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Abstract
Post-quantumcryptographyhas attractedmuch attention fromworldwide cryptologists.How-
ever, most research works are related to public-key cryptosystem due to Shor’s attack on RSA
and ECC ciphers. At CRYPTO 2016, Kaplan et al. showed that many secret-key (symmet-
ric) systems could be broken using a quantum period finding algorithm, which encouraged
researchers to evaluate symmetric systems against quantum attackers. In this paper, we con-
tinue to study symmetric ciphers against quantum attackers. First, we convert the classical
advanced slide attacks (introduced by Biryukov and Wagner) to a quantum one, that gains
an exponential speed-up in time complexity. Thus, we could break 2/4K-Feistel and 2/4K-
DES in polynomial time. Second, we give a new quantum key-recovery attack on full-round
GOST, which is a Russian standard, with 2114.8 quantum queries of the encryption process,
faster than a quantum brute-force search attack by a factor of 213.2.

Keywords Quantum cryptanalysis · GOST · Feistel · Grover · Simon

Mathematics Subject Classification 94A60

1 Introduction

Post-quantum cryptography is about the security of cryptographic systems against quantum
attackers. In 1994, Peter Shor [35] invented the first notable and yet the most severe quantum
attack, i.e., the Shor’s algorithm, that breaks the most currently used public-key systems,
such as RSA cryptosystem [33] and elliptic curve cryptography. But since then quantum
threats against secret-key (symmetric) systems are barely known, and it was the common
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belief that quantum attacks on symmetric primitives are of minor concern, as they mainly
consist of employing Grover’s algorithm [16] to generically speed up search (sub-)problems.
However, at CRYPTO 2016, Kaplan et al. [23] break a series of symmetric-key systems
in polynomial time using quantum period finding algorithm, which stirs great interest of
quantum cryptanalysis in symmetric-key cryptographic community.

According to the notions for PRF security in a quantum setting given by Zhandry [38],
there are two different models for quantum cryptanalysis against symmetric ciphers:

– Standard security: a block cipher is standard secure against quantum adversaries if no
efficient quantum algorithm can distinguish the block cipher from PRP (or a PRF) by
making only classical queries (denoted as Q1 by Kaplan et al. [24]).

– Quantum security: a block cipher is quantum secure against quantum adversaries if no
efficient quantum algorithm can distinguish the block cipher from PRP (or a PRF) even
by making quantum queries (denoted as Q2 by Kaplan et al. [24]).

In Q1 model, the adversary collects data classically and processes them with quantum
operations, while in Q2, the adversary can directly query the cryptographic oracle with a
quantum superposition of classical inputs, and receives the superposition of the corresponding
outputs. The adversary in Q1 model is more realistic, many cryptanalysis results [9,18,19]
are based on this model. The adversary in Q2 model is much more powerful. Nevertheless,
it is still meaningful to study ciphers in Q2 model, since it is possible to devise protocols
secure against Q2 adversary, such as quantum-secure signatures from CRYPTO 2013 [6] and
quantum-secure message authentication codes from EUROCRYPT 2013 [5], etc. Recently,
the security of many specific symmetric ciphers in Q2 model has been evaluated, which
includes the key-recovery attacks against Even-Mansour constructions [27], distinguishers
against 3-round Feistel constructions [26], forgery attacks against block cipher based MACs
[23], key recovery attacks against FX constructions [28], and so on. But more classical
cryptographic schemes of greater importance are yet to be studied against quantum attackers.
At Asiacrypt 2017, Moody [30] on behalf of NIST reports the ongoing competition for post-
quantum cryptographic algorithms, including signatures, encryptions and key-establishment.
The ship for post-quantum crypto has sailed, cryptographic communities must get ready to
welcome the post-quantum age.

Feistel block ciphers [15] are observed to be important and constitute one of the extensively
researched cryptographic schemes. Several standard block ciphers, such asDES, Triple-DES,
MISTY1, Camellia, CAST-128 [20] and the Russian GOST [31], are based on the Feistel
design. Classically, researchers only consider the security of Feistel block ciphers against
attackers who are only equipped with classical computers. In the quantum age to come, the
adversaries can be more powerful. There are some attacks on Feistel ciphers in quantum
setting. Kuwakado and Morii [26] gave the first quantum distinguisher on 3-round Feistel in
Q2 model. Later combining with Leander and May’s algorithm [28], Hosoyamada et al. [17]
and Dong et al. [13,14] introduced some key-recovery attacks in Q2 model by appending
several rounds to the quantum distinguisher of Feistel construction. A meet-in-the-middle
attack on Feistel cipher in Q1 model was also discussed by Hosoyamada et al. [17]. More
recently, Ito et al. [22] introduce the first 4-round quantum distinguisher on Feistel cipher in
the quantum chosen-ciphertext setting (Q2 model). In this paper, we only study some Feistel
ciphers in Q2model, that the adversaries could make quantum queries on some superposition
quantum states of the relevant cryptosystem.
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Quantum attacks on some feistel block ciphers 1181

Our contributions

In this paper,we focus on the study of the symmetric ciphers againstQ2 adversary. Combining
with Simon’s algorithm [36], we convert the classical advanced slide attacks (introduced by
Biryukov and Wagner [4]) to a quantum one, that gains an exponential speed-up of the time
complexity. Thus, we could break 2K-/4K-Feistel block ciphers and 2K-/4K-DES block
ciphers in polynomial time. Concretely, we turn the classical attacks on 2K-/4K-Feistel
block ciphers with 20.25n encryptions into quantum attacks with about n + 2 + 2

√
n/2 + 1

quantum queries of the encryption process using about n + 1 qubits. We turn the classical
attacks on 2K-/4K-DES block ciphers with 233 encryptions into quantum attacks with 155
or 233 quantum queries of the encryption process with 65 qubits.

On the other hand, concerning the full-round GOST, a Russian block cipher standard, we
give a new quantum key-recovery attack, that breaks GOST in 2114.8 quantum queries of the
encryption process, which is faster than the quantum brute force search attack by a factor of
213.2. The attack needs 224 qubits. The results are summarized in Table 1.

Comparison with Bonnetain et al.’s work [7]

Shortly after our work is made public at ePrint in 24 May 2018 [12], there is a concurrent
work on similar topic by Bonnetain et al. [7], which appears at ePrint in 2 Nov 2018. Now
Bonnetain et al.’s work has been accepted to SAC 2019. Both of the two works include
the quantum advanced slide attack. But we want to list the differences in our paper from
Bonnetain et al.’s. In our paper, we not only give the attacks on 1K-/2K-/4K-Feistel ciphers
(also given byBonnetain et al.), but also give non-trivial applications on 1K-/2K-/4K-DES. In
the attack on 1K-/2K-/4K-DES, we give a new reformulation of the DES-like ciphers e.g. Fig.
7 in Sect. 3.2.1 in order to construct a sound period function. After we derive the period, we
have to deal with the irreversible property of DES’s s-box to recover the keys. The quantum
circuits of the quantum advanced slide attacks are presented in our work, which is not given
by Bonnetain et al. In addition, our paper also includes the new quantum key-recovery attacks
on 30-/32-round GOST.

2 Preliminaries

2.1 Attackmodel

In this paper, we focus on the powerful Q2 model. In this model, the adversary is not only
equipped with local quantum computation resource, but also granted an access with superpo-
sition inputs to the remote cryptographic oracle, and obtains the corresponding superposition
of outputs. Concretely, suppose the encryption oracle is Ok : {0, 1}n → {0, 1}n , then the
Q2 adversary can make quantum queries |x〉|y〉 �→ |x〉|Ok(x) ⊕ y〉, where x and y are
arbitrary n-bit strings and |x〉 and |y〉 are the corresponding n-qubit states expressed in the
computation basis. Moreover, any superposition

∑
x,y λx,y |x〉|y〉 is a valid input to the quan-

tum oracle, whose corresponding output is
∑

x,y λx,y |x〉|y ⊕ Ok(x)〉. In previous works,
the Q2 model is also called superposition attacks [10], quantum chosen message attacks [6]
or quantum security [38]. For symmetric cryptanalysis, Q2 model is important and rational
to some extent, as we have already mentioned the protocol of Boneh and Zhandry [5] for
MACs that remains secure against superposition attacks. Moreover, as stated by Ito et al.
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Quantum attacks on some feistel block ciphers 1183

[22]: “the threat of this attack model becomes significant if an adversary has access to its
white-box implementation. Because arbitrary classical circuit can be converted into quantum
one, the adversary can construct a quantum circuit from the classical source code given by
the white-box implementation.”

2.2 Quantum algorithms

Our quantum attacks are based on two of the most popular quantum algorithms, namely
Simon’s algorithm [36] and Grover’s algorithm [16].

Black-box period finding: given a function, f : {0, 1}n → {0, 1}n , that is observed to
be invariant under some n-bit XOR period a, find a. In other words, find a �= 0 such that
x ⊕ y = a ⇒ f (x) = f (y).

The optimal classical time to solve the problem isO(2n/2). However, Simon [36] presents
a quantum algorithm that provides exponential speedup and requires only O(n) quantum
queries to find a.

Simon’s Algorithm [36]: the algorithm includes five quantum steps that are as follows:

I. Initialization of two n-bit quantum registers to state |0〉⊗n |0〉⊗n . Then apply the
Hadamard transform to the first register to attain an equal superposition in the following
manner:

H⊗n |0〉|0〉 = 1√
2n

∑

x∈{0,1}n
|x〉|0〉. (1)

II. A quantum query to the function f maps this to

1√
2n

∑

x∈{0,1}n
|x〉| f (x)〉.

III. While measuring the second register, the first register collapses to the following state:

1√
2
(|z〉 + |z ⊕ a〉).

IV. Applying the Hadamard transform to the first register, we obtain:

1√
2

1√
2n

∑

y∈{0,1}n
(−1)y·z(1 + (−1)y·a)|y〉.

V. The vectors y, that y · a = 1, depict an amplitude of zero. Hence, measuring the state
yields a value of y, which meets that y · a = 0.

Intuitively, after repeating the above algorithm n times, we may obtain a by solving a
system of linear equations if the system is of rank n − 1. However, Kaplan et al. [23] and
Santoli [34] showed that in the cryptanalysis scenario, the period function f (x) constructed
may havemany so-called “unwanted collisions”, whichmeans theremight be other collisions
in addition to those of the form f (x) = f (x ⊕ a). For example, there might exist a pair
(x ′, a′), such that f (x ′) = f (x ′ ⊕ a′), where a′ �= a. Hence, one may need more repetitions
of the above algorithms to obtain a full rank linear system of equations to get a. At Asiacrypt
2017, Leander and May [28] assume that f (x) behaves as a random periodic function with
period a, and show that any function value f (x) has only two preimages with probability
at least 1

2 . Moreover, they show that l = 2(n + √
n) repetitions of the Simon’s algorithm

are sufficient to compute a. The probability is greater than 4
5 that it contains at least n − 1
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1184 X.Dong et al.

linearly independent vectors y that are orthogonal to a (Lemma 4, [28]). In this paper, we
follow Leander and May’s assumption, that all the periodic functions used in our attacks
behave as random periodic functions. Therefore we use Lemma 4 of [28] to evaluate the
complexity of our attacks.

Simon’s algorithm has been used to attack many primitives, such as the key-recovery
attacks against Even-Mansour constructions [27], distinguishers against 3-round Feistel con-
structions [26], forgery attacks against block cipher based MACs [23], key recovery attacks
against FX constructions [28], and so on.

Quantum search: given an unordered set of N = 2n items, quantum search problem is to
find the unique element that satisfies some condition. In other words, given f (x), f (x) = 0
for all 0 � x < 2n except x0, for which f (x0) = 1, find x0. The best classical algorithm for
a search over unordered data requires O(N ) time, but Grover’s algorithm [16] performs the
search on a quantum computer in only O(

√
N ) operations, a quadratic speedup.

Grover’s Algorithm [16]: define a black box oracle O asO|x〉|q〉 = |x〉|q ⊕ f (x)〉. The
steps of the algorithm are as follows:

1. Initialization of an (n + 1)-bit register |0〉⊗n |1〉. Apply the Hadamard transform to attain
an superposition that can be given as follows:

H⊗(n+1)|0〉⊗n |1〉 = 1√
2n

∑

x∈{0,1}n
|x〉[(|0〉 − |1〉)/√2] = |�〉. (2)

2. Define |ϕ〉 = 1√
2n

∑

x∈{0,1}n
|x〉 and define the Grover iteration as (2|ϕ〉〈ϕ| − I )O, and

apply it R ≈ π
4

√
2n times to the state |�〉:
[
(2|ϕ〉〈ϕ| − I )O]R |�〉 ≈ |x0〉[(|0〉 − |1〉)/√2

]
.

3. Measure the final state and return x0.

We give some brief explanations on step 2, and for more details, we refer the readers to
[37]. As shown in Fig. 1, Grover denotes (2|ϕ〉〈ϕ|− I ) as diffusion transform. It includes two
Hadamard transforms H⊗n and a conditional phase shift operation, which is represented by
the unitary operator 2|0〉〈0| − I , and satisfies (2|0〉〈0| − I )|0〉 = |0〉 and (2|0〉〈0| − I )|x〉 =
−|x〉, where x �= 0. Therefore, the entire diffusion transform using the notation |ϕ〉 is:

H⊗n[2|0〉〈0| − I ]H⊗n = 2H⊗n |0〉〈0|H⊗n − I = 2|ϕ〉〈ϕ| − I . (3)

Hereafter, we get the Grover iteration: (2|ϕ〉〈ϕ| − I )O.
For the oracleO, when applying it to |x〉[(|0〉−|1〉)/√2], we getO|x〉[(|0〉−|1〉)/√2] =

1√
2
(|x〉|0 ⊕ f (x)〉 − |x〉|1 ⊕ f (x)〉). Since f (x0) = 1, then O|x0〉[(|0〉 − |1〉)/√2] =

1√
2
(|x0〉|0⊕ 1〉 − |x0〉|1⊕ 1〉) = 1√

2
(|x0〉|1〉 − |x0〉|0〉) = (−1)|x0〉[(|0〉 − |1〉)/√2]. When

x �= x0, O|x〉[(|0〉 − |1〉)/√2] = 1√
2
(|x〉|0 ⊕ 0〉 − |x〉|1 ⊕ 0〉) = 1√

2
(|x〉|0〉 − |x〉|1〉) =

|x〉[(|0〉 − |1〉)/√2]. So O|x〉[(|0〉 − |1〉)/√2] = (−1) f (x)|x〉[(|0〉 − |1〉)/√2].
Further, Brassard et al. [8] generalized the Grover search as an amplitude amplification

method.

Theorem 1 (Brassard et al. [8]). Let A be any quantum algorithm on q qubits that performs
no measurement. Let B : Fq

2 → {0, 1} be a function that classifies the outcomes of A as
either good or bad state. Let p > 0 be the initial success probability that the measurement
of A|0〉 is good. Set t = � π

4θ �, where θ is defined using sin2(θ) = p. Furthermore, define
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Quantum attacks on some feistel block ciphers 1185

diffusion transform

|0 /n H⊗n

O
H⊗n 2 |0 0| − In H⊗n · · ·

|1 H · · ·

repeat O(
√
N) ≈ π

4

√
N times

Fig. 1 Circuit diagram for Grover’s algorithm [1]

the unitary operator Q = −AS0A−1SB, where the operator SB changes the sign of the good
state,

|x〉 �→
{−|x〉 if B(x) = 1,

|x〉 if B(x) = 0.

Further, S0 changes the sign of the amplitude only in case of the zero state |0〉. Finally, after
performing the computation of QtA|0〉, the measurement yields a good state with probability
at least max{1-p, p}.

Assume that |ϕ〉 = A|0〉 is the initial vector, whose projections on the good and the bad
subspace are denoted by |ϕ1〉 and |ϕ0〉, respectively. The state |ϕ〉 = A|0〉 exhibits an θ with
a bad subspace, where sin2(θ) = p. Each Q iteration increases the angle by 2θ . Hence, after
t ≈ π

4θ , the angle is observed to be approximately equal to π/2. Therefore, the state after t
iterations is almost orthogonal to that of the bad subspace. After measurement, it produces a
good vector with high probability.

2.3 Hosoyamada and Sasaki’s method to truncate outputs of quantum oracles

At ISIT 2010, Kuwakado andMorii [26] introduced a quantum distinguish attack on 3-round
Feistel scheme by using Simon’s algorithm. As shown in Fig. 2:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x �→ αb ⊕ X3,where(X3, Y3) = EK (x, αb),

F(b, x) = f1(k1, f0(k0, αb) ⊕ x).

F is periodic function that F(b, x) = F(b ⊕ 1, x ⊕ f0(k0, α0) ⊕ f0(k0, α1)), α0 and α1 are
arbitrary constants. Then using Simon’s algorithm, one can get the period s = 1|| f0(k0, α0)⊕
f0(k0, α1) in polynomial time.
Note that, in the above attack, one has to truncate the output n bits of EK to obtain the left

half n/2 bits, namely X3. However, Kaplan et al. [23] and Hosoyamada et al. [17] pointed
out that in quantum setting it is not trivial to truncated the entangled n qubits to n/2 qubits,
since the usual truncation destroys entanglements.

At SCN 2018, Hosoyamada and Sasaki [17] introduced a method to simulate trun-
cation of outputs of quantum oracles without destroying quantum entanglements. Let
O : |x〉|y〉|z〉|w〉 �→ |x〉|y〉|z ⊕ OL(x, y)〉|w ⊕ OR(x, y)〉 be the encryption oracle EK ,
where OL , OR denote the left and right n/2 bits of the complete encryption, respectively.
The goal is to simulate oracleOL : |x〉|y〉|z〉 �→ |x〉|y〉|z ⊕OL(x, y)〉 by using some ancilla
qubits.
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Fig. 2 3-round quantum
distinguisher

f0

f1

f2

bx 0X 0Y

1X 1Y

2X 2Y

3Y3X

0k

1k

2k

Let |+〉 := Hn/2|0n/2〉 = 1√
2n/2

∑
w |w〉, where Hn/2 is an n/2-qubit Hadamard

gate. Then, O|x〉|y〉|z〉|+〉 = O(|x〉|y〉|z〉[ 1√
2n/2

∑
w |w〉]) = |x〉|y〉|z ⊕ OL(x, y)〉[ 1√

2n/2∑
w |w ⊕ OR(x, y)〉] holds. In addition, let w′ = w ⊕ OR(x, y). Then, |x〉|y〉|z ⊕

OL(x, y)〉[ 1√
2n/2

∑
w |w⊕OR(x, y)〉] = |x〉|y〉|z⊕OL(x, y)〉[ 1√

2n/2

∑
w |w′〉] = |x〉|y〉|z⊕

OL(x, y)〉[ 1√
2n/2

∑
w′ |w′〉] = |x〉|y〉|z ⊕ OL (x, y)〉|+〉 holds. Therefore, O|x〉|y〉|z〉|+〉 =

|x〉|y〉|z ⊕ OL(x, y)〉|+〉 holds.
Based on this observation, Hosoyamada and Sasaki defined O′

L := (I ⊗ Hn/2) ◦ O ◦
(I ⊗ Hn/2). Since O′

L |x〉|y〉|z〉|0n/2〉 = |x〉|y〉|z ⊕ OL(x, y)〉|0n/2〉 holds, O′
L completely

simulates OL . Hence, OL can be simulated given the complete encryption oracle O using
ancilla qubits.

3 New advanced quantum slide attacks

3.1 Slide attack and advanced slide attack

Slide attack and advanced slide attack were proposed by Biryukov and Wagner [3,4]. They
are a set of powerful cryptanalysis tools. Classically, slide attack and advanced slide attack
are launched against block ciphers with exponential time complexity. At CRYPTO 2016,
Kaplan et al. [23] converted the slide attack on iterated Even-Mansour cipher into a quantum
one by applying the slide attack and Simon’s algorithm, shown in Fig. 3. They define F :
{0, 1}n+1 → {0, 1}n as

F(b‖x) =
{
P(EP

k (x)) ⊕ x if b = 0,
EP
k (P(x)) ⊕ x if b = 1,

(4)

where b ∈ {0, 1}, x ∈ {0, 1}n . For arbitrary x ∈ {0, 1}n , we have

F(0‖x) = P
(
EP
k (x)

) ⊕ x = EP
k (P(x ⊕ k)) ⊕ (x ⊕ k) = F(1‖(x ⊕ k)). (5)

Thus, s = 1‖k is the period of F . Finally, they could retrieve the secret key by applying
Simon’s algorithm with polynomial time complexity.
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Quantum attacks on some feistel block ciphers 1187

Fig. 3 Slide attack against
iterated Even-Mansour cipher of
which round keys are all the same

Feistel ciphers form an important special case for applying slide attacks. Kaplan et al.’s
quantum slide attack against iterated Even-Mansour cipher could not be applied to Feistel
ciphers trivially. Thus, we will give some new quantum attacks on some Feistel ciphers.

In this paper, we focus on the 1K-/2K-/4K-Feistel and 1K-/2K-/4K-DES block ciphers,
which were introduced and studied by Biryukov and Wagner [3,4]. They designed a novel
advanced slide attack on these ciphers with exponential time complexities in classical com-
puters. 2K-/4K-DES block ciphers are the modified DES examples which use two or four
independent 48-bit keys and the key arrangements are the same as 2K-/4K-Feistel block
ciphers. The total number of rounds of 2K-/4K-DES are 64 or more, thus they resist to the
conventional differential [2] and linear attacks [29]. In this paper, we give some advanced
quantum slide attacks on 1K-/2K-/4K-Feistel block ciphers and extend them to attacks on
1K-/2K-/4K-DES block ciphers by looking into the concrete round function of DES. Our
attacks work on m-round 1K-Feistel/1K-DES block cipher, or on 2m-round 2K-Feistel/2K-
DES block cipher, or 4m-round 4K-Feistel/4K-DES block cipher, where m is any positive
integer. For simplicity, in the following sections, we only list example attacks on 4-round
1K-Feistel/1K-DES block cipher, 4-round 2K-Feistel/2K-DES block cipher and 8-round 4K-
Feistel/4K-DES block cipher, respectively.

3.2 Advanced quantum slide attack on 1K-feistel

As shown in Fig. 4, 1K-Feistel block cipher adopts repeating round subkey and identical
round function f .

We first define the following function using given random constant α:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x �→
{
EK (x, α)R if b = 0,
EK (α, f (α) ⊕ x)L if b = 1,

(6)

where n is the block size of 1K-Feistel block cipher EK , EK (·)L and EK (·)R are the left
branch ( n2 -bit) or right branch (

n
2 -bit) of EK (·).

As shown in Fig. 4, EK (x, α)R = Y4, EK (X1, Y1)L = X5 = Y4, X1 = α and Y1 =
f (k ⊕ α) ⊕ x hold. Thus, from EK (x, α)R = EK (X1, Y1)L = Y4, we deduce

F(0, x) = EK (x, α)R = EK (α, f (k ⊕ α) ⊕ x)L = F(1, x ⊕ f (α) ⊕ f (k ⊕ α)). (7)

So F(b, x) is a function with period s = 1‖ f (α) ⊕ f (k ⊕ α) and the period could be
retrieved by applying Simon’s algorithm. According to Sect. 2.2, the time complexity is
about l = 2(n/2 + 1 + √

n/2 + 1) repetitions of Simon’s algorithm to recover s, which is
equivalent to l = 2(n/2+ 1+ √

n/2 + 1) quantum queries of the encryption process, using
about n + 1 qubits.

In order to simulate F(b, x), we have to truncate the output of EK to get the right half or
left half n/2 bits. Thanks to Hosoyamada and Sasaki’s work [17] shown in Sect. 2.3, we can
truncate outputs of quantum oracles with ease. The quantum circuit of F(b, x) is shown in
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Fig. 5 A quantum circuit that computes the function F for the attack on 1K-Feistel. Please refer to [32] for
the relevant quantum gates and circuit symbols

Fig. 5. If f is reversible, such as GOST [31], Camellia [20] etc., it is easy to get k with the
knowledge s. If f is irreversible, such as for DES and its variants, it is possible to recover
the key by studying the detailed structure of their round function as shown in Sect. 3.2.1.
Note that, the attack works for any number of rounds of 1K-Feistel, we only give a 4-round
example attack in this section.

3.2.1 The application to 1K-DES

The round function of DES is shown in Fig. 6. We define that 1K-DES uses only one 48-bit
key in every round. The 32-bit right branch, i.e., R branch word is expanded by EX function
to 48-bit, then it is XORed by 48-bit k. The f function is applied to the 48-bit state, and
outputs 32-bit word. The s-boxes map 6-bit input into 4-bit output. We only give S1 s-box in
Table 2 as an example.
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R (32 bits)

48 bits k (48 bits)

EX

S1 S2 S3 S4 S5 S6 S7 S8

P

( ( ) )f EX R k , 32 bits
f Function

Fig. 6 DES Round Function

Table 2 DES s-box: S1

S1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

The quantum advanced slide attack on 1K-DES is shown in Fig. 7. The period function is
therefore defined as follows:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x �→
{
EK (x, α)R if b = 0,
EK (α, f (EX(α)) ⊕ x)L if b = 1,

(8)

Then,

F(0, x) = EK (x, α)R = EK (α, f (k ⊕ EX(α)) ⊕ x)L

= F(1, x ⊕ f (EX(α)) ⊕ f (k ⊕ EX(α))). (9)

Thus, s = 1‖ f (EX(α)) ⊕ f (k ⊕ EX(α)) is the period of F function. Suppose we
have recovered s by Simon’s algorithm, and then f (k ⊕ EX(α)) is known. Note that, Si (i =
1, 2, . . . , 8) ismapping 6-bit input to 4-bit output. Thus, given a 4-bit output, we could recover
4 possible 6-bit inputs, then get four candidate 6-bit keys for each s-box. For example, suppose
that the output of S1 is 14, we could get four different 6-bit inputs as shown in Table 2.

Note that, we could use a different α, to construct a different period function F . We select
α so that in each s-box, the 6-bit inputs are different for each α. For example, the 6-bit inputs
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Fig. 7 Quantum Attack on 1K-DES Block Cipher

of S1 for all selected α should be different. Hence, we could get different f (k⊕EX(α))with
different α. It is expected that with 2 different α, we could uniquely determine one correct
48-bit k by uniquely determining each 6-bit key separately for each s-box. According to Sect.
2.2, the time complexity is 2l = 2×2× (33+√

33) ≈ 155 repetitions of Simon’s algorithm,
which is equivalent to 155 quantum queries of the encryption process, using 65 qubits.

3.3 Quantum slide attack on 2K-feistel

As shown in Fig. 8, 2K-Feistel block cipher adopts round subkeys (k0, k1) iteratively and
identical round function f .

We first define the following function using given random constant α:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x �→
{
EK (x, α)R if b = 0,
DK ( f (α) ⊕ x, α)R if b = 1.

(10)

As shown in Fig. 8, EK (x, α)R = Y4, DK (Y1, X1)R = X5 = Y4, Y1 = f (k0 ⊕ α) ⊕ x ,
X1 = α hold. Thus, from EK (x, α)R = DK (Y1, X1)R = Y4, we deduce

F(0, x) = EK (x, α)R = DK ( f (k0 ⊕ α) ⊕ x, α)R = F(1, x ⊕ f (α) ⊕ f (k0 ⊕ α)). (11)

So F(b, x) is a function with period s = 1‖ f (α) ⊕ f (k0 ⊕ α). According to Sect. 2.2,
the time complexity is about l = 2(n/2 + 1 + √

n/2 + 1) repetitions of Simon’s algorithm
to recover s, which is equivalent to l = 2(n/2 + 1 + √

n/2 + 1) quantum queries of the
encryption process, using about n + 1 qubits.
The quantum circuit of F(b, x) is shown in Fig. 9, and please refer to [32] for the relevant
quantum gates and circuit symbols. If f is reversible, such as GOST [31], Camellia [20],
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Fig. 9 A quantum circuit that computes the function F for 2K-Feistel. The X gate is the quantum equivalent
of the NOT gate that flips the qubit |0〉 and |1〉

etc., it is easy to get k0 with s. If f is irreversible, such as 2K-DES, it is easy to recover k0
with the same strategy as Sect. 3.2.1 and the same complexity. Note that, the attack works
for any even number of rounds of 2K-Feistel, we only give a 4-round example attack in this
section.

To get k1, we design a similar quantum period function in Equation (12).

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x �→
{
DK (α, x)L if b = 0,
EK (α, f (α) ⊕ x)L if b = 1.

(12)

As shown in Fig. 10, DK (α, x)L = Y4, EK (X1, Y1)L = X5 = Y4, Y1 = f (k1 ⊕ α) ⊕ x ,
X1 = α hold. Thus, from DK (α, x)L = EK (X1, Y1)L = Y4, we deduce

F(0, x) = DK (α, x)L = EK (α, f (k1 ⊕ α) ⊕ x)L = F(1, x ⊕ f (α) ⊕ f (k1 ⊕ α)). (13)

So F(b, x) is a function with period s = 1‖ f (α) ⊕ f (k1 ⊕ α), and k1 is got consequently.
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3.4 Quantum slide attack on 4K-feistel

As shown in Fig. 11, 4K-Feistel block cipher adopts round subkeys (k0, k1, k2, k3) iteratively
and identical round function f . Given arbitrary constant α ∈ F

n/2
2 , define:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x �→
{
EK (x, α)R if b = 0,
DK ( f (α) ⊕ x, α)R if b = 1.

(14)

As shown inFig. 11, EK (x, α)R = Y8, DK (Y1⊕Δ, X1)R = X9 = Y8,Y1 = f (k0⊕α)⊕x ,
X1 = α hold, where Δ = k1 ⊕ k3. Thus, from EK (x, α)R = DK (Y1 ⊕ Δ, X1)R = Y8, we
deduce

F(0, x) = EK (x, α)R = DK ( f (k0 ⊕ α) ⊕ x ⊕ Δ,α)R

= F(1, x ⊕ f (α) ⊕ f (k0 ⊕ α) ⊕ Δ). (15)

So, F(b, x) is a function with period s = 1‖ f (α)⊕ f (k0⊕α)⊕Δ. According to Sect. 2.2,
the time complexity is about l = 2(n/2 + 1 + √

n/2 + 1) repetitions of Simon’s algorithm
to recover s, which is equivalent to l = 2(n/2 + 1 + √

n/2 + 1) quantum queries of the
encryption process, using about n + 1 qubits.

Similar to the attack on 2K-Feistel, we could also design a similar period function, with
period s′ = 1‖ f (α) ⊕ f (k3 ⊕ α) ⊕ Δ′, where Δ′ = k0 ⊕ k2. Note that, the attack works for
any 4m-round 4K-Feistel, where m is any positive integer, we only give an 8-round example
attack in this section.

We follow the the assumption made by the 2K-/4K-Feistel’s designers, i.e., Biryukov and
Wagner, that the round function f is simple, just like the round function of GOST [31],
Camellia [20], DES [20], etc. Hence, it is easy to get the secret keys by the knowledge of s

123



Quantum attacks on some feistel block ciphers 1193

f

0k

f

f

f

f

f

f

f

1k

2k

3k

3k

2k

1k

0k
f

0k

f

f

f

Encryption

1k

2k

3k

f

f

f

f

Decryption

3k

2k

1k

0k

0X 0Y

1X

1Y

2X 2Y

3X 3Y

4X 4Y

5X 5Y

6X 6Y

7X 7Y

8X 8Y

1X

1Y 1X 1Y

2X 2Y

3X 3Y

4X 4Y

5X 5Y

6X 6Y

7X 7Y

8X 8Y

9Y 9X

x

LP RP

LP RP

LC RC

LC RC

Fig. 11 Quantum Attacks on 4K-Feistel Block Cipher

123



1194 X.Dong et al.

f

0k

f

f

f

f

f

f

f

1k

2k

3k

3k

2k

1k

0k

0X 0Y

1X

2X 2Y

3X 3Y

1X

1Y 1X 1Y

2X 2Y

3X 3Y

4X
4Y

x
LP RP

LC RC
EX

EX-1

EX

EX-1

EX

EX-1

EX

EX-1

EX

EX-1

EX

EX-1

EX

EX-1

EX

EX-1

4X
4Y

5X5Y

Encryption

Decryption
LP RP

LC RC

1Y

Fig. 12 Quantum Attack on 4K-DES Block Cipher

and s′, when looking into the details of the round function. We give an example attack on
4K-DES in Sect. 3.4.1.

3.4.1 Application to 4K-DES

As shown in Fig. 12, 4K-DES block cipher adopts four 48-bit round subkeys (k0, k1, k2, k3)
iteratively. Given arbitrary constant α ∈ F

n/2
2 , the period function is defined as follows:

F : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x �→
{
EK (x, α)R if b = 0,
DK ( f (EX(α)) ⊕ x, α)R if b = 1.

(16)

As defined in Sect. 3.2.1, EX is the expand function. Let Δ = EX−1(k1 ⊕ k3), our attack
works only when EX(Δ) = k1⊕k3. Since EX−1 maps 48-bit word k1⊕k3 to a 32-bit word,
EX(Δ) = k1 ⊕ k3 holds with probability 2−16. Thus, our attack on 4K-DES only works for
1/216 of all keys, which is the same as Biryukov and Wagner’s attack [4].

Since EK (x, α)R = Y4, DK (Y1⊕Δ, X1)R = X5 = Y4,Y1 = f (k0⊕EX(α))⊕x , X1 = α

hold, we could deduce the following equation from EK (x, α)R = DK (Y1 ⊕Δ, X1)R = Y4.

F(0, x) = EK (x, α)R = DK ( f (k0 ⊕ EX(α)) ⊕ x ⊕ Δ,α)R

= F(1, x ⊕ f (EX(α)) ⊕ f (k0 ⊕ EX(α)) ⊕ Δ). (17)
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Fig. 13 Input and output of s-box
S1

S1
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So, F(b, x) is a function with period s = 1‖ f (EX(α)) ⊕ f (k0 ⊕ EX(α)) ⊕ Δ. When
given the value of f (k0 ⊕ EX(α)) ⊕ Δ, we could look into the f function and study the
s-box one by one in Fig. 6. For example, as shown in Fig. 13, if we use three different α to run
Simon’s algorithm1, we could get three valid input-output pairs of s-box S1, i.e., (in1, out1),
(in2, out2) and (in3, out3). We guess the 6-bit kin , we could get 3 candidate kout by the
three pairs, which are equal with probability 2−8. Thus, at last only one (kout , kin) pair is
expected to remain. After calculate (kout , kin) for each of the 8 s-boxes respectively, we find
the right key (k0, EX−1(k1 ⊕ k3)). According to Lemma 4 of [28], the time complexity is
3l = 3 × 2 × (33 + √

33) ≈ 233 repetitions of Simon’s algorithm, which is equivalent to
233 quantum queries of the encryption process, using 65 qubits.

4 Quantum key-recovery attack on GOST block cipher

4.1 GOST block cipher

GOST [31] is a block cipher designed during the 1970’s by the Soviet Union as an alternative
to the American DES. Similar to DES, it has a 64-bit Feistel structure, employing 8 s-boxes
and is intended for civilian use. Unlike DES, it has a significantly larger key (256 bits instead
of just 56), more rounds (32 compared with DES’s 16), and uses different sets of s-boxes.
After the USSR had been dissolved, GOST was accepted as a Russian standard.

Suppose the input state of i-th round function is (Xi−1, Yi−1), where Xi−1 and Yi−1 are
the left and right branches of the i-th round function for i = 1, 2, . . . , 32. The first round of
GOST is given in Fig. 14, the only difference for each round is the subkeys. The symbols
used are

+ modular addition,
− modular subtraction,
⊕ bitwise addition,
≪ j cyclic left rotation by j bits ,
≫ j cyclic right rotation by j bits.
X [i1, . . . , i j ] the i1, . . . , i j th least significant bits of the 32-bit word X .

In the round function, the round key is (modular) added with 32-bit right branch; then
the 32-bit state is substituted by S, which is composed of 8 4 × 4 s-boxes in parallel;
then rotating left the 32-bit state by 11 bits. It has a simple key schedule: 256-bit key is
divided into eight 32-bit words k0, k1 · · · , k7 and the sequence of round keys is given as
k0, · · · , k7, k0, · · · , k7, k0, · · · , k7, k7, k6, · · · , k1, k0.

4.2 Quantum attack on 30-round GOST block cipher

We first give some properties of GOST.

1 The way to select α is the same as Sect. 3.2.1.
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Fig. 14 The first round of GOST
block cipher
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Property 1 As shown in Fig. 15, for a two round GOST, if we know (X0, Y0) and (X2, Y2),
then k0 = S−1((X0 ⊕ X2) ≫ 11) − Y0, k1 = S−1((Y0 ⊕ Y2) ≫ 11) − X2.

Property 2 (Reflection Property[25]) If the input state of the 25th round meets condition
X24 = Y24, then the last 16-round of 32-round GOST acts as an identity by ignoring the last
swap function, i.e., the input of 17th round is (X16, Y16), and the output of 32th round is
(X32, Y32) = (Y16, X16).

Proof As shown in Fig. 16, it is easy to see that, X23 = fk7(Y23)⊕Y24, Y25 = fk7(Y24)⊕X24.
Since X24 = Y24 and Y23 = X24, we get X23 = Y25. While Y23 = X24 = X25 holds. Thus,
we get (X23, Y23)=(Y25, X25).

X22 = fk6(Y22) ⊕ Y23, Y26 = fk6(Y25) ⊕ X25. Since (X23, Y23)=(Y25, X25) and
Y22 = X23, we get X22 = Y26. While Y22 = X23 = Y25 = X26 holds. Thus, we get
(X22, Y22)=(Y26, X26). Iterating the above procedures, finally, we get the conclusion of Prop-
erty 2, i.e., (X32, Y32) = (Y16, X16). ��

In this section, we only consider the last 30-round reduced GOST block cipher (from 3th
to 32th round shown in Fig. 17), against quantum attackers fromQ2model. Since the key size
of the 30-round GOST block cipher is 256-bit, if we trivially use quantum brute-force search
(Grover’s algorithm [16]) to find the key, it needs 2128 Grover iterations. In the following,
we combine the reflection property and Grover’s algorithm to attack 30-round GOST block
cipher in 2112 Grover iterations.

Note that the input and output are (X2, Y2) and (X32, Y32).We first construct the following
quantum algorithm A: Preparing the initial 32 × 7-bit register |0〉⊗224. Apply Hadamard
transform H⊗224 to the register to attain an equal superposition (omitting the amplitudes):

∑

X2,k2,k3,...,k7∈{0,1}32
|X2〉|k2, k3, . . . , k7〉 = |ϕ〉, (18)
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Fig. 16 Reflection Property of the last 16-rounds GOST block cipher

Fig. 17 Attack on 30-round reduced GOST

where X2 is the left half of the input of the 30-round GOST; the right half Y2 is a constant.
According to the Reflection Property 2, when X24 = Y24, the last 16-round is an iden-

tical transformation by ignoring the last swap function. Thus, given 232 inputs (X2, Y2),
it is expected that there is one (X2, Y2) pair that satisfies the condition X24 = Y24, then
(X16‖Y16) = (Y32‖X32).

Once we get the right (X2, Y2) somehow, we guess k2, k3, . . . , k7, then encrypt for round
3-8 to get the internal state (X8, Y8), decrypt (X16‖Y16) for round 11-16 to get (X10, Y10).
According to Property 1, we could deduce k0 and k1 from (X8, Y8) and (X10, Y10).

Considering the superposition |ϕ〉, assume thatwe had a classifierB : {0, 1}32×7 → {0, 1},
which partitions |ϕ〉 into a good subspace and a bad subspace: |ϕ〉 = |ϕ1〉+ |ϕ0〉, where |ϕ1〉
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and |ϕ0〉 denote the projection onto the good subspace and bad subspace, respectively. In the
good subspace |ϕ1〉, (X2, Y2) meets the Reflection Property and k2, k3, . . . , k7 are the right
subkeys. For the good state |x〉, B(x) = 1.

We construct the quantum classifier B. Define B : {0, 1}32×7 → {0, 1} that maps
(X2, k2, k3, . . . , k7) to 0 or 1:

1. For (X2, Y2), derive (X32, Y32) from the 30-round encryption oracle, note that Y2 is a
random given constant.

2. Use (k2, k3, . . . , k7), (X2, Y2) and (X32, Y32) to derive k0, k1 from Property 1.
3. Check the derived (k0, k1, k2, . . . , k7) by 5 plaintext-ciphertext pairs using the 30-round

encryption oracle. If the check is right, output 1. Else output 0.

Weclassify a state |X2〉|k2, k3, . . . , k7〉 is a good state if andonly ifB(X2, k2, k3, . . . , k7) =
1. The classifier B outputs good under two conditions:

(a) Condition 1. (X2, Y2) meets the Reflection Property. According to the above cryptanal-
ysis, it is right with a probability of 2−32.

(b) Condition 2. k2, k3, . . . , k7 are the right subkeys. It is right with a probability 2−192.

If we measure |φ〉, it produces the good state with probability p:

p = Pr[|X2〉|k2, k3, . . . , k7〉 is good]
= Pr[B(X2, k2, k3, . . . , k7) = 1]
= Pr[Condition 1] · Pr[Condition 2]
≈ 2−32 × 2−32×6 = 2−224.

(19)

Our classifier B defines a unitary operator SB that conditionally change the sign of the
quantum state |X2〉|k2, k3, . . . , k7〉:

{− |X2〉|k2, . . . , k7〉 if B(X2, k2, . . . , k7) = 1
|X2〉|k2, . . . , k7〉 if B(X2, k2, . . . , k7) = 0

(20)

The complete amplification process is realized by repeatedly for t times applying the
unitary operator Q = −AS0A−1SB to the state |ϕ〉 = A|0〉, i.e. QtA|0〉.

Initially, the angle between |ϕ〉 = A|0〉 and the bad subspace |ϕ0〉 is θ , where sin2(θ) =
p = 〈ϕ1|ϕ1〉. When p is smaller enough, θ ≈ arcsin(

√
p) ≈ 2− 224

2 . According to Theorem
1, after t = � π

4θ � = � π

4×2− 224
2

� ≈ 2112 Grover iterations Q, the angle between resulting state

and the bad subspace is roughly π/2. The probability Pgood that the measurement yields a
good state is about sin2(π/2) = 1.

The whole attack needs 224 qubits and 2112 Grover iterations, where each Grover iteration
needs about 6 quantum queries of 30-round GOST. Hence, it costs about 2114.6 quantum
queries of the encryption process, which is more efficient than the trivial quantum search
(256 qubits and 2128 Grover iterations).

4.3 Quantum attack on full-round GOST block cipher

Property 3 (Fixed Point Property[11]) As shown in Fig. 18, assume that when we encrypt a
64-bit plaintext P =(X0, Y0), we obtain (X8, Y8)=(X0, Y0) after 8 encryption rounds. Since
rounds 9–16 and 17–24 are identical to rounds 1–8, we obtain P after 16 and 24 encryption
rounds aswell. In rounds 25–32, the round keys k0, . . . , k7 are applied in the reverse order, and
we obtain some arbitrary ciphertextC = (X32, Y32). The knowledge of P andC immediately
gives us the two input-output pairs of the first 8-round, i.e., (P, P) = (X0‖Y0, X0‖Y0) and
(C̄, P̄) = (Y32‖X32, Y0‖X0). The probability to get a fix point of the first 8 rounds is 2−64.
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Fig. 18 Attack on the Full-round GOST

Proof As shown in Fig. 18, once we get an input-output pair (P, P) = (X0‖Y0, X0‖Y0) for
the rounds 1–8, we get the input-output pair (P,C) for rounds 25-32. We focus on rounds
25–32 shown in Fig. 16, different from rounds 1–8, the subkeys are in inverse order. If we
consider rounds 25–32 in inverse direction, i.e., from 32th round to 25th round, the only
difference from rounds 1–8 is that there is an additional swap function in the first round but
not in the last round. So, (C̄, P̄) = (Y32‖X32, Y0‖X0) is also an input-output pair for rounds
1–8.

��
Property 4 As shown in Fig. 19, if we know two valid input-output pairs of the 3-round
GOST, i.e., (X5‖Y5, X8‖Y8) and (X ′

5‖Y ′
5, X

′
8‖Y ′

8), then we can easily determine the three
subkeys k5, k6, k7.

Proof As shown in Fig. 19, we get

(S(Y5 + k5) ≪ 11) ⊕ X5 = (S(X8 + k7) ≪ 11) ⊕ Y8, (21)

(S(Y ′
5 + k5) ≪ 11) ⊕ X ′

5 = (S(X ′
8 + k7) ≪ 11) ⊕ Y ′

8. (22)

We rewrite Eq. (21), as S(Y5+k5)⊕S(X8+k7) = (X5⊕Y8) ≫ 11. Note that S is composed
of 8 4×4 s-boxes in parallel, we first guess the 4 least significant bits of k5, i.e., k5[3, 2, 1, 0],
then compute s0(Y5[3, . . . , 0] + k5[3, . . . , 0]), where s0 is the s-box applied to the 4 least
significant bits of Y5 + k5, thus we could determine X8[3, . . . , 0] + k7[3, . . . , 0] and get
k7[3, . . . , 0] by (modular 24) subtracting X8[3, . . . , 0]. Similarly, by Eq. (22), we could also
derive another value of k7[3, . . . , 0], if they are not equal, then the guessing of k5[3, 2, 1, 0]
is wrong. After we determine a right candidate k5[3, 2, 1, 0] and k7[3, 2, 1, 0], we could
continue to guess and determine k5[7, 6, 5, 4] and k7[7, 6, 5, 4] with the known carry bits
of the previous nibbles. Finally, we are expected to get the right candidate k5, k7. Then we
compute Y6 = (S(Y5 + k5) ≪ 11) ⊕ X5. Thus we get k6 = S−1((Y5 ⊕ X8) ≫ 11) − Y6.
Totally, we only use 8× 24 × 2+ 2× 8 = 272 s-boxes operations without any memory cost,
which approximate one encryption of GOST (it needs 8 × 32 = 256 s-boxes operations).

��

A classical attack:

Using Property 3 and 4, we could devise a classical attack without any memory complexity.
We list the brief steps of the classical attack here:

(1) For each of 264 plaintexts, and for each of 2160 key guessing k0, k1, . . . , k4:

(a) Construct two input-output pairs of rounds 1-8 according to Property 3, i.e., (P, P)

and (C̄, P̄). Use Property 4 to compute k5, k6, k7.
(b) Use 5 additional plaintext-ciphertext pairs to check k0, k1, . . . , k6, k7, if it is right,

return the key.
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Fig. 19 3-round GOST

5X 5Y
11 S

6X 6Y
11 S

7X 7Y

5k

6k

11 S

8X 8Y

7k

The time complexity of the above classical attack is 264+160 = 2224. The data complexity is
264, while the best previous attack only use 232 data complexity with similar time complexity
as shown in Table 1. However, our attack do not use anymemory cost, which is very important
to devise an efficient quantum algorithm. Since quantummemory is equivalent to the number
of qubits in the circuit, which is very expensive.

The quantum attack:

In our quantum attack on full-round GOST, we first construct the following quantum algo-
rithmA: Preparing the initial 32 × 7-bit register |0〉⊗224. Apply Hadamard transform H⊗224

to the register to attain an equal superposition (omitting the amplitudes):
∑

X0,Y0,k0,k1,...,k4∈{0,1}32
|X0, Y0〉|k0, k1, . . . , k4〉 = |ϕ〉. (23)

According to Property 3, once we get the right P =(X0, Y0) that meets the fix point
property, we get two input-output pairs of the first 8 rounds.

Considering the superposition |ϕ〉, assume thatwe had a classifierB : {0, 1}32×7 → {0, 1},
which partitions |ϕ〉 into a good subspace and a bad subspace: |ϕ〉 = |ϕ1〉+ |ϕ0〉, where |ϕ1〉
and |ϕ0〉 denotes the projection onto the good subspace and bad subspace, respectively. In
the good subspace |ϕ1〉, P = (X0, Y0) meets the fixed point property and k0, k1, . . . , k4 are
the right subkeys. For the state |x〉 in the good subspace, B(x) = 1.

We construct the quantum classifier B. Define B : {0, 1}32×7 → {0, 1} that maps
(X0, Y0, k0, k1, . . . , k4) to 0 and 1:

1. For (X0, Y0), derive (X32, Y32) from the encryption oracle of GOST.
2. Suppose (X0, Y0) meets the fix point property, use (k0, k1, . . . , k4) to derive k5, k6, k7

from Property 4.
3. Check the derived (k0, k1, k2, . . . , k7) by 5 plaintext-ciphertext pairs using the GOST

encryption oracle. If the check is right, output 1. Else output 0.
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Weclassify a state |X0, Y0〉|k0, k1, . . . , k4〉 is a good if andonly ifB(X0, Y0, k0, k1, . . . , k4) =
1. The classifier B outputs good under two conditions:

(a) Condition 1. (X0, Y0) meets the Property 3. It is right with a probability of 2−64.
(b) Condition 2. k0, k1, . . . , k4 are the right subkeys. It is right with a probability 2−160.

If we measure |φ〉, it produces the good state with probability p:

p = Pr[|X0, Y0〉|k0, k1, . . . , k4〉 is good]
= Pr[B(X0, Y0, k0, k1, . . . , k4) = 1]
= Pr[Condition 1] · Pr[Condition 2]
≈ 2−64 × 2−32×5 = 2−224.

(24)

Our classifier B defines a unitary operator SB that conditionally change the sign of the
quantum state |X0, Y0〉|k0, k1, . . . , k4〉:

{−|X0, Y0〉|k0, k1, . . . , k4〉 if B(X0, Y0, k0, k1, . . . , k4) = 1
|X0, Y0〉|k0, k1, . . . , k4〉 if B(X0, Y0, k0, k1, . . . , k4) = 0

(25)

The complete amplification process is realized by repeatedly for t times applying the
unitary operator Q = −AS0A−1SB to the state |ϕ〉 = A|0〉, i.e. QtA|0〉.

Initially, the angle between |ϕ〉 = A|0〉 and the bad subspace |ϕ0〉 is θ , where sin2(θ) =
p = 〈ϕ1|ϕ1〉. When p is smaller enough, θ ≈ arcsin(

√
p) ≈ 2− 224

2 . According to Theorem
1, after t = � π

4θ � = � π

4×2− 224
2

� ≈ 2112 Grover iterations Q, the angle between resulting state

and the bad subspace is roughly π/2. The probability Pgood that the measurement yields
a good state is about sin2(π/2) = 1. The whole attack needs 224 qubits and 2112 Grover
iterations where each Grover iteration needs about 7 quantum queries of GOST encryption.
Hence, it costs about 2114.8 quantum queries of the encryption process.

5 Conclusion

In this paper, we have studied several Feistel block ciphers against quantum attackers, includ-
ing the attacks on 1K-/2K-/4K-Feistel and 1K-/2K-/4K-DES in polynomial time and the
attacks on GOST which are faster than the quantum brute force search attack by a factor of
213.2. Through this study, we believe that the communities should continue to deepen the
understanding of quantum security of symmetric cryptographic schemes, as more plausible
attacks might be found following quantum strategies.
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