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Abstract
In this paper, we present some new nonexistence results on (m, n)-generalized bent func-
tions, which improved recent results. More precisely, we derive new nonexistence results
for general n and m odd or m ≡ 2 (mod 4), and further explicitly prove nonexistence of
(m, 3)-generalized bent functions for all integers m odd or m ≡ 2 (mod 4). The main tools
we utilized are certain exponents of minimal vanishing sums from applying characters to
group ring equations that characterize (m, n)-generalized bent functions.

Keywords Exponent · Generalized bent function · Minimal relation · Nonexistence ·
Vanishing sum
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1 Introduction

Let m ≥ 2, n be positive integers, and ζm = e
2π

√−1
m be a primitive complex m-th root of

unity. A function f : Z
n
2 → Zm is called an (m, n)-generalized bent function (GBF) if

|F(y)|2 = 2n (1)
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for all y ∈ Z
n
2, where F(y) is defined as

F(y) :=
∑

x∈Zn
2

ζ
f (x)
m (−1)y·x , (2)

and y ·x denotes the usual inner product. In particular, whenm = 2, the generalized bent func-
tions defined above are simply Boolean bent functions introduced by Rothaus [10], whereas
the function F : Z

n
2 → R in fact becomes the Fourier transform of the Boolean function

f . In 1985, Kumar et al. [3] generalized the notion of Boolean bent function by considering
bent functions from Z

n
m to Zm . For recent nonexistence results on such generalized bent

functions, see Leung and Schmidt [6]. Schmidt [12] investigated generalized bent functions
from Z

n
2 to Zm for their applications in CDMA communications. For the Boolean case, it is

well known that bent function exists if and only if n is even, and many constructions were
reported (for a survey see [1]). In the literature, there exist constructions of generalized bent
function from Z

n
2 to Zm for m = 4, 8, 2k (for example, see [9,11–14]). Very recently, Liu et

al. [7] presented several nonexistence results on generalized bent functions from Z
n
2 to Zm .

In this paper, we continue to investigate the nonexistence of such generalized bent functions,
and present more new nonexistence results. If m and n are both even or m is divisible by 4,
then there exists an (m, n)-generalized bent function [7]. Therefore, we restrict attention to
the following two cases:

(i) m is odd;
(ii) n is odd and m ≡ 2 (mod 4).

In the following, we always assume that m is odd or m = 2m′ with m′ odd.
The remainder of this paper is organized as follows. In Sect. 2, we introduce some basic

tools and auxiliary results. In Sect. 3, we give several new nonexistence results of (m, n)-
generalized bent functions, which improve the recent results in [7]. Furthermore, we show
that no (m, 3)-GBF exists for all m odd or m ≡ 2 (mod 4) in Sect. 4.

2 Basic tools and auxiliary results

In this section, we introduce some basic tools and auxiliary results, which will be used in
later sections.

2.1 Group ring and character theory

It turns out that group ring and characters of abelian groups play an important role in the
study of GBFs. Let G be a finite group of order v. Suppose that R is a ring, and R[G] denotes
the group ring of G over R. For a subset D of a group G, we may identify D with the group
ring element

∑
g∈G dgg ∈ R[G], also denoted by D by abuse of notation, where dg ∈ R and

these dg’s are called coefficients of D. Let 1G denote the identity element of G and let r be
an element in R. For simplicity, we write r for the group ring element r1G ∈ R[G]. For the
group ring element D = ∑

g∈G dgg ∈ R[G], its support is defined as
supp(D) := {g ∈ G : dg �= 0},

and we also define |D| := ∑
dg and ||D|| := ∑ |dg| by convention when R = C or

R = Z or R is the semiring N as we will use later. Let t be an integer coprime to m. For
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D = ∑
g∈G dgg ∈ Z[ζm][G], we write D(t) = ∑

dσ
g g

t , where σ is the automorphism of
Q[ζm] determined by ζ σ

m = ζ t
m .

The group ring notation is very useful when applying characters. A character χ of an
abelian group G is a homomorphism χ : G → C

∗. The set of all such characters forms
a group Ĝ which is isomorphic to G itself, and the identity element of Ĝ, denoted by χ0,
which maps every element in G to 1 (i.e., χ0(g) = 1 for all g ∈ G), is called the principal
character of G. It is clear that the character group has the multiplication in Ĝ defined by
χτ(g) = χ(g)τ (g) for χ, τ ∈ Ĝ. For D = ∑

g∈G dgg ∈ C[G] and χ ∈ Ĝ, we have

χ(D) = ∑
g∈G dgχ(g). For a subgroup U of the group G, we define a subgroup of Ĝ as

U⊥ := {χ ∈ Ĝ : χ(g) = 1 for all g ∈ U }. If χ ∈ U⊥, we say that the character χ is trivial
on U . It is easy to see that |U⊥| = |G|/|U |. The following two results are standard and
well-known in character theory.

Fact 1 (Orthogonality relations) Let G be a finite abelian group of order v with identity 1G.
Then

∑

χ∈Ĝ
χ(g) =

{
0 if g �= 1G ,

v if g = 1G ,

and
∑

g∈G
χ(g) =

{
0 if χ �= χ0,

v if χ = χ0.

Fact 2 (Fourier inversion formula) Let G be a finite abelian group of order v, let D =∑
g∈G dgg ∈ C[G] by abuse of notation and χ(D) = ∑

g∈G dgχ(g). Then the coefficients
in D are determined by

dg = 1

v

∑

χ∈Ĝ
χ(Dg−1).

2.2 Some auxiliary results

We now characterize (m, n)-generalized bent functions using the group ring equations.
Instead of working with additive groups, we use multiplicative notation. We denote the
cyclic group of orderm byCm , and setG = Cn

2 . Whenever s|m, we also denote the subgroup
of order s in Cm by Cs .

Definition 1 Let f : G → Zm be a function, and g be a generator of Cm . We define an
element B f in the group ring Z[ζm][G] corresponding to f by

B f :=
∑

x∈G
ζ
f (x)
m x .

Furthermore, we define an element D f in the group ring Z[Cm][G] by
D f :=

∑

x∈G
g f (x)x .

Remark 1 To study (m, n)-GBFs, we may assume that Cm = 〈{g f (x) : x ∈ G}〉. By scaling
if necessary, we may always assume f (1G) = 0, i.e., g f (1G ) = g0 is the identity element of
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Cm . From time to time, we may also interpret Z[Cm][G] as Z[Cm · G], where g0 and 1G in
Z[Cm · G] both denote the identity element of Cm · G.

Let τ be a character that maps g to ζm , then it is clear that τ(D f ) = B f . Moreover, every
element y ∈ G determines a character χy of G by

χy(x) = (−1)y·x ,

for all x ∈ G. It is easily verified that every complex character of G is equal to some χy with
y ∈ G. Note that

χy(B f ) =
∑

x∈G
ζ
f (x)
m χy(x) =

∑

x∈G
ζ
f (x)
m (−1)y·x = F(y), (3)

for all y ∈ G, where F(y) is defined in (2). This means that χy(B f ) is just the discrete
Fourier transform of (m, n)-generalized bent functions. It then follows from (1) and (3) that
f is an (m, n)-GBF if and only if

|χ(B f )|2 = 2n, (4)

for all χ ∈ Ĝ. We now have the following characterization of (m, n)-GBFs.

Proposition 1 Let f be a function from G to Zm. Then f is an (m, n)-GBF if and only if

B f B
(−1)
f = 2n . (5)

Furthermore, if f (G) = 2Zm, then f can be regarded as an (m′, n)-GBF, where m = 2m′
with m′ odd.

Proof From (4) it follows that

|χ(B f )|2 = χ(B f B
(−1)
f ) = 2n,

for all characters χ of G. Using Facts 1 and 2 , we are able to determine all the coefficients
of B f B

(−1)
f , i.e., (4) holds if and only if (5) is satisfied. The last statement follows from the

fact that ζ f (x)
m becomes an m′-th root of unity. 
�

Observe that we may write

D f D
(−1)
f =

∑

x∈G

∑

y∈G
g f (y+x)g− f (y)x =

∑

x∈G
Ex x, (6)

where Ex = ∑
y∈G g f (y+x)g− f (y) ∈ Z[Cm]. In fact, Ex corresponds to the autocorrelation

function of bent functions (for more details, see [1]).

Lemma 1 Suppose that f is a GBF from G to Zm. Then

(a) Ex = E (−1)
x and the coefficient of g0 in Ex is even for all x ∈ G;

(b) For each character τ of order m on Cm, we have τ(Ex ) = 0 for all x �= 1G.

Proof Note that (D f D
(−1)
f )(−1) = D f D

(−1)
f . Hence, we have Ex = E (−1)

x for all x ∈
G. Note that E1G = 2n . Thus, we may consider x �= 1G . Suppose that x �= 1G and
(g1x1)(g2x2)−1 = g0x for some g1, g2 ∈ Cm and x1, x2 ∈ G. Note that x1 �= x2 and clearly,
we have (g2x2)(g1x1)−1 = g0x as well. This shows that the coefficient of g0 in Ex is even.
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For any character τ of order m on Cm , we obtain

τ(D f )τ (D f )
(−1) = B f B

(−1)
f = 2n =

∑

x∈G
τ(Ex )x .

From (5) in Proposition 1, the conclusion follows. 
�
The key in our study of (m, n)-GBFs is to investigate Ex . Lemma 1 (b) allows us to

define the notion of vanishing sum (v-sum), which was also studied in details in [4]. Another
important notion to study v-sum is the idea of exponents and reduced exponents defined in
[5]. In Sect. 3, we will use exponents to derive some new nonexistence results. To this end,
we recall some notations defined in [5] and prove some preliminary lemmas.

Let S be a finite index set, and we denote by P(k) the set of all prime factors of the integer
k.

Definition 2 Suppose that X = ∑
i∈S aiμi where μi ’s are distinct roots of unity and all ai ’s

are nonzero integers. We say that u is the exponent of X if u is the smallest positive integer
such that μu

i = 1 for all i . We say that k is the reduced exponent of X if k is the smallest
positive integer such that there exists j with (μiμ

−1
j )k = 1 for all i .

For example, the exponent of
∑p−1

i=0 ζ3ζ
i
p is 3p, whereas the reduced exponent is p. To

study vanishing sums, we consider those which are minimal.

Definition 3 Suppose that X = ∑
i∈S aiμi = 0 where μi ’s are distinct roots of unity and all

ai ’s are nonzero integers. We say that the relation X = 0 is minimal, if for any proper subset
I � S,

∑
i∈I aiμi �= 0.

Based on the definition of minimal relation, we have the following restriction on the
cardinality of the index set S, in terms of the reduced exponents of a minimal vanishing sum.

Proposition 2 [2] Suppose that X = ∑
i∈S aiμi = 0 is a minimal relation with reduced

exponent k and all ai ’s are nonzero. Then k is square free and

|S| ≥ 2 +
∑

p∈P(k)

(p − 2).

For convenience, we define the following notation.

Definition 4 For any group H , by N[H ] we denote
⎧
⎨

⎩
∑

g∈H
agg : ag ∈ Z and ag ≥ 0

⎫
⎬

⎭ .

Now we consider the corresponding notion of minimal relation in N[Cm]. From now on,
we assume that g is a generator of Cm . We recall the notion of minimality defined in Section
4 of [4].

Definition 5 [4] Let D = ∑m−1
i=0 ai gi ∈ N[Cm]. We say that D is a v-sum if there exists a

character τ of order m such that τ(D) = τ(
∑m−1

i=0 ai gi ) = 0. We say that D is minimal if
τ(

∑m−1
i=0 bi gi ) �= 0 whenever 0 ≤ bi ≤ ai for all i and b j < a j for some j .
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Suppose that S ⊆ {0, . . . ,m−1} and ai > 0 for all i ∈ S. It is clear that if D = ∑
i∈S ai gi

is a minimal v-sum by Definition 5, then τ(D) = ∑
i∈S aiτ(g)i is a minimal relation by

Definition 3. We now define the reduced exponent of D as follows.

Definition 6 Suppose that D = ∑m−1
i=0 di gi ∈ N[Cm] is a minimal v-sum. We define

the reduced exponent k of D as the reduced exponent of the vanishing sum τ(D)

= ∑m−1
i=0 diτ(g)i .

Note that the reduced exponent defined above does not depend on the choice of the
character τ .

Lemma 2 If D ∈ N[Cm] is a minimal v-sum with reduced exponent k, then D = D′h for
some D′ ∈ N[Ck] and h ∈ Cm.

Proof Write D = ∑
i∈S di gi and τ(D) = ∑

i∈S diτ(gi ) where S ⊆ {0, . . . ,m − 1}. Since
k is the reduced exponent of D, by Definition 6, the reduced exponent of τ(D) is also k.
Thus, there exists a j such that (τ (gi )τ (g− j ))k = 1 for all i ∈ S. It then follows that
Dg− j ∈ N[Ck]. The proof is then completed. 
�

In view of Proposition 2, we derive the following result.

Corollary 1 Suppose that D = ∑m−1
i=0 ai gi ∈ N[Cm] is a minimal v-sum with reduced expo-

nent k. Then k is square free and

||D|| ≥ 2 +
∑

p∈P(k)

(p − 2).

To deal with a v-sum D ∈ N[Cm] which is not minimal, we first decompose it into sum
of minimal v-sums. It is straightforward to prove the following.

Lemma 3 Let D ∈ N[Cm] be a v-sum. Then D can be written as the form D = ∑
Di , where

Di ’s are minimal v-sums in N[Cm].
We aim to find a lower bound of ||D|| when D is a v-sum. To do so, we need to extend

the notion of reduced exponent and then apply Corollary 1. Suppose that D = ∑t
i=1 Di and

ki is the reduced exponent of Di for each i . We may then define the exponent of D to be
lcm(k1, . . . , kt ). However, we note that such a decomposition is not necessarily unique. For
example, if m = 10 and h is a generator of C10, then we have

D =
9∑

i=1

hi = (1 + h5) + (1 + h5)h + (1 + h5)h2 + (1 + h5)h3 + (1 + h5)h4 and

D =
9∑

i=1

hi = (1 + h2 + h4 + h6 + h8) + (1 + h2 + h4 + h6 + h8)h.

Note that (1 + h5)hi and (1 + h2 + h4 + h6 + h8)h j are both minimal v-sums. If we use
the notion of lcm of each decomposition, we will then get 2 and 5 as the reduced exponents,
respectively. Thus, we need to modify the earlier definition of exponent as follows.

Definition 7 Suppose that D = ∑m−1
i=0 di gi is a v-sum in N[Cm]. We define the c-exponent

of D to be the smallest k such that there exist t minimal v-sums D1, . . . , Dt in N[Cm]
with D = ∑t

i=1 Di and k = lcm(k1, . . . , kt ), where ki is the reduced exponent of Di for
i = 1, . . . , t .
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New nonexistence results on (m, n)-generalized bent functions 761

Note that in the example above, the c-exponent of D is 2.

Lemma 4 Suppose that D = ∑m−1
i=0 di gi ∈ N[Cm] is a v-sum with c-exponent k. Write

m = ∏s
i=1 p

αi
i and k = ∏t

i=1 pi . Note that t ≤ s and pi ’s are distinct primes. Then we have
the followings:

(a) ||D|| ≥ 2 + ∑t
i=1(pi − 2);

(b) D = ∑t
i=1 Pi Ei , where Pi is the subgroup of order pi and Ei ∈ Z[Cm] for all i ;

(c) Suppose that
∏t

i=1 p
αi
i |d and d|m. If φ : Z[Cm] → Z[Cd ] is the natural projection, then

χ(φ(D)) = 0 whenever ord(χ) = d.

Proof By Lemma 3, we may assume that D = ∑t
i=1 Di such that each Di is a minimal

v-sum. Hence, by Corollary 1, we have

||D|| =
t∑

i=1

|Di |

≥
t∑

i=1

⎡

⎣2 +
∑

q∈P(ki )

(q − 2)

⎤

⎦

≥ 2 +
∑

q∈P(k)

(q − 2)

= 2 +
t∑

i=1

(pi − 2),

because P(k) = ⋃t
i=1 P(ki ).

By Lemma 2, Di = Ei gi where Ei ∈ N[Cki ] and gi ∈ Cm . Clearly, τ(Ei ) = 0. Therefore,
from [4, Theorem 2.2], it follows that Ei = ∑

q∈P(ki ) Qq Fq , where Qq is the subgroup of
order q and Fq ∈ Z[Cki ]. Since D = ∑

Di , D is of the desired form.
Finally, note that if φ and χ are defined as in (c), then χ(φ(D)) = 0 as χ(φ(Pi ))

= χ(Pi ) = 0 for i = 1, . . . , t . 
�

Next, we record a very useful result from [4, Theorem 4.8, Proposition 6.2].

Proposition 3 [4] Let D ∈ N[Cm] be a minimal v-sum with c-exponent k. Then we have the
followings:

(a) If k = p is prime and P is the subgroup of order p of Cm, then D = Ph for some
h ∈ Cm.

(b) If k = ∏t
i=1 pi with t ≥ 2 and p1 < p2 < · · · < pt are primes, then t ≥ 3 and

||D|| ≥ (p1 − 1)(p2 − 1) + (p3 − 1).

Moreover, equality holds only if D = (P∗
1 P

∗
2 + P∗

3 )h for some h ∈ Cm. Here P∗
i= Pi − {e}, and Pi is the subgroup of order pi .

Remark 2 It follows from Proposition 3 that either k is a prime or k has at least three prime
factors.

123



762 K. H. Leung, Q. Wang

3 New nonexistence results of (m,n)-GBFs

In this section, we derive some new necessary conditions on (m, n)-GBFs, and then give
new nonexistence results accordingly. First we fix the following notation. As before, we
assume that g is the generator of Cm , and note that Remark 1 holds for any GBF f . To avoid
confusion, we set g0 as the identity element of Cm .

The following result is very important, in the sense that it allows to eliminate all prime
factors of m greater than 2n when deriving nonexistence results.

Proposition 4 Suppose that f is an (m, n)-GBF and m = ∏s
i=1 p

αi
i where pi ’s are distinct

primes. Let kx be the c-exponent of Ex (as defined by (6)) for each 1G �= x ∈ G. Set

I = {1 ≤ i ≤ s : pi � kx ∀x ∈ G} and m =
∏

i /∈I
pαi
i .

Then there exists an (m, n)-GBF. In particular, if pi |m and pi > 2n, then there exists an
(m/pi , n)-GBF.

Proof By induction, it suffices to show that if pi ∈ I , then there exists an (m/pi , n)-GBF.
Let η : Z[〈g〉] → Z[〈gpi 〉] be the natural projection, it then follows that

η(D f )η(D f )
(−1) = 2n +

∑

1G �=x∈G
η(Ex )x .

Recall that Ex is a v-sum. By assumption pi does not divide kx for all 1G �= x ∈ G. It
follows from Lemma 4(c) that τ(η(Ex )) = 0 if τ is a character of order m/pi . Therefore,
τ(η(D f )) gives rise to an (m/pi , n)-GBF.

The last statement is now clear as if pi > 2n , then by Lemma 4(a), pi does not divide kx
for any 1G �= x ∈ G.


�
We record the following result which will be used from time to time later.

Lemma 5 Suppose that f is an (m, n)-GBF, and p, q are distinct primes that both divide m.
Then there exist y �= 1G and h ∈ supp(Ey) such that pq| ◦ (h).

Proof AsCm = 〈{g f (x) : x ∈ G}〉, there exist u, v ∈ G such that p|◦(g f (u)) and q|◦(g f (v)).
Since g f (1G ) = g0 ∈ Cm , we know that g f (u) ∈ supp(Eu) and g f (v) ∈ supp(Ev). We are
done if q|◦(g f (u)) or p|◦(g f (v)). Otherwise, ug f (u)(vg− f (v)) ∈ supp(Euv) and then clearly
pq| ◦ (g f (u)− f (v)). The proof is completed. 
�

Before we proceed, we need a technical result.

Lemma 6 Let q1, q2, q3 be primes that divide m and Q1, Q2, Q3 be subgroups of order
q1, q2, q3, respectively. Suppose that 4 � m and

∑t
i=1 Qihi = ∑t

i=1 Qih
−1
i for some

h1, h2, ht ∈ Cm with t ≥ 2.

(a) If q1 �= q2 and t = 2, then we may assume h−1
i = hi for i = 1, 2.

(b) If q1 �= q2 = q3 and t = 3, then we may assume Q2h2 + Q2h3 = Q2(h2 + h−1
2 ) and

h1 = h−1
1 .

(c) If all qi ’s are distinct, then we may assume hi = h−1
i for all i .
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Proof By assumption, we have

Q1(h1 − h−1
1 ) =

t∑

i=2

Qi (h
−1
i − hi ).

Suppose that qβ1
1 ||m. Let φ : Z[Cm] → C[Cm] be a ring homomorphism that fixes gm/q

β1
1

and sends gq
β1
1 to an m/qβ1

1 -primitive root of unity. Then, we have φ(Qi (hi − h−1
i )) = 0

for i = 2, . . . , t , which implies that φ(Q1h1 − Q1h
−1
1 ) = 0. Write h1 = g1h′ with g1 ∈

〈gm/q
β1
1 〉 and p1 � ◦(h′). Then, we have Q1g1φ(h′) = Q1g

−1
1 φ(h′−1). Hence g21 ∈ Q1 and

φ(h′) = φ(h′−1). If q1 is odd, then g1 = g0. If q1 = 2, then as 4 � m, g1 can be taken as g0

as well. In both cases, we may assume g1 = g0. It follows that φ(h′)2 = 1. As φ is of order
m/qβ1

1 , h′2 = g0. Therefore, g1h′ = (g1h′)−1. Furthermore, we have

t∑

i=2

Qi (h
−1
i − hi ) = 0. (7)

Now (a) follows easily by applying the same argument on Q2.
If t = 3 and q2 = q3, we then obtain Q2(h2 +h3) = Q2(h

−1
2 +h−1

3 ). If Q2h2 = Q2h
−1
2 ,

then we must have Q2h3 = Q2h
−1
3 . Then, h22 ∈ Q2 and h23 ∈ Q2. Using a similar argument

as before, we may assume that h2 = h3 = g0. If Q2h2 = Q2h
−1
3 , then clearly, we may take

h3 = h−1
2 and we are done.

To obtain (c), we set t = 3. We then get our desired results by applying part (a) to Eq. (7).
The proof is then completed. 
�
Now we are able to give the following necessary conditions on the existence of (m, n)

GBFs, where m is odd.

Theorem 1 Suppose that m = ∏s
i=1 p

αi
i , where 3 ≤ p1 < p2 < · · · < ps are odd primes

and αi ’s are all positive integers. If an (m, n)-GBF exists, then s ≥ 2 and 3p1 + p2 ≤ 2n.

Proof Recall that if 1G �= x ∈ G and χ is a character of order m, then χ(Ex ) = 0. If s = 1,
then by Lemma 4(b), Ex = P1W where P1 is a subgroup of order p1 and W ⊆ Cm . In other
words, 2n = ||Ex || = p1||W ||. This is impossible as p1 �= 2.

Next, we assume that s ≥ 2. As Ex ∈ N[Cm], we may write Ex = ∑
Dj such that all

Dj ’s are minimal v-sums. Let k j be the reduced exponent of Dj . If |P(k j )| ≥ 4, then by
Corollary 1, we have ||Dj || ≥ 2 + ∑4

i=1(pi − 2) ≥ 3p1 + p2. Thus, we may assume that
|P(k j )| ≤ 3. But by Proposition 3, |P(k j )| = 1 or 3. In case that |P(k j )| = 3, ||Dj || ≥
q1(q2−1)+q3−q2 ≥ p1(p2−1)+ p3− p2. If p1 ≥ 5, then clearly, p1(p2−1)+ p3− p2 ≥
3p1 + p2. If p1 = 3, it then follows that

p1(p2 − 1) + p3 − p2 ≥ 2p2 + (p3 − 2) ≥ p2 + (5 + 7) ≥ 3p1 + p2

as p2 ≥ 5 and p3 ≥ 7.
It remains to consider the case |P(k j )| = 1, i.e., Dj = Q jhi where hi ∈ Cm and Q j is a

subgroup of order q j . Note that q j ’s need not be distinct. Therefore, Ex = ∑t
j=1 Q jh j . If

all Q j ’s are the same, then Ex = Q1Y for some Y ∈ Z[Cm]. This is impossible as q1 � 2n .
In particular, it follows that t ≥ 2 and we may assume Q1 �= Q2 without loss of generality.
Recall that all Di ∈ N[Cm]. Therefore,

2n = ||Ex || ≥ q1 + q2 + (t − 2)p1.
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Hence, we are done if t ≥ 4.
We first study the case t = 3. As q1 �= q2, we may assume q1 �= q3 as well. Since

E (−1)
x = Ex and m is odd, we may then assume h1 = g0. Moreover, if Q2 = Q3, then

Q2h2 + Q2h3 = Q2(h2 + h−1
2 ). Whereas if Q2 �= Q3, then h2 = h3 = 1G as m is odd.

Therefore, the coefficient of g0 is either 1 or 3 in both cases. This contradicts Lemma 1(a).
Thus, we may assume t = 2 for all x �= 1G . Moreover, as m is odd, Ex is of the form

Q1 + Q2. In particular, each non-identity element in supp(Ex ) is of prime order. This
contradicts Lemma 5.

The proof is then completed. 
�
The theorem above provides an alternative proof of [7, Corollary 2], from which we can

have an improved result on the case s = 2.

Corollary 2 Suppose that m = ∏s
i=1 p

αi
i , where p1 < p2 < · · · < ps are odd primes and

αi ’s are all positive integers.

(a) There is no (m, n)-GBF when s = 1.
(b) There is no (m, n)-GBF if s ≥ 2 and 3p1 + p2 > 2n.
(c) There is no (m, n)-GBF if there is no (

∏r
i=1 p

αi
i , n)-GBF where pr+1 is the smallest

prime such that p1 + pr+1 > 2n.

Proof (a) and (b) follow directly from Theorem 1. As for (c), it suffices to show that if
t ≥ r + 1, then pt does not divide the c-exponent of Ex for any x �= 1G . We follow the
notation used in the proof of Theorem 1.Wewrite Ex = ∑

Dj such that all Dj ’s are minimal
v-sums. Again, we denote by k j the reduced exponent of Dj . Suppose that pt |k1. If k1 = pt ,
then Ex �= D1 as otherwise pt |2n . Therefore, ||Ex || ≥ ||D1|| + ||D2|| ≥ pt + p1 > 2n .
On the other hand, if k1 �= pt , then as shown before, k1 is a product of at least three primes.
Hence, ||D1|| ≥ pt + p1 > 2n , which is impossible. 
�
Remark 3 For s = 2, our result is stronger than [7, Corollary 2].

Now we consider the case when m = 2m′ with m′ odd. If f is a (2m′, n) GBF, then we
define

G f := {x ∈ G : f (x) odd}.
Note that a (2m′, n)GBF is trivially an (m′, n)GBF ifG f = ∅ orG. Add f bym if necessary,

we may always assume |G f | ≤ |G|/2. Note that G(−1)
f = G f as G is 2-elementary. Apply a

homomorphism ψ : Z[G ·Cm] such that ψ fixes every element in G and maps the generator
g of Cm to −1, then we have

ψ(D f )ψ(D(−1)
f ) = (G − 2G f )(G − 2G(−1)

f )

= (|G| − 4|G f |)G + 4G2
f

= 2n +
∑

1G �=x∈G
ψ(Ex )x .

Write

G2
f = |G f | + 2

∑

1G �=x∈G
bx x . (8)

We denote ψ(Ex ) by ax . It then follows that for x �= 1G ,

ax = |G| − 4|G f | + 8bx . (9)
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The following is a consequence of [8, Theorem 1].

Lemma 7 If n is odd, then G f is a difference set in G if and only if G f = {1G}.
We now give the following nonexistence results on (2m′, n) GBFs.

Theorem 2 Let n be odd and m = 2pα , where α is a positive integer. Suppose that an (m, n)-
GBF exists. Then p < 2n−3 unless p = 2n−2−1 is a Mersenne prime. In particular, if n ≤ 3,
there is no (m, n)-GBF if m = pα or m = 2pα .

Proof Let P2 be the subgroup of order 2 and P be a subgroup of order p. For any x �= 1G ,
we conclude from Lemma 4(b) that Ex = P2Yx + PZx for some Yx , Zx ∈ N[Cm]. Note that
ψ(Ex ) �= 0 for some x �= 1G . Otherwise, the c-exponent of all Ex is 2 and by Proposition 4,
there exists a (2, 3)-GBF, which is impossible. Hence, ax = ψ(Ex ) �= 0 for some x �= 1G .
Therefore, we have ψ(P)|ψ(Ex ), i.e., p|ax . Note that in view of Eq. (9), 4p|ax if |G f | is
odd and 8p|ax if |G f | is even. We are done if 8p|ax as |ax | < 2n . We may therefore assume
that |G f | is odd.

Suppose that G f = {1G}. Then, ax = 2n − 4 if x �= 1G . Hence, 4p|ax . It follows that
p1 < 2n−3 unless 4p = 2n − 4 which implies that p = 2n−2 − 1 is a Mersenne prime.

Suppose that G f �= {1G}. As G f is not a difference set, there exist two elements x �= 1G
and x ′ �= 1G such that bx > bx ′ ≥ 0. Since p|ax and p|ax ′ , it follows that p|(bx − bx ′) and
bx − bx ′ = tp for some positive integer t . To get our desired result, we need to find a bound
on bx − bx ′ . Note that in view of Eq. (8), bx ≤ |G f |/2 ≤ |G|/4. Hence, we get our desired
result if t ≥ 2. Thus, we may assume that t = 1, i.e., bx = p + bx ′ .

Suppose that G = 〈x〉 ·G ′, where G ′ is a subgroup of order 2n−1 in G. As the coefficient
of x in G2

f is 2bx , there are 2bx = 2p + 2bx ′ pairs (u, v) of elements in G f × G f such
that uv = x . Therefore, there exists a set Y ⊆ G ′ ∩ G f such that Y ∪ (Y x) ⊆ G f with
|Y | = p + bx ′ . Write G f = (Y ∪ Z1) ∪ (Y x ∪ Z2x) such that

Z1 ⊆ G ′, Z2 ⊆ G ′, Y ∩ Z1 = ∅ and Y ∩ Z2 = ∅.

Since bx = |Y |, it follows that Z1 ∩ Z2 = ∅. Moreover, we have

G2
f = [2Y 2 + 2Y (Z1 + Z2) + Z2

1 + Z2
2] + [2Y 2 + 2Y (Z1 + Z2) + 2Z1Z2]x .

Note that the support of [2Y 2 + 2Y (Z1 + Z2) + Z2
1 + Z2

2] is in G ′ and the support of
[2Y 2+2Y (Z1+ Z2)+2Z1Z2]x is in G ′x . We now consider the coefficients of the following
group elements

Z = [2Y 2 + 2Y (Z1 + Z2) + Z2
1 + Z2

2] − [2Y 2 + 2Y (Z1 + Z2) + 2Z1Z2] = (Z1 − Z2)
2.

For any 1G �= v ∈ G ′, the coefficient of v in Z is equal to 2(bv − bvx ). Clearly, the absolute
value of the coefficient of v in Z is less than |Z1| + |Z2| as Z1 and Z2 are disjoint. Thus, if
there exists v �= 1G in G ′ such that bv − bvx is nonzero, then p|(bv − bvx ) and we obtain

2p ≤ 2|bv − bvx | ≤ |Z1| + |Z2| ≤ (|G f | − 2bx ) ≤ |G f | − 2p.

Hence, we get 4p ≤ |G f | ≤ |G|/2 and p ≤ 2n−3. Thus, it remains to deal with the case
(Z1 − Z2)

2 = |Z1| + |Z2|.
If both Z1 = Z2 = ∅, then 2bx = |G f |. Hence, |G f | is even and as remarked earlier,

we are done in this case. Note that as G = Cn
2 , all character values of Z1 − Z2 are integers.

Thus, |Z1| + |Z2| is a square. Since Z1 ∩ Z2 = ∅, all nonzero coefficients of Z1 − Z2 is
±1. On the other hand, if q is an odd prime divisor or |Z1| + |Z2|, then q divides the all
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nonzero coefficients of Z1 − Z2 by applying Fourier inversion formula. This is impossible. It
follows that |Z1|+ |Z2| = 2t . Again, we are done if t ≥ 1 as then |G f | = 2bx +|Z1|+ |Z2|
is even. Hence, we may assume that t = 0, i.e., |Z1| + |Z2| = 1. Note that the coefficient
of 1G in [2Y 2 + 2Y (Z1 + Z2) + Z2

1 + Z2
2] is |G f | and the coefficient of 1G in [2Y 2 +

2Y (Z1 + Z2) + 2Z1Z2] is the same as the coefficient of x in G2
f . As Z = 1, it follows that

2bx = |G f | − 1. Hence, ax = |G| − 4|G f | + 4(|G f | − 1) = 2n − 4. Recall that 4p|ax .
Hence either p = 2n−2 − 1 or p < 2n−3.

The proof is then completed. 
�
Corollary 3 Let n be odd and m = 2

∏s
i=1 p

αi
i , where p1 < p2 < · · · < ps are odd primes

and αi ’s are all positive integers.

(a) If s = 1, then there is no (m, n)-GBF if one of the following conditions is satisfied:

(i) p1 > 2n−2;
(ii) p1 is not a Mersenne prime and p1 > 2n−3;
(iii) p1 ≡ 3, 5 (mod 8).

(b) If s ≥ 2, and r is the least integer such that pr+1 + p1 > 2n + 2, then there is no
(m, n)-GBF if there is no (2

∏r
i=1 p

αi
i , n)-GBF. In particular, there is no (m, n)-GBF if

p1 > 2n−2 and p1 + p2 > 2n + 2.

Proof It is easily seen that (i) and (ii) of (a) directly follow from Theorem 2. If (iii) holds, it
is known that no (2pα1

1 , n)-GBF exists.
To prove (b), it is sufficient to show that for i ≥ r + 1, pi does not divide the c-exponent

of any Ex for x �= 1G . As before, we wirte Ex = ∑
Dj and k j the reduced exponent of

Dj . We may assume that pi divides k1. If k1 consists of at least three prime factors, then
||Di || ≥ 2 + (p1 − 2) + (pi − 2). Thus, 2n ≥ p1 + pi − 2 ≥ p1 + pr+1 − 2 > 2n . This is
impossible. Therefore, we have k1 = pi .

Otherwise, we assume that pi divides the reduced exponent kx of τ(Ex ). If kx = pi , it
follows from the argument in (a) that 4pi ≤ 2n . This is impossible as 2n < p1 + pi < 4pi .
Therefore, p j |kx for some j �= i . But then byProposition 3, 2n ≥ p j+pi−2 > pr+1+p1−2.
This is impossible. 
�
Remark 4 When compared with [7, Theorem 2], our result in Corollary 3 is stronger in all
cases quoted in Table 2 [7] therein except for the case that p = 191.

4 Nonexistence results for n = 3

In this section, we show that there in no (m, 3)-GBF for all m odd or m ≡ 2 (mod 4).
By Proposition 4, we may assume that all prime factors of m are less than or equal to 7.
According to Corollary 2, we conclude that there is no (m, 3)-GBF ifm is odd. Therefore, we
may write m = 2 · 3a5b7c. For convenience, we fix the following notation. Let g2, g3, g5, g7
be elements of order 2, 3, 5, 7, respectively. Let P2, P3, P5, P7 be subgroups of order 2, 3, 5
and 7, respectively.

We assume that f is an (m, 3)-GBF. We first determine what Ex is if x �= 1G . As seen
before, τ(Ex ) = 0 for any character of order m. Recall that P(k) denotes the set of all prime
factors of the integer k.

Lemma 8 For any x �= 1G, write Ex = ∑
Di where each Di is a minimal v-sum with

reduced exponent ki . Then P(ki ) = {2}, {3}, {5}, {7} or {2, 3, 5} or {2, 3, 7}. Moreover,
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(a) If P(ki ) = { j} for some j ∈ {2, 3, 5, 7}, then Di = Pjh j for some h j ∈ C30.
(b) If P(ki ) = {2, 3, 7}, then Ex = gα

2 (P∗
7 + g2P∗

3 ) for some integer α.

Proof Let kx be the reduced exponent of Ex . Note that kx �= 2 · 3 · 5 · 7, 3 · 5 · 7, or 2 · 5 · 7
as ||Ex || > (7 − 2) + (5 − 2) + 2 > 8. Therefore, either |P(ki )| = 1, P(ki ) = {2, 3, 7} or
{2, 3, 5}. (a) then follows from Lemma 2.

For (b), note that ||Di || ≤ 8. Hence, by Proposition 3(b), Di = h(P∗
7 + g2P∗

3 ) for some

element h ∈ Cm . As ||Ex || = 8, Ex = Di . As Ex = E (−1)
x , we have h = gα

2 for some
integer α. 
�
Corollary 4 If 7|kx , then Ex = gα

2 (P∗
7 + g2P∗

3 ).

Proof We will follow the notation used above. By assumption, 7|ki for some i . If ki = 7,
then Di = P7hi . Since ||Ex || = 8, it follows that ||Dj || = 1 if j �= i . This is impossible as
then τ(Dj ) �= 0. Hence, ki is not a prime and therefore, ki = 2 · 5 · 7. By Lemma 8 (b), our
desired result follows. 
�

Let ψ be as defined in Sect. 3. As we have seen before, ax = ψ(Ex ) ≡ 0 mod 4. With
the condition Ex = E (−1)

x , this allows us to narrow down the possibilities of Ex when 7 does
not divide the c-exponent of Ex .

Lemma 9 If 7 � kx , then Ex is in one of the forms below:

(a) Ex = P2W and ax = 0.
(b) Ex = (P3 + P5)gα

2 and ax = ±8.
(c) Ex = gα

2 [g2(g0 + g5 + g45)(g3 + g23) + (g25 + g35)] or gα
2 [g2(g0 + g25 + g35)(g3 + g23) +

(g5+g45)] and ax = ±4. In particular, supp(Ex )∩ P2 = ∅. [Recall that g0 is the identity
of Cm. ]

Proof We continue with the notation used in Lemma 8. If all ki ’s are prime, then in view of
Lemma 8,

Ex = P2X + P3Y + P5Z ,

where X , Y , Z ∈ N[Cm]. As ||Ex || = 8 and 8 = 2||X || + 3||Y || + 5||Z ||. It is clear that
(||X ||, ||Y ||, ||Z ||) = (4, 0, 0), (1, 2, 0), or (0, 1, 1).

If (||X ||, ||Y ||, ||Z ||) = (1, 2, 0), then Ex = P2(h1 + h2) + P3h3. In this case,
ψ(Ex ) = ±3. This is impossible. Next, if (||X ||, ||Y ||, ||Z ||) = (4, 0, 0), then (a) holds.
If (||X ||, ||Y ||, ||Z ||) = (0, 1, 1), then Ex = P3h1 + P5h2. By Lemma 6(a), hi = gαi

2 . Note
that ψ(Ex ) = ±2 �= ±4 if α1 �= α2 mod 2. Since ax ≡ 0 mod 4, (b) holds.

As ki ’s are not all prime, we may assume that k1 is not a prime. Then by Lemma 8,
k1 = 2 · 3 · 5. But then by Proposition 3(b), ||D1|| ≥ 6. If Ex �= D1, then ||D2|| ≤ 2. Hence
D2 = P2h′ for some h′ ∈ Cm and ||D1|| = 6. Thus, D1 = (P∗

2 P
∗
3 + P∗

5 )h for some h ∈ C30.
Since ||Ex || = 8, Ex = D1 + D2. But ψ(Ex ) = ψ(D1 + D2) = ±2. This is impossible
as 4|ax . Hence, Ex is a minimal v-sum and Ex = D1 = Dh for some D ∈ N[C30]. As
Ex = E (−1)

x , we have h ∈ C30. So, Ex ∈ N[C30]. We may write Ex = ∑4
i=0 Ai gi5, where

Ai ∈ N[C6]. Clearly,

8 =
4∑

i=0

||Ai ||.
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Let τ be a character of order 30. If Ai = 0 for some i , then τ(A j ) = 0 for all j as
τ(Ex ) = 0. Then, Ex is not a minimal v-sum unless Ex = A j for some j . So, k1|6 and
k1 �= 30. This is impossible. Hence, ||Ai || ≥ 1 for each i .

Claim ||A j || ≤ 3 for all j = 0, . . . , 4.
Otherwise, we assume that ||A�|| ≥ 3 for some �. It then follows that ||A j || ≤ 2 if j �= �.

Since Ex = E (−1)
x , we have � = 0. On the other hand, if ||A j || = 2 for some j , then again

||At || �= 2 whenever t �= j . Using the condition Ex = E (−1)
x again, we have j = 0. This

is impossible. Hence, all other ||A j || = 1. Thus we conclude, ||A0|| = 4 and ||Ai || = 1 if
i = 1, 2, 3, 4. Write A1 = h, where h ∈ C6. As τ(A0) = τ(h), we have τ(A0 + g2h) = 0.
Note that ||A0 + g2h|| = 5. Since τ(A0 + g2h) = 0, we may apply a similar argument as
in Lemma 8 to conclude that A0 + g2h = P2h1 + P3h2 for some h1, h2 ∈ C6. Therefore,
A0 = P2h1 +h3 +h4 or A0 = h3 + P3h2 for some h3, h4 ∈ C6. In either case, it contradicts
the assumption that Ex is a minimal v-sum.

Hence, we conclude that ||A j || ≤ 2 for all j . Using the assumption that Ex = E (−1)
x

again, we then obtain two possible cases.

(i) ||A0|| = ||A1|| = ||A4|| = 2 and ||A2|| = ||A3|| = 1 or
(ii) ||A0|| = ||A2|| = ||A3|| = 2 and ||A1|| = ||A4|| = 1.

It remains to show that Ex is of the desired form when (i) holds. We may assume that
Ai = hi for some hi ∈ C6 for i = 2, 3. Since τ(Ex ) = 0 for any character τ of order 30, we
set h2 = h3 = h. As Ex = E (−1)

x , we see that h = gα
2 .

Note that for i = 0, 1, 4, ||Ai + g2h|| = 3 and τ(Ai + g2h) = 0. Therefore, Ai + g2h =
P3g2h as g2h is in the support of all Ai + g2h. In other words, Ai = P∗

3 (g2h) for i = 0, 1, 4.
It is now clear that Ex is of desired form. This shows that (c) holds. 
�
Theorem 3 There is no (m, 3)-GBF for any integer m odd or m ≡ 2 (mod 4).

Proof Recall that by earlier discussion of this section, we may assume thatm = 2 ·3a ·5b ·7c.
We first remove the case 7|m.

We may assume that 7 divides the c-exponent of Ex for some x �= 1G . By Lemma 9, we
see that Ex = hα(P∗

7 +hP∗
3 ) andψ(Ex ) = ±4. It follows from Eq. (8) that av = ±4 for any

v �= 1G . Therefore, Ev is of the form in Corollary 4 or Lemma 9(c). That means there is no
element in supp(Ev) of order a multiple of 21 for any v. This contradicts Lemma 5. Thus,
we may assume that 7 does not divide the c-exponent of Ex for all x ∈ G. By Proposition 4,
it remains to show that (2 · 3a · 5b, 3)-GBF does not exist.

In view of Lemma 9, Ex ∈ N[C30] for all x �= 1G . It follows that supp(D f ) ⊂ G ·C30h′
for some h′ ∈ Cm . After multiplying D f with h′−1, we may assume D f ∈ N[G · C30].
Recall that we may assume that 1 ≤ |G f | ≤ 4. We may assume that 1G ∈ G f instead of
1G ∈ G \ G f . We now discuss by cases.

Case (1) |G f | = 2.
As 1G ∈ G f , we write G f = {1G , v}. Note that ax = 8 or 0. It follows that av = 8

and ax = 0 if x �= 1G , v. By Lemma 9, we have Ev = P5 + P3 and Ex = P2Wx for some
Wx ∈ Z[C30] if x �= 1G , v.

Let η : Z[G · C30] → Z[G · C5] be a ring homomorphism such that η(g2) = −1 and
η(g3) = 1 and η(g5) = g5; and η(x) = 1 for all x ∈ G. Note that η(Ex ) = 0 if ax = 0 as
Ex = P2Wx for some Wx ∈ N[C30]. Thus, we get

η(D f )η(D f )
(−1) = 11 + P5.
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Write η(D f ) = ∑
ai gi5 where ai ∈ Z. Observe that if we further map g5 to 1, then the

resultingmap is justψ . Thus, we have
∑

ai = ψ(D f ). Then as |G f | = 2,ψ(D f ) = ∑
ai =

8− 2 · 2 = 4. By considering the coefficient of identity of 11+ P5, we get
∑

a2i = 12. Thus
|ai | ≥ 2 for some i . If the maximum value of |ai | is 2, then there must be two more a j ’s with
|a j | = 2 and the rest is 0. That is impossible as then 2 divides η(D f ) but 2 does not divide
11 + P5 in Z[P5].

Hence, the maximum value of |ai | is 3. Then there are exactly three a j ’s with |a j | = 1.

Since
∑

ai = 4, exactly one ai is −1. So we may assume that η(D f ) = 3 + g5 + gβ

5 − gγ

5
with 1 �= β �= γ �= 1. Clearly, we may assume either β = 4 or γ = 4.

If β = 4, then we may take γ = 2 or 3. Then, the coefficient of gγ

5 is −2, which is

impossible. If γ = 4, then β = 2 or 3. In that case, the coefficient of gβ

5 is −2, which is also
impossible. Therefore, we have |G f | �= 2.

Case (2) |G f | = 4. We may assume that G f = {1G , v1, v2, v3}.
Subcase (a) v3 = v1v2 and G f is a subgroup of order 4. Hence, G2

f = 4G f and (G −
2G f )

2 = 8G f −8G f v for some nonzero v ∈ G. Therefore, ax = ±8 for all x ∈ G. In view
of Lemma 9, Ex = gα

2 (P3 + P5) for all nonzero x ∈ G. By Lemma 5, this is impossible as
there is no element in supp(Ev) which is divisible by 15 for any v.

Subcase (b) v3 �= v1v2. Let H = {1G , v1, v2, v1v2} be the subgroup of order 4. Then
G2

f = 2G + 2 − 2v1v2v3. For convenience, we write v = v1v2v3. Thus, av = −8 and
ax = 0 if x �= 1G or v. As v /∈ H , there exists a ring homomorphism η′ that maps H · P3 to
identity, and η′(g2) = η′(v) = −1. Then as before η′(Ex ) = 0 if ax = 0. Hence, we obtain

η′(D f )η
′(D f )

(−1) = 8 + (−1)(−3 − P5) = 11 + P5.

Write η′(D f ) = ∑
ai gi5. Observe that

∑
ai = η′(G − 2G f ) = −4. As shown above, there

is no solution in Z[P5].
Case (3) |G f | = 1 or 3. Ten ax = ±4 for all x �= 1G in G. Therefore, by Lemma 9(c), for
any Ex with 1G �= x ∈ G,

Ex = gα
2 [(g0 + g5 + g45)(g3 + g23) + g2(g

2
5 + g35)] or

gα
2 [(g0 + g25 + g35)(g3 + g23) + g2(g5 + g45)].

Observe that if we write Ex = ∑4
i=0 Wxi gi5, then ||Wx0|| = 2 and P2 ∩ supp(Ex ) = ∅.

Write D f = ∑4
i=0 Bi g

i
5 where Bi ∈ Z[G · C6] and D f D

(−1)
f = ∑4

i=0 Zi gi5 with

Zi ∈ N[G · C6]. For each i , Bi = Ai0 + Ai1g3 + Ai3g23 where Ai j ∈ N[G · P2]. If
||Ai j || ≥ 2, i.e., Ai j = x1h1 + x2h2 + · · · , where x1, x2 ∈ G and h1, h2 ∈ P2, then

Ai j A
(−1)
i j = 2 + x1x2h1h2 + · · · . Hence, supp(Ex1) ∩ {g0, g2} �= ∅. This contradicts

Lemma 9(c). Thus, |Ai j | ≤ 1 and ||Bi || ≤ 3. Note that

||Z0|| = 8 +
∑

x �=1G

||Wx0|| = 8 + 2 × 7 = 22 =
4∑

i=0

||Bi ||2.

Observe that not all ||Bi || ≤ 2. Using the equation above, we may assume that ||Bi || =
||Bj || = 3 and ||Bk || = 2 for some distinct i, j, k. Then we have

Bi =
2∑

t=0

ut g
αi
2 gt3 = u0g2α0

(
1 + u0u1g

α1−α0
2 g2g3 + u0u1g

α2−α0
2 g23

)
.
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Letφ be a character onG ·C30 such thatφ(u0u1) = (−1)α1−α0 andφ(u0u2) = (−1)α2−α0 .
Note that such a φ exists as u0u1 �= u0u2. Then, it is clear that φ(Bi ) = 0. Thus, |φ(D f )|2 =
|φ(Bj )ζ

j
5 + φ(Bk)ζ

k
5 |2 = 8. In other words, we have

|φ(Bj )|2 + |φ(Bk)|2 + φ(Bj )φ(Bk)ζ
j−k
5 + φ(Bk)φ(Bj )ζ

k− j
5 = 8.

This is impossible unless φ(Bj ) = 0 or φ(Bk) = 0. But then ||Bk || = 2 and ||Akj || ≤ 1
imply that φ(Bk) �= 0. Thus φ(Bj ) = 0 and |φ(Bk)|2 = 8. This is impossible as ||Bk || = 2.
This finish showing that |G f | �= 1 or 3.

The proof is then completed. 
�
Acknowledgements The authors are very grateful to the two anonymous reviewers for all their detailed
comments that improved the quality and the presentation of this paper.

References

1. Carlet C.: Boolean functions for cryptography and error correcting codes. BooleanModelsMethodsMath.
Comput. Sci. Eng. 2, 257–397 (2010).

2. Conway J.H., Jones A.J.: Trigonometric diophantine equations (on vanishing sums of roots of unity).
Acta Arith. 30(3), 229–240 (1976).

3. Kumar P.V., Scholtz R.A., Welch L.R.: Generalized bent functions and their properties. J. Comb. Theory
Ser. A 40(1), 90–107 (1985).

4. Lam T.Y., Leung K.H.: On vanishing sums of roots of unity. J. Algebra 224(1), 91–109 (2000).
5. Lenstra Jr., H.W.: Vanishing sums of roots of unity. In: Proceedings of the Bicentennial Congress

Wiskundig Genootschap (Vrije Univ., Amsterdam, 1978), Part II, Math. Centre Tracts, vol. 101, pp.
249–268. Math. Centrum, Amsterdam (1979)

6. Leung K.H., Schmidt B.: Nonexistence results on generalized bent functions Z
m
q → Zq with odd m and

q ≡ 2 (mod 4). J. Comb. Theory Ser. A 163, 1–33 (2019).
7. Liu H., Feng K., Feng R.: Nonexistence of generalized bent functions from Z

n
2 to Zm . Des. Codes

Cryptogr. 82(3), 647–662 (2017).
8. Mann H.B.: Difference sets in elementary Abelian groups. Ill. J. Math. 9, 212–219 (1965).
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13. Stănică P., Martinsen T., Gangopadhyay S., Singh B.K.: Bent and generalized bent Boolean functions.

Des. Codes Cryptogr. 69(1), 77–94 (2013).
14. Tang C., Xiang C., Qi Y., Feng K.: Complete characterization of generalized bent and 2k -bent Boolean

functions. IEEE Trans. Inform. Theory 63(7), 4668–4674 (2017).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	New nonexistence results on (m,n)-generalized bent functions
	Abstract
	1 Introduction
	2 Basic tools and auxiliary results
	2.1 Group ring and character theory
	2.2 Some auxiliary results

	3 New nonexistence results of (m,n)-GBFs
	4 Nonexistence results for n=3
	Acknowledgements
	References




