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Abstract
We present a method for constructing an infinite family of non-bipartite Ramanujan graphs.
We mainly employ p-ary bent functions of (p − 1)-form for this construction, where p is
a prime number. Our result leads to construction of infinite families of expander graphs;
this is due to the fact that Ramanujan graphs play as base expanders for constructing fur-
ther expanders. For our construction we directly compute the eigenvalues of the Ramanujan
graphs arsing from p-ary bent functions. Furthermore, we establish a criterion on the regu-
larity of p-ary bent functions in m variables of (p − 1)-form when m is even. Finally, using
weakly regular p-ary bent functions of �-form, we find (amorphic) association schemes in a
constructive way; this resolves the open case that � = p −1 for p > 2 for finding (amorphic)
association schemes.
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1 Introduction

Expanders (or expander graphs) have a great deal of applications in various areas such as com-
puter science, network design, coding theory, cryptography, and even in pure mathematics
(for instance, refer to [8,10,11,13,16,24,27]). Briefly speaking, an expander is a highly con-
nected sparse graph; this means that every subset of their vertices has a large set of neighbors.
It is well known that Ramanujan graphs are “good” expanders achieving the spectral bound.
In fact, a connected k-regular graph is called Ramanujan if it satisfies |θ | ≤ 2

√
k − 1 for

every eigenvalue θ �= ±k of its adjacencymatrix; this definition ismotivated by the result that
lim infn→∞ λ2(Gn,k) ≥ 2

√
k − 1, where λ2(Gn,k) denotes the second largest eigenvalues of

the Gn,k being a k-regular graph with n vertices. Furthermore, the spectral gap k − λ2(Gn,k)

should be as large as possible for having expanders of good quality; however, the spectral
gap cannot be too large asymptotically as proved by Alon-Boppana [1]. This means that a
Ramanujan graph is a connected regular graph whose second largest eigenvalue in absolute
value is asymptotically the smallest possible. In general, computation of the eigenvalues of
graphs is a hard task. In spectral graph theory, there are some invariants related to eigenvalues
of regular graphs such as the cheeger constant, the size of the largest independent sets, the
chromatic number and the diameter of regular graphs [31].

For construction of expanders, a graph product, called the zig-zag graph product, is intro-
duced in [26]. The zig-zag product yields simple explicit constructions of constant-degree
expanders of arbitrary size, starting from one constant size expander. Therefore, the role of
base expanders is very crucial to construction of expanders. We point out that Ramanujan
graphs can play as base expanders.We are therefore highlymotivated to work on constructing
Ramanujan graphs.

Recently, there has been a great deal of developments on construction of Ramanujan
graphs. First of all, constructions of Ramanujan graphs with a fixed degree p + 1 (that is,
(p+1)-regular Ramanujan graphs) were independently given in [17,21], where p is an “odd”
prime number, and the (pm + 1)-regular Ramanujan graphs were studied in [23], where m is
a positive integer. Furthermore, the cubic version (that is, p = 2) of Ramanujan graphs was
later studied in [6]. We note that these graphs have a fixed degree and increasing number of
vertices.

Furthermore, in [3,22], they showed that the Cayley graphs associated with some quasi-
perfect Lee codes are Ramanujan graphs of degree pm + 1 with p2m vertices. All of these
constructions used a Weil-Deligne bound on estimation of associated character sums instead
of directly computing eigenvalues of the graphs. On the other hand, in [2] they found con-
structions of bipartiteRamanujan graphs of degree p (respectively, pm −1) with 2p2 vertices
(respectively, 2pmd vertices, d being a positive integer) by direct computation of eigenvalues
of their graphs.

We present amethod for constructing an infinite family of non-bipartiteRamanujan graphs
of degrees pm−1 ± ε(p, m) with pm vertices, where ε(p, m) is an explicit formula involved
with p and m, p is a prime number, and m is a positive integer (Theorems 4.1 and 4.4). We
mainly employ p-ary bent functions of (p − 1)-form for this construction. Our result leads
to construction of infinite families of expander graphs with a fixed degree and increasing
number of vertices; this is due to the fact that Ramanujan graphs play as base expanders for
construction of further expanders. For our construction we directly compute the eigenvalues
of the Ramanujan graphs arising from p-ary bent functions. Furthermore, we establish a
criterion on the regularity of p-ary bent functions in m variables of l-form when m is even
and l = p − 1; the case that m is even and l �= p − 1 for p > 3 is treated in [12]. We
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Ramanujan graphs and expander families 455

also derive an algebraic formula for the diameter of a Cayley graph. Finally, using weakly
regular p-ary bent functions of (p − 1)-form, we find (amorphic) association schemes in a
constructive way; this resolves the open case that � = p −1 for p > 3 for finding (amorphic)
association schemes.

2 Preliminaries

In this sectionwe introduce the basic definitions and notations regarding p-ary bent functions,
strongly regular graphs, Ramanujan graphs, expander graphs and (amorphic) association
schemes.

Throughout this paper, m is a positive integer and p is an odd prime number.

2.1 Bent functions

Let Fpm be the finite field of order pm . For a subset S of Fpm , we denote by S∗ the set of
nonzero elements of S.

A p-ary function f in m variables is just a function from Fpm to Fp . We say that a p-ary
function f is even if f (−x) = f (x) for any x ∈ Fpm . We define D f ,i to be the set

D f ,i = {β ∈ F
∗
pm : f (β) = i}.

For some l ∈ F
∗
p , we say that a p-ary function f inm variables is an l-form if f (ax) = al f (x)

for any a ∈ F
∗
p and x ∈ Fpm .

The Walsh–Hadamard transform W f of a p-ary function f in m variables is a complex-
valued function of Fpm defined by

W f (β) =
∑

x∈Fpm

ζ
f (x)−Tr(βx)

p ,

where ζp = e
2π

√−1
p is a primitive pth root of unity, and Trk1 is the trace function from Fpk to

Fp defined by
∑k−1

j=0 x p j
. Throughout this paper, let Tr denote Trm1 .

The inverse Walsh–Hadamard transform of a p-ary function f is given by

ζ
f (β)

p = p−m
∑

x∈Fpm

W f (x)ζTr(βx)
p .

TheFourier transform f̂ of a p-ary function f inm variables is a complex-valued function
of Fpm defined by

f̂ (β) =
∑

x∈Fpm

f (x)ζTr(βx)
p .

We say that a p-ary function f in m variables is bent if |W f (β)|2 = pm for any β ∈ Fpm .
In this case, it is known [15] that

W f (β) =
⎧
⎨

⎩
±p

m
2 ζ

g(β)
p if m even, or m odd and p ≡ 1 (mod 4),

±√−1p
m
2 ζ

g(β)
p if m odd and p ≡ 3 (mod 4)
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for some p-ary function g in m variables. We denote by 1S the characteristic function of a
subset S of Fpm . Then the Walsh–Hadamard transform of a p-ary bent function f can be
written as

W f (β) = (−1)1S(β)(p∗)
m
2 ζ

g(β)
p ,

where S is a subset of Fpm , p∗ = (−1)(p−1)/2 p, and g is a p-ary function in m variables. A
p-ary bent function f is weakly regular if there is a complex α with unit magnitude such that

W f (β) = α p
m
2 ζ

f̃ (β)
p for some p-ary function f̃ in m variables. That is, if S is the ambient

space or an empty set, then f is weakly regular bent. In this case, we call f̃ the dual of f . In
particular, when α = 1 (or S = ∅), we say that f is regular p-ary bent. When f is weakly
regular bent, we have

W f̃ (β) =
(−1

p

)m

(−1)1S(β)(p∗)
m
2 ζ

f (−β)
p , (1)

where
( ·

·
)
is the Legendre symbol. This shows that the dual f̃ of a weakly regular p-ary bent

function f is also weakly regular p-ary bent and ˜̃f (x) = f (−x) for all x ∈ Fpm .
Let Bl(m, p) (respectively, Bw

l (m, p)) be the set of p-ary bent functions (respectively,
weakly regular p-ary bent functions) in m variables of l-form, where (l − 1, p − 1) = 1
and f (0) = 0. In this paper, we mainly deal with Bp−1(m, p); for the case that l �= p − 1,
Bl(m, p) were studied by the authors in [12].

We introduce a family of p-ary bent functions in m variables of (p − 1)-form, which can
be found in [29] as follows.

Firstly, we consider the case that m = 2k and p is an odd prime number. A p-ary function
f from Fpm to Fp defined by

f (x) =
pk−1∑

i=1

Trm1 (ci xi(pk−1)) + Trl1

(
αx

pm −1
e

)
,

is known to be regular bent of (p − 1)-form, called Dillon-type bent, where e | (pk + 1),
ci ∈ Fpm for 0 ≤ i ≤ pk − 1, α in Fpl and l is the smallest positive integer such that l | m

and e | (pl − 1). On the other hand, there is a sporadic example of a ternary bent function
which is not weakly regular bent, that is, f (x) = Tr(ζ 7

3 x98) in F36 .
Secondly, we consider the case that m is odd and p is an odd prime number. Regarding an

example of a p-ary monomial bent function of (p − 1) form, to the best of our knowledge, a
ternary monomial bent function of 2 form is the only example which is known so far. Weakly

regular bent functions of Coulter-Matthews class are f (x) = Tr(cx
3i +1
2 ), where c ∈ F

∗
3, i is

odd and (i, m) = 1.
The character sum χβ(S) of S with respect to β ∈ Fpm for a subset of Fpm is defined by

χβ(S) =
∑

x∈S

ζTr(βx)
p .

2.2 Strongly regular Cayley graphs, Ramanujan graphs and expander graphs

We can refer to [9,14] for this subsection. Let G be a simple undirected graph, that is, an
undirected graph without loops and parallel edges. The degree of a vertex is the number of
edges adjacent to its vertex. A graph G is called k-regular if every vertex has degree k. The
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Ramanujan graphs and expander families 457

distance dG(x, y) between two vertices x and y in G is the number of edges in the shortest
path from x to y. The diameter of a graph is the maximum among distances between every
pair of vertices of G.

The adjacency matrix A of a graph with rows and columns indexed by its vertices is
defined by

Axy =
{
1 if x is adjacent to y,

0 otherwise.

Any eigenvalue θ of A is real because A is symmetric, and |θ | ≤ k whenever a graph is
k-regular. A connected k-regular graph is called Ramanujan if it satisfies

|θ | ≤ 2
√

k − 1

for every eigenvalue θ �= ±k of its adjacency matrix. A k-regular graph is bipartite if and
only if −k is also an eigenvalue of its adjacency matrix. In [20], it is shown that for every
k ≥ 3, there is a bipartite k-regular Ramanujan graph using a nonconstructive method.

A k-regular graph G with v vertices is said to be strongly regular (SRG) with parameters
(v, k, λ, μ) if there are integers λ and μ such that any two adjacent vertices have λ common
neighbors, and any two non-adjacent vertices haveμ common neighbors. The complete graph
and disjoint unions of complete graphs are the only SRG’s with two eigenvalues. Otherwise,
the adjacency matrix of a SRG has precisely two distinct restricted eigenvalues (eigenvectors
perpendicular to the all-ones vector), say, θ1 and θ2. There are relations between them as
follows; μ − k = θ1θ2 and λ − μ = θ1 + θ2. A connected regular graph with only two or
three eigenvalues is strongly regular.We say that a SRGwith parameters (n2, r(n+δ),−δn+
r2 + 3δr , r2 + δr) is of Latin square type if δ = −1 and of negative Latin square type if
δ = 1.

Let S be a subset ofFpm such that 0 /∈ S and S = −S. TheCayley graph G = Cay(Fpm , S)

has a vertex set Fpm , and two vertices α and β in Fpm are joined by an edge if and only if
α − β ∈ S. Then the Cayley graph G is a simple undirected graph, |S|-regular and vertex-
transitive. Moreover, G is connected if and only if S generates Fpm .

Result 1 [9] Let S be a subset of Fpm such that S = −S and 0 /∈ S. Then the set {χβ(S) :
β ∈ Fpm } is precisely the set of eigenvalues of the adjacency matrix of Cay(Fpm , S).

In order to construct Ramanujan graphs from the Cayley graph Cay(Fpm , S), we require
an inequality that

|χβ(S)| ≤ 2
√|S| − 1

for all β ∈ F
∗
pm .

Finally,we introduce the expander families of k-regular graphs. The isoperimetric constant
h(G) of a graph G with a vertex set V is defined by

h(G) = min{|∂ F |/|F | : F ⊂ V and |F | ≤ |V |/2},
where ∂ F , called the boundary of F , is the set of edges connecting F to V \ F .

Let k be a positive integer. Let (Gn) be a sequence of k-regular graphs with |Gn | → ∞ as
n → ∞. We say that (Gn) is an expander family if the sequence (h(Gn)) is bounded away
from zero, that is, there is a real number ε > 0 such that h(Gn) ≥ ε for all n.

Let (Gn) be a sequence of k-regular graphs with |Gn | → ∞ as n → ∞. Then (Gn) is an
expander family if and only if the sequence

(k − (the second largest eigenvalue of Gn)/k
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is bounded away from zero.
We say that G is a (v, k, ε)-expander if it is a k-regular expander graph with v vertices

such that there is a constant ε > 0 provided that

(the second largest eigenvalue of G)/k ≤ ε.

Reingold et al. in [26] proved the following result which allows us to construct the families
of expander graphs with constant degree.

Result 2 Let G be a (v1, k1, ε1)-expander and H be a (k1, k2, ε2)-expander. Then the zig-zag
product G ◦Z H is a (v1k1, k22, ε1 + ε2 + ε22)-expander, where for the definition of zig-zag
product, see [26].

Using this result, they provided a simple combinatorial construction of constant-degree
expander graphs. See Theorem 1.4 of [26].

2.3 Association schemes

Let X be a finite set. A symmetric d-class association scheme (X , {Rl})d
l=0 is a partition of

X × X into binary relations (or classes) R0, R1, . . . , Rd with the properties that

• R0 = {(x, x) : x ∈ X};
• Rl is symmetric for l = 1, 2, . . . , d, that is, (x, y) ∈ Rl if and only if (y, x) ∈ Rl ;
• for all i, j, k in {0,1,…,d} there is an integer ck

i j such that for all (u, v) ∈ Rk ,

ck
i j = |{w ∈ X : (u, w) ∈ Ri and (w, v) ∈ R j }|.

Zinoviev and Ericson in [32] proved the following result.

Result 3 Let P = P0|P1| . . . |Pd be a partition of Fpm , where P0 = {0}, and let Ri be a
partition of Fpm × Fpm defined by

(α, β) ∈ Ri ⇔ α − β ∈ Pi , i = 0, 1, . . . , d.

Then (Fpm , {Rl})d
l=0 is a symmetric association scheme on Fpm if and only if there is another

partition Q = Q0|Q1| . . . , |Qd such that for any i, j ∈ {0, 1, . . . , p − 1}, the sum χα(Pi )

does not depend on the choice of α ∈ Q j , and the sum χβ(Qi ) does not depend on the choice
of β ∈ Pj .

Each symmetric relation Rl (1 ≤ l ≤ d) corresponds to an undirected Cayley graph
Gl = Cay(X , Rl) [9] with a vertex set X and an edge set Rl , where Rl is defined by the
following: uv is an edge of Gl if and only if (u, v) ∈ Rl . We thus regard an association
scheme (X , {Rl})d

l=0 as an edge-decomposition of the complete graph on X into graphs Gl

such that for all i, j, k in {1, 2, . . . , d} and for all uv ∈ E(Gk),

|{w ∈ X : uw ∈ E(Gi ) and wv ∈ E(G j )}| = ck
i j ,

where E(Gl) denotes the edge set of Gl . The Cayley graphs Gl will be called the graphs
of the association scheme (X , {Rl})d

l=1. Each Cayley graph Gl of the association scheme
(X , {Rl})d

l=0 is regular with valency (or degree) c0ll ; that is, each vertex of Gl is adjacent to
exactly c0ll edges.

An association scheme is amorphic if any of the union of its classes is also an association
scheme. van Dam proved the following result in [30]:
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Result 4 [30] Let X be a finite set and {G1, G2, . . . , Gd} be an edge-decomposition of the
complete graph on X , where each Gl is a strongly regular graph on X . If the Gl are all of
Latin square type or all of negative Latin square type, then the decomposition is a d-class
amorphic association scheme on X .

3 Auxiliary results

In this section, we introduce basic results on the p-ary bent functions of (p − 1)-form which
will be used in the next sections. In particular, we provide a characterization of p-ary bent
functions of (p − 1)-form in terms of strongly regular graphs. We also develop an algebraic
formula of a Cayley graph by computing its diameter.

Lemma 3.1 Let S1 and S2 be nonempty subsets of Fpm . Then the following statements hold.

(i) If χβ(S1) = χβ(S2) for all β ∈ Fpm , then S1 = S2.
(ii) χβ(S1)σa = χβ(aS1) = χaβ(S1) for all a ∈ F

∗
p, where σa is a Galois automorphism

defined by σa(ζp) = ζ a
p .

Proof (i) The result follows from [12, Lemma IV.2].
(i i) It follows that for a ∈ F

∗
p ,

χβ(S1)
σa =

∑

x∈S1

ζTr(βax)
p =

∑

x∈aS1

ζTr(βx)
p = χβ(aS1).

��
Lemma 3.2 Let f ∈ Bl(m, p). We write W f (β) as W f (β) = (−1)1S(β)(p∗) m

2 ζ
g(β)
p for all

β ∈ Fpm . Then g(0) = 0.

Proof The result follows from the same argument of the proof in [29, Proposition 4]. ��
In the following proposition, we provide a characterization for p-ary bent functions of

(p − 1)-form. It will be exploited in Lemmas 3.4 and 3.7.

Proposition 3.3 Let f ∈ Bl(m, p). Then the following statements are equivalent.

(i) Every eigenvalue of Cay(Fpm , D f ,i ) (0 ≤ i ≤ p − 1) is a rational integer, where f is
even.

(ii) aD f ,i = D f ,i for all a ∈ F
∗
p and i = 0, 1, . . . , p − 1.

(iii) f is (p − 1)-form, i.e., f (ax) = f (x) for all (a, x) ∈ F
∗
p × Fpm .

Proof (i) ⇒ (i i); by the assumption and Result 1, the sum χβ(D f ,i ) is a rational integer for
all β ∈ Fpm and i = 1, 2, . . . , p − 1. By Lemma 3.1-(i i), we have that

χβ(D f ,i ) = χβ(D f ,i )
σa = χβ(aD f ,i )

for all a ∈ F
∗
p . The result follows from Lemma 3.1-(i).

(i i) ⇒ (i i i); let W f (β) = (−1)1S(β)(p∗) m
2 ζ

g(β)
p . Then by the assumption and Lemma

3.1-(i i), we have that for a ∈ F
∗
p ,

(−1)1S(aβ)(p∗)
m
2 ζ

g(aβ)
p = W f (aβ) =

p−1∑

i=0

χaβ(D f ,i )ζ
i
p =

p−1∑

i=0

χβ(aD f ,i )ζ
i
p
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460 J. Y. Hyun et al.

=
p−1∑

i=0

χβ(D f ,i )ζ
i
p = (−1)1S(β)(p∗)

m
2 ζ

g(β)
p ,

so that g(aβ) = g(β) and 1S(aβ) = 1S(β) for all (a, β) ∈ F
∗
p × Fpm . This implies that

W f (aβ) = W f (β) for all (a, β) ∈ F
∗
p × Fpm . It then follows from the inversion formula of

W f (β) that for (a, β) ∈ F
∗
p × Fpm ,

ζ
f (aβ)

p = p−m
∑

x∈Fpm

W f (x)ζTr(aβx)
p = p−m

∑

x∈Fpm

W f (a
−1x)ζTr(βx)

p

= p−m
∑

x∈Fpm

W f (x)ζTr(βx)
p = ζ

f (β)
p .

The result follows.
(i i i) ⇒ (i i); let x ∈ aD f ,i for a ∈ F

∗
p . Then x = ay for some y ∈ D f ,i , and so by

the assumption, f (x) = f (ay) = f (y) = i . Thus x ∈ D f ,i . Conversely, let x ∈ D f ,i . By
the assumption, for a ∈ F

∗
p , we have f (a−1x) = f (x) = i , and so a−1x ∈ D f ,i . Thus

x ∈ aD f ,i .
(i i) ⇒ (i); it follows from Lemma 3.1-(i i) and the assumption that χβ(D f ,i )

σa =
χβ(aD f ,i ) = χβ(D f ,i ) for all (a, β) ∈ F

∗
p ×Fpm , where σa is a Galois automorphism. Thus

χβ(D f ,i ) is a rational integer. ��
Lemma 3.4 Let m be a positive even integer. Let f ∈ Bl(m, p) with l = p −1 and W f (β) =
(−1)1S(β) p

m
2 ζ

g(β)
p for all β in Fpm . Then Cay(Fpm , D f ,i ) has at most five eigenvalues for

all i = 0, 1, . . . , p − 1 as follows:

|D f ,0| = pm−1 + (−1)1S(0) p
m
2 −1(p − 1) − 1,

|D f ,i | = pm−1 − (−1)1S(0) p
m
2 −1 (1 ≤ i ≤ p − 1),

χβ(D f ,i ) =
{

(−1)1S(β) p
m
2 −1(p − 1) if i = g(β), β �= 0,

−(−1)1S(β) p
m
2 −1 if i �= g(β), β �= 0.

Proof We use the set {1, ζp, ζ
2
p , . . . , ζ

p−2
p }, which is linearly independent overQ. Let us put

Di = D f ,i for a simplicity of notation.

Since m is even, we can write W f (β) as W f (β) = (−1)1S(β) p
m
2 ζ

g(β)
p , where S is a subset

of Fpm and g is a p-ary function in m variables. Applying the equation
∑p−1

i=0 ζ i
p = 0, we

have that

(−1)1S(β) p
m
2 ζ

g(β)
p = W f (β) =

p−1∑

i=0

χβ(Di )ζ
i
p =

p−2∑

i=0

(χβ(Di ) − χβ(Dp−1))ζ
i
p. (2)

It then follows from Lemma 3.2 that for β = 0,

(−1)1S(0) p
m
2 =

p−2∑

i=0

(|Di | − |Dp−1|)ζ i
p,

which implies that

|Di | − |Dp−1| = 0, 1 ≤ i ≤ p − 2,

|D0| − |Dp−1| = (−1)1S(0) p
m
2 .
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Ramanujan graphs and expander families 461

Solving these equations together with
∑m

i=0 |Di | = pm − 1, we have the first two parts. To
demonstrate the last part, we consider the following two cases with β ∈ F

∗
pm . Firstly, assume

that g(β) �= p − 1. It follows from (2) and Proposition 3.3 that

χβ(Di ) − χβ(Dp−1) = 0, i �= g(β),

χβ(Di ) − χβ(Dp−1) = (−1)1S(β) p
m
2 ζ

g(β)
p , i = g(β).

Solving these equations together with
∑p−1

i=0 χβ(Di ) = 1, we get the last part. Secondly,
assume that g(β) = p − 1. It follows from (2) that

−(−1)1S(β) p
m
2

p−2∑

i=0

ζ i
p =

p−2∑

i=0

(χβ(Di ) − χβ(Dp−1))ζ
i
p,

which implies by Proposition 3.3 that

χβ(Di ) − χβ(Dp−1) = −(−1)1S(β) p
m
2 , 0 ≤ i ≤ p − 2.

Solving these equations together with
∑p−1

i=0 χβ(Di ) = 1, we also have the last part. These
complete the lemma. ��

Corollary 3.5 Let m be a positive even integer and f ∈ Bw
l (m, p) with l = p − 1. Then the

following statements are true.

(i) If p > 3, then f must be regular bent.
(ii) Cay(Fpm , D f ,0) is a strongly regular graph with parameters

(pm, pm−1 + (p − 1)p
m
2 −1 − 1, pm−2 + (p − 1)p

m
2 −1 − 2, pm−2 + p

m
2 −1) (3)

and Cay(Fpm , D f ,i ) is a strongly regular graph with parameters

(pm, pm−1 − p
m
2 −1, pm−2 + p

m
2 −1(p − 3), pm−2 − p

m
2 −1) (4)

for all i = 1, . . . , p − 1.

Proof (i) Assume that f is weakly p-ary regular bent, which is not regular bent. It
follows from Lemma 3.4 with S = Fpm and Preliminaries 2.2 that we can compute
the parameters of Cay(Fpm , D f ,i ) for i = 1, . . . , p − 1 as follows:

(pm, pm−1 + p
m
2 −1, pm−2 − p

m
2 −1(p − 3), pm−2 + p

m
2 −1).

Notice that � = √
(λ − μ)2 + 4(k − μ) = pm , which is a square. Applying Ma’s

result [18, Theorem 6.8] under condition that � is a square, their degrees are divided
by p − 1. This implies that p = 3, a contradiction. This proves (i).

(i i) By using Proposition 3.4 with S = ∅ and Preliminaries 2.2, the result follows.
��

Remark 3.6 ASRGwith parameters (2)which is known in [5] is of Latin square type. A SRG
with parameters (3) which do not occur in [29] is also of Latin square type. When p = 3,
the parameters (2) and (3) coincide with those of the result in [28]. However, for the case
that p �= 3, it is hard to check if SRG’s with parameters (3) is new since there are too many
SRG’s of Latin square type [4] constructed from the block graphs [7] of orthogonal arrays.
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Lemma 3.7 Let m be a positive odd integer. Let f ∈ Bl(m, p) with l = p − 1 and W f (β) =
(−1)1S(β)(p∗) m

2 ζ
g(β)
p for all β in Fpm . Then Cay(Fpm , D f ,i ) has at most four eigenvalues

for all i = 0, 1, . . . , p − 1 as follows:

|D f ,i | =

⎧
⎪⎪⎨

⎪⎪⎩

pm−1 − 1 if i = 0,

pm−1 + (−1)1S(0) p
m−1
2 if i �= 0 and

(
i
p

)
= 1,

pm−1 − (−1)1S(0) p
m−1
2 if i �= 0 and

(
i
p

)
= −1,

χβ(D f ,i ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if i = g(β), β �= 0,

(−1)1S(β) p
m−1
2 if i �= g(β), β �= 0, and

(
i−g(β)

p

)
= 1,

−(−1)1S(β) p
m−1
2 if i �= g(β), β �= 0, and

(
i−g(β)

p

)
= −1,

where
(

i
p

)
stands for the Legendre symbol.

Proof We use the set {1, ζp, ζ
2
p, . . . , ζ

p−2
p },which is linearly independent overQ. Let us put

Di = D f ,i for a simplicity of notation.
Note that

p−1∑

i=0

ζ i2
p =

{√
p if p ≡ 1 (mod 4),√−p if p ≡ 3 (mod 4).

We then have that

(−1)1S(β)

( p−1∑

i=0

ζ i2
p

)
p

m−1
2 ζ

g(β)
p = W f (β) =

p−1∑

i=0

χβ(Di )ζ
i
p. (5)

Set T := {i ∈ Zp : i ≡ a2 (mod p), a ∈ Z
∗
p}. Then the left hand side of (4) is written

as follows:

(−1)1S(β) p
m−1
2

(
ζ

g(β)
p + 2

∑

i∈T

ζ
i+g(β)
p

)
= (−1)1S(β) p

m−1
2

×
(

−
p−1∑

i=0,i �=g(β)

ζ i
p + 2

∑

i∈T

ζ
i+g(β)
p

)
(6)

because −∑p−1
i=0,i �=g(β) ζ i

p = ζ
g(β)
p . On the other hand, the right hand side of (4) is equal to

p−1∑

i=0,i �=g(β)

(
χβ(Di ) − χβ(Dg(β))

)
ζ i

p. (7)

We now use the linearly independence of {1, ζp, . . . , ζ
g(β)−1, ζ g(β)+1, . . . , ζ

p−1
p } over Q.

By comparing (5) with (6) and using Proposition 3.3, we get the following:

χβ(Di ) − χβ(Dg(β)) = (−1)1S(β) p
m−1
2 if

( i − g(β)

p

)
= 1 and i �= g(β), (8)

χβ(Di ) − χβ(Dg(β)) = −(−1)1S(β) p
m−1
2 if

( i − g(β)

p

)
= −1 and i �= g(β). (9)
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From (7) and (8), we have that

p−1∑

i=0,i �=g(β)

(χβ(Di ) − χβ(Dg(β)) = 0. (10)

The second part of this lemma follows from solvingEqs. (7–9) togetherwith
∑p−1

i=0 χβ(Di ) =
1 for β ∈ F

∗
p .

Now, we consider the case that β = 0. By Lemma 3.2 we have that g(0) = 0. It follows
from (7) and (8) that

|Di | − |D0| = (−1)1S(0) p
m−1
2 if

( i

p

)
= 1, (11)

|Di | − |D0| = −(−1)1S(0) p
m−1
2 if

( i

p

)
= −1. (12)

The first part of this lemma follows from solving Eqs. (10) and (11) together with∑p−1
i=0 |Di | = pm − 1. ��
To derive an algebraic formula for the diameter of a Cayley graph, we require the following

lemma.

Lemma 3.8 Let γ be contained in Fpm and let S be a nonempty subset of Fpm . Then the
number of t-tuples (α1, α2, . . . , αt ) ∈ St such that α1 + α2 + · · · + αt = γ is equal to

∑

β∈Fpm

χβ(−S)tζ
Tr(βγ )
p .

Proof We compute the following sum:
∑

α1...,αt ∈Fpm

1S(α1) . . . 1S(αt )1{γ }(α1 + · · · + αt ).

Then this sum becomes
1

pm

∑

α1...,αt ∈Fpm

1S(α1) . . . 1S(αt )
∑

δ∈Fpm

1̂{γ }(δ)ζ−Tr((α1+α2+···+αt )δ)
p

= 1

pm

∑

δ∈Fpm

1̂{γ }(δ)
t∏

i=1

∑

αi ∈Fpm

1S(αi )ζ
−Tr(αi δ)
p

= 1

pm

∑

δ∈Fpm

ζ
Tr(δγ )
p χδ(−S)t .

The result thus follows. ��
Proposition 3.9 Let S be a nonempty subset of Fpm with S = −S and 0 /∈ S. Then the
diameter of G = Cay(Fpm , S) is the smallest integer t > 1 such that

∑

β∈Fpm

χβ(S)tζ
Tr(βγ )
p

does not vanish for all γ ∈ Fpm .

Proof Notice that the diameter of G is the smallest integer t > 1 such that Fpm = S + S +
· · ·+ S (t times), where S + S = {α +β : α, β ∈ S}, and the result follows from Lemma 3.8.

��
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4 Ramanujan graphs

Let f ∈ Bl(m, p) with l = p − 1. Recall from Lemmas 3.4 and 3.7 that each Cayley graph
generated by D f ,i for i = 0, 1, . . . , p − 1 has at most four eigenvalues when m is odd,
or five eigenvalues when m is even. In this section, using these lemmas, the regularity of
f is characterized in terms of strongly regular graphs as in [12,28], and (strongly regular)
Ramanujan graphs are also derived. It allows us to construct the families of expander graphs
using the zig-zag construction introduced in [26]. We divide this section into two subsections
depending on m being even or odd.

4.1 Even dimensional cases

Theorem 4.1 Let m be a positive even integer. Let f ∈ Bl(m, p) with l = p − 1 and
W f (β) = (−1)1S(β) p

m
2 ζ

g(β)
p for all β in Fpm . Then

(i) Cay(Fpm , D f ,0) is a Ramanujan graph if and only if 0 ∈ S and p = 3, 5 (m ≥ 4), or
0 /∈ S and p = 3 (m ≥ 4), p = 5 (m ≥ 2), where its degree is given in Lemma 3.4.
Further, if f ∈ Bw

l (m, p) and either of the above cases holds, then it has diameter 2.
(ii) Cay(Fpm , D f ,i ) is a Ramanujan graph of diameter 2 for all i = 1, 2, . . . , p − 1 if and

only if 0 ∈ S and p = 3, 5 (m ≥ 2), or 0 /∈ S and p = 3 (m ≥ 2), p = 5 (m ≥ 4),
where their degrees are given in Lemma 3.7.

Proof To check if it is a Ramanujan graph, we need to find p and m satisfying that
�β(D f ,i ) := 4(|D f ,i | − 1) − χβ(D f ,i )

2 ≥ 0 for any β ∈ F
∗
pm .

(i) It follows from Lemma 3.4 that

0 ≤ min
β∈F∗

pm

�β(D f ,0) = 4(pm−1 + (−1)1S(0) p
m
2 −1(p − 1) − 2) − pm−2(p − 1)2

= pm−2(−p2 + 6p − 1) + 4(−1)1S(0) p
m
2 −1(p − 1) − 8.

(i i) It follows from Lemma 3.4 that for i = 1, 2, . . . , p − 1,

0 ≤ min
β∈F∗

pm

�β(D f ,0) = 4(pm−1 − (−1)1S(0) p
m
2 −1 − 1) − pm−2(p − 1)2

= pm−2(−p2 + 6p − 1) − 4(−1)1S(0) p
m
2 −1 − 4.

Let us now determine the diameter of Cay(Fpm , D f ,i ) for i = 0, 1, . . . , p − 1. It follows
from Lemma 3.4 that

Ei (γ ) :=
∑

β∈Fpm

χβ(D f ,i )
2ζ

Tr(βγ )
p

= |D f ,i |2 +
∑

β∈Fpm \{0}
χβ(D f ,i )

2ζ
Tr(βγ )
p

= |D f ,i |2 +
∑

β∈Fpm \{0}
g(β)=i

pm−2(p − 1)ζTr(βγ )
p +

∑

β∈Fpm \{0}
g(β)�=i

pm−2ζ
Tr(βγ )
p . (13)
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Since
∑

β∈Fpm ζ
Tr(βγ )
p = 0 for γ �= 0, Ei (γ ) is equal to

|D f ,i |2 − pm−2 +
∑

β∈Fpm \{0}
g(β)=i

pm−2(p − 1)ζTr(βγ )
p −

∑

β∈Fpm \{0}
g(β)=i

pm−2ζ
Tr(βγ )
p

= |D f ,i |2 − pm−2 + pm−2(p − 2)(χγ (Dg,i ) + δg,i ), (14)

where δg,i =
{
1 if 0 ∈ Dg,i ,

0 if 0 /∈ Dg,i .

From the fact that g is also a weakly regular bent function and f (−β) = f (β) for any
β ∈ Fp , using (1), we have that

Wg(β) = (−1)1S(β)√pm
ζ

f (β)
p . (15)

In the case that γ �= 0 and f (γ ) �= 0, Ei (γ ) is equal to

|D f ,i |2 − pm−2 + pm−2(p − 2)(χγ (Dg,i ) + δg,i )

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(pm−1 − (−1)1S (0) p
m
2 −1)2 − pm−2 + pm−2(p − 2)((−1)1S(γ ) p

m
2 −1(p − 1) + δg,i )

if i �= 0 and i = f (γ ),

(pm−1 − (−1)1S (0) p
m
2 −1)2 − pm−2 + pm−2(p − 2)(−(−1)1S(γ ) p

m
2 −1(p − 1) + δg,i )

if i �= 0 and i �= f (γ ),

(pm−1 − (−1)1S (0) p
m
2 −1(p − 1) − 1)2 − pm−2 + pm−2(p − 2)(−(−1)1S(γ ) p

m
2 −1(p − 1) + δg,i )

if i = 0 and i �= f (γ ).

(16)

In the case that γ �= 0 and f (γ ) = 0, Ei (γ ) is equal to

|D f ,i |2 − pm−2 + pm−2(p − 2)(χγ (Dg,i ) + δg,i )

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(pm−1 − (−1)1S (0) p
m
2 −1(p − 1) − 1)2 − pm−2 + pm−2(p − 2)((−1)1S (γ ) p

m
2 −1(p − 1) + δg,i )

if i = 0,

(pm−1 + (−1)1S (0) p
m
2 −1)2 − pm−2 + pm−2(p − 2)(−(−1)1S (γ ) p

m
2 −1(p − 1) + δg,i )

if i �= 0.

(17)

We note that

Ei (0) = |D f ,i |2 +
∑

β∈Fpm \{0}
g(β)=i

pm−2(p − 1) +
∑

β∈Fpm \{0}
g(β)�=i

pm−2

= |D f ,i |2 + pm−2(p − 1)(|Dg,i | − δg,i ) + pm−2(pm − |Dg,i | − δg,i + 1). (18)

It follows from Lemma 3.7 that

Ei (0) = |D f ,i |2 + p2m−2 + pm−2 + pm−2(p − 2)|Dg,i | − pm−1δg,i

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(pm−1 + (−1)1S(0) p
m
2 −1(p − 1) − 1)2 + p2m−2 + pm−2

+pm−2(p − 2)(pm−1 + (−1)1S(0) p
m
2 −1(p − 1) − 1) − pm−1δg,i if i = 0,

(pm−1 + (−1)1S(0) p
m
2 −1)2 + p2m−2 + pm−2

+pm−2(p − 2)(pm−1 + (−1)1S(0) p
m
2 −1) − pm−1δg,i if i �= 0.

(19)
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We can see from (16)–(19) that Ei (γ ) �= 0 for any γ ∈ Fpm . This completes the proof by
using Proposition 3.9. ��

As pointed out in preliminaries, a family of weakly regular p-ary bent functions of (p−1)-
form exists. This leads to the following corollary, which is a direct consequence of Corollary
3.5 and Theorem 4.1. It can be obtained from the result of [28] as well when p = 3.

Corollary 4.2 Let m be a positive even integer, and let f ∈ Bw
l (m, p) with l = p − 1.

If p ∈ {3, 5}, then Cay(Fpm , D f ,i ) is a strongly regular Ramanujan graph for all i =
0, 1, 2, . . . , p − 1 and m ≥ 4.

In [28], a characterization for weakly regularity of a ternary bent function was given,
and it was generalized [12] to a p-ary bent function f of l-form except when f is not of
(p − 1)-form.

We now study the regularity of a p-ary bent function of (p − 1)-form in the following
theorem.

Theorem 4.3 Let m be a positive even integer, and let f ∈ Bl(m, p) with l = p − 1. Then
the following statements are equivalent.

(i) f is regular bent.
(ii) Cay(Fpm , D f ,i ) is a strongly regular graph for some i = 0, 1, . . . , p − 1.

Further, if (i i) holds, then Cay(Fpm , D f ,i ) is a strongly regular graph for all i =
0, 1, . . . , p − 1.

Proof (i) ⇒ (i i); this follows from Corollary 3.5.
(i i) ⇒ (i); let W f (β) = (−1)1S(β) p

m
2 ζ

g(β)
p , where S is a subset of Fpm and g is a p-ary

function in m variables. It follows from Lemma 3.4 that G f ,i = Cay(Fpm , D f ,i ) has at
most five eigenvalues for all i = 0, 1, . . . , p − 1. However, by our assumption, G f ,i has
two or three eigenvalues. Consequently, S must be either the empty set or the ambient
set, that is, f is weakly regular bent. It follows from Corollary 3.5-(i) that f is regular
bent. ��

4.2 Odd dimensional cases

Theorem 4.4 Let m be a positive odd integer. Let f ∈ Bl(m, p) and W f (β) =
(−1)1S(β)(p∗) m

2 ζ
g(β)
p for all β in Fpm .

(i) Cay(Fpm , D f ,0) is a Ramanujan graph for all m ≥ 3.

(ii) Assume
(

i
p

)
= 1 for i = 1, 2, . . . , p − 1. Then Cay(Fpm , D f ,i ) is a Ramanujan graph

if and only if 0 ∈ S and m ≥ 3, or 0 /∈ S and m ≥ 1.

(iii) Assume
(

i
p

)
= −1 for i = 1, 2, . . . , p − 1. Then Cay(Fpm , D f ,i ) is a Ramanujan

graph if and only if 0 ∈ S and m ≥ 1, or 0 /∈ S and m ≥ 3.

In particular, if f ∈ Bw
l (m, p), thenCay(Fpm , D f ,i ) has diameter 2 for i = 0, 1, . . . , p−

1 and m ≥ 3.

Proof In order to check if Cay(Fpm , D f ,i ) is a Ramanujan graph, we have to determine p
and m satisfying that �β(D f ,i ) := 4(|D f ,i | − 1) − χβ(D f ,i )

2 ≥ 0 for any β ∈ F
∗
pm .
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(i) It follows from Lemma 3.7 that

0 ≤ min
β∈F∗

pm

�β(D f ,0) = 3pm−1 − 8.

(i i), (i i i) They follow from Lemma 3.7 that for i = 1, 2, . . . , p − 1 and
(

i
p

)
= 1,

0 ≤ min
β∈F∗

pm

�β(D f ,i ) = 3pm−1 + 4(−1)1S(0) p
m−1
2 − 4,

and for
(

i
p

)
= −1,

0 ≤ min
β∈F∗

pm

�β(D f ,i ) = 3pm−1 − 4(−1)1S(0) p
m−1
2 − 4.

For γ ∈ Fpm and i = 0, 1, . . . , p − 1, we define

Ei (γ ) =
∑

β∈Fpm

χβ(D f ,i )
2ζ

Tr(βγ )
p .

To prove that Cay(Fpm , D f ,i ) has the diameter 2, we show that Ei (γ ) �= 0 for any γ ∈ Fpm .
We note that

Ei (γ ) =
∑

β∈Fpm

χβ(D f ,i )
2ζ

Tr(βγ )
p = |D f ,i |2 +

∑

β∈Fpm \{0}
χβ(D f ,i )

2ζ
Tr(βγ )
p

= |D f ,i |2 + pm−1
∑

β∈Fpm \{0}
g(β)�=i

ζ
Tr(βγ )
p . (20)

We first assume that γ �= 0. It follows from
∑

β∈Fpm ζ
Tr(βγ )
p = 0 that

Ei (γ ) = |D f ,i |2−
∑

β∈Fpm

β=0 or g(β)=i

pm−1ζ
Tr(βγ )
p = |D f ,i |2− pm−1(χγ (Dg,i )+δg,i ), (21)

where δg,i =
{
0 if 0 ∈ Dg,i ,

1 if 0 /∈ Dg,i .

From the fact that the dual function g of f is also a weakly regular bent function and
f (−β) = f (β) for any β ∈ Fp , using (1), we have that

Wg(β) = (−1)
p−1
2 +1S(β)

√
p∗m

ζ
f (β)

p . (22)

We have two cases to consider. Assume f (γ ) �= 0. It follows from (22) and Lemma 3.7, we
have that

Ei (γ ) = |D f ,i |2 − pm−1(χγ (Dg,i ) + δg,i )

=

⎧
⎪⎨

⎪⎩

(pm−1 − 1)2 − pm−1(wγ (i)p
m−1
2 + δg,i ) if i �= f (γ ) and i = 0,

(pm−1 + u0(i)p
m−1
2 )2 − pm−1δg,i if i = f (γ ) and i �= 0,

(pm−1 + u0(i)p
m−1
2 )2 − pm−1(wγ (i)p

m−1
2 + δg,i ) if i �= f (γ ) and i �= 0,

(23)
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where wγ (i) =
{

(−1)
p−1
2 +1S(γ )(

i− f (γ )
p ) if γ �= 0,

(−1)
p−1
2 +1S(0)( i

p ) if γ = 0.
In the case that f (γ ) = 0, we have

Ei (γ ) = |D f ,i |2 − pm−1(χγ (Dg,i ) + δg,i )

=
{

(pm−1 − 1)2 if i = 0,

(pm−1 + u0(i)p
m−1
2 )2 − pm−1(w0(i)p

m−1
2 + δg,i + 1) if i �= 0.

(24)

Finally, in the case that γ = 0, we find from (20) that

Ei (0) = |D f ,i |2 + pm−1
∑

β∈Fpm \{0}
g(β)�=i

1

= |D f ,i |2 + pm−1(pm − |Dg,i | − δg,i + 1). (25)

It then follows from (22) and Lemma 3.7 that

Ei (0) =
{

(pm−1 − 1)2 + pm−1(pm − pm−1 + 2 + δg,i ) if i = 0,

(pm−1 + u0(i)p
m−1
2 )2 + pm−1(pm − pm−1 − w0(i)p

m−1
2 + δg,i + 1) if i �= 0.

(26)

We can see from (23) and (26) that Ei (γ ) �= 0 for any γ ∈ F
m
p withm ≥ 3. This completes

the proof by using Proposition 3.9. ��

5 Association schemes

There are several results [5,12,25,28] on constructing (amorphic) association schemes from
f ∈ Bw

l (m, p). In [28], they constructed amorphic association schemes from f ∈ Bw
l (m, 3).

This result was extended [5,12] to the weakly regular p-ary bent functions in Bw
l (m, p).

In [25], they proved the existence of association schemes from f ∈ Bw
l (m, p) by using

a non-constructive proof method. In those cases, the intersection number of the association
scheme is independent of l. In the following Theorem 5.2 we also constructed association
schemes from f ∈ Bw

l (m, p); we used a constructive proof method.
In [12], we constructed amorphic association schemes from f ∈ Bw

l (m, p) whose inter-
section numbers depend on l, where l �= p − 1 and p > 3; the case that l = p − 1 for p > 2
was open. In the following Theorem 5.1 we solve this open case that � = p − 1 for p > 2.

5.1 Even dimensional cases

Theorem 5.1 Let m be a positive even integer, and let f ∈ Bw
l (m, p) with l = p − 1. Then

the decomposition

{D f ,0, D f ,1, . . . , D f ,p−1}
is a p-class amorphic association scheme.

Proof It is straightforward from Result 4 and Remark 3.6. ��
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5.2 Odd dimensional cases

Theorem 5.2 Let m be a positive odd integer, and let f ∈ Bw
l (m, p) with l = p − 1.

Let P = {0}|D f ,0|D f ,1| . . . |D f ,p−1 be a partition of Fpm . Then the set of relations
{R f ,−1, R f ,0, . . . , R f ,p−1} is a p-class association scheme, where R f ,−1 = {(0, 0)} and
R f ,i is defined by

(α, β) ∈ R f ,i if and only if α − β ∈ D f ,i .

Proof Let f be a weakly regular bent function with its dual f̃ . Then by Lemma 3.7 and
˜̃f (x) = f (−x) = f (x), we see that for any i, j ∈ {0, 1, . . . , p −1}, the sum χα(D f ,i ) does
not depend on the choice of α ∈ D f̃ , j , and the sum χβ(D f̃ ,i ) does not depend on the choice
of β ∈ D f , j . The proof follows immediately from Result 3. ��

The first and second eigenmatrices (for the definition, we refer to [19]) of the schemes in
Theorems 5.1 and 5.2 can be computed explicitly by using Lemmas 3.4 and 3.7, respectively.
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