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Abstract
In this paper we investigate several families of monomial functions with APN-like exponents
that are not APN, but are partially 0-APN for infinitely many extensions of the binary field
F2. We also investigate the differential uniformity of some binomial partial APN functions.
Furthermore, the partial APN-ness for some classes of multinomial functions is investigated.
We show also that the size of the pAPN spectrum is preserved under CCZ-equivalence.

Keywords Boolean function · Almost perfect nonlinear (APN) · Partial APN (pAPN) ·
CCZ-equivalence

Mathematics Subject Classification 94A60 · 94C10 · 06B30

1 Introduction

The objects of this study are functions over the field with 2n elements and some of their
differential properties. For more on these objects the reader can consult [3,7,8,11]. We will
introduce here only some needed notions.

Communicated by C. Carlet.

B Pantelimon Stănică
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Let F2n be the finite field with 2n elements for some positive integer n. We call a function
from F2n to F2 a Boolean function on n variables and denote the set of all such functions by
Bn . For a Boolean function f : F2n → F2 we define the Walsh–Hadamard transform to be
the integer valued function

W f (u) =
∑

x∈F2n

(−1) f (x)+Trn1 (ux),

where Trn1 : F2n → F2 is the absolute trace function, Trn1(x) = ∑n−1
i=0 x2

i
.

Given a Boolean function f , the derivative of f in direction a ∈ F2n is the Boolean
function Da F defined by Da f (x) = f (x + a) + f (x).

A vectorial Boolean function (often called an (n, m)-function) is a map F : Fn
2 → F

m
2 for

some positive integers m and n. When m = n, it can be uniquely represented as a univariate
polynomial over F2n (up to some linear equivalence using the identification of the finite field
with the vector space), namely

F(x) =
2n−1∑

i=0

ai xi , ai ∈ F2n .

Any positive integer k ≤ 2n−1 can be represented as a sum k = ∑n−1
i=0 ki ·2i , with ki ∈ {0, 1}.

The 2-weight of k is then wt(k) = ∑n−1
i=0 ki , i.e. the number of powers of two that add up

to k. The algebraic degree of the function is then the largest 2-weight of an exponent i with
ai �= 0.

In general, for an (n, m)-function F , we define the Walsh transform WF (a, b) to be the
Walsh–Hadamard transform of its component function Trm

1 (bF(x)) at a, that is,

WF (a, b) =
∑

x∈F2n

(−1)Tr
m
1 (bF(x))+Trn1 (ax).

For an (n, n)-function F , and a, b ∈ F2n , we let �F (a, b) = |{x ∈ F2n | F(x + a) +
F(x) = b}|. We call the quantity �F = max{�F (a, b) : a, b ∈ F2n , a �= 0} the differential
uniformity of F . If �F ≤ δ, then we say that F is differentially δ-uniform. If δ = 2, then F
is an almost perfect nonlinear (APN) function. There are several equivalent characterizations
of APN-ness, and we state some below.

Lemma 1.1 ([8,10,17]) Let F be an (n, n)-function.

(i) The following inequality is always true:
∑

a,b∈F2n

W4
F (a, b) ≥ 23n+1(3 · 2n−1 − 1),

with equality if and only if F is APN.
(ii) If, in addition, F is APN and satisfies F(0) = 0, then

∑

a,b∈F2n

W3
F (a, b) = 22n+1(3 · 2n−1 − 1).

(iii) (Rodier condition) F is APN if and only if all the points x, y, z satisfying

F(x) + F(y) + F(z) + F(x + y + z) = 0,

fulfill (x + y)(x + z)(y + z) = 0.
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Partially APN functions with APN-like polynomial representations 1161

We introduced in [6] a notion of partial APN-ness in our attempt to resolve the open
problem of the highest possible algebraic degree of an APN function [5].

Definition 1.2 For a fixed x0 ∈ F2n , we call an (n, n)-function a (partial) x0-APN function
(which we typically refer to as simply x0-APN, partially APN or pAPN for short) if all points,
x, y, satisfying

F(x0) + F(x) + F(y) + F(x0 + x + y) = 0 (1)

belong to the curve

(x0 + x)(x0 + y)(x + y) = 0. (2)

We refer to the set of points x0 for which F is x0-APN as the pAPN spectrum of F .

Certainly, a function is APN if and only if it is x0-APN for any x0 ∈ F2n . We refer to Eq. (1)
as the Rodier equation.

An alternative way to express the fact that a given function F is x0-APN is to say that, for
any a �= 0, the equation F(x + a) + F(x) = F(x0 + a) + F(x0) has only two solutions x ,
namely x0 and x0 + a.

The remainder of the paper is organized as follows. In the next section, we show that
the size of the pAPN spectrum is preserved under CCZ-equivalence. Next, in Sect. 3, we
theoretically and experimentally investigate the partial APN-ness of monomial functions.
We consider monomial functions which are known to be APN under certain conditions, and
find conditions under which they are partially APN. In Sect. 4, we show that the binomial
F(x) = x2

n−1 + x2
n−2 over F2n is 1-APN but not 0-APN for n ≥ 3. In Sect. 5 we derive

some conditions under which a polynomial of the form F(x) = x(Ax2 + Bxq + Cx2q) +
x2(Dxq + Ex2q)+ Gx3q for q = 2k, 2k + 1 with 1 ≤ k ≤ n − 1 is (not) partially APN (this
class of polynomials was suggested by Dillon as containing potential APN or differentially
4-uniform functions). Since every APN function is 0-APN as well, some of the results from
Sects. 3, 4 and 5 imply non-existence results for APN functions.

2 The size of the pAPN spectrum is preserved under CCZ-equivalence

We first recall that two functions F, G : F2n → F2m are CCZ-equivalent [9] if
there exists an affine permutation A on F2n × F2m such that {(x, G(x)), x ∈ F2n } =
A ({(x, F(x)), x ∈ F2n }). As in [9], we use the identification of the elements in F2n with
the elements in F

n
2, and denote by x both an element in F2n and the corresponding element

in F
n
2.

Theorem 2.1 The size of the pAPN spectrum is preserved under CCZ-equivalence. More
precisely, if F and G are two CCZ-equivalent (n, n)-functions and A is the corresponding
CCZ-isomorphism, and denoting the respective pAPN spectra of F, G by SF , SG, if x0 ∈ SF ,
and (x̃0, G(x̃0)) = A(x0, F(x0)), we have that x̃0 ∈ SG.

Proof We first decompose the affine permutation as an affine block-matrix, Au =(A11 A12

A21 A22

)
u+

(
c
d

)
, for an input vector u, whereA11,A21,A12,A22 are n × n matrices

with entries in F2, and

(
c
d

)
is a column vector in F22n .
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1162 L. Budaghyan et al.

We assume that F is x0-APN, and we want to show that G is x̃0-APN, where x̃0 =
A11x0 + A12F(x0) + c. For that, we consider the Rodier equation of G at x̃0, namely

G(x̃0) + G(x̃) + G(ỹ) + G(x̃0 + x̃ + ỹ) = 0. (3)

To simplify notation, we let z̃ = x̃0 + x̃ + ỹ. We know that there exist x0, x, y, z such that

x̃0 = A11x0 + A12F(x0) + c, x̃ = A11x + A12F(x) + c,

ỹ = A11y + A12F(y) + c, z̃ = A11z + A12F(z) + c,

G(x̃0) = A21x0 + A22F(x0) + d, G(x̃) = A21x + A22F(x) + d,

G(ỹ) = A21y + A22F(y) + d, G(z̃) = A21z + A22F(z) + d.

(4)

Observe that if x̃0 + x̃ + ỹ + z̃ = 0, then

A12 (F(x0) + F(x) + F(y) + F(z)) = A11 (x0 + x + y + z) .

Similarly, the Rodier equation (3) for G at x̃0 becomes

A22 (F(x0) + F(x) + F(y) + F(z)) = A21 (x0 + x + y + z) .

We can write the previous identities in matrix form, namely

A
((

x0
F(x0)

)
+

(
x

F(x)

)
+

(
y

F(y)

)
+

(
z

F(z)

))
= 0,

to which we can apply A−1, obtaining

x0 + x + y + z = 0 and F(x0) + F(x) + F(y) + F(z) = 0. (5)

Now, since z = x0 + x + y and F is x0-APN, then Eq. (5) has only the trivial solutions
on (x0 + x)(x0 + y)(x + y) = 0. Therefore, (x̃0 + x̃)(x̃0 + ỹ)(x̃ + ỹ) = 0, and the result is
shown. ��

3 Partial x0-APNmonomials

In [6], a list of exponents i for which xi is 0-APN but not APN over F2n was computed. This
list is given as Table 1 in this paper (exponents are taken up to cyclotomic cosets).We observe
that the function x21 appears for various dimensions, which raises the natural question of
whether this is merely a coincidence or is the consequence of a more general rule. As our
first result, we show that the latter is true.

Proposition 3.1 The function F(x) = x21 is 0-APN if and only if n is not a multiple of 6.

Proof Let F(x) = x21, and x0 = 0. Then the conditions expressed by (1) and (2) state that
the equality

x21 + y21 + (x + y)21 = 0 (6)

implies

xy(x + y) = 0.

Assuming y �= 0 (since otherwise the condition (x0 + x)(x0 + y)(x + y) = 0 is already
satisfied) and dividing both sides of (6) by y21, we get

a21 + (a + 1)21 + 1 = 0
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Partially APN functions with APN-like polynomial representations 1163

Table 1 Power functions F(x) = xi over F2n for 1 ≤ n ≤ 10 that are 0-APN but not APN

n Exponents i �F

1–5 – –

6 27 12

7 7,21,31,55 6

19,47 4

8 15,45 14

21,111 4

51 50

63 6

9 7,21,35,61,63,83,91,111,117,119,175 6

41,187 8

45,125 4

10 15, 27, 45, 75, 111, 117, 147, 189, 207, 255 6

21, 69, 87, 237, 375 4

51 8

93 92

105, 351 10

231, 363, 495 42

447 12

11 79, 109, 183, 251, 367, 463, 695, 703 4

7, 11, 15, 21, 29, 31, 37, 47, 49, 51, 53, 55, 67, 71, 73, 75, 81, 83, 85, 99, 101, 103, 111 6

113, 121, 125, 127, 137, 139, 149, 153, 155, 157, 159, 167, 171, 173, 179, 181, 185, 187,

189, 191, 201, 203, 205, 213, 215, 217, 219, 221, 223, 229, 247, 255, 293, 295, 301, 307,

309, 311, 317, 319, 331, 333, 335, 339, 341, 343, 347, 351, 359, 371, 373, 375, 379, 381,

383, 423, 427, 443, 469, 471, 475, 477, 479, 491, 493, 495, 507, 511, 687, 727, 731, 735,

751, 763, 767, 879, 887, 959, 991

19, 25, 27, 39, 41, 45, 61, 77, 87, 91, 105, 119, 123, 141, 147, 163, 165, 175, 199, 211, 8

233, 235, 237, 239, 349, 363, 415, 429, 431, 439, 501, 503, 699, 895

59, 93, 169, 243, 303, 509 10

245, 447 16

23, 69, 115, 207, 253, 299, 437, 759 22

89, 445 88

where a = x/y. Assume further that x �= 0, hence a �= 0; this is then equivalent to

a19 + a16 + a15 + a4 + a3 + 1 = 0,

which can be written as

(a + 1)(a6 + a3 + 1)(a6 + a4 + a3 + a + 1)(a6 + a5 + a3 + a2 + 1) = 0. (7)

Note that F(x) = x21 is 0-APN if and only if a = 1 is the only root of the polynomial on
the left-hand side of (7).

It can be easily verified that each of the three polynomials of degree six is irreducible
over F2. We now use [16, Theorem 3.46], which states that if a degree � polynomial f is
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1164 L. Budaghyan et al.

Table 2 Differential uniformity and differential spectrum of x21 over F2n for 1 ≤ n ≤ 15

Dimension Differential uniformity Differential spectrum

1 2 01, 21

2 2 06, 26

3 6 042, 27, 67

4 2 0120, 2120

5 2 04962496

6 20 03780, 12126, 20126

7 6 09906, 25461, 6889

8 4 038760, 220400, 46120

9 6 0159432, 278694, 418396, 65110

10 4 0585156, 2401016, 461380

11 6 02523951, 21285516, 4337755, 645034

12 20 09541350, 26183450, 41031940, 148190, 208190

13 6 041323595, 219175131, 45430633, 61171313

14 8 0163338510, 280538828, 420642580, 63211068, 8688086

15 8 0649474707, 2327866602, 482081335, 612320392, 81966020

irreducible over Fq and n ∈ N, then f factors into d irreducible polynomials in Fqn [x] of the
same degree �/d , where d = gcd(�, n). Therefore, the polynomial from (7) has roots other
than 1 if and only if the dimension n of F2n is a multiple of six. ��

The experimentally computed differential properties of x21 for dimensions n ≤ 15 are
given in Table 2. The differential spectrum is the multiset {�F (a, b) : a ∈ F

∗
2n , b ∈ F2n },

with the multiplicity of a given value in this multiset given as a superscript after the value;
e.g. the differential spectrum of x21 for n = 2 contains the value 0 six times and the value 2
six times.

The approach described above can easily be generalized to any power function F(x) = x�:
the polynomial x� +1+ (x +1)� can be expressed as the product pr1

1 pr2
2 . . . prk

k of powers of
F2-irreducible polynomials p1, p2, . . . , pk . If at least one of these polynomials has degree
at least 2, then F is 0-APN over infinitely many fields F2n , and is not 0-APN over infinitely
many fields. More precisely, F is not 0-APN over F2n if n is a multiple of the degree of some
pi with deg(pi ) ≥ 2 (since this polynomial will split into a product of linear terms by [16,
Theorem 3.46]), and is 0-APN if n is not divisible by the least common multiple of all of
those degrees.

We can also try to characterize those power functions F(x) = x� which are 0-APN
over any finite field, regardless of its dimension. By the above discussion, the polynomial
x� + 1 + (x + 1)� in this case can only have two irreducible factors, viz. x and (x + 1).
Suppose we have the decomposition

x� + 1 + (x + 1)� = xα(x + 1)β .

Let k = deg(xl + (x +1)l +1), i.e. k is the second largest exponent in (x +1)l after l. Thus,

xk + · · · + x�−k = xα+β + · · · + xα

so that we get k = α + β and � − k = α, which implies � = 2α + β.
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Partially APN functions with APN-like polynomial representations 1165

Theorem 3.2 Suppose x� + 1 + (x + 1)� can be written as

x� + 1 + (x + 1)� = xα(x + 1)β,

for some α, β ∈ N. Then α = β = �/3, and � = 3 · 2k for some k > 0. Furthermore,
F(x) = x� with � = 3 · 2k are the only power functions which are 0-APN over any finite
binary field. All other power functions are 0-APN and not 0-APN over infinitely many finite
binary fields.

Proof Let f (x) be the polynomial x� + 1 + (x + 1)�. Then

xα(x + 1)β + xβ(x + 1)α = f (x) + f (x + 1) = 0

for any x ∈ F2n . Suppose α ≥ β and x /∈ {0, 1}. Dividing both sides of the above equation
by xβ(x + 1)β , we obtain

xα(x + 1)β + xβ(x + 1)α

xβ(x + 1)β
= xα−β + (x + 1)α−β = 0

for all x ∈ F2n \{0, 1}. Therefore, if α −β �= 0, the polynomial xα−β + (x +1)α−β has more
roots than its degree, which is impossible. So α = β, and hence xα−β + (x + 1)α−β is the
null polynomial. Thus we have

x� + 1 + (x + 1)� = (x(x + 1))α.

We now prove that x� + 1+ (x + 1)� can be written in the form (x(x + 1))α if and only if
� = 3 · 2k for some k ∈ N. First, observe that we can restrict ourselves to the case of � odd,
since if we have � = 2�′, then

(x(x + 1))α = x� + 1 + (x + 1)� = (xl ′ + 1 + (x + 1)l ′)2

implies x�′ + 1 + (x + 1)�
′ = (x(x + 1))α/2. Thus, let � = 2m + 1 for m ∈ N. Note that

the binomial coefficients
(2m+1

1

) = (2m+1
2m

) = 2m + 1 are always odd, so that x2m is the term
with largest exponent and x is the term with smallest exponent in x� +1+ (x +1)�. Suppose
α > 1. Then the term with smallest exponent in (x(x + 1))α is xα which contradicts x being
the term with smallest exponent. Thus α = 1, and x� + 1 + (x + 1)� = x(x + 1). It is now
easy to see that this implies � = 3. Hence, the exponents � for which x� + 1+ (x + 1)� is of
the form (x(x + 1))α are precisely those of the form � = 3 · 2k , and α = 2k . Finally, from
the above discussion, we have that the exponents � = 3 · 2k are precisely those for which x�

is 0-APN over all finite fields F2n , regardless of the dimension n. ��

Remark 3.3 The same approach can be used for a polynomial function F as well, however
it is not possible to restrict the choice of (x, y) to pairs of the type (x, 1) in general so that
we would have to factorize F(x) + F(y) + F(x + y) for all possible values of y in order to
obtain a necessary and sufficient condition for F to be 0-APN. Selecting some concrete y,
e.g. y = 1, would however allow us to obtain a necessary condition for the 0-APN-ness of
F .

It is also interesting whether a characterization of 1-APN-ness as the one discussed in
this section can be obtained for e.g. F(x) = x21. In this case, we consider the equation
x21 + y21 + (x + y + 1)21 + 1 = 0 which can be written as
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1166 L. Budaghyan et al.

(
x

y + 1

)20

+
(

x

y + 1

)17

+
(

x

y + 1

)16

+
(

x

y + 1

)5

+
(

x

y + 1

)4

+
(

x

y + 1

)
+ y

(y + 1)17
+ y4

(y + 1)5
+ y16

(y + 1)20
= 0.

This seems more difficult to handle than the 0-APN-ness by this method, however.

We showed in [6] that theGold function f1(x) = x2
t +1 is 0-APN if and only if gcd(n, t) =

1, which is known to be also equivalent to f1 beingAPN.Onewouldwonder (as we suggested
in [6] for monomial functions) if perhaps under gcd(n, t) �= 1, the Gold function is 1-APN.
We shall see below that in reality, the Gold function is not x0-APN for any x0 ∈ F2n , under
gcd(n, t) = d �= 1. Note that the derivatives of the Gold functions are known to be 2d -to-1
maps, so that such a function is either APN if d = 1, or not x0-APN for any x0 if d > 1. We
now state and prove our main theorem in this section.

Theorem 3.4 The following are true:

(i) Let f1(x) = x2
t +1 be the Gold function on F2n (known to be APN for gcd(t, n) = 1).

If gcd(n, t) = d > 1, then f1 is not x0-APN for any x0 ∈ F2n .
(ii) Let f2(x) = x2

r −2t +1, r > s, be the generalization of the Kasami function x �→
x2

2t −2t +1 on F2n (known to be APN for gcd(t, n) = 1). Then, f2 is 0-APN if and only
if gcd(t, n) = gcd(r − t, n) = d = 1. Moreover, if gcd(t, r − t, n) > 1, then f2 is not
x0-APN for any x0 �= 0.

(iii) Let f3(x) = x2
r +2t −1, r > t , be the generalization of the Niho function x �→ x2

2t +2t −1

on F2n (known to be APN for n = 2r + 1, 2t = r; or, n = 2t + 1 and 2r = 3t + 1).
Then, f3 is 0-APN if and only if gcd(r , n) = gcd(t, n) = 1. Note that, for t = 2, this
includes f (x) = x2

r +3, the Welch function (known to be APN for n = 2r + 1). In this
case, f is 0-APN if and only if n is odd and gcd(r , n) = 1. If t = 1, this case includes
the Gold function f1 with x0 = 0.

(iv) Let f4(x) = x2
2t +2t +1 be the Bracken–Leander function on F2n (we do not necessarily

impose the condition n = 4t). If t is odd, then f4 is not 0-APN on any F2n when n is
even. If n = 4t and t even, then f is 0-APN.

(v) Let f5(x) = x2
n−2s

(which coincides with the inverse function x−1 extended by 0−1 = 0
for s = 1). Then, f5 is 0-APN if and only if gcd(n, s + 1) = 1.

Proof We proved in [6] that f1 is 0-APN if and only if gcd(n, t) = 1. In the same paper we
also proved that a quadratic function is x0-APN (for some x0) if and only if it is APN.

Therefore, f1 is not x0-APN for any x0 ∈ F2n , under gcd(n, t) > 1.
Now, let f2(x) = x2

r −2t +1 be the generalization of the Kasami function. Multiplying the
Rodier equation for f2 at 0 by (x + y)2

t
, we get

0 = (x + y)2
t
(

x2
r −2t +1 + y2

r −2t +1 + (x + y)2
r −2t +1

)

=
(

x2
t + y2

t
) (

x2
r −2t +1 + y2

r −2t +1
)

+ (x + y)2
r
(x + y)

= x2
r −2t +1y2

t + y2
r −2t +1x2

t + x2
r
y + xy2

r
.

Label y = ax . Then, assuming xy �= 0, a �= 0, 1, the equation above becomes

0 = a2r + a2t + a2r −2t +1 + a

= a2t
(a2r −2t + 1) + a(a2r −2t + 1)

123



Partially APN functions with APN-like polynomial representations 1167

= (a2t + a)(a2t (2r−t −1) + 1)

= a(a2t −1 + 1)(a2r−t −1 + 1)2
t
.

Having some a �= 1 satisfy a2t −1+1 = 0 is equivalent to gcd(2t −1, 2n−1) = 2gcd(t,n)−1 >

1, that is, gcd(t, n) > 1. Similarly, having a2r−t −1 + 1 = 0 for a �= 1 is equivalent to
gcd(2r−t − 1, 2n − 1) = 2gcd(r−t,n) − 1 > 1, that is, gcd(r − t, n) > 1.

We conclude that the above equation has no solutions outside of a = 0, 1 if and only if
gcd(t, n) = gcd(r − t, n) = 1.

Next, let gcd(t, r − t, n) = d > 1, and let x0 ∈ F2n . Let ζ be a (2n − 1)-primitive root of
unity, and write x0 = ζ k , for some 0 ≤ k ≤ 2n − 2. Multiplying the Rodier equation of f2
at ζ k by (x + y + ζ k)2

t
, we get

(x + y + ζ k)2
t
(

x2
r −2t +1 + y2

r −2t +1 + ζ k(2r −2t +1)
)

+ (x + y + ζ k)2
r
(x + y + ζ k)

= x2
t
y2

r −2t +1 + y2
t
x2

r −2t +1 + y2
t
ζ k(2r −2t +1) + x2

t
ζ k(2r −2t +1)

+ ζ k2t
(x2

r −2t +1 + y2
r −2t +1) + yx2

r + xy2
r + ζ k(x2

r + y2
r
) + ζ k2r

(x + y),

and using ζ k(2t −1) = ζ k(2r −1) = 1 (both identities can be shown by observing that k =
m · 2n−1

2d−1
for some integer m and so, both k(2t − 1) and k(2r − 1) are multiples of 2n − 1),

along with the substitution y = ax , we get

x2
r +1(a2r + a2r −2t +1 + a2t + a) + x2

r
ζ k(a2r + 1)

+ x2
t
ζ k(a2t + 1) + x2

r −2t +1ζ k(a2r −2t +1 + 1) + x(1 + a)ζ k = 0.

Taking a ∈ F2d \F2, and so, a2d−1 = 1, which implies a2t −1 = 1, and observing that the
first term above is zero, we get

x2
r
ζ k(a + 1) + x2

t
ζ k(a + 1) + x2

r −2t +1ζ k(a + 1) + xζ k(a + 1) = 0,

that is,

x2
r + x2

t + x2
r −2t +1 + x = x(x2

t −1 + 1)(x2
r−t −1 + 1)2

t = 0,

which has nontrivial solutions if gcd(t, n) > 1. By [6, Proposition 4.1], if a power function
is x0-APN for some x0 �= 0 then it is not x0-APN for all x0 �= 0.

For f3(x) = x2
r +2t −1, the Rodier equation at 0 is

0 = x2
r +2t −1 + y2

r +2t −1 + (x + y)2
r +2t −1,

which multiplied by x + y gives

0 = x2
r +2t + y2

r +2t + yx2
r +2t −1 + xy2

r +2t −1 + (x2
r + y2

r
)(x2

t + y2
t
)

= xy2
r +2t −1 + yx2

r +2t −1 + x2
r
y2

t + y2
r
x2

t
.

Writing y = xa, the above equation becomes (assuming x �= 0)

0 = a2r +2t −1 + a2r + a2t + a

= a(a2r −1 + 1)(a2t −1 + 1).

Thus, f is 0-APN if and only if gcd(r , n) = gcd(t, n) = 1.
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The Rodier equation (1) for f4(x) = x2
2t +2t +1 at 0 becomes

0 = x2
2t +2t +1 + y2

2t +2t +1 + (x + y)2
2t +2t +1

= x2
2t +2t +1 + y2

2t +2t +1 + (x + y)2
2t
(x + y)2

t
(x + y)

= x2
2t +1y2

t + x2
2t

y2
t +1 + x2

t +1y2
2t + x2

t
y2

2t +1 + x2
2t +2t

y + xy2
2t +2t

.

Taking y = ax , a �= 0, 1, and dividing by x2
2t +2t +1 �= 0, we obtain

0 = a22t +2t + a22t +1 + a22t + a2t +1 + a2t + a, (8)

or, equivalently,

0 = (a2t +1 + a2t + a)2
t + a(a2t + a + 1)2

t
. (9)

If t is odd and n is even, then 3 | gcd(2t−1 − 1, 2n − 1) = 2gcd(t−1,n) − 1 and so, we can
choose a ∈ F22\F2. Then a �= 0, 1 and a2 + a + 1 = 0. Further, a2t + a + 1 = 0 (since
a2t−1 = a) and the equation above becomes

(a(a + 1) + (a + 1) + a)2
t = (a2 + a + 1)2

t = 0,

which certainly holds, and so, f4 is not 0-APN.
Assume now that n = 4t for t even (hence gcd(t − 1, n) = 1 and gcd(2t − 1, n) = 1).

As in [2], we apply the relative trace Tr4t
t (x) = x + x2

t + x2
2t + x2

3t
to Eq. (8) and obtain

0 = Tr4t
t

(
a22t +2t + a22t +1 + a22t + a2t +1 + a2t + a

)

= a22t +2t + a22t +1 + a22t + a2t +1 + a2t + a

+ a23t +22t + a23t +2t + a23t + a22t +2t + a22t + a2t

+ a24t +23t + a24t +22t + a24t + a23t +22t + a23t + a22t

+ a25t +24t + a25t +23t + a25t + a24t +23t + a24t + a23t

= a22t +2t + a22t +1 + a22t + a2t +1 + a2t + a

+ a23t +22t + a23t +2t + a23t + a22t +2t + a22t + a2t

+ a23t +1 + a22t +1 + a + a23t +22t + a23t + a22t

+ a2t +1 + a23t +2t + a2t + a23t +1 + a + a23t

= a + a2t + a22t + a23t
, (10)

since a24t = a. Adding the first and second powers of (10) to (8) renders

a2 + a23t +1 + a22t +2t + a23t = 0. (11)

Taking the 22t powers of both sides of this last equation, we get

a22t+1 + a25t +22t + a24t +23t + a25t = a22t+1 + a22t +2t + a23t +1 + a2t = 0,

which added to (11) gives

a23t + a22t+1 + a2t + a2 = 0.

Using (10), we obtain

a22t+1 + a22t + a2 + a = 0,
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Partially APN functions with APN-like polynomial representations 1169

implying

(a + a22t
)2 + a + a22t = (a22t + a)(a22t + a + 1) = 0,

which has solutions if and only if a + a22t = 0, or 1 + a + a22t = 0. Substituting a22t = a
into (8) renders

a2t +1 + a2 + a + a2t +1 + a2t + a = 0,

that is,

0 = a2t + a2 = a2(a2t −2 + 1) = a2(a2t−1−1 + 1)2,

and so a2t−1−1 = 1, which is impossible under gcd(t − 1, n) = 1. If a22t = a + 1, then (8)
becomes a2 + a + 1 = 0, which implies that a22t = a2. This is equivalent to a22t−1−1 = 1,
which is impossible if gcd(2t − 1, n) = 1.

Lastly, the Rodier equation for f5(x) = x2
n−2s

at 0 is

x2
n−2s + y2

n−2s + (x + y)2
n−2s = 0.

Suppose that x, y �= 0, 1, and that x �= y. Let y = xa, with a �= 0, 1. Then, we can rewrite
the equation as

x2
n−2s

(
1 + a2n−2s + (1 + a)2

n−2s
)

= 0.

Since x �= 0, this implies that 1 + a2n−2s + (1 + a)2
n−2s = 0. Multiplying by (1 + a)2

s
,

renders a2n−2s + a2s = a2s
(a2n−s−1−1 + 1)2

s+1 = 0. This equation has solutions if and only
if gcd(n, s + 1) > 1. ��
Remark 3.5 Note that the case (iv) includes the function F(x) = x21. In that particular case,
however, we were able to prove a stronger result than the one contained in (iv) above.

Remark 3.6 We could have referred to (reversed) Dickson polynomials [13] in some of the
arguments above, but we felt that in this case it would not bring further light to the proofs.

As in Remark 3.5, it is not difficult to find specific values of exponents that are 0-APN for
infinitely many extensions of F2n , but, in this paper, we prefer to give more general results.
On the other hand, there are polynomials for which we can find general conditions not to be
partial APN (and, consequently, not APN), and we provide such instances below.

Proposition 3.7 Let s and n be positive integers, then the following functions over F2n are
not 0-APN:

(1) f6(x) = x2
2s+1+2s+1+2s−1 when n ≥ 4 is even;

(2) f7(x) = x2
4s+23s+22s+2s−1 (a Dobbertin-like function known to be APN for n = 5s)

when s is odd and n is even;
(3) f8(x) = x2

2s+1+5 when n is even.

Proof The Rodier equation for f6 at x0 = 0 is

x2
2s+1+2s+1+2s−1 + y2

2s+1+2s+1+2s−1 + (x + y)2
2s+1+2s+1+2s−1 = 0,

rendering, in the same way as before, for y = ax (under 0 �= x �= y �= 0)

a2s+2s+1+22s+1−1 + a2s+1+22s+1 + a2s+22s+1 + a2s+2s+1 + a22s+1 + a2s+1 + a2s + a = 0.
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1170 L. Budaghyan et al.

Since n is even, then we can take a ∈ F22\F2, and so a3 = 1, implying a2 + a + 1 = 0.

For such an a, observe that a2s+1 = a2s + 1, a22s+1 = a22s + 1, and the previous expression
becomes

a2s−1(a2s + 1)(a22s + 1) + (a2s + 1)(a22s + 1) + a2s
(a22s + 1)

+ a2s
(a2s + 1) + a22s + 1 + a2s + 1 + a2s + a

= a22s+2s+1−1 + a22s+2s−1 + a2s+1−1 + a2s−1 + a22s+2s + a22s

+ a2s + 1 + a22s+2s + a2s + a2s+1 + a2s + a22s + a

= a22s−1(a2s + 1) + a22s+2s−1 + a2s+1−1 + a2s−1 + a2s + a2s + 1 + 1 + a

= a22s+2s−1 + a22s−1 + a22s+2s−1 + a2s+1−1 + a2s−1 + a

= a22s−1 + a2s+1−1 + a2s−1 + a = a−1
(

a22s + a2s+1 + a2s + a2
)

= a−1
(

a22s + a2s + 1 + a2s + a2
)

= a−1
(

a22s + a2 + 1
)

= 0,

since a22s = a22s−1 +1 = a22s−2 = · · · = a22s−2s = a, and so a22s +a2+1 = a+a2+1 = 0.
Similarly, the Rodier equation for the 0-APN-ness of f7 implies

a2s+22s+23s+24s + a1+22s+23s+24s + a1+2s+23s+24s + a1+2s+22s+24s

+ a1+2s+22s+23s + a1+23s+24s + a1+22s+24s + a1+2s+24s + a1+22s+23s

+ a1+2s+23s + a1+22s+2s + a1+24s + a1+23s + a1+22s + a1+2s + a2 = 0.

Using a similar method as in the first part of our proposition, with n even, and taking a ∈
F22\F2 and s odd, one can show that the above expression is zero, and so, f7 is not 0-APN.

The Rodier equation for f8 is

x2
2s+1+5 + y2

2s+1+5 + (x + y)2
2s+1+5 = 0,

which, when y = ax , a �= 0, 1, x �= 0, becomes

0 = 1 + a22s+1+5 + (1 + a22s+1
)(1 + a)5

= 1 + a22s+1+5 +
(
1 + a22s+1

) (
1 + a + a4 + a5

)

= a + a4 + a5 + a22s+1 + a22s+1+1 + a22s+1+4.

Since n is even, we can take a ∈ F22\F2, and so a3 = 1, implying a2 + a + 1 = 0. For
such an a, observe that a4 = a, a5 = a2, a22s+1 = a2, a22s+1+4 = a22s+1+1, and the previous
expression becomes a+a+a2+a2+a2s+1+a2s+1 = 0, implying that f8 is not 0-APN. ��

4 Binomial partial APN functions

It was observed in [6] that if a monomial is 0-APN and x0-APN for some 0 �= x0 ∈ F2n ,
then it is APN. We also know that for any quadratic (n, n)-function F and for any x0 ∈ F2n ,
F is x0-APN if and only if it is APN. Similarly, it was suggested and consequently shown
in [6] that any partially 1-APN monomial function is APN. It is natural to wonder if such a
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Partially APN functions with APN-like polynomial representations 1171

statement is true for other types of functions. We give below an instance when such a claim
fails.

Theorem 4.1 Let F(x) = x2
n−1+x2

n−2 be defined onF2n . Then F is 1-APN, but not 0-APN,
for all n ≥ 3. Furthermore, F is differentially 4-uniform.

Proof Let F(x) = x2
n−1 + x2

n−2, and x0 = 1. Then, the Rodier condition (1) becomes

x2
n−1 + x2

n−2 + y2
n−1 + y2

n−2 + (x + y + 1)2
n−1 + (x + y + 1)2

n−2 = 0,

which is equivalent to (since x2
n−1 = 1, for x ∈ F

∗
2n ),

1 + x−1 + 1 + y−1 + 1 + (x + y + 1)−1 = 0, assuming xy(x + y + 1) �= 0.

Multiplying the previous equation by xy(x + y + 1), we obtain

y(x + y + 1) + x(x + y + 1) + xy(x + y + 1) + xy = 0

⇐⇒ (x + y)(1 + x)(1 + y) = 0,

which proves the first claim.
To show that F is not 0-APN, let us consider the Rodier equation for x0 = 0,

x2
n−1 + x2

n−2 + y2
n−1 + y2

n−2 + (x + y)2
n−1 + (x + y)2

n−2 = 0

⇐⇒ 1 + x−1 + 1 + y−1 + 1 + (x + y)−1 = 0

⇐⇒ y(x + y) + x(x + y) + xy(x + y) + xy = 0

⇐⇒ (x + y)2 + xy(x + y) + xy = 0

⇐⇒ 1 + xy

x + y
+ xy

(x + y)2
= 0. (12)

We will find 0 �= x �= y �= 0 to satisfy the previous equation. Let t = x + y. Then, the
previous equation is equivalent to

t2 + x(x + t)(t + 1) = 0, (observe that t �= 1)

⇐⇒ x2 + t x + t2

t + 1
= 0

⇐⇒
( x

t

)2 + x

t
+ 1

t + 1
= 0.

Labeling z = x
t , we obtain the equation

z2 + z + 1

t + 1
= 0.

We now use the fact that for 0 �= v ∈ F2n the equation X2 + X = v has solutions in F2n

if and only if Trn1(v) = 0 (see Berlekamp et al. [1]). Taking any of the 2n−1 − 1 nontrivial
values of v ∈ F

∗
2n for which Trn1(v) = 0, t = 1 + v−1 �= 0 and z a solution of X2 + X = v,

we have that x = t z, y = t(z + 1) will satisfy Eq. (12) and 0 �= x �= y �= 0, hence F is not
0-APN.

We next show that F is differentially 4-uniform. We first write the equation Da F(x) = b,
under a �= 0, b ∈ F2n , namely,

x2
n−1 + x2

n−2 + (x + a)2
n−1 + (x + a)2

n−2 = b, (13)
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with x ∈ F2n . Case 1. Let b = 1 + a−1. We can see that x = 0, x = a are solutions of (13).
Further, if x �= 0, x �= a, then (13) becomes x2

n−2 + (x + a)2
n−2 = b, which is equivalent

to x−1 + (x + a)−1 = b = 1 + a−1, that is,

(a + 1)x2 + (a2 + a)x + a2 = 0. (14)

We can see that a �= 1 and so, a2 + a �= 0, and therefore, by taking y = xa−1, we obtain
that (14) is equivalent to y2 + y = (a + 1)−1, which, by [1] has solutions y (and thus x) if
and only if Trn1((a + 1)−1) = 0. There certainly exist a ∈ F2n satisfying this condition, in
which case Eq. (14) has two more solutions, in addition to 0, a.
Case 2 Let b �= 1 + a−1. Then x is not equal to 0 or to a in (13) and so, the first and third
terms are equal to 1, and (13) becomes

x−1 + (x + a)−1 = b, (15)

that is, bx2 +abx +a = 0, which has at most two solutions x (in general, the equation above
may have four solutions if b = a−1, namely {0, a, aα, aα2}, where α ∈ F22\F2, but we
removed 0, a from the possibilities because of (13)). In fact, we know exactly when Eq. (15)
has no solutions, namely, when Trn1

( 1
ab

) = 1.
In conclusion, Eq. (13) has at most 4 solutions (with that bound attained), and therefore

F is differentially 4-uniform. ��
Remark 4.2 The non-0-APN-ness of the above function can also be derived from [6, Theorem
5.5], but we preferred to give a self-contained argument above.

5 Partial APN functions based on Dillon’s polynomial

Dillon [12] suggested investigating functions of the form

F(x) = x(Ax2 + Bx2
k + Cx2

k+1
) + x2(Dx2

k + Ex2
k+1

) + Gx3·2k
(16)

overF2n ,withn = 2k, as candidates forAPNor differentially 4-uniform functions.An infinite
family of APN functions of this type was constructed in [4]. In this section, we investigate
several such functions for being partial APN functions, and consequently, APN functions
(recall that we showed in [6] that for quadratic functions, pAPN property is equivalent to
the APN property). The motivation for this section is to point out that any of the functions
coming from F can be investigated quite easily for APN-ness using the not so restrictive
concept of pAPN-ness.

First, we write the Rodier condition at x0 = 0 for the function F above, which we
generalize by taking arbitrary 1 ≤ k ≤ n − 1. Now, letting y = ax , a �= 0, 1, x �= 0, we
obtain

0 = Ax3(a + a2) + Bx2
k+1

(
a + a2k

)
+ Cx2

k+1+1
(

a + a2k+1
)

+ Dx2
k+2

(
a2 + a2k

)
+ Ex2

k+1+2
(

a2 + a2k+1
)

+ Gx2
k+1+2k

(
a2k + a2k+1

)
.

(17)

We will not provide the proof of the next theorem (whose proof is not that complicated,
containing cases that are known via APN-ness), but we will provide the proof of the last
theorem of this section, since it is more involved.
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Theorem 5.1 Let 1 ≤ k ≤ n − 1 and consider the function F from (16). The following
functions are not x0-APN for any x0 ∈ F2n :

(i) F1(x) = Ax3 + Bx2
k+1 if AB �= 0, gcd(k − 1, n) = 1, k ≥ 1, and F2(x) =

Ax3 + Cx2
k+1+1 if AC �= 0 and gcd(k, n) = 1.

(ii) F3(x) = Ax3 + Dx2
k+2 if AD �= 0 and gcd(k, n) = 1, k > 1.

(iii) F4(x) = Ax3 + Ex2
k+1+2 if AE �= 0 and gcd(k + 1, n) = 1.

(iv) F5(x) = Ax3 + Gx3·2k
if AG �= 0, A

G ∈ F
2k−1
2n and there exists z such that

Trn1((A/G)1/(2
k−1)/z3) = 0.

(v) F6(x) = Bx2
k+1 + Cx2

k+1+1 if BC �= 0 and k ≥ 1.
(vi) F7(x) = Bx2

k+1 + Dx2
k+2 if B D �= 0.

(vii) F8(x) = Bx2
k+1 + Ex2

k+1+2 if B E �= 0, and gcd(k, n) > 1, or n is odd and
gcd(k, n) = 1.

(viii) F9(x) = Bx2
k+1 + Gx2

k+1+2k
if BG �= 0 and gcd(k + 1, n) = 1.

(ix) F10(x) = Cx2
k+1+1 + Dx2

k+2 if C D �= 0 and gcd(k, n) = 1.
(x) F11(x) = Cx2

k+1+1 + Ex2
k+1+2 if C E �= 0.

(xi) F12(x) = Cx2
k+1+1 + Gx2

k+1+2k
if CG �= 0.

(xii) F13(x) = Dx2
k+2 + Ex2

k+1+2 if DE �= 0.
(xiii) F14(x) = Dx2

k+2 + Gx2
k+1+2k

if DG �= 0 and gcd(k, n) = 1.
(xiv) F15(x) = Ex2

k+1+2 + Gx2
k+1+2k

if EG �= 0 and gcd(k − 1, n) = 1.

Wecan certainly go beyond binomials andwe do so in the next theoremwithout attempting
to be exhaustive.

Theorem 5.2 Let Let 1 ≤ k ≤ n − 1, G �= 0, gcd(k, n) > 1, n odd, and A/G ∈ F
2k−1
2n . Then

F16(x) = Ax3 + Bx2
k+1 + Ex2

k+1+2 + Gx2
k+1+2k

is not x0-APN for any x0.

Proof The Rodier equation (17) for F16 at x0 = 0 is equivalent to

x3(a + a2)
(

A + Gx3·(2k−1)(a + a2)2
k−1

)

+ x2
k+1a

(
1 + a2k−1

) (
B + Ex2

k+1
(

a + a2k
))

= 0.

If gcd(k, n) > 1, then taking a �= 0, 1 such that a2k−1 = 1, the second term is zero.

Furthermore (a + a2)2
k−1 = a2k−1(a + 1)2

k−1 = (a+1)2
k

a+1 = a2
k +1

a+1 = a+1
a+1 = 1, and so the

first term becomes x3(a + a2)
(

A + Gx3·(2k−1)
)
, which is zero for the unique solution x of

x3 = ( A
G

)1/(2k−1)
, which exists since n is odd (that is, gcd(3, 2n − 1) = 1).

A quadratic function is pAPN for some x0 if and only if it is APN [6]. Hence the claim of
the theorem follows. ��

We now replace 2k by 2k + 1 in Dillon’s polynomial (16).

Theorem 5.3 Let 1 ≤ k ≤ n − 1. The following statements hold:

(i) If AC �= 0, then the functions H1(x) = Ax3 + Cx2
k+1+3 (respectively, H2(x) =

Ax3 + Cx2
k+3) is not 0-APN.

(ii) If AG �= 0, then the functions H3(x) = Ax3 + Gx2
k+1+2k+3 is not 0-APN if n is odd;

if n is even, then H3 is 0-APN if and only if
( A

G

)2−k

/∈ {u3 : x ∈ F2n }.
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(iii) If BC �= 0, and gcd(2k +1, 2n −1) = 1, which happens if n is odd, or n ≡ 2 (mod 4)
and k is even, then H4(x) = Bx2

k+2 + Cx2
k+1+3 is not 0-APN.

(iv) If B D �= 0, H5(x) = Bx2
k+2 + Dx2

k+3 is never 0-APN.
(v) If BG �= 0, and gcd(2k+1 + 1, 2n − 1) = 1 (which happens if n is odd, or n ≡ 2

(mod 4) and k is odd), then H6(x) = Bx2
k+2 + Gx2

k+1+2k+3 is not 0-APN.
(vi) If C DEG �= 0, then H7(x) = Cx2

k+1+3 + Dx2
k+3, H8(x) = Cx2

k+1+3 + Ex2
k+1+4,

and H9(x) = Cx2
k+1+3 + Gx2

k+1+2k+3 are never 0-APN.
(vii) If DE �= 0, and gcd(2k +1, 2n −1) = 1, which happens if n is odd, or n ≡ 2 (mod 4)

and k is even, then H10(x) = Dx2
k+3 + Ex2

k+1+4 is not 0-APN.
(viii) If DG �= 0, then H11(x) = Dx2

k+3 + Gx2
k+1+2k+3+1 is never 0-APN.

(ix) If EG �= 0 and gcd(k, n) = 1, then H12(x) = Ex2
k+1+4+Gx2

k+1+2k+3 is not 0-APN.

Proof Let us replace 2k by 2k + 1 in Dillon’s polynomial (16); as before, letting y = ax ,
x �= 0, a �= 0, 1, in the Rodier equation for Dillon’s polynomial we obtain

0 = Ax3(a + a2) + Bx2
k+2

(
a2 + a2k

)

+ Cx2
k+1+3

(
a + a2 + a3 + a2k+1 + a2k+1+1 + a2k+1+2

)

+ Dx2
k+3

(
a + a2 + a3 + a2k + a2k+1 + a2k+2

)

+ Ex2
k+1+22

(
a4 + a2k+1

)
+ Gx2

k+1+2k+3
(

a2k+1+2k+3 + (a + 1)2
k+1+2k+3 + 1

)

= Ax3(a + a2) + Bx2
k+2

(
a2 + a2k

)
+ Cx2

k+1+3 (
1 + a + a2) (

a + a2k+1
)

+ Dx2
k+3 (

1 + a + a2) (
a + a2k

)
+ Ex2

k+1+22
(

a4 + a2k+1
)

+ Gx2
k+1+2k+3

(
a2k+1+2k+3 + (a + 1)2

k+1+2k+3 + 1
)

. (18)

We only consider combinations rendering non-quadratic functions. Let AC �= 0, H1(x) =
Ax3+Cx2

k+1+3 (similarly, for AD �= 0, H2(x) = Ax3+ Dx2
k+3). The Rodier equation (18)

for H1 at 0 is therefore

Ax3(a + a2) = Cx2
k+1+3 (

1 + a + a2) (
a + a2k+1

)
,

that is x2
k+1 = A(1+a)

C(1+a+a2)
(
1+a2k+1−1

) (recall that a �= 0, 1 and if a is a primitive third root

of unity then the displayed equation above cannot hold for nontrivial solutions x). Since this
last equation always has nontrivial solutions, the function H1 cannot be 0-APN.

Next, H3(x) = Ax3 + Gx2
k+1+2k+3 whose Rodier equation at 0 is

Ax3(a + a2) = Gx2
k+1+2k+3

(
a2k+1+2k+3 + (a + 1)2

k+1+2k+3 + 1
)

,

which is equivalent to (the expression in the parentheses on the right-hand side cannot be
zero, otherwise there are no non-trivial solutions)

x3·2k = A(a + a2)

G
(
a2k+1+2k+3 + (a + 1)2k+1+2k+3 + 1

) . (19)
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If n is odd, then Eq. (19) will always have nontrivial solutions. If n is even, taking 2k-th roots
on both sides, we obtain

u3 =
(

A

G

)2−k

,

where

u = x

(
a2k+1+2k+3 + (a + 1)2

k+1+2k+3 + 1

a + a2

)2−k

is any of the 2k roots. The claim is inferred.
Next, take BC �= 0, and H4(x) = Bx2

k+2 + Cx2
k+1+3. The Rodier equation at 0 is now

x2
k+1 =

B
(

a2 + a2k
)

C
(
1 + a + a2

) (
a + a2k+1) .

If gcd(2k +1, 2n −1) = 1 (which happens if n is odd, or n ≡ 2 (mod 4) and k is even), then
the equation above has nontrivial solutions (certainly, for example, for a such that a /∈ F

∗
4).

If B D �= 0, then it is straightforward to check that the cubic H5(x) = Bx2
k+2 + Dx2

k+3

is never 0-APN, since its Rodier equation at 0 is equivalent to

x =
B

(
a2 + a2k

)

D
(
1 + a + a2

) (
a + a2k ) ,

which obviously has nontrivial solutions (certainly, for a such that the denominator above is
not zero).

If BG �= 0, then the Rodier equation at 0 for H6(x) = Bx2
k+2 + Gx2

k+1+2k+3 is

x2
k+1+1 =

B
(

a2 + a2k
)

G
(
a2k+1+2k+3 + (a + 1)2k+1+2k+3 + 1

) .

If gcd(2k+1 + 1, 2n − 1) = 1 (which happens if n is odd, or n ≡ 2 (mod 4) and k is odd),
then the equation above has nontrivial solutions (certainly, for a such that the denominator
above is not zero, which can easily be achieved).

If C D �= 0, the Rodier equation at 0 for the cubic H7(x) = Cx2
k+1+3 + Dx2

k+3 is

x2
k =

D
(

a + a2k
)

C
(
a + a2k+1) .

Since gcd(2k, 2n −1) = 1, the above equation always has nontrivial solutions (for an a that is
not a (2k+1 −1) root of 1). A similar straightforward analysis can be done, under C EG �= 0,
for the cubics H8(x) = Cx2

k+1+3 + Ex2
k+1+4 and H9(x) = Cx2

k+1+3 + Gx2
k+1+2k+3.

If DE �= 0, the Rodier equation at 0 for H10(x) = Dx2
k+3 + Ex2

k+1+4 renders

x2
k+1 =

D(1 + a + a2)
(

a + a2k
)

E
(
a4 + a2k+1) ,
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a similar equation as for H4. If DG �= 0, the Rodier equation at 0 for H11(x) = Dx2
k+3 +

Gx2
k+1+2k+3 is similar to the one of H7.

If EG �= 0, the Rodier equation for the quartic H12(x) = Ex2
k+1+4 + Gx2

k+1+2k+3 is
equivalent to

x2
k−1 =

E
(

a4 + a2k+1
)

G
(
a2k+1+2k+3 + (a + 1)2k+1+2k+3 + 1

) ,

which has a nontrivial solution x if gcd(k, n) = 1 (for any value of a for which the denomi-
nator does not vanish).

Thus, the theorem is shown. ��
Certainly, there are other values of q , for which one can investigate the pAPN property of

various combinations of terms in Dillon’s polynomial. Furthermore, a fruitful direction for
future work is to check and find conditions for pAPN-ness of other classes of multinomials,
like the generalization proposed by Budaghyan and Carlet in [4], or perhaps, as a separate
and quite interesting venue, to find classes of pAPN permutations.
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