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Abstract
In the rank modulation scheme, Gray codes are very useful in the realization of flash mem-
ories. For a Gray code in this scheme, two adjacent codewords are obtained by using some
“push-to-the-top” operations. Moreover, snake-in-the-box codes under the �∞-metric (�∞-
snakes) areGray codes, which can be capable of detecting one �∞-error. In this paper, we give
two constructions of �∞-snakes. On the one hand, inspired by Yehezkeally and Schwartz’s
construction, we present a new construction of the �∞-snake. The length of this �∞-snake
is longer than the length of the �∞-snake constructed by Yehezkeally and Schwartz. On the
other hand, we also give another construction of �∞-snakes by using K-snakes and obtain
the longer �∞-snakes than the previously known ones.

Keywords Flash memory · Rank modulation · Gray codes · Snake-in-the-box codes ·
K-snakes · �∞-snakes

Mathematics Subject Classification 68P30 · 94A15

1 Introduction

Flash memory is a non-volatile storage medium that is both electrically programmable and
erasable. It has been widely used because of its reliability, relative low cost, and high storage
density. In flash memories, a block which contains many cells can maintain a block of
charge levels to represent information.However, the flashmemory has its inherent asymmetry
between cell programming (injecting cells with charge) and cell erasure (removing charge
from cells). That is to say, increasing the charge level of a single cell (cell programming) is an
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easy operation, but decreasing the charge level of a single cell (cell erasure) is a very difficult
process. In the programming operation, some cells may be injected with extra charge. This
will lead to overshooting of charge. Hence, overprogramming (overshooting of charge) is a
severe problem because of some very difficult cell erasure operations.

The rank modulation scheme has been recently proposed in [9] to overcome these prob-
lems. In this scheme, one permutation is induced by relative rankings of the charge levels
on a group of cells instead of using absolute values of charge levels. This permutation
is used to represent information. Specifically, assume that c1, c2, . . . , cn ∈ R represent
charge levels of n ∈ N cells respectively, these charge levels induce one permutation
π = [π(1), . . . , π(n)] ∈ Sn such that cπ(1) > cπ(2) > · · · > cπ(n), where Sn is the set
of all the permutations over {1, 2, . . . , n}. In the rank modulation scheme, the cell program-
ming uses only “push-to-the-top” operations [9]. That is, a cell is programmed by raising
the charge level of this cell above those of all others in the block. Hence, in the manner, the
overprogramming is no longer a problem.

If the relative rankings are changed because of injection of much extra charge or leakage
in the cells, the permutation induced by the relative rankings will be different from the
desired permutation, i.e., this leads to an encoding error. Hence, some error models have
been studied for rank modulation, including the �∞-metric [11,15], the Ulam metric [4], and
the Kendall’s τ -metric [1,10,12,17]. In this paper, we will focus on the �∞-metric and the
Kendall’s τ -metric.

The �∞-distance [15] between two permutations π, σ ∈ Sn is the maximal number of
indices difference between π and σ . For example, the �∞-distance between π = [1, 2, 3]
and σ = [3, 1, 2] is 2, since max

i∈{1,2,3} |σ(i) − π(i)| = 2. Moreover, the Kendall’s τ -distance

[15] between two permutations π, σ ∈ Sn is the minimum number of adjacent transpositions
required to obtain the permutationσ fromπ , where an adjacent transposition is an exchange of
two distinct adjacent elements. For example, the Kendall’s τ -distance between π = [1, 2, 3]
and σ = [3, 1, 2] is 2, since we can do the adjacent transpositions [1, 2, 3] → [1, 3, 2] →
[3, 1, 2].

In the rank modulation scheme, Gray codes are important codes which represent informa-
tion in flashmemories. In [9], Jiang et al. proposed the Gray codes by using “push-to-the-top”
operations. Recently, Gray codes for rank modulation have been studied in [5,6,10,15]. In
addition, a snake-in-the-box code is a Gray code in which the distance between any two
distinct codewords in the code under a given metric is at least 2. Thus, this code can detect
a single error in one codeword. In this paper, we will focus on the snake-in-the-box codes
under the �∞-metric and the Kendall’s τ -metric.

In [15], Yehezkeally and Schwartz constructed directly a snake-in-the-box code of length
� n
2 �!(� n

2 �+(� n
2 �−1)!) in Sn under the �∞-metric. In this paper, wewill improve on this result.

On the one hand, we will construct a snake-in-the-box code of length � n
2 �!(� n

2 � + (� n
2 �)!) in

Sn under the �∞-metric. On the other hand, we will also construct the longer snake-in-the-
box code under the �∞-metric by using some snake-in-the-box codes under the Kendall’s
τ -metric. Specifically, when n = 4k + 1 and k ≥ 3, we can obtain a snake-in-the-box code

of length (�n/2�!)2
2 in Sn under the �∞-metric. When n = 4k + 3 or n = 4k + 4, and k ≥ 2,

we can obtain a snake-in-the-box code of length (�n/2�+1)!·�n/2�!
2 in Sn under the �∞-metric.

The rest of this paper is organized as follows. In Sect. 2, wewill give some basic definitions
for the rank modulation scheme and notations required in this paper. In Sect. 3, we give
directly two constructions of snake-in-the-box codes in Sn under the �∞-metric. In Sect. 4,
we compare our results with the previous ones. Section 5 concludes this paper.
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2 Preliminaries

In this section, we will give some definitions and notations mentioned in [8,15] and [2].
We let [n] � {1, 2, . . . , n} and let π � [π(1), π(2), . . . , π(n)] be a permutation over [n].

Let Sn be the set of all the permutations over [n]. For σ, π ∈ Sn , their multiplication π ◦ σ is
denoted by the composition of σ on π , i.e., π ◦ σ(i) = σ(π(i)), for all i ∈ [n]. Under this
multiplication operation, Sn is a noncommutative group. Let π−1 be the inverse element of
π , for π ∈ Sn , and let An be the subgroup of all even permutations over [n].

Given n flash memory cells, we name these cells 1, 2, . . . , n. Let (c1, c2, . . . , cn) ∈ R
n be

a vector of n real-valued variables, where ci is the charge level of the i-th cell for all i ∈ [n].
In the rank modulation scheme, the n distinct variables c1, . . . , cn induce one permutation,
denoted by π = [π(1), . . . , π(n)] ∈ Sn iff cπ(1) > cπ(2) > · · · > cπ(n).

Definition 1 Given a set S and a set of transformations T ⊂ { f | f : S → S}, a Gray code
over S of size M , is a sequence C = (c0, c1, . . . , cM−1) of M different elements from
S, called codewords, in which for each i ∈ [M − 1] there exists some t̃i ∈ T such that
ci = t̃i (ci−1).

For convenience, we denote a transformation sequence of the Gray code C by TC , i.e.,
TC = (t̃1, t̃2, . . . , t̃M−1). The Gray code is called complete if M = |S|, and cyclic if there
exists t̃M ∈ T such that c0 = t̃M (cM−1).

Consider the Gray codes for rank modulation in flash memories, we have S = Sn and the
set of transformations comprises of all the “push-to-the-top” operations in Sn , defined by Tn .
Next, we denote by ti : Sn → Sn one “push-to-the-top” operation on index i , for 2 ≤ i ≤ n,
that is,

ti ([a1, a2, . . . , ai−1, ai , ai+1, . . . , an]) = [ai ,a1, a2, . . . , ai−1, ai+1, . . . , an],
and a p-transition will be an abbreviation of a “push-to-the-top” operation. Therefore, Tn =
{t2, t3, . . . , tn}.

A sequence of p-transitions is called a transition sequence. Given an initial permutation
π0 in Sn and a transition sequence (tα(1), tα(2), . . . , tα(L)) with α(i) ∈ [n] for all i ∈ [L],
we can obtain a sequence of permutations π0, π1, . . . , πL in Sn , where πi = tα(i)(πi−1) for
all i ∈ [L]. When πL = π0 and πi = π j for each pair 0 ≤ i < j < L , the permutation
sequence (π0, π1, . . . , πL−1) is a cyclic Gray code, denoted by Cn . The transition sequence
TCn is (tα(1), tα(2), . . . , tα(L)).

Let d : S × S → N be a distance function, which induces a metric M over S. In the
following, we will introduce Gray code capable of detecting a single error.

Definition 2 Let M be a metric over S induced by a distance measure d . A cyclic (resp.
noncyclic) snake-in-the-box over S under the metric M by using transitions T is a cyclic
(resp. noncyclic) Gray code C over S by using T , in which for any two distinct elements
π, σ ∈ C , we have that d(π, σ ) ≥ 2.

In the following, we consider S = Sn and transitions T = Tn . For convenience, we call
a cyclic (resp. noncyclic) snake-in-the-box code C of size M over Sn under the metric M,
using transitions Tn , a cyclic (resp. noncyclic) (n, M,M)-snake, or a cyclic (resp. noncyclic)
M-snake. Moreover, we directly use an M-snake and an (n, M,M)-snake to represent a
cyclicM-snake and a cyclic (n, M,M-snake, respectively, otherwise, wewill speciallywrite
as a noncyclic M-snake or a noncyclic (n, M,M)-snake.
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In this paper, we will consider two metrics: Kendall’s τ -metric K and �∞-metric, with
their K-snakes and �∞-snakes, respectively. The Kendall’s τ -distance and the �∞-distance
over Sn are defined as follows.

Definition 3 For any two permutationsσ, π ∈ Sn , the �∞-distance between two permutations
π, σ , denoted by d∞(π, σ ), is the maximal number of indices difference between π and σ .
Specially, we have the following expression for d∞(σ, π),

d∞(σ, π) = max
i∈[n] |σ(i) − π(i)|.

Given a permutation π = [a1, . . . , an] ∈ Sn , an adjacent transposition is an exchange of
two distinct adjacent elements ai , ai+1, in π , for some 1 ≤ i ≤ n − 1.

Definition 4 For any two permutations σ, π ∈ Sn , the Kendall’s τ -distance between two
permutations π, σ , denoted by dK (π, σ ), is the minimum number of adjacent transpositions
required to obtain the permutation σ from π . Specially, we have the following expression
for dK (π, σ ),

dK (σ, π) = |{(i, j) : σ−1(i) < σ−1( j) ∧ π−1(i) > π−1( j)}|.
Furthermore, let Cπ0

TC
be an (n, M,M)-snake, where TC is its transition sequence

and π0 is its first permutation. Here, we let Cπ0
TC

� (π0, π1, . . . , πM−1) and TC �
(tα(1), tα(2), . . . , tα(M)) such that πi = tα(i)(πi−1) for every i ∈ [M −1] and tα(M)(πM−1) =
π0.

In [9], Jiang et al. presented an n-length rank modulation Gray code (n-RMGC) by using
“push-to-the-top” transitions. They [9] also proposed a cyclic and complete n-RMGC, CTn ,
whereTn is its transition sequence. For convenience,wedefineTn � (tγn(1), tγn(2) . . . , tγn(n!)).
Yehezkeally and Schwartz [15] constructed an (n, M, �∞)-snake, whose size is � n

2 �!(� n
2 � +

(� n
2 � − 1)!) for all n ≥ 4.
Having the above definitions and notations, we will present two constructions of �∞-

snakes in the following section.

3 Main results

3.1 Construction of �∞-snakes by using cyclic and complete RMGCs

In this subsection, we give one construction of �∞-snakes by using cyclic and complete
RMGCs. In order to use the code constructions presented in [9], we will give the following
two lemmas.

Lemma 1 [9, Theorem 4] For all n ≥ 3, there exists a cyclic and complete (n − 1)-RMGC,
denoted by CTn−1 , where Tn−1 � (tγn−1(1), . . . , tγn−1((n−1)!)).

Lemma 2 [9, Theorem 7] For all n ≥ 4, given a cyclic and complete (n − 1)-RMGC,
CTn−1 , denoted by one transition sequence Tn−1 = (tγn−1(1), tγn−1(2), . . . , tγn−1((n−1)!)), then
the following transition sequence, (tγn(1), tγn(2) . . . , tγn(n!)), defines an n-RMGC, denoted by
CTn , that is cyclic and complete:

tγn(k) =
{

tn−γn−1(�k/n�)+1, k ≡ 1( mod n),

tn, otherwise
(1)

for all k ∈ [n!].

123



Snake-in-the-box codes under the �∞-metric for rank modulation 491

By the above lemmas, we can obtain some properties of this RMGC which we will use
later.

Lemma 3 For any n ≥ 3, there exists a cyclic and complete n-RMGC, denoted by CTn , where
its transition sequence Tn = (tγn(1), . . . , tγn(n!)), such that for any j ∈ {2, 3, . . . , n}, we have
that

tγn(i) = t j

for some i ∈ [n!].
Proof We prove this lemma by induction. By Lemma 1, we have a cyclic and complete n-
RMGC, denoted by CTn , with its transition sequence Tn = (tγn(1), . . . , tγn(n!)) for any n ≥ 3.
By the construction of [9, Fig. 2], we have one transition sequence of a cyclic and complete
3-RMGC, denoted by CT3 , where T3 = (t2, t3, t3, t2, t3, t3). Hence, for any j ∈ {2, 3}, there
exists i such that

tγ3(i) = t j .

When n = m, assume that for any j ∈ {2, 3, . . . , m}, we have that
tγm (i) = t j (2)

for some i ∈ [m!].
By Lemma 2 and CTm , when n = m + 1, we have a cyclic and complete (m + 1)-RMGC,

denoted by CTm+1 , with its transition sequence Tm+1 = (tγm+1(1), . . . , tγm+1((m+1)!)), where

tγm+1(k) =
{

tm+2−γm (�k/(m+1)�), k ≡ 1(mod m + 1),

tm+1, otherwise
(3)

for all k ∈ [(m + 1)!]. Since γm(�k/(m + 1)�) ranges over 2, 3, . . . , m, by (3), for any
j ∈ {2, 3, . . . , m + 1}, we can obtain that

tγm+1(i) = t j

for some i ∈ [(m + 1)!].
So, there exists a cyclic and complete n-RMGC, denoted by CTn , with its transition

sequence Tn = (tγn(1), . . . , tγn(n!)) such that for any j ∈ {2, 3, . . . , n}, we have that
tγn(i) = t j

for some i ∈ [n!]. This completes the proof by induction. ��
The following lemma gives one construction of a basic block which is useful for the

construction of �∞-snakes by using cyclic and complete RMGCs.

Lemma 4 For all n ≥ 6, let {a j }Q
j=1 be a set of even integers of [n] and {b j }P

j=1 be a set of odd
integers of [n], where Q = � n

2 �and P = � n
2 �. Letσ = [b1, a2, a3 . . . , aQ, a1, b2, b3, . . . , bP ]

be an initial permutation such that |a1 − b1| ≥ 2. Then, there exist two noncyclic
(n, Q!+ Q, �∞)-snakes. One noncyclic (n, Q!+ Q, �∞)-snake, denoted by Cσ,π1

TC
, is starting

with σ and ending with one permutation π1, where

π1 = [a2, a3, . . . , aQ−1, aQ, a1, b1, b2, . . . , bP ].
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Another noncyclic (n, Q! + Q, �∞)-snake, denoted by Ĉσ,π2
TĈ

, is starting with σ and ending

with one permutation π2, where

π2 = [a2, a3, . . . , aQ−1, a1, aQ, b1, b2, . . . , bP ].
Proof We prove only the existence of Cσ,π1

TC
, since the proof of the existence of

Ĉσ,π2
TĈ

is similar. For convenience, let Cσ,π1
TC

� (σ0, σ1, . . . , σQ!+Q−1) and TC �
(tα1(1), tα1(2), . . . , tα1(Q!+Q−1)).

Now, by Lemma 1, there exists a cyclic and complete Q-RMGC with its transition
sequence TQ , where

TQ = (tγQ (1), tγQ (2), . . . , tγQ (Q!)). (4)

By Lemma 3, since Q ≥ 3, we have that

tγQ (s1) = tQ and tγQ (s2) = tQ−1 for some s1, s2 ∈ [Q!]. (5)

By (4) and (5), we can obtain two transition sequences, denoted by T 1
Q and T 2

Q , where

T 1
Q = (tγQ (s1+1), tγQ (s1+2), . . . , tγQ (Q!), tγQ (1), tγQ (2), . . . , tγQ (s1))

and

T 2
Q = (tγQ (s2+1), tγQ (s2+2), . . . , tγQ (Q!), tγQ (1), tγQ (2), . . . , tγQ (s2)).

For convenience, we define T j
Q � (tβ j (1), tβ j (2), . . . , tβ j (Q!)) for j = 1, 2. Applying some

transition sequence T j
Q on one initial permutation π̂ , where π̂ = [c1, c2, . . . , cQ] ∈ SQ , we

can obtain a cyclic and complete Q-RMGC, denoted by C π̂

T j
Q

, with its last permutation π̃ j

for j = 1, 2. By the construction of T j
Q , when j = 1, we have that

π̃1 = [c2, c3, . . . , cQ−1, cQ, c1]. (6)

When j = 2, we have that

π̃2 = [c2, c3, . . . , cQ−1, c1, cQ].
Next, we construct the transition sequence of Cσ,π1

TC
. We let σ0 � σ , then σ0 =

[b1, a2, . . . , aQ, a1, b2, . . . , bP ]. When 1 ≤ j ≤ Q − 1, we let tα1( j) = tQ . When j = Q,
we let tα1(Q) = tQ+1. If Q + 1 ≤ j ≤ Q! + Q − 1, we use the transition sequence T 1

Q to
construct the transition tα1( j), and let tα1( j) = tβ1( j−Q).

Finally, we will prove that for any 0 ≤ i < j ≤ Q!+ Q −1, we have that d∞(σi , σ j ) ≥ 2.
By the construction of tα1( j), when 1 ≤ j ≤ Q − 2, we have that

σ j = [aQ+1− j , . . . , aQ, b1, a2, . . . , aQ− j , a1, b2, . . . , bP ].
When j = Q − 1, we have that

σQ−1 = [a2, . . . , aQ, b1, a1, b2, . . . , bP ].
When j = Q, we have that

σQ = [a1, a2, . . . , aQ, b1, b2, . . . , bP ]. (7)

By (6) and (7), we can obtain that

π1 = σQ!+Q−1 = [a2, . . . , aQ, a1, b1, . . . , bP ]. (8)
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When 0 ≤ i < j ≤ Q − 1, we obtain easily that

d∞(σi , σ j ) ≥ 2. (9)

When 0 ≤ i ≤ Q−1 and Q ≤ j ≤ Q!+Q−1, we have σi (Q+1) = a1 and σ j (Q+1) = b1,
then

d∞(σi , σ j ) ≥|σi (Q + 1) − σ j (Q + 1)|
=|a1 − b1|
≥2. (10)

When Q ≤ i < j ≤ Q!+ Q −1, we know that the first Q elements of σi and σ j are different

permutations over {a j }Q
j=1. Since {a j }Q

j=1 is a set of even integers, then

d∞(σi , σ j ) ≥ 2. (11)

Hence, by (8)–(11), we can obtain a noncyclic (n, Q! + Q, �∞)-snake Cσ,π1
TC

starting with σ

and ending with π1 = [a2, a3, . . . , aQ, a1, b1, b2, . . . , bP ].
Similarly, we can construct another noncyclic (n, Q! + Q, �∞)-snake Ĉσ,π2

TĈ
. Let TĈ �

(tα2(1), tα2(2), . . . , tα2(Q!+Q−1)) and Ĉσ,π2
TĈ

� (σ̂0, σ̂1, . . . , σ̂Q!+Q−1). Analogously, when

1 ≤ j ≤ Q − 1, we let tα2( j) = tQ . When j = Q, we let tα2(Q) = tQ+1. If Q + 1 ≤ j ≤
Q! + Q − 1, we let tα2( j) = tβ2( j−Q). We define σ̂0 = σ . As the above discussion, we can
also obtain another noncyclic (n, Q! + Q, �∞)-snake Ĉσ,π2

TĈ
starting with σ and ending with

π2 = [a2, a3, . . . , aQ−1, a1, aQ, b1, b2, . . . , bP ]. ��

Next we present an example to illustrate the constructions in Lemma 4.

Example 1 Consider n = 6, we have that P = Q = 3. By Lemma 4, we will construct two
kinds of noncyclic �∞-snakes which are basic building blocks for �∞-snakes. Now, we will
start this example with an initial permutation, denoted by σ0 = [1, 4, 2, 6, 3, 5]. In order to
construct the blocks, we need one transition sequence of a cyclic and complete 3-RMGC,
i.e, T3 = (t2, t3, t3, t2, t3, t3). By Lemma 4, we can obtain two transition sequences TC and
TĈ , where

TC = (t3, t3, t4, t2, t3, t3, t2, t3)

and

TĈ = (t3, t3, t4, t3, t3, t2, t3, t3).

Next, we will give two noncyclic (6, 3! + 3, �∞)-snakes by the two transition sequences and
σ0. One noncyclic (6, 3! + 3, �∞)-snake is constructed by TC and σ0, which is depicted by
Fig. 1 as follows.
Another noncyclic (6, 3! + 3, �∞)-snake is constructed by TĈ and σ0, which is depicted by
Fig. 2 as follows.

In the following, by Lemma 4, we will give one construction of an (n, M, �∞)-snake of
size M = � n

2 �!(� n
2 � + � n

2 �!). Suppose P � � n
2 � and Q � � n

2 �, then [n] has P odd elements
and Q even ones. Consider n ≥ 6, we let σ0 be the first permutation of the �∞-snake, where

σ0 = [1, 4, . . . , 2Q − 2, 2, 2Q, 3, 5 . . . , 2P − 1]. (12)
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494 X. Wang, F.-W. Fu

Fig. 1 A noncyclic (6, 3! + 3, �∞)-snake constructed by TC and σ0

Fig. 2 A noncyclic (6, 3! + 3, �∞)-snake constructed by TĈ and σ0

First, we construct one transition sequence, denoted by T = {tγ (1), tγ (2), . . . , tγ (M)}. T
and σ0 can yield one permutation sequence, denoted by CT = (σ0, σ1, . . . , σM ), where the
codewords satisfy σ j = tγ ( j)(σ j−1) for all 1 ≤ j ≤ M .

By Lemma 1, we take a cyclic and complete P-RMGC by using the following transition
sequence

TP = (tγP (1), tγP (2), . . . , tγP (P!)). (13)

By Lemma 4, we can obtain two noncyclic (n, M1, �∞)-snakes of size M1 = Q! + Q,
Cσ,π1
TC

and Ĉσ,π2
TĈ

, respectively, where σ, π1, π2 are defined in Lemma 4. Cσ,π1
TC

is given by the
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following transition sequence

TC = (tα1(1), tα1(2), . . . , tα1(M1−1)). (14)

Similarly, Ĉσ,π2
TĈ

is determined by the following transition sequence

TĈ = (tα2(1), tα2(2), . . . , tα2(M1−1)). (15)

By (12)–(15), we construct the transition sequence T = (tγ (1), . . . , tγ (M)). When we use
one transition sequence TC or TĈ , we must guarantee the initial permutation to satisfy the
condition |a1−b1| ≥ 2 of σ in Lemma 4. Here, for all 1 ≤ k ≤ P!, σ(k−1)·(Q!+Q) is the initial
permutation. Moreover, b1 = σ0(1) = 1, σ0(Q) = 2 and a1 = σ0(Q + 1) = 2Q for σ0.
According to the construction of σ0 and Lemma 4, for all 2 ≤ k ≤ P! and σ(k−1)·(Q!+Q), we
have a1 = 2 or 2Q. In order to satisfy these conditions, we construct the transition sequence
T as follows.

For all 1 ≤ k ≤ P!, we let
tγ (k·(Q!+Q)) = tγP (k)+Q . (16)

By (16), σk·(Q!+Q)(1) = σ(k−1)·(Q!+Q)(γP (k) + Q) for all 1 ≤ k ≤ P!. When we pick
one transition sequence TC or TĈ to apply on σ(k−1)·(Q!+Q), by Lemma 4, we obtain that
σk·(Q!+Q)(Q + 1) = σ(k−1)·(Q!+Q)(Q + 1) or σ(k−1)·(Q!+Q)(Q) for all 1 ≤ k ≤ P!. Hence,
σk·(Q!+Q)(1) = σ(k−1)·(Q!+Q)(γP (k) + Q) and σk·(Q!+Q)(Q + 1) = σ(k−1)·(Q!+Q)(Q +
1) or σ(k−1)·(Q!+Q)(Q) for all 1 ≤ k ≤ P!. That’s, σ(k−1)·(Q!+Q)(γP (k) + Q) and
σk·(Q!+Q)(Q + 1) are b1 and a1 in Lemma 4 respectively. In order to satisfy the condi-
tion |a1 − b1| ≥ 2 of σ in Lemma 4 for all 1 ≤ k ≤ P! − 1, we choose one transition
sequence TC or TĈ by using the following method.

For all 1 ≤ k ≤ P! and 1 ≤ j ≤ Q! + Q − 1, when |σ(k−1)·(Q!+Q)(γP (k) + Q) = 1 or 3,
if σ(k−1)·(Q!+Q)(Q + 1) = 2Q, we let

tγ ((k−1)·(Q!+Q)+ j) = tα1( j), (17)

else if σ(k−1)·(Q!+Q)(Q) = 2Q, we let

tγ ((k−1)·(Q!+Q)+ j) = tα2( j). (18)

Hence, when |σ(k−1)·(Q!+Q)(γP (k)+ Q) = 1 or 3, by using one transition sequence TC or TĈ
applied on σ(k−1)·(Q!+Q), we always have σk·(Q!+Q)(Q + 1) = 2Q. Then, |σk·(Q!+Q)(1) −
σk·(Q!+Q)(Q + 1)| ≥ 2. When |σ(k−1)·(Q!+Q)(γP (k) + Q) = 2Q − 1, if σ(k−1)·(Q!+Q)(Q +
1) = 2, we let

tγ ((k−1)·(Q!+Q)+ j) = tα1( j), (19)

else if σ(k−1)·(Q!+Q)(Q) = 2, we let

tγ ((k−1)·(Q!+Q)+ j) = tα2( j). (20)

Hence, when |σ(k−1)·(Q!+Q)(γP (k) + Q) = 2Q − 1, by using one transition sequence TC or
TĈ applied on σ(k−1)·(Q!+Q), we always have σk·(Q!+Q)(Q + 1) = 2. Then, |σk·(Q!+Q)(1) −
σk·(Q!+Q)(Q +1)| ≥ 2.When |σ(k−1)·(Q!+Q)(γP (k)+ Q) = 5, 7, . . . , 2Q −3, we arbitrarily
choose one α1 or α2, i.e.,

tγ ((k−1)·(Q!+Q)+ j) = tα1( j) or tα2( j). (21)

Thus, when |σ(k−1)·(Q!+Q)(γP (k)+ Q) = 5, 7, . . . , 2Q−3, by using one transition sequence
TC or TĈ applied on σ(k−1)·(Q!+Q), we have |σk·(Q!+Q)(1) − σk·(Q!+Q)(Q + 1)| ≥ 2. Here,
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when |σ(k−1)·(Q!+Q)(γP (k)+ Q) = 5, 7, . . . , or 2Q −3, we can choose some α1 or α2 such
that the number of choices of α2 is an even number.

Hence, this construction of the transition sequence satisfies the the condition |a1−b1| ≥ 2
of σ in Lemma 4. Next, we will prove that CT is an �∞-snake in the following theorem.

Theorem 1 For all n ≥ 6, there exist an (n, M, �∞)-snake of size M = � n
2 �!(� n

2 � + � n
2 �!).

Proof By the construction of CT and Lemma 4, for all 1 ≤ k ≤ P!, we have that
|σk·(Q!+Q)(1) − σk·(Q!+Q)(Q + 1)| ≥ 2. (22)

Sinceσ0(1) = 1, σ0(Q+1) = 2Q, then |σ0(1)−σ0(Q+1)| ≥ 2.Thus, for all 0 ≤ k ≤ P!−1,
σk·(Q!+Q) satisfies the condition of Lemma 4.

By the construction ofCT and Lemma 4, for all 0 ≤ k ≤ P!−1, 0 ≤ i < j ≤ Q!+Q−1,
we have that

d∞(σk(Q!+Q)+i , σk(Q!+Q)+ j ) ≥ 2.

Furthermore, for k, k̃ ∈ [P!] and k < k̃, since the code generated by its transition sequence
TP = (tγP (1), tγP (2), . . . , tγP (P!)) is a cyclic and complete P-RMGC code, we are assured
that for all 0 ≤ j, j̃ ≤ Q! + Q − 1, the last P − 1 elements of both σ(k−1)(Q!+Q)+ j and
σ

(k̃−1)(Q!+Q)+ j̃ are all odd and represent two distinct permutations. Hence, we have that

d∞(σ(k−1)(Q!+Q)+ j , σ(k̃−1)(Q!+Q)+ j̃ ) ≥ 2.

Finally, we will prove that σP!(Q!+Q) = σ0. Since the code generated by the transition
sequence TP = (tγP (1), tγP (2), . . . , tγP (P!)) is a cyclic and complete P-RMGC code, we
have that σP!(Q!+Q)(1) = 1. By the construction of σ0, T , and Lemma 4, the number of
times of TĈ chosen (i.e., α2) over the entire construction is even. Then, we can obtain that
σP!(Q!+Q) = σ0.

So, CT is an (n, M, �∞)-snake of size M = � n
2 �!(� n

2 � + � n
2 �!). ��

Next we present an example to illustrate the construction in Theorem 1.

Example 2 For this example, consider n = 6 (i.e., P = Q = 3 ), we need one transition
sequence of a cyclic and complete 3-RMGC, i.e., T3 = (t3, t3, t2, t3, t3, t2). We start our
cyclic (6, 54, �∞)-snake described in Fig. 3 with the same permutation σ0 in Example 5, and
use the two kinds of basic noncyclic �∞-snakes presented in Example 5 as building blocks.
In Fig. 3, “⇓ (1)” stands for an omitted transition sequence TC = (t3, t3, t4, t2, t3, t3, t2, t3).
While “⇓ (2)” stands for another omitted transition sequenceTĈ = (t3, t3, t4, t3, t3, t2, t3, t3).
When n = 6, by using one cyclic and complete 3-RMGC, we indeed construct a cyclic �∞-
snake of size 54.

3.2 Construction of �∞-snakes by usingK-snakes

In this subsection, we will construct �∞-snakes by using some snake-in-the-box codes under
the Kendall’s τ -metric. In order to present the construction, we need some notations and
lemmas of snake-in-the-box codes under the Kendall’s τ -metric.

Given a permutation π = [a1, . . . , an] ∈ Sn , an adjacent transposition is an exchange
of two distinct adjacent elements ai , ai+1, in π , for some 1 ≤ i ≤ n − 1. The Kendall’s
τ -distance [15] between two permutations π, σ ∈ Sn , denoted by dK (π, σ ), is the minimum
number of adjacent transpositions required to obtain the permutation σ from π . A K-snake
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Fig. 3 A (6, 54, �∞)-snake obtained by using a cyclic and complete 3-RMGC

is a Gray code such that dK(σ, π) ≥ 2 for any two distinct permutations σ and π in the code.
Moreover, the Kendall’s τ -metric is right invariant [3], that is, for every three permutations
σ, π, ρ ∈ Sn , we have dK (σ, π) = dK (σ ◦ ρ, π ◦ ρ). For convenience, we denote by an
(n, M,K)-snake a K-snake of size M in Sn . In order to establish our results, we need the
following results on K-snakes.

Lemma 5 [7] For each n ≥ 3, there exists a (2n + 1, M2n+1,K)-snake in A2n+1 of size
M2n+1 = (2n+1)!

2 with the transition sequence including t2n+1. The largest (5, M5,K)-snake
has M5 = 57.

Furthermore, we require the following lemmas for constructing �∞-snakes by using K-
snakes.

Lemma 6 Suppose {a j }n
j=1, n ≥ 2, is a set of integers of the same parity. Let σi =

[σi (1), . . . , σi (n), σi (n+1), bn+2, . . . , bm] ∈ Sm for i = 1, 2, where σ1 = σ2, {σi ( j)}n+1
j=1 =

{a j }n
j=1 ∪ {x} for i = 1, 2, and the parity of x differs from that of the elements of {a j }n

j=1. If
σ1 and σ2 are both odd permutations or even permutations, then d∞(σ1, σ2) ≥ 2.

Proof Since σ1 = σ2, then d∞(σ1, σ2) ≥ 1. Suppose d∞(σ1, σ2) < 2, we have
that d∞(σ1, σ2) = 1. We let σ1 = [a1, a2, . . . , ai , x, ai+1 . . . , an, bn+2, . . . , bm],
|a j1 − x | = 1, and |a j2 − x | = 1, where j1, j2 ∈ [n]. When i > j1 and
i > j2, since {a j }n

j=1 have the same parity and d∞(σ1, σ2) = 1, then σ2 =
[a1, . . . , a j1−1, x, a j1+1, . . . , ai , a j1 , ai+1, . . . , an, bn+2, . . . , bm] or σ2 = [a1, . . . , a j2−1,

x, a j2+1, . . . , ai , a j2 , ai+1, . . . , an, bn+2, . . . , bm]. Similarly, in all the cases, σ2 can be
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obtained from σ1 using one transposition of a ji and x for i = 1 or 2. Then, the parity of σ1
differs from the parity of σ2, which causes a contradiction. Hence, we have that d∞(σ1, σ2)

≥ 2. ��
Lemma 7 Suppose Cn is an (n, Mn,K)-snake in An with its first permutation π0 and one
transition sequence TCn = (tα(1), tα(2), . . . , tα(Mn)). For any σ0 ∈ Sn, by applying the transi-
tion sequence TCn on the permutation σ0, we can obtain another (n, Mn,K)-snake, denoted
by Ĉn = (σ0, σ1, . . . , σMn−1), where σ j = tα( j)(σ j−1) for all j ∈ [Mn − 1]. Moreover, all
the permutations of Ĉn have the same parity.

Proof By [14, Lemma 3], we have that Ĉn is an (n, Mn,K)-snake and σi ◦σ−1
0 = πi ◦π−1

0 for
all i ∈ [Mn −1]∪{0}. Since the Kendall’s τ -metric is right invariant and σi ◦σ−1

0 = πi ◦π−1
0 ,

for any two distinct i, j ∈ [Mn − 1] ∪ {0}, we can obtain that dK (σi , σ j ) = dK (πi , π j ).
So, when Cn is an (n, Mn,K)-snake in An , we have that all the permutations of Ĉn have the
same parity. ��

The following lemma gives the construction of a basic block which is useful for the
construction of �∞-snakes by using K-snakes.

Lemma 8 Let {a j }Q
j=1 be a set of integers of the same parity, and let {b j }P

j=1 be also

a set of integers of the same parity such that {a j }Q
j=1 ∪ {b j }P

j=1 = [n]. We define

σ � [b1, a1, a2, . . . , aQ, b2, b3, . . . , bP ]. Suppose we have an (Q + 1, MQ+1,K)-snake
in AQ+1 with one transition sequence TK,Q+1 = (tγ (1), tγ (2), . . . , tγ (MQ+1)) such that
tγ (MQ+1) = tQ+1, where Q is an even integer. Then, there exists a noncyclic (n, MQ+1, �∞)-
snake starting with σ and ending with the permutation π = [a1, a2, . . . , aQ, b1, b2, . . . , bP ].
Proof According to Lemma 5, when Q is an even integer, there exists an (Q +1, MQ+1,K)-
snake in AQ+1 with one transition sequence TK,Q+1 such that tγ (MQ+1) = tQ+1. We let
Cσ,π

T̂Q+1
be the claimed noncyclic �∞-snake, where Cσ,π

T̂Q+1
= (σ0, σ1, . . . , σMQ+1−1) and

T̂Q+1 = (tα(1), tα(2), . . . , tα(MQ+1−1)).

First, we denote by σ0 � σ . Next, we construct the transition sequence T̂Q+1. We let

tα( j) = tγ ( j) for all j ∈ [MQ+1 − 1]. (23)

By (23) and its first permutation σ0, we have that

σ j = [σ j (1), . . . , σ j (Q + 1), b2, b3, . . . , bP ]
for all j ∈ [MQ+1−1]. By (23) and Lemma 7, due to the (Q +1, MQ+1,K)-snake in AQ+1,
we have thatCσ,π

T̂Q+1
is a noncyclic Gray code, and all the permutations ofCσ,π

T̂Q+1
have the same

parity. Since tγ (MQ+1) = tQ+1, we have π = σMQ+1−1 = [a1, a2, . . . , aQ, b1, b2, . . . , bP ].
Finally, for any two distinct permutations σ j1 , σ j2 ∈ Cσ,π

T̂Q+1
, since they have the same

parity and σ ji = [σ ji (1), . . . , σ ji (Q + 1), b2, b3, . . . , bP ], for i = 1 or 2, by Lemma 6, we
have that

d∞(σ j1 , σ j2) ≥ 2.

Hence, we can obtain that Cσ,π

T̂Q+1
is a noncyclic (n, MQ+1, �∞)-snake starting with σ and

ending with the permutation π = [a1, a2, . . . , aQ, b1, b2, . . . , bP ]. ��
Next we present an example to illustrate the construction in Lemma 8.
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Fig. 4 A noncyclic (7, 57, �∞)-snake constructed by T̂K,5 and σ̂0

Example 3 Consider n = 7, we have P = 4 and Q = 3. By Lemma 8, we will con-
struct a noncyclic �∞-snakes which is a basic building block for �∞-snakes. Now, we
will start this example with an initial permutation, denoted by σ0 = [2, 1, 3, 5, 7, 4, 6].
First, Horovitz and Etzion [8] gave a (5, 57,K)-snake in A5 with one transition sequence,
denoted by TK,5 = (T̂ , T̂ , T̂ ), where T̂ is a partial transition sequence of TK,5 and
T̂ = (t3, t3, t5, t3, t3, t5, t3, t5, t5, t3, t3, t5, t3, t3, t5, t3, t5, t5, t5).

Next, by Lemma 8 and TK,5, we can construct one transition sequence, denoted by T̂K,5,
where

T̂K,5 = (T̂ , T̂ , t3, t3, t5, t3, t3, t5, t3, t5, t5, t3, t3, t5, t3, t3, t5, t3, t5, t5).

We can construct one noncyclic (7, 57, �∞)-snake by the transition sequence T̂K,5 and σ̂0
depicted in Fig. 4.
Here, every column in Fig. 4 represents one permutation over {1, 2, 3, 4, 5, 6, 7}.

In the following, by Lemma 8, we will give one construction of an (n, M, �∞)-snake by
using some K-snakes.

When n = 4k + 1, k ≥ 1, then [n] has 2k even elements and 2k + 1 odd ones. For
convenience, we let Q = 2k and P = 2k + 1. First, we denote by σ0 an initial permutation,
where

σ0 = [1, 2, 4, . . . , 2Q − 2, 2Q, 3, 5 . . . , 2P − 3, 2P − 1].
Next, we will construct a transition sequence, denoted by TC = (tγ (1), tγ (2), . . . , tγ (M)).

By the transition sequence TC and the initial permutation σ0, we can obtain a permutation
sequence, denoted by Cσ0

TC
= (σ0, σ1, . . . , σM−1). Given a (P, MP ,K)-snake in AP with

one transition sequence (tα(1), tα(2), . . . , tα(MP )) and tα(MP ) = t2k+1, by Lemma 8, we take
a noncyclic (n, MP , �∞)-snake by using the following transition sequence

T̂P = (tα(1), tα(2), . . . , tα(MP −1)). (24)

ByLemma 1,we can obtain a cyclic and complete P-RMGCby using the following transition
sequence

TP = (tγP (1), tγP (2), . . . , tγP (P!)). (25)

By (24)–(25), we construct the transition sequence TC = (tγ (1), tγ (2), . . . , tγ (M)) such that
M = MP · P! as follows.

For all 1 ≤ i ≤ P! and 1 ≤ j ≤ MP − 1, we let

tγ ((i−1)·MP + j) = tα( j), (26)

tγ (i ·MP ) = tγP (i)+Q . (27)

By (26)–(27) and the initial permutation σ0, we obtain the permutation sequence σ j =
tγ ( j)(σ j−1) for all 1 ≤ j ≤ MP (P)! − 1.

123



500 X. Wang, F.-W. Fu

Similarly, when n = 4k + 3 or 4k + 4, and k ≥ 1, then [n] has Q even elements and P
odd ones. Hence, when n = 4k + 3 or 4k + 4, we always have P = 2k + 2. Then, according
to Lemma 5, there exists a (P + 1, MP+1,K)-snake in AP+1 with one transition sequence
(tα1(1), tα1(2), . . . , tα1(MP+1)) and tα1(MP+1) = tP+1. We will give another construction of an
(n, M̂, �∞)-snake by using some K-snakes. First, we denote by σ̂0 an initial permutation,
where

σ̂0 = [2, 1, 3, 5, . . . , 2P − 3, 2P − 1, 4, 6 . . . , 2Q − 2, 2Q]. (28)

Next, we construct another transition sequence, denoted by TĈ = (tβ(1), tβ(2), . . . , t
β(M̂)

).
By the transition sequence TĈ and the initial permutation σ̂0, we can get a permutation

sequence, denoted by Ĉ σ̂0
TĈ

= (σ̂0, σ̂1, . . . , σ̂M̂−1).

Given a (P +1, MP+1,K)-snake in AP+1 with one transition sequence (tα1(1), tα1(2), . . . ,
tα1(MP+1)) and tα1(MP+1) = tP+1, by Lemma 8, we take a noncyclic (n, MP+1, �∞)-snake
by using the following transition sequence

T̂P+1 = (tα1(1), tα1(2), . . . , tα1(MP+1−1)). (29)

ByLemma 1,we can obtain a cyclic and complete Q-RMGCby using the following transition
sequence

TQ = (tγQ (1), tγQ (2), . . . , tγQ (Q!)). (30)

By (29)–(30), we construct the transition sequence TĈ = (tβ(1), tβ(2), . . . , t
β(M̂)

) such that

M̂ = MP+1 · Q! as follows.
For all 1 ≤ i ≤ Q! and 1 ≤ j ≤ MP+1 − 1, we let

tβ((i−1)·MP+1+ j) = tα( j), (31)

tβ(i ·MP+1) = tγQ (i)+P . (32)

By (31)–(32) and its first permutation σ̂0, we obtain the permutation sequence σ̂ j =
tβ( j)(σ̂ j−1) for all 1 ≤ j ≤ MP+1 · Q! − 1.

Finally, in the following theorem, we will prove that Ĉ σ̂0
TĈ

and Cσ0
TC

are �∞-snakes.

Theorem 2 When n = 4k + 1 and k ≥ 1, given a (2k + 1, M2k+1,K)-snake in A2k+1, there
exists an (n, M, �∞)-snake of size M = M2k+1 · (2k + 1)!. When n = 4k + 3 or 4k + 4, and
k ≥ 1, given a (2k + 3, M2k+3,K)-snake in A2k+3, there exists an (n, M̂, �∞)-snake of size
M̂ = M2k+3 · � n

2 �!.

Proof When n = 4k + 1, then Q = 2k and P = 2k + 1. According to Lemma 5, there exists
a (2k + 1, M2k+1,K)-snake in A2k+1 and a (2k + 3, M2k+3,K)-snake in A2k+3. We will
prove that the above Cσ0

TC
is an �∞-snake. Since σ0 = [1, 2, 4, . . . , 2Q, 3, 5, . . . , 2P − 1],

by the construction of this �∞-snake, we have that for all 0 ≤ i ≤ P! − 1, σi ·MP satisfies
the condition of Lemma 8. Then, by the construction of Cσ0

TC
and Lemma 8, for all 0 ≤ i ≤

P! − 1 and 0 ≤ j1 < j2 ≤ MP − 1, we have

d∞(σi ·MP + j1 , σi ·MP + j2) ≥ 2.

Furthermore, for l, l̃ ∈ [P!] and l < l̃, since the code generated by the transition sequence
TP = (tγP (1), tγP (2), . . . , tγP (P!)) is a cyclic and complete P-RMGC code, we are assured
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that for all 0 ≤ j, j̃ ≤ MP − 1, the last 2k elements of both σ(l−1)MP + j and σ
(l̃−1)MP + j̃ are

all odd and represent two distinct permutations. Then, we have that

d∞(σ(l−1)MP + j , σ(l̃−1)MP + j̃ ) ≥ 2.

Finally, we note that tγ (MP ·P!)(σMP ·P!−1) = σ0, since the code generated by the transition
sequence TP is cyclic. Hence, Cσ0

TC
is an (n, M, �∞)-snake of size M = MP · P! = M2k+1 ·

(2k + 1)!.
Similarly, when n = 4k + 3 or 4k + 4, by the construction of Ĉ σ̂0

TĈ
, we can obtain that

Ĉ σ̂0
TĈ

is an (n, M̂, �∞)-snake of size M̂ = M2k+3 · � n
2 �!. ��

Corollary 1 When n = 4k + 1 and k ≥ 3, there exists an (n, M, �∞)-snake of size M =
((2k+1)!)2

2 . When n = 4k+3 or 4k+4, and k ≥ 1, there also exists an (n, M̂, �∞)-snake of size

M̂ = (2k+3)!·� n
2 �!

2 . Moreover, there exists a (9, 6840, �∞)-snake and a (7, 342, �∞)-snake.

Proof By Theorem 2 and Lemma 5, we can prove this corollary. ��
Next we present an example to illustrate the construction in Theorem 2 and Corollary 1.

Example 4 For this example, consider n = 7 (i.e., P = 4, Q = 3 ), we need one transition
sequence of a cyclic and complete 3-RMGC, i.e, T3 = (t2, t3, t3, t2, t3, t3).We start our cyclic
(7, 342, �∞)-snake described in Fig. 5 with the same permutation σ0 in Example 12, and use
the basic noncyclic �∞-snakes presented in Example 12 as a building block.

In Fig. 5, “⇓” stands for an omitted transition sequence T̂K,5 denoted in Example 12.
When n = 7, by using K-snakes in A5, we can obtain a cyclic (7, 342, �∞)-snake.

Fig. 5 A (7, 342, �∞)-snake constructed by using a K-snake in A5
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4 Comparison

In this section, we compare our results with those of others. Yehezkeally and Schwartz [15]
presented one construction of an (n, Mn,0, �∞)-snake of size

Mn,0 = �n

2
�!

(
�n

2
� +

(
�n

2
� − 1

)
!
)
for all n ≥ 4. (33)

Based on their construction of �∞-snakes, we proposed one construction of �∞-snakes by
using cyclic and complete RMGCs. In this construction, we could obtain an (n, Mn,1, �∞)-
snake of size

Mn,1 = �n

2
�!

(
�n

2
� +

(
�n

2
�
)
!
)

for all n ≥ 6. (34)

Hence, these �∞-snakes are better than Yehezkeally and Schwartz’s ones for all n ≥ 6.
We also gave another construction of �∞-snakes by using K-snakes. By Corollary 1, we

can obtain an (n, Mn,2, �∞)-snake, where

Mn,2 =
{

((2k+1)!)2
2 if n = 4k + 1,

(2k+3)!·� n
2 �!

2 if n = 4k + 3 or 4k + 4,
(35)

for all k ≥ 2.
By (34)–(35) and Corollary 1, when n = 4k + 1, 4k + 3, or 4k + 4, and k ≥ 2, we have

that Mn,2 > Mn,1. Thus, we can obtain that

Mn,2 > Mn,1 > Mn,0 (36)

for all n = 4k + 1, 4k + 3 or 4k + 4, and k ≥ 2. Hence, by (36), the second construction is
superior to the first one and Yehezkeally and Schwartz’s one in some cases. Moreover, when
n = 4k + 1, 4k + 3 or 4k + 4, and k ≥ 2, the second construction improves the size of the
(n, Mn,0, �∞)-snake by a factor of O(n2). We note that a similar improvement was made
in [16]. Specifically, Yehezkeally and Schwartz [16] constructed an (n, Mn,3, �∞)-snake,
where

Mn,3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2k!·(2k+2)!
2 if n = 4k + 1,

(2k+1)!·(2k+2)!
2 · ρ2k+2 if n = 4k + 2,

(2k+1)!·(2k+3)!
2 if n = 4k + 3,

(2k+2)!·(2k+3)!
2 if n = 4k + 4,

and ρ2k+2 > 2k−1
2k+3 , for all k ≥ 3. Moreover, in the case of n ≡ 1 (mod 4), the factor ρ2k+2

is eliminated. Hence, when n = 4k + 1, 4k + 2, 4k + 3 or 4k + 4, and k ≥ 3, the results in
[16] also improve the size of the (n, Mn,0, �∞)-snake by a factor of O(n2).

Finally, we also compare our results (i.e., Mn,1 and Mn,2) to error-correcting codes with
the �∞-metric which are not necessarily Gray codes (LMRM-codes) in [11] and [13]. The
authors in [11] and [13] presented (n, M, �∞)-LMRM codes with sizes

M =
(
�n

2
�!

)n mod 2 (
�n

2
�!

)2−(n mod 2)
. (37)

When n = 4k + 1, 4k + 3 or 4k + 4, and k ≥ 2, the second construction (i.e., Mn,2)
improves the size of the (n, M, �∞)-LMRM codes by a factor of O(n/4). When n = 4k +2,
Mn,1 = (2k + 1)!((2k + 1)! + 2k + 1

)
and M = ((2k + 1)!)2. Hence, when n = 4k + 2,

Mn,1 = O(M), but Mn,1 is strictly larger than M .
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5 Conclusions

Gray codes in Sn under the �∞-metric are very useful in the framework of rank modulation
for flash memories. In this paper, we gave two constructions of �∞-snakes which improve on
Yehezkeally and Schwartz’s construction. On the one hand, we presented one construction
of �∞-snakes by using cyclic and complete RMGCs. On the other hand, we gave another
construction of �∞-snakes by using K-snakes. By our constructions, we can obtain longer
�∞-snakes than Yehezkeally and Schwartz’s ones.
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