-CCA security
model is still lacking for fully reflecting realistic scenarios because a real-world adversary
can try to attack multiple users and multiple ciphertexts of their choice. To narrow the gap
between the IND-CCA security model and real-world scenarios, Bellare et al. [6] proposed
an IND-CCA security model in a multi-user setting (hereafter denoted as ‘IND-CCA-MUC’
or simply the ‘MUC’ model), where multiple users and multiple ciphertexts become targets
to an adversary. In particular, the MUC model captures even attack scenarios in which an
attacker obtains related messages encrypted using different public keys. Recently, many
studies [2,14,15,18,20–22,24,25] have focused on designing new PKE schemes that are
proven secure in the MUC model [6].

Another consideration tomakewhen constructing PKE schemes is to provide tight security
reductions, which involve proving the security of the scheme based on certain computational
hardness assumptions. In general, a security reduction demonstrates that if a computational
problem is hard to solve with probability 2−λ, then any adversary in a security model can
break such a PKE scheme with a probability of at most L · 2−λ, where λ is a security param-
eter and L is a factor of security loss. If L is a constant, the hardness of a computational
assumption is tightly transformed into the security of a PKE scheme at the same security
level. On the other hand, if L = 230 for instance, then any adversary can break such a PKE
scheme with a probability of at most 230 · 2−λ, which means that the security parameter λ

should be increased to approximately λ + 30 to achieve the same level of security. Because
increasing the security parameter results in a significant decrease in efficiency, it is impor-
tant to achieve tight security reductions in a practical sense. Moreover, there is no doubt
that computational assumptions should be believed to be standard, i.e., well-established as
cryptographic complexity assumptions, such as the discrete logarithm and the computational
Diffie-Hellman (CDH) assumptions [4,11].

In light of the above considerations, many PKE schemes [2,14,15,18,20–22,24,25] have
been proposed to provide (almost1) tight security reductions in the MUC model. Though
most of them provide (almost) tight security reductions without using random oracles, these
schemes are generally considered inefficient for practical use. More concretely, some these
PKE schemes [21,24,25] are constructed using a variant of the Naor–Yung (NY) double-
encryption paradigm [26] and the Groth–Sahai [19] non-interactive zero-knowledge (NIZK)
proofs, so they require quite a large number of pairing operations during decryption. In
addition, for a security parameter λ, some have the drawbacks of requiring O(λ) ciphertexts
[21] or O(λ) public keys [24,25]. Two of these PKE schemes are obtained by applying
the Boneh–Canetti–Halevi–Katz transform [8] to identity-based encryption (IBE) schemes
[2,22] that are almost tightly secure in a multi-challenge and multi-instance2 setting. The
resultant PKE constructions [2,22] are all based on bit-by-bit encoding methods for handling
elements corresponding to O(λ)-bit identities, resulting in O(λ)-long public keys. Recently,
Gay et al. [14] presented a PKE schemewith an almost tight security reduction in pairing-free

1 “Almost” tightness means that the security loss L is determined by O(λ) for a security parameter λ.
2 “Multi-instance” means that there exist multiple key generation centers, which correspond to multiple users
in the process of converting from IBE to PKE.

123

Tightly CCA-secure encryption scheme in a multi-user setting… 2435

groups, but their scheme still suffers from having O(λ) public keys. More recently, Gay et al.
[15] reduced the size of the public keys to a constant size. However, their security reduction
is almost tight, which means that a security loss still occurs with a factor of O(λ).

1.1 Motivation

Although the MUC model has been considered to capture real attack scenarios in which an
adversary tries to attack multiple users and multiple ciphertexts of its choice, the security
guarantee of the MUC model is still insufficient to reflect attacks that can occur in reality.
This insufficiency comes from not taking the corruption of private keys into account as a
possible attack even though many public keys are given to the adversary. Namely, in the
MUC model, a set of public keys {PK1, . . . , PKn} for a positive integer n are given to the
adversary but, without allowing for the corruption of some private keys corresponding to
the public keys, the adversary must rely on chosen-ciphertext attacks. However, given the
fact that cryptographic computations (such as decryption using private keys) are sometimes
performed on weakly protected devices, the adversary can successfully expose some private
keys. This issue requires us to strengthen the MUC model by including so-called corruption
(i.e., private key) queries on some of the public keys. We denote the strengthened MUC
model as the MUC+ model, which refers to the IND-CCA security model in a multi-user
setting with corruptions. Such private key queries in a multi-user setting can also be justified
by the recent works [3,17], which suggests a practical and tightly-secure signature scheme
in a multi-user setting with corruptions. Similarly, the standard notion of IBE security [7,28]
offers corruption queries for identities (used as public keys) that an adversary can choose
adaptively.

Themore realisticMUC+ model raises the following question: canwe construct a practical
and tightly secure PKE scheme in the MUC+ model? It is known that using random oracles
makes it easy to design such a PKE scheme in theMUC model. For instance, one can obtain
the ElGamal encryption scheme, which is proven to be tightly secure against chosen-plaintext
attacks (denoted as ‘IND-CPA’) in the MUC model, based on the decisional Diffie–Hellman
(DDH) problem and its random self-reducibility [6]. Next, by applying the tight variant [23]
of the Fujisaki–Okamoto (FO) transform [13] to the IND-CPA-secure ElGamal scheme, one
can achieve a practical PKE scheme with a tight security reduction in the MUC model. This
is the reason why there has not been enough research to find practical and tightly secure
PKE schemes in random-oracle models. However, the same approach does not hold for
constructing a secure PKE scheme in theMUC+ model because handling corruption queries
on an arbitrary subset of public keys {PK1, . . . , PKn} (by guessing a subset of public keys
in advance) results in a poor security reduction, even for somewhat large values of n, e.g.,
n = 210. This shows that a new technique may be required when using random oracles to
construct an tightly IND-CCA-secure PKE scheme in the MUC+ model.

1.2 Our contributions

We propose the first practical PKE scheme with tight security reduction in theMUC+ model,
following the modular approaches of the KEM (key encapsulation mechanism) and aug-
mented DEM (data encapsulation mechanism) frameworks in a multi-user setting [16]. In
terms of efficiency, our scheme offers a O(1)-sized public key that contains four group ele-
ments and O(1)-sized ciphertext that consists of two hash outputs plus one group element. In
addition,KEMencryption and decryption operations each require five group exponentiations.

123

2436 Y. Lee et al.

Table 1 Comparison between previous PKE schemes and ours

Scheme |PK| |CT| - |M| Sec. Sec. Sec. ROM/ Pairing
loss model assump. STD

CS98 [10] O(1) O(1) O(qe) MUC DDH STD YES

HJ12 [21] O(1) O(λ) O(1) MUC 2-LIN STD YES

LPJY15 [24,25] O(λ) O(1) O(λ) MUC 2-LIN STD YES

GCDCT15 [18] O(λ) O(k) O(λ) MUC k-LIN STD YES

AHY15 [2] O(λ) O(1) O(λ) MUC 2-LIN STD YES

HKS15 [22] O(λ) O(1) O(λ) MUC k-LIN STD YES

GHKW16 [14] O(λ) O(1) O(λ) MUC DDH STD NO

H16 [20] O(λk2) O(k) O(λ) MUC k-LIN STD YES

GHK17 [15] O(1) O(1) O(λ) MUC DDH STD NO

Ours O(1) O(1) O(1) MUC+ CDH ROM NO

◦ λ is the security parameter. ◦ qe is the maximum number of challenge queries per public key. ◦ MUC
denotes the IND-CCA security model in a multi-user setting. ◦ MUC+ denotes the IND-CCA security model in
a multi-user setting with corruptions. ◦ ROM denotes random oracle models. ◦ STD denotes standard models
(i.e., without random oracles). ◦ DDH denotes the decisional Diffie–Hellman assumption. ◦ CDH denotes the
computational Diffie–Hellman assumption. ◦DLIN denotes the decision linear assumption. ◦ |PK| denotes the
size of the public key in groups elements. ◦ |CT| - |M| denotes the size of the ciphertext in groups elements,
ignoring smaller components from symmetric encryption

In particular, because our scheme works with pairing-free groups, those group operations can
be easily performed using elliptic-curve cryptography (ECC) algorithms. In terms of secu-
rity, we first provide a formal definition of KEM with respect to the MUC+ model where, in
addition to multiple encapsulation and decapsulation queries, corruption (i.e., private key)
queries are permitted given a set of public keys {PK1, . . . , PKn}. Next, we suggest a modi-
fied version of augmented hybrid encryption by combining a KEM approach (secure in the
MUC+ model) and an augmented DEM approach (secure in a multi-instance setting) and
show that the resulting PKE scheme achieves a tight security reduction in theMUC+ model.
Interestingly, augmented DEM (without allowing for corruption queries in its security) suf-
fices for the security of the MUC+ model because corruption queries involve key-exposure
attacks only in KEM. Under the abovementioned security frameworks, we prove that our
KEM scheme is tightly secure in the MUC+ model using random oracles based on the CDH
assumption. Table 1 presents a comparison between previous (almost) tightly secure PKE
schemes and our scheme in terms of security and efficiency.

1.2.1 Our approach

To achieve tight security reductions in theMUC+ model, we first need to consider a technique
to handle corruption queries without causing a non-tight security reduction. To do this, we
employ the idea of the NY double-encryption paradigm (even in a random oracle model), by
which a simulator in our security analysis can answer any corruption queries with respect to
each of the public keys {PK1, . . . , PKn}. More precisely, each PKi consists of two public keys
(pk0,i ,pk1,i) and thus, for a randomly chosen bit b ∈ {0, 1}, only skb,i is the corresponding
private key. In this setting, the simulator knows only one of the private keys, skb,i , which
can be given as the answer to the corruption query, whereas the other private key sk1−b,i

is unknown to the simulator. Using the encryption algorithm enc of a PKE scheme under

123

Tightly CCA-secure encryption scheme in a multi-user setting… 2437

pk0,i and pk1,i , our KEM scheme encrypts the same message R (randomly chosen in a
message space) and generates a ciphertext CT = (C0,C1), where C0 = enc(pk0,i , R) and
C1 = enc(pk1,i , R). Given the ciphertext CT = (C0,C1) generated in the abovementioned
way, the simulator can decrypt Cb using skb,i but cannot decrypt the other part C1−b. This
makes it hard for the simulator to check the well-formedness of C1−b and thus deal with
(adversarial) decapsulation queries. To solve this problem, the NY technique generates the
NIZK proof π to prove that C0 and C1 encrypt the same message R and appends proof π to
the ciphertext.

On the other hand, using random oracles instead of the generally inefficient NIZK proof
makes it easier and simpler to solve the problem without increasing the size of ciphertexts.
Let H and H ′ be hash functions modeled as random oracles. Our idea is to use the KEM
variant of the FO transform [1] to check the well-formedness of the other part, C1−b. For
the same encrypted message R, the ciphertext is constructed as CT = (C0,C1), where
C0 = enc(pk0,i , R; H(R)) and C1 = enc(pk1,i , R; H(R)) for the same randomness H(R).
In this case, the simulator can obtain R by decrypting Cb and check if C1−b was generated
correctly through the simple re-encryption of R under the randomness H(R). That is, the
randomness recovery property of the FO transform makes it very simple to check in the NY
paradigm whether both C0 and C1 encrypt the same message under the same randomness.
Under the ciphertext CT generated as explained above, the relevant KEM key is computed
as K = H ′(R). Because the adversary is asked to query R to oracle H each time it encrypts
message R, the queried R allows the simulator to know beforehand what the KEM key
K corresponding to ciphertext CT will be. This shows how the simulator is able to handle
decapsulation queries in the above (NY+FO)-combined technique.

Given a challenge ciphertext CT∗ = (C∗
0 ,C

∗
1) for a challenged PK

∗
i = (pk∗

b, pk
∗
1−b) (which

can be easily extended to a multi-user setting), the adversary must decrypt either C∗
0 or C∗

1
to recover the encrypted message R∗ (and then the KEM key K∗ = H ′(R∗)). We now have
a simulator that can decrypt C∗

b using sk∗
b,i but not C

∗
1−b, hoping that the adversary can

decrypt C∗
1−b. If the adversary does not know bit b for private key sk∗

b,i , which has not been
corrupted, we can expect that the adversarywill decryptC∗

1−b with a probability of essentially
1/2. Hence, the simulator can use the ability of the adversary to break the PKE scheme under
pk∗

1−b,i with the same probability of 1/2. This observation shows that it is necessary to prove
that bit b for sk∗

b,i is not revealed to the adversary in our security proofs. However, this hiding
is not enough to prove that the (NY+FO)-combined KEM is tightly secure in a multi-user
setting, especially, under the CDH assumption. Given a set of challenged public keys, the
simulator should be able to check which public key among the challenged set is the target for
the adversary to succeed, because a distinct instance of the CDH problem is associated with
each (challenged) public key, respectively. Otherwise, the simulator choose a target public
key among the set of challenged public keys, which also causesO(n) security loss. To solve
these issues, we use a PKE scheme as a building block (regarding pk0,i and pk1,i), which
is a slight variant of the twin ElGamal encryption scheme [9]. Our variant3 can be proven
to be tightly one-way-secure against chosen-plaintext attacks (denoted as ‘OW-CPA’) based
on the twin Diffie–Hellman (TDH) assumption [9] (and thus the CDH assumption), which
has an access to a decisional TDH oracle as a checking mechanism. Therefore, breaking the
PKE scheme under pk∗

1−b,i with probability ε allows the simulator to solve an instance of the
TDH (and thus the CDH) problem with probability ε/2. Finally, the random self-reducibility

3 Roughly speaking, our variant works as follows: for a public key (g, X1 = gx1 , X2 = gx2) with a corre-
sponding secret key (x1, x2), encryption is done by computing (gs , Xs

1, X
s
2) for a random s and outputting a

ciphertext (gs , H(gs , Xs
1, X

s
2) ⊕ m) for a message m.

123

2438 Y. Lee et al.

of the TDH assumption implies that the results in single-user settings can be easily extended
to multi-user settings without causing any security loss.

In 2015, Bader et al. [3] showed that using theNYdouble encryption technique, the generic
KEM based on any IND-CPA-MUC-secure PKE scheme can be proven tightly secure in the
IND-CPA-MUC+ model. Their construction idea is almost similar to the abovementioned one,
in that each public key PK consists of two public keys (pk0,pk1) and only one skb is generated
for a randomly chosen b ∈ {0, 1}. In that case, one might think that it is generically easy to
build a KEM (tightly) secure in the IND-CCA-MUC+ model from a KEM (or PKE scheme)
secure in the IND-CPA-MUC+ model, using the FO transform as usual. Our answer is no, and
the reason is from the indistinguishability of the underlying PKE scheme. Our argument is as
follows: for a challenged public key PK∗ = (pk∗

0,pk
∗
1), a challenge ciphertext is constructed

as CT∗ = (C∗
0 ,C

∗
1) on a message m∗, where C∗

b is an encryption of m∗ generated by the
simulator itself and C∗

1−b is the challenge ciphertext that the simulator is given in response
to the same m∗. Thus, C∗

1−b could be an encryption of either m∗ or a random (unknown)
message R, and the goal of the simulator is to correctly guess which one of the two cases,
using the ability of the adversary. When applying the FO transform, C∗

b is computed as
C∗
b = enc(pk∗

b,m
∗; H(b,m∗)). In case of a single challenge ciphertext, it is easy to see

that the simulator can use the adversary’s ability straightforwardly by checking if (b,m∗)
is queried to H oracle. This is because making such a query related to m∗ is the only way
that the adversary distinguishes between a real game and the simulation game. However, in
case of CT∗ = (C∗

0 ,C
∗
1), the adversary can distinguish between the two games, regardless of

whether C∗
1−b is the encryption of m∗ or R. Firstly, when C∗

1−b = enc(pk∗
1−b,m

∗; r∗) for
some randomness r∗, the adversary recoversm∗ from either C∗

b or C
∗
1−b and issues H -oracle

queries on inputs (b,m∗) and (1− b,m∗). The point is that even though those oracle queries
related to m∗ are made, the simulator does not know which ciphertext among (C∗

0 ,C
∗
1)

is decrypted by the adversary. Moreover, the simulator cannot answer the H -oracle query
on the input (1 − b,m∗) unless r∗ is known to the simulator, which allows the adversary
to differentiate between the two games. Secondly, when C∗

1−b = enc(pk∗
1−b, R; r∗), the

adversary is able to recover both m∗ from C∗
b and R from C∗

1−b, in which case the adversary
immediately can see that it is under simulation. If the adversary recovers either m∗ from C∗

b
or R fromC∗

1−b, the simulator cannot reply to H -oracle queries on inputs (1−b,m∗), (b, R),
and (1 − b, R) consistently. As a result, in any case, the adversary can distinguish the two
games. On the other hand, the idea behind our construction is that we rely the security of the
underlying PKE scheme on the computational hardness (rather than indistinguishability) of
the TDH problem, and find a correct answer with respect to a TDH instance, using H -oracle
queries and the decisional TDH oracle.

2 Background

2.1 Notation

We write λ ∈ N for the security parameter. We say that a function ν : N → R is negligible
if, for every positive polynomial poly(·), there exists an integer N > 0 such that for all x > N
it holds that |ν(x)| < poly(x)−1. Given an algorithm A, we write y ← A to denote that y

is the output of A. If A is a probabilistic algorithm, then y
$←− A denotes that y is computed

by A using fresh random coins. When A is a set, a
$←− A denotes that a is chosen uniformly

over A. For n ∈ N, we write [n] to denote the set {1, . . . , n}.

123

Tightly CCA-secure encryption scheme in a multi-user setting… 2439

2.2 Computational Diffie–Hellman assumption

Let (G, p, g) be a group generated by a group generation functionG(λ). Given (p, g, ga, gb),

where a, b
$←− Zp , the CDH problem consists in computing gab in G. The advantage of A

for solving the CDH problem is defined as

ε(λ) =Pr[Z ← A(p, g, ga, gb) : a, b
$←− Zp ∧ Z = gab].

We say that the (t, ε)-CDH assumption holds in group (G, p, g) if no t-time algorithm
has an advantage of at least ε when solving the CDH problem.

2.3 Twin Diffie–Hellman assumption

Let (G, p, g) be a group generated by a group generation function G(λ). Given (p, g, ga,

gb1 , gb2), where a, b1, b2
$←− Zp and a decisional twin Diffie–Hellman oracle (for fixed

gb1 , gb2), that is, an oracle that for any (R, B1, B2) ∈ G
3 given as inputs correctly answers

the question “is it the case that both B1 = gb1r and B2 = gb2r , where r is the exponent for
which R = gr?”, the TDH problem consists in computing (gab1 , gab2). The advantage of A
for solving the TDH problem is defined as

ε(λ) = Pr[(Z1, Z2) ←AODTDH(·)(p, g, ga, gb1 , gb2) :
a, b1, b2

$←− Zp ∧ Z1 = gab1 ∧ Z = gab2].
We say that the (t, ε)-TDH assumption holds in group (G, p, g) if no t-time algorithm

has an advantage of at least ε when solving the TDH problem.

Theorem 1 [Theorem 1 in [9]] The CDH assumption holds if and only if the TDH assumption
holds.

3 IND-CCA secure KEM

In this section, we define the MUC+ model of KEM and present our practical KEM scheme.
Then, we prove our scheme in the MUC+ model of KEM.

3.1 Formal model

3.1.1 Syntax

A key encapsulation mechanism KEM = (KEM.Param, KEM.Gen, KEM.Encap, KEM.Decap)

consists of four algorithms. The parameter generation algorithm �
$←− KEM.Param(λ) takes

the security parameter λ as input and outputs parameter �. The key generation algorithm

(PK, SK)
$←− KEM.Gen(�) generates, after receiving input �, a public key PK and a private

key SK. The encapsulation algorithm (K,CT)
$←− KEM.Encap(PK) generates, with PK as input,

a key K and a ciphertext CT. The decapsulation algorithm {K,⊥} ← KEM.Decap(PK, SK,CT)
takes public key PK, private key SK, and ciphertext CT as inputs and then outputs a key
K or an error symbol ⊥. The correctness of KEM is defined as follows: For all (PK, SK)

123

2440 Y. Lee et al.

generated by KEM.Gen(�), it is required that K̄ = K where (K,CT)
$←− KEM.Encap(PK) and

K̄ ← KEM.Decap(PK, SK,CT).

3.1.2 Security model in a multi-user setting with corruptions

We define the MUC+ security of KEM by referring to the security definition of IND-CCA-
MUC security from PKE[21]. Our security notion is a more extended concept because it
allows for corruption queries, which the previous notion did not. We argue that our MUC+
model is more realistic because the previousMUC model cannot capture situations in which
an adversary obtains some of the private keys of the users, which the MUC+ model can
capture. The following security experiment, which is a game played between a challenger C
and an adversary A, is parameterized by two integers μ, qe ∈ N.

1. The challenger runs�
$←− KEM.Param(λ) once and then KEM.Gen(�) μ times to generate

μ key pairs (PK(i), SK(i)), i ∈ [μ]. Then, it tosses a coin β
$←− {0, 1}, initializes lists

Clist := ∅ and Klist := ∅ as empty lists, and defines a counter ji := 0 for each i ∈ [μ].
2. The adversary receives theμ public keys {PK(i)}i∈[μ] as input. It may query the challenger

for three types of operations.

– Encapsulation queries The adversary submits an index i ∈ [μ]. If ji ≥ qe or
i ∈ Klist, then the challenger returns ⊥. Otherwise, it generates keys K0 and K1 and

a ciphertext CT by sampling K0
$←− K and computing (K1,CT)

$←− KEM.Encap(PK(i)),
respectively. Then it appends (CT, i) to Clist, updates counter ji via ji = ji + 1, and
returns (Kβ,CT).

– Corruption queries The adversary submits an index i ∈ [μ]. If (CT, i) ∈ Clist for
some CT, then the challenger returns ⊥. Otherwise, it returns SK(i) and appends i to
Klist.

– Decapsulation queries The adversary submits a ciphertext CT and an index i ∈ [μ].
If (CT, i) ∈ Clist, then the challenger returns ⊥. Otherwise, it returns whatever
KEM.Decap(PK(i), SK(i),CT) returns.

3. Eventually, the adversary A outputs a bit β ′. We say that the adversary wins the game if
β = β ′.

Definition 1 Let A be an adversary that runs in time t , that makes at most qe encapsulation
queries per user, qc corruption queries in total, and qd decapsulation queries per user, and
that wins with probability 1/2+ε. Then, we say thatA breaks the (ε, t, μ, qe, qc, qd)-MUC+
security of KEM. We say that KEM is (ε,t ,μ,qe,qc,qd)-MUC+ secure if there exists no such
adversary A.

Note that the above security model with μ = 1, qe = 1, and qc = 0 is the standard
IND-CCA security model of KEM in a single-user setting. When μ ≥ 2 and qc = 0, it is equal
to the previous MUC model of KEM.

3.2 Construction

Our KEM scheme is parameterized by group parameters (G, p, g), where p is a λ-bit integer,
G is a cyclic group of order p, and g is a group generator, and by three hash functions, namely
H1 : {0, 1}∗ → Zp , H2 : {0, 1}∗ → {0, 1}	1 , and H3 : {0, 1}∗ → {0, 1}	2 . We denote these
parameters as � = (G, p, g, H1, H2, H3).

123

Tightly CCA-secure encryption scheme in a multi-user setting… 2441

As mentioned in the Introduction section, our KEM scheme uses a variant of the twin
ElGamal approach. In this variant of twin ElGamal, a public key consists of two group
elements (X1 = gx1 , X2 = gx2) ∈ G

2 with a corresponding private key (x1, x2) ∈ Z
2
p , and

encryption is done by computing (gs,m ⊕ H2(gs, Xs
1, X

s
2)) for a random exponent s ∈ Zp .

Using this variant of twin ElGamal as a building block, the encapsulation algorithm of our
scheme generates two ciphertexts of the same message R ∈ {0, 1}	1 and the same random
seed s ∈ Zp using two different public keys (X0,1, X0,2) and (X1,1, X1,2). The algorithms
of our scheme are described as follows.
KEM.Gen(�): Given parameters �, the Setup algorithm runs as follows:

1. Select a bit b ∈ {0, 1}.
2. Select random exponents x1, x2 ∈ Zp and set (Xb,1, Xb,2) = (gx1 , gx2) ∈ G

2.
3. Select random group elements (X1−b,1, X1−b,2) ∈ G

2.
4. Output PK = (X0,1, X0,2, X1,1, X1,2) ∈ G

4 and SK = (b, x1, x2) ∈ {0, 1} × Z
2
p .

KEM.Encap(�, PK): Given a public key PK = (X0,1, X0,2, X1,1, X1,2), the Encap algorithm
runs as follows:

1. Select a random string R ∈ {0, 1}	1 and set s = H1(R) ∈ Zp .
2. Compute (gs, Xs

0,1, X
s
0,2, X

s
1,1, X

s
1,2) ∈ G

5 and set C2 = gs ∈ G.
3. Set C0 = R ⊕ H2(gs, Xs

0,1, X
s
0,2) and C1 = R ⊕ H2(gs, Xs

1,1, X
s
1,2).

4. Set K = H3(R) ∈ {0, 1}	2 .
5. Output K and CT = (C0,C1,C2) ∈ {0, 1}2	1 × G.

KEM.Decap(�, PK, SK,CT): Given a public key PK = (X0,1, X0,2, X1,1, X1,2), a private key
SK = (b, x1, x2), and a ciphertext CT = (C0,C1,C2), the Decap algorithm runs as follows:

1. Compute Rb = Cb ⊕ H2(C2,C
x1
2 ,Cx2

2) ∈ {0, 1}	1 .
2. Set s = H1(Rb) ∈ Zp and K = H3(Rb) ∈ {0, 1}	2 .
3. Compute R1−b = C1−b ⊕ H2(C2, Xs

1−b,1, X
s
1−b,2) ∈ {0, 1}	1 .

4. If Rb = R1−b and C2 = gs , output K. Otherwise, abort.

3.2.1 Correctness

Given PK = (X0,1, X0,2, X1,1, X1,2) ∈ G
4 and SK = (b, x1, x2) ∈ {0, 1} × Z

2
p , (K,CT)

is calculated by KEM.Encap(�, PK) as follows: K = H3(R), CT = (C0,C1,C2) = (R ⊕
H2(gs, Xs

0,1, X
s
0,2), R ⊕ H2(gs, Xs

1,1, X
s
1,2), g

s) where s = H1(R). Then, we can show that
KEM.Decap(�, PK, SK,CT)=K as follows: first, we have Rb = Cb⊕H2(C2,C

x1
2 ,Cx2

2) = R⊕
H2(gs, Xs

b,1, X
s
b,2) ⊕ H2(C2,C

x1
2 ,Cx2

2). Since Xs
b,1 = gx1s = Cx1

2 and Xs
b,2 = gx2s = Cx2

2 ,

we have Rb = R. Finally, we have H1(Rb) = s, C2 = gs = gH1(R) and Rb = R1−b by
R1−b = C1−b ⊕ H2(C2, Xs

1−b,1, X
s
1−b,2) = R. Then, this algorithm outputs H3(Rb) =

H3(R) = K.

3.3 Security proof

Theorem 2 Suppose that the (εTDH, tTDH)-TDH assumption holds in (G, p, g), that H1, H2,
and H3 are random oracles, and that an adversaryAmakes at most qH1 H1-queries, qH2 H2-
queries, qH3 H3-queries, qe encapsulation queries per user, qc corruption queries in total, and
qd decryption queries per user. Then, the abovementionedKEM scheme is (ε, t, μ, qe, qc, qd)-

123

2442 Y. Lee et al.

MUC+ secure, where

ε ≤ 2εTDH + qH3

2	2
μqe,

t ≈ tTDH + (5μ + 2μqe + 5μqd)te.

Here, te denotes the time required for computing exponentiation in G and 	2 denotes the
output length of random oracle H2.

Proof The proof is presented as a sequence of hybrid games Game 0,…, Game 3. Game
0 is the actual MUC+ security game and, in Game 3, the adversary will win with an exact
probability of 1/2. LetWini denote the event in which A wins in Game i .
Game 0 This is the (μ, qe)-MUC+ security experiment from Definition 2. Let bi ∈ {0, 1} be
the randomly chosen coin associated with the private key of user i ∈ [μ]. In all subsequent
games, the coin bi for each user i ∈ [μ] is fixed. By definition, we have

Pr[Win0] = 1

2
+ εMUC+

KEM .

Game 1 In this game, the challenger simulates the random oracles, generating random
answers for any new queries as shown in Table 2. This game is identical to Game 0. Thus,
we have

Pr[Win1] = Pr[Win0].
Game 2 This game is identical to Game 1 except that now the encapsulation oracle operates

differently. Given an index i ∈ [μ], unlike the previous game, the challenger sets C2
$←− G,

instead of computing C2 = gs where s = H1(R). Then, it sets C j = R ⊕ Vj , where Vj is
randomly chosen from {0, 1}	1 for j ∈ {0, 1}. The rest of the procedure is the same as that
in Game 1.

Note that Game 1 and Game 2 are indistinguishable unless at least one of the following
events occurs:

Event E : (gs̄, Xs̄
1−b,1, X

s̄
1−b,2) is asked to the H2-oracle, where gs̄ = C2 for some

((C0,C1,C2), i) in Clist, PK(i) = (X0,1, X0,2, X1,1, X1,2), and SK(i) = (b, x1, x2).
Event F : (gs̄, Xs̄

b,1, X
s̄
b,2) is asked to the H2-oracle, where gs̄ = C2 for some ((C0, C1, C2),

i) in Clist, PK(i) = (X0,1, X0,2, X1,1, X1,2), and SK(i) = (b, x1, x2).

Then, we have

|Pr[Win2] − Pr[Win1]| ≤ Pr[E] + Pr[F] ≤ 2 Pr[E] ≤ 2εTDH.

We prove that the inequality above holds after finishing the proof of theorem 2.
Game 3 In this game, the challenge ciphertexts are computed differently compared with the
previous game. Given index i ∈ [μ], unlike the previous game, the challenger randomly
selects K ∈ K. Finally, it outputs (K,CT = (C0,C1,C2)).

Game 2 and Game 3 are completely indistinguishable unless query R(i) for any i ∈ [μ]
is asked to the H3-oracle by either the adversary or the decryption oracle. Thus, we have

|Pr[Win3] − Pr[Win2]| ≤ qH3

2	2
μqe.

From the results mentioned above, we can conclude that ε ≤ 2εTDH + qH3
2	2

μqe, which
completes the proof. ��

123

Tightly CCA-secure encryption scheme in a multi-user setting… 2443

Table 2 Simulation of a MUC+ game

H1, H2, H3 oracles Query H1(R): If a tuple (R, s) appears in the H1-list, it returns
s. Otherwise, it randomly chooses s ∈ Zp , returns s, and then
appends tuple (R, s) to the H1-list

Query H2(C2, Y1, Y2): If a tuple (C2, Y1, Y2, V) appears in the
H2-list, it returns V . Otherwise, it randomly chooses
V ∈ {0, 1}	1 , returns V , and then appends tuple
(C2, Y1, Y2, V) to the H2-list

Query H3(R): If a tuple (R, K) appears in the H3-list, it returns
K. Otherwise, it randomly chooses K ∈ {0, 1}	2 , returns K, and
then appends tuple (R, K) to the H3-list

User key pair generation For each i ∈ [μ], a user key pair (PK(i), SK(i)) is generated as
follows

(1) Select two random exponents x1, x2 and a bit b

(2) Select two random group elements X1−b,1 and X1−b,2

(3) Compute Xb,1 = gx1 and Xb,2 = gx2 .

(4) Set PK(i) = (X0,1, X0,2, X1,1, X1,2) and
SK(i) = (b, x1, x2)

Encapsulation oracle Query Encap(i): If ji ≥ qe or i ∈ Klist, it return ⊥. Otherwise,
it sets ji ← ji + 1, appends (CT, i) to Clist, and then returns
the answer (K,CT), which is defined as follows

(1) Select random strings R and K0
(2) Set s = H1(R) and K1 = H3(R)

(3) Compute (gs , Xs
0,1, X

s
0,2, X

s
1,1, X

s
1,2) and set C2 = gs

(4) Set C0 = R ⊕ H2(g
s , Xs

0,1, X
s
0,2) and

C1 = R ⊕ H2(g
s , Xs

1,1, X
s
1,2)

(5) Set K = Kβ and CT = (C0,C1,C2)

Corruption oracle Query Corrupt(i): If a tuple (CT, i) appears in Clist for some
CT, it returns ⊥. Otherwise, it appends i to Klist and returns
the answer SK(i) defined in the user key pair generation phase

Decapsulation oracle Query Decap (CT, i): If a tuple (CT, i) appears in Clist, it
returns ⊥. Otherwise, it returns the answer K, which is defined
as follows

(1) Retrieve a private key SK(i) = (b, x1, x2).

(2) Compute (Y1, Y2)=(C
x1
2 ,C

x2
2) and set

Rb = Cb ⊕ H2(C2, Y1, Y2)

(3) Set s′ = H1(Rb) and K = H3(Rb)

(4) Compute R1−b = C1−b ⊕ H2(C2, X
s′
1−b,1, X

s′
1−b,2)

(5) If Rb �= R1−b or C2 �= gs
′
, then return ⊥. Else, return K

Claim 1 Pr[E] = Pr[F].
Proof It is sufficient to show that the adversary’s view is independent of the variable b(i)

such that i /∈ Klist for i ∈ [μ], because if i ∈ Klist, the abovementioned events E and
F never occur for i . Because the only variables that are possibly dependent on the b(i)

such that i /∈ Klist are the responses from the decapsulation oracle, it is sufficient to
show that there exists no ciphertext CT such that its decapsulation results are different
depending on b(i). For the sake of creating a contradiction, we assume that there exists

123

2444 Y. Lee et al.

Table 3 Algorithms for generating random self-reducible TDH instances

Algorithm R0 Given a TDH instance (ga , gb1 , gb2), it chooses random exponents

r0 ∈ Zp and computes ga
′
, gb

′
1 , gb

′
2 as follows:

ga
′ = (ga)r0 , gb

′
1 = gb1 , gb

′
2 = gb2 .

Then, it outputs (ga
′
, gb

′
1 , gb

′
2 , r0).

Algorithm R1 Given a TDH instance (ga , gb1 , gb2), it chooses random exponents

r0, r1, r2 ∈ Zp and computes ga
′
, gb

′
1 , gb

′
2 as follows:

ga
′ = (ga)r0 , gb

′
1 = (gb1)r1 , gb

′
2 = (gb2)r2 .

Then, it outputs (ga
′
, gb

′
1 , gb

′
2 , r0, r1, r2).

CT = (C0,C1,C2) such that Decap(PK(i), SK(i)
b(i)=0

,CT) �= Decap(PK(i), SK(i)
b(i)=1

,CT),

where PK(i) = (X0,1, X0,2, X1,1, X1,2), SK
(i)
b(i)=0

= (0, x1 = logg X0,1, x2 = logg X0,1),

and SK(i)
b(i)=1

= (1, x ′
1 = logg X1,1, x ′

2 = logg X1,1). Without loss of generality, we assume
that the results of decapsulation on the left are not ⊥. Let s∗ = logg C2; then, by the “well-
f ormed” condition checked in the decapsulation procedure at step (5), it holds that s∗ = s,
where s = H1(R0), R0 = C0 ⊕ V0, and V0 = H2(C2,C

x1
2 ,Cx2

2) (when b(i) = 0). Then,
it holds that V1 = V ′

1, where V1 comes from the decapsulation procedure at step (4) such
that V1 = H2(C2, Xs

1,1, X
s
1,2) (when b(i) = 0), and V ′

1 comes from the decapsulation pro-

cedure at step (2) such that V ′
1 = H2(C2,C

x ′
1

2 ,C
x ′
2

2) (when b(i) = 1) because C
x ′
1

2 = Xs∗
1,1,

C
x ′
2

2 = Xs∗
1,2, and s∗ = s. Therefore, it holds that R0 = R′

1 because R0 = R1 = C1 ⊕ V1
(when b(i) = 0) and R′

1 = C1 ⊕ V ′
1 (when b

(i) = 1). Hence, the two results of decapsulation
H3(R0) (when b(i) = 0) and H3(R′

1) (when b
(i) = 1) are the same, which is a contradiction.

This completes the proof of the claim. ��
Claim 2 |Pr[Win2] − Pr[Win1]| ≤ 2εTDH.

Proof We show that |Pr[Win2] − Pr[Win1]| ≤ 2εTDH by constructing an algorithm B, which
solves the TDH problem using an adversary AKEM. B acts as a challenger for AKEM.

Let (A, B1, B2, ODTDH(·)) be a TDH instance given to B. For the key pair generation, for
each i ∈ [μ] and via the random self-reducibility of TDH, B obtains a randomized TDH
instance (A′, B ′

1, B
′
2) from theR1 algorithm defined in Table 3 and records the instance with

the exponents in theR1-list. Then, B sets (X1−bi ,1, X1−bi ,2) = (B ′
1, B

′
2) instead of randomly

selecting two group points X1−bi ,1, X1−bi ,2 ∈ G.
For the encapsulation oracle, given an index i ∈ [μ], B retrieves the TDH instance

(A′, B ′
1, B

′
2) from the R1-list. Then, B obtains a randomized TDH instance (A′′, B ′

1, B
′
2)

from theR0 algorithm defined in Table 3 and records it with the exponents in theR0-list. B
sets C2 = A′′, C j = R ⊕ Vj , where Vj is randomly chosen from {0, 1}	1 for j ∈ {0, 1}. The
rest of the procedure is the same as that in Game 1.

As mentioned above, Game 1 and Game 2 are indistinguishable unless at least one of the
following events occurs:

Event E : (gs̄, Xs̄
1−b,1, X

s̄
1−b,2) is asked to the H2-oracle, where gs̄ = C2 for some

((C0,C1,C2), i) in Clist, PK(i) = (X0,1, X0,2, X1,1, X1,2), and SK(i) = (b, x1, x2).
Event F : (gs̄, Xs̄

b,1, X
s̄
b,2) is asked to the H2-oracle, where gs̄ = C2 for some ((C0, C1, C2),

i) in Clist, PK(i) = (X0,1, X0,2, X1,1, X1,2), and SK(i) = (b, x1, x2).

123

Tightly CCA-secure encryption scheme in a multi-user setting… 2445

Assume that the Event E occurs i.e., (C̄2, X
logg C̄2

1−b,1 , X
logg C̄2

1−b,2) is asked where ((C̄0, C̄1, C̄2),

ī) in Clist, PK(ī) = (X0,1, X0,2, X1,1, X1,2), and SK(ī) = (b, x1, x2) for some ī ∈ [μ]. Then,
B can find the answer for the original TDH instance (A, B1, B2) from the tuple (C̄2, X

logg C̄2

1−b,1 ,

X
logg C̄2

1−b,2) in the H2-oracle, because the tuple (C̄2, X1−b,1, X1−b,2) is a randomized TDH

instance using algorithms R0 and R1. More precisely, let (A, B1, B2) = (ga, gb1 , gb2) be
the original TDH instance. Then, we see that (X1−b,1, X1−b,2) = (B ′

1, B
′
2) = (gb1r̄1 , gb2r̄2)

and C̄2 = A′′ = gar̄0 . Thus, we have (X
logg C̄2

1−b,1 , X
logg C̄2

1−b,2) = (gab1r̄0r̄1 , gab2r̄0r̄2), where B can
remove the randomized exponents (r̄0, r̄1, r̄2) found in the {R0,R1}-lists and recover the
answer for the original TDH instance (gab1 , gab2). Note that this reduction is tight, because
B can find the correct answer for the TDH instance from the H2-oracle queries, using the
decisional TDH oracle ODTDH(·).

From the results of the two claims, we can conclude that

|Pr[Win3] − Pr[Win2]| ≤ Pr[E] + Pr[F] ≤ 2 Pr[E] ≤ 2εTDH,

as required. ��

4 IND-CCA secure PKE

In this section, we define the MUC+ model of PKE and review augmented hybrid encryption
using augmented DEM [16] (hereafter denoted as ‘ADEM’), which is the building block of
our PKE scheme. Then, we prove that hybrid encryption combining KEM (secure in theMUC+
model) and ADEM (secure in the multi-instance setting) is tightly secure in theMUC+ model
of PKE.

4.1 Formal model

4.1.1 Syntax

A public key encryption scheme PKE = (PKE.Param, PKE.Gen, PKE.Enc, PKE.Dec) consists of

four algorithms. The parameter generation algorithm �
$←− PKE.Param(λ) takes the security

parameter λ as input and outputs parameter �. The key generation algorithm (PK, SK)
$←−

PKE.Gen(�) takes� as input and generates a public key PK and a secret key SK. The encryp-

tion algorithm CT
$←− PKE.Enc(PK,m) takes a public key PK and a message m as inputs and

then outputs a ciphertext CT. The decryption algorithm m ← PKE.Dec(PK, SK,CT) takes a
public key PK, a secret key SK, and a ciphertext CT as inputs and then outputs a message m.
The correctness of PKE is defined as follows: for all (PK, SK) generated by PKE.Gen(�), it is
required that PKE.Dec(PK, SK, PKE.Enc(PK,m)) = m for any m ∈ M.

4.1.2 Security model in a multi-user setting with corruptions

We define the MUC+ security of PKE by referring to the security definition of IND-CCA-
MUC security from PKE [21]. As in the MUC+ security notion of KEM, the abovementioned
security notion is also an extended concept that allows for corruption queries. The following

123

2446 Y. Lee et al.

security experiment, which is a game played between a challenger C and an adversary A, is
parameterized by two integers μ, qe ∈ N.

1. The challenger runs �
$←− PKE.Param(λ) once and then PKE.Gen(�) μ times to generate

μ key pairs (PK(i), SK(i)), i ∈ [μ]. Then, it tosses a coin β
$←− {0, 1}, initializes lists

Clist := ∅ and Klist := ∅ as empty lists, and defines a counter ji := 0 for each i ∈ [μ].
2. The adversary receives theμ public keys {PK(i)}i∈[μ] as input. It may query the challenger

for three types of operations.

– Encryption queries The adversary submits an index i ∈ [μ] and two messages
(m0,m1). If ji ≥ qe or i ∈ Klist, then the challenger returns ⊥. Otherwise, it

generates a ciphertext CT by computing CT
$←− PKE.Enc(PK(i),mβ). Then, it appends

(CT, i) to Clist, updates counter ji via ji = ji + 1, and returns CT.
– Corruption queries The adversary submits an index i ∈ [μ]. If (CT, i) ∈ Clist for

some CT, then the challenger returns ⊥. Otherwise, it returns SK(i) and appends i to
Klist.

– Decryption queries The adversary submits a ciphertext CT and an index i ∈ [μ].
If (CT, i) ∈ Clist, then the challenger returns ⊥. Otherwise, it returns whatever
PKE.Dec(PK(i), SK(i),CT) returns.

3. Eventually, the adversary A outputs a bit β ′. We say that the adversary wins the game if
β = β ′.

As in the case of KEM, the above security model with μ = 1, qe = 1, and qc = 0 is a
standard IND-CCA security model of PKE in a single-user setting. When μ ≥ 2 and qc = 0,
it is equal to the previous MUC model of PKE.

Definition 2 Let A be an adversary that runs in time t , that makes at most qe encryption
queries per user, qc corruption queries in total, and qd decryption queries per user, and that
wins with probability 1/2+ε. Then, we can say thatA breaks the (ε, t, μ, qe, qc, qd)-MUC+
security of PKE. We say that PKE is (ε, t , μ, qe, qc, qd)-MUC+ secure if there exists no such
adversary A.

Because of the results by Giacon et al. [16], we note that the standard hybrid KEM+DEM
encryption paradigm is not enough for the a tightly secure PKE scheme in the MUC/MUC+
model. To construct a tightly secure hybrid encryption scheme in theMUC+ model, we shall
use their results. In other words, we apply our proposed KEM approach in the augmented
hybrid encryption paradigm [16], which uses the augmented data encapsulation
mechanism instead of the standard DEM.

4.2 Augmented data encapsulationmechanism

4.2.1 Syntax

An augmented data encapsulation mechanism scheme ADEM = (ADEM.Enc, ADEM.Dec)
consists of two algorithms with a message space M, a tag space T , and a ciphertext space
C. The encapsulation algorithm C ← ADEM.Enc(K, t,m) takes a key K ∈ K, a tag t ∈ T ,
and a message m ∈ M as inputs and then outputs a ciphertext C ∈ C. The decapsulation
algorithm {m,⊥} ← ADEM.Dec(K, t,C) takes a key K ∈ K, a tag t ∈ T , and a ciphertext
C ∈ C as inputs and then outputs either a message m ∈ M or the special symbol ⊥ /∈ M.

123

Tightly CCA-secure encryption scheme in a multi-user setting… 2447

The correctness of ADEM is defined as follows: for all K ∈ K, t ∈ T , and m ∈ M, it is
required that ADEM.Dec(K, t,ADEM.Enc(K, t,m)) = m.

4.2.2 Nonce-based tag multi-instance one-time indistinguishability [16]

The security notion of nonce-based tagmulti-instance one-time indistinguishability forADEM
is based onone inwhich a non-repeating tag is used. The following security experiment,which
is a game played between a challenger C and an adversary A, is parameterized by a positive
integer N .

1. For i ∈ [N], the challenger samples Ki
$←− K. Then, it tosses a coin β

$←− {0, 1} and
initializes empty sets T := ∅ and Ci := ∅ for each i ∈ [N].

2. The adversary may query the challenger for two types of operations.

– Encapsulation queriesThe adversary submits an index i ∈ [N], a tag t ∈ T , and two
messages (m0,m1). If Ci �= ∅ or t ∈ T , then the challenger returns ⊥. Otherwise, it
sets ti = t and T = T ∪ {ti } and generates a ciphertext C ∈ C by computing C ←
ADEM.Enc(Ki , ti ,mβ). Then, it sets Ci = Ci ∪ {C} and returns C.

– Decapsulation queries The adversary submits an index i ∈ [N] and a ciphertext C.
If Ci = ∅ or C ∈ Ci , then the challenger returns ⊥. Otherwise, it returns whatever
ADEM.Dec(Ki , ti ,C) returns.

3. Eventually the adversary A outputs a bit β ′. We say that the adversary wins the game if
β = β ′.

Definition 3 [N-MIOT-IND security [16]] LetA be an adversary that runs in time t and wins
with probability 1/2 + ε. Then, we say that A breaks the (ε, t, N)-MIOT-IND security of
ADEM. We say that ADEM is (ε, t, N)-N-MIOT-IND secure if there exists no such adversary
A.

4.3 Augmented hybrid encryption

PKE.Gen(�): Given parameters �, the key generation algorithm runs (PK, SK)
$←−

KEM.Gen and returns (PK, SK).
PKE.Enc(�, PK,m): Given parameters�, a public key PK, and a messagem, the encryp-

tion algorithm runs (K,C1)
$←− KEM.Encap(PK). Then, it runsC2 ← ADEM.Enc(K,C1,m)

and returns CT = (C1,C2).
PKE.Dec(�, SK,CT): Given a secret key SK and a ciphertext CT = (C1,C2), the
decryption algorithm runs K ← KEM.Decap(SK,C1). Then, it returns whatever
ADEM.Dec(K,C1,C2) returns.

Correctness We can simply check that the hybrid encryption is correct if both underlying
schemes KEM and ADEM have the correctness.

Security proof Consider the following lemma, which states that augmented hybrid encryp-
tion combining a secure KEM scheme in the MUC model and a secure ADEM scheme in the
N-MIOT-IND model is a tightly secure PKE scheme in the MUC model.

Lemma 1 [16, Lemma 5.3] Let PKE be the hybrid public key encryption scheme constructed
from a KEM and an ADEM schemes as mentioned above. Let p be the maximum ciphertext-

123

2448 Y. Lee et al.

collision probability of KEM over all positive public keys. Then, for any number of users μ

and any PKE adversaryA that makes at most qe encryption queries and qd decryption queries
per user, there exist a KEM adversary B and an ADEM adversary C such that

εMUC
PKE,A,μ,qe ≤ 2εMUC

KEM,B,μ,qe + εN-MIOT-IND
ADEM,C,N + 2

(
N

2

)
p,

where N = μqe. B poses at most qe encapsulation queries and qd decapsulation queries per
user, and C poses at most μqe encapsulation queries and μqe decapsulation queries in total.

Note that our proposedMUC+ security notion of PKE and KEM is different from that in the
above lemma in that our model allows for corruption queries. The following theorem states
that augmented hybrid encryption combining a secure KEM scheme in theMUC+ model and a
secure ADEM scheme in the N-MIOT-INDmodel is a tightly secure PKE scheme in theMUC+
model.

Theorem 3 Let PKE be a hybrid public key encryption scheme constructed from a KEM and an
ADEM schemes as mentioned above. Let p be the maximum ciphertext-collision probability
of KEM over all positive public keys. Then, for any number of usersμ and any PKE adversary
A that makes at most qe encryption queries per user, qd decryption queries per user, and qc
corruption queries in total, there exist a KEM adversary B and an ADEM adversary C such
that

εMUC+
PKE,A,μ,qe ≤ 2εMUC+

KEM,B,μ,qe + εN-MIOT-IND
ADEM,C,N + 2

(
N

2

)
p,

where N = μqe. B poses at most qe encapsulation queries, qd decapsulation queries per
user, and qc corruption queries in total, and C poses at most μqe encapsulation queries and
μqe decapsulation queries in total.

Proof We consider a sequence of hybrid games, Game 0,…, Game 5, where Game 0 is the
actualMUC+ PKE security game with a fixed coin β = 0 and Game 5 is the same game with
a fixed coin β = 1. LetWini denote the event that A wins in Game i .
Game 0 This is the MUC+ PKE security experiment from Definition 2 executed with β = 0.

Thus, the challenger returns CT = (C1,C2), where (K,C1)
$←− KEM.Encap(PKi) and C2 ←

ADEM.Enc(K,C1,m0) for the encryption query (i,m0,m1) only when ji < qe and i /∈ Klist.
When asked a corruption query for i ∈ [μ], it returns SKi from KEM.Gen and appends i to Klist
only when (CT, i) /∈ Clist for any CT. When asked a decryption query for (CT = (C1,C2), i),
if (CT, i) ∈ Clist, it returns ⊥; otherwise, it returns m ← ADEM.Dec(K,C1,C2), where K ←
KEM.Decap(SKi ,C1).
Game 1 This game is identical to Game 0 except that we change the way in which encryption
queries are executed.We replace the keys for data encapsulationwith randomly chosen keys in

K. In other words, the challenger returns CT = (C1,C2), where (K,C1)
$←− KEM.Encap(PKi),

C2 = ADEM.Enc(K′,C1,m0), and K′ $←− K for the encryption query (i,m0,m1) only when
ji < qe and i /∈ Klist. We claim that there exists an adversary B such that

|Pr[Win1] − Pr[Win0]| = εMUC+
KEM,B,μ,qe .

Game 2 This game is identical to Game 1, except that now the encryption oracle operates
differently. In this game, the challenger aborts if KEM.Encap generates the same ciphertext
C1 more than once. Let p be the maximum ciphertext-collision probability of KEM. Then,

123

Tightly CCA-secure encryption scheme in a multi-user setting… 2449

the probability that the challenger aborts during the i-th encryption query is lower-bounded
by (i − 1)p. By summing up all the probabilities for up to N = μqe queries(i.e., p + 2p +
· · · + (N − 1)p), we have

|Pr[Win2] − Pr[Win1]| ≤
(
N

2

)
p.

Game 3 This game is identical to Game 2 except that the challenge ciphertexts are now
computed differently. In this game, the challenger encrypts mβ with β = 1. In other words,

it returns CT = (C1,C2), where (K,C1)
$←− KEM.Encap(PKi), C2 = ADEM.Enc(K′,C1,m1),

and K′ $←− K for the encryption query (i,m0,m1) only when ji < qe and i /∈ Klist. We claim
that there exists an adversary C such that

|Pr[Win3] − Pr[Win2]| = εN-MIOT-IND
ADEM,C,N .

Game 4 This game is identical to Game 3, except that the encryption oracle now operates
differently.Now the challenger does not abort even ifKEM.Encapgenerates he sameciphertext
C1 more than once. Then, just as in Game 1 and Game 2, we have

|Pr[Win4] − Pr[Win3]| ≤
(
N

2

)
p.

Game 5 This game is identical to Game 4 except that we change the way in which the
encryption queries are executed. We replace the keys randomly chosen in K with the keys
generated by KEM.Encap for data encapsulation. In other words, the challenger returns CT

= (C1,C2), where (K,C1)
$←− KEM.Encap(PKi) and C2 = ADEM.Enc(K,C1,m1) for the

encryption query (i,m0,m1) only when ji < qe and i /∈ Klist. Then, just as in Game 0 and
Game 1, we have

|Pr[Win5] − Pr[Win4]| = εMUC+
KEM,B,μ,qe .

Note thatGame5 is identical to theMUC+ PKE security experiment fromDefinition 2 executed
with β = 1. Then, we have

|Pr[Win0] − Pr[Win5]| = εMUC+
PKE,A,μ,qe ≤ 2εMUC+

KEM,B,μ,qe + εN-MIOT-IND
ADEM,C,N + 2

(
N

2

)
p.

��
Claim 1 The advantage of adversary B for breaking the MUC+ security of KEM is exactly
|Pr[Win1] − Pr[Win0]|.
Proof LetA be a distinguisher between Game 1 and Game 0. We now show how to construct
an adversary B for breaking the MUC+ security of KEM.

The adversary B receives the μ public keys {PK(i)}i∈[μ] as input, as stated in Definition 1.
Then, A runs as distinguisher by simulating Game 0 with the following changes:

• As the challenger, B sends μ public keys {PK(i)}i∈[μ] to A.
• When asked to resolve an encryption query on (i,m0,m1) from A, B makes an encap-

sulation query on i and receives (K,C1) from its MUC+ KEM challenger. Then, B sends
the challenge ciphertext CT = (C1,C2), where C2 ← ADEM.Enc(K,C1,m0). B lists up
encapsulation queries by defining (K,C1, i) ∈ Chlist.

123

2450 Y. Lee et al.

• When asked to resolve a corruption query on i fromA, B makes a corruption query on i
and receives SKi from its MUC+ KEM challenger. Then, B sends a private key for user i
to A.

• When asked to resolve a decryption query on (CT = (C1,C2), i) from A, B returns
ADEM.Dec(K,C1,C2) if there exists a tuple such that (K,C1, i) ∈ Chlist. Otherwise, B
makes a decapsulation query on (C1, i), and receives K from its challenger, and returns
ADEM.Dec(K,C1,C2).

Eventually, A outputs a guess. If the guess is “Game 1”, then B outputs 0, which means
that K is randomly chosen in K; otherwise, it outputs 1.

Note that, in the above simulation, if challenges come from aMUC+ KEM game executed
with β = 0 (resp, β = 1), then the challenges transferred to A are the same as in Game 1
(resp, Game 0). Moreover, it holds that i ∈ KlistKEM,B when i ∈ KlistPKE,A. Hence, B can
simulate A without aborting. In other words, the probability of A distinguishing between
Game 0 and Game 1 is exactly same as the probability of B to win. Therefore, we have

|Pr[Win1] − Pr[Win0]| = εMUC+
KEM,B,μ,qe .

��
Claim 2 The advantage of adversary C for breaking the N-MIOT-IND security of ADEM is
exactly |Pr[Win3] − Pr[Win2]|.
Proof LetA be a distinguisher between Game 3 and Game 2. We now show how to construct
an adversary C for breaking the N-MIOT-IND security of ADEM. The adversary C runs A as
a distinguisher by simulating Game 2 with the following changes:

• As the challenger, C initializes an integer j ← 0 and empty sets Clist and Klist.
• When asked to resolve encryption query on (i,m0,m1) fromA, if i ∈ Klist, then C aborts.

Otherwise, it computes (K,C1) ← KEM.Encap(PKi), makes an encapsulation query on
(i,C1,m0,m1), and receives C2 from its N-MIOT-IND ADEM challenger. Then, it sets
index[i,C1] ← j and j ← j + 1, appends (CT = (C1,C2), i) to Clist, and returns
challenge ciphertext CT to A.

• When asked to resolve a corruption query on i from A, if (CT, i) ∈ Clist for any CT, C
aborts. Otherwise, it returns the private key for user SKi to A.

• When asked to resolve a decryption query on (CT, i) fromA, if (CT, i) ∈ Clist, C aborts.
Otherwise, if index[i,C1] �= ⊥, C makes an decapsulation query on (index[i,C1],C2),
receivesm from its ADEM challenger, and returnsm toA. Otherwise, it returns whatever
ADEM.Dec(K,C1,C2) returns, where K ← KEM.Decap(SKi , C1).

EventuallyA outputs a guess. If the guess is “Game 3”, then C outputs β ′ = 1; otherwise
it outputs β ′ = 0.

Note that, in the above simulation, if challenges come from a N-MIOT-IND ADEM game
executed with β = 0 (resp, β = 1), then the challenges transferred to A are the same as in
Game2 (resp,Game3).Additionally, the adversaryAmakes atmostqe encryption queries per
user,which corresponds to atmostμqe encapsulation queries.Hence,C is correctly simulating
Game 2 or Game 3 (depending on the bit β) without any violation of the restrictions on the
number of queries. In other words, the probability of A to distinguish between Game 2 and
Game 3 is exactly the same as the probability of B to win. Therefore, we have

|Pr[Win3] − Pr[Win2]| = εN-MIOT-IND
ADEM,C,μqe .

��

123

Tightly CCA-secure encryption scheme in a multi-user setting… 2451

Note that the maximum ciphertext-collision probability of our KEM scheme over all public
keys is negligible because a random coin for encryption is chosen from Z

2
p .

Acknowledgements The study was funded by Institute for Information and communications Technology
Promotion (Grant No. 2016-6-00600, A Study on Functional Encryption: Construction, Security Analysis,
and Implementation).

References

1. AttrapadungN., Furukawa J., GomiT.,HanaokaG., ImaiH., ZhangR.: Efficient identity-based encryption
with tight security reduction. In: Pointcheval D., Mu Y., Chen K. (eds.) CANS, vol. 4301, pp. 19–36.
Lecture Notes in Computer ScienceSpringer, Berlin (2006).

2. Attrapadung N., Hanaoka G., Yamada S.: A framework for identity-based encryption with almost tight
security. In: Iwata T., Cheon J.H. (eds.) ASIACRYPT, vol. 9452, pp. 521–549. Lecture Notes in Computer
ScienceSpringer, Berlin (2015).

3. Bader, C., Hofheinz,D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: TCC’15,
Springer, Lecture Notes in Computer Science, vol. 9014, pp. 629–658 (2015)

4. Bellare M., Rogaway P.: Introduction to Modern Cryptography. University of California at San Diego,
San Diego (2005).

5. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key
encryption schemes. In: CRYPTO’98, vol. 1462, pp. 26–45. Springer (1998)

6. Bellare M., Boldyreva A., Micali S.: Public-key encryption in a multi-user setting: security proofs and
improvements. In: Preneel B. (ed.) EUROCRYPT’00, vol. 1807, pp. 259–274. Lecture Notes in Computer
ScienceSpringer, Berlin (2000).

7. BonehD., FranklinM.K.: Identity-based encryption from theweil pairing. In: Kilian J. (ed.) CRYPTO‘01,
vol. 2139, pp. 213–229. Lecture Notes in Computer ScienceSpringer, Berlin (2001).

8. Boneh D., Canetti R., Halevi S., Katz J.: Chosen-ciphertext security from identity-based encryption.
SIAM J. Comput. 36(5), 1301–1328 (2007).

9. Cash D., Kiltz E., Shoup V.: The twin Diffie–Hellman problem and applications. In: Smart N. (ed.)
EUROCRYPT, vol. 4965, pp. 127–145. Lecture Notes in Computer ScienceSpringer, Berlin (2008).

10. Cramer R., Shoup V.: A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. CRYPTO’98, Lecture Notes in Computer Science, vol. 1462, pp. 13–25. Springer,
Berlin (1998).

11. DiffieW.,HellmanM.E.: Newdirections in cryptography. IEEETrans. Inf. Theory 22(6), 644–654 (2006).
12. Dolev D., Dwork C., Naor M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000).
13. Fujisaki E., Okamoto T.: How to enhance the security of public-key encryption at minimum cost. In: Imai

H., Zheng Y. (eds.) PKC, Lecture Notes in Computer Science, vol. 1560, pp. 53–68. Springer, Berlin
(1999).

14. Gay R., Hofheinz D., Kiltz E., Wee H.: Tightly cca-secure encryption without pairings. In: Fischlin M.,
Coron J.S. (eds.) EUROCRYPT, Part I, Lecture Notes in Computer Science, vol. 9665, pp. 1–27. Springer,
New York (2016).

15. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-desmedt meets tight security. In: CRYPTO’17, vol. 10403,
pp. 133–160. Springer, Berlin (2017)

16. Giacon F., Kiltz E., Poettering B.: Hybrid encryption in a multi-user setting, revisited. In: Abdalla M.,
Dahab R. (eds.) PKC’18, Lecture Notes in Computer Science, vol. 10769, pp. 159–189. Springer, Berlin
(2018).

17. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In:
CRYPTO’18, Lecture Notes in Computer Science, vol. 10992, pp. 95–125. Springer (2018)

18. Gong J., Chen J., Dong X., Cao Z., Tang S.: Extended nested dual system groups, revisited. In: Cheng
C.M., Chung K.M., Persiano G., Yang B.Y. (eds.) PKC’16, Lecture Notes in Computer Science, vol.
9614, pp. 133–163. Springer, Berlin (2016).

19. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: EUROCRYPT’08,
Lecture Notes in Computer Science, vol. 4965, pp. 415–432. Springer (2008)

20. Hofheinz, D.: Adaptive partitioning. In: EUROCRYPT’17, Lecture Notes in Computer Science, vol.
10212, pp. 489–518. Springer (2017)

21. Hofheinz D., Jager T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini R., Canetti
R. (eds.) CRYPTO, Lecture Notes in Computer Science, vol. 7417, pp. 590–607. Springer, Cham (2012).

123

2452 Y. Lee et al.

22. Hofheinz D., Koch J., Striecks C.: Identity-based encryption with (almost) tight security in the multi-
instance, multi-ciphertext setting. In: Katz J. (ed.) PKC, Lecture Notes in Computer Science, vol. 9020,
pp. 799–822. Springer, Cham (2015).

23. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto transformation. In:
TCC’17, Lecture Notes in Computer Science, vol. 10677, pp. 341–371. Springer (2017)

24. Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge cca-secure encryption and signatures
with almost tight security. In: ASIACRYPT’14, Lecture Notes in Computer Science, vol. 8874, pp. 1–21.
Springer (2014)

25. Libert B., Peters T., Joye M., Yung M.: Compactly hiding linear spans. In: Iwata T., Cheon J.H. (eds.)
ASIACRYPT, Part I, Lecture Notes in Computer Science, vol. 9452, pp. 681–707. Springer, Cham (2015).

26. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In:
H. Ortiz (ed.) STOC’90, pp. 427–437. ACM (1990)

27. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext
attack. In: CRYPTO’91, vol. 576, pp. 433–444. Springer (1991)

28. Shamir A.: Identity-based cryptosystems and signature schemes. In: Blakley G.R., Chaum D. (eds.)
CRYPTO‘84, Lecture Notes in Computer Science, vol. 196, pp. 47–53. Springer, Berlin (1984).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Tightly CCA-secure encryption scheme in a multi-user setting with corruptions
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our contributions
	1.2.1 Our approach

	2 Background
	2.1 Notation
	2.2 Computational Diffie–Hellman assumption
	2.3 Twin Diffie–Hellman assumption

	3 IND-CCA secure KEM
	3.1 Formal model
	3.1.1 Syntax
	3.1.2 Security model in a multi-user setting with corruptions

	3.2 Construction
	3.2.1 Correctness

	3.3 Security proof

	4 IND-CCA secure PKE
	4.1 Formal model
	4.1.1 Syntax
	4.1.2 Security model in a multi-user setting with corruptions

	4.2 Augmented data encapsulation mechanism
	4.2.1 Syntax
	4.2.2 Nonce-based tag multi-instance one-time indistinguishability GiaconKP18

	4.3 Augmented hybrid encryption

	Acknowledgements
	References

