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Abstract
In this paper we studymetrical properties of Boolean bent functionswhich coincidewith their
dual bent functions. We propose an iterative construction of self-dual bent functions in n+ 2
variables through concatenation of two self-dual and two anti-self-dual bent functions in n
variables. We prove that minimal Hamming distance between self-dual bent functions in n
variables is equal to 2n/2. It is proved that within the set of sign functions of self-dual bent
functions in n � 4 variables there exists a basis of the eigenspace of the Sylvester Hadamard
matrix attached to the eigenvalue 2n/2. Based on this result we prove that the sets of self-dual
and anti-self-dual bent functions in n � 4 variables are mutually maximally distant. It is
proved that the sets of self-dual and anti-self-dual bent functions in n variables are metrically
regular sets.
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1 Introduction

The term “bent function”was introduced byOscarRothaus in the 1960s and published in [22].
At the same time the maximally nonlinear Boolean functions were also under study in the
Soviet Union. The term minimal function, which is actually a counterpart of a bent function,
was proposed by the Soviet scientists Eliseev and Stepchenkov in 1962, see [25].

Bent functions have applications in many domains, such as error correcting codes, spread-
ing sequences for CDMA and cryptology. In symmetric cryptography, due to maximal
nonlinearity, these functions can be used as building blocks of stream (Grain 2004) and
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block (CAST 1997) ciphers in order to increase resistance to some statistical methods of
cryptanalysis amongwhich linear and differential cryptanalyses are. Nevertheless, bent func-
tions are not balanced and their algebraic degree is at most n/2, that entails vulnerability, in
particular, to fast algebraic attacks [29].

There are a number of open problems connected with bent functions: in particular, the
problems of classification of these functions and search of new constructions. The exact
number of bent functions of n variables is unknown if n > 8, only lower and upper bounds of
this number are available. The problems concerning the metrical properties of bent functions
deserve attention including because they are connected with problems related to the cardi-
nality of the class of bent functions. In [13] one can find other results in this area. Extensive
information concerning bent functions can be found in the survey [4] and monographies of
Mesnager [18] and Tokareva [25].

For each bent function, its dual Boolean function is uniquely defined. The dual function
is also a bent function. More information about properties of dual functions is in work [4]. It
is known that the mapping which assigns to every bent function its dual function preserves
the Hamming distance, hence it is an isometric mapping of the set of bent functions [2]. The
isometric mappings of the set of all Boolean functions in n variables into itself that transform
bent functions into bent functions were completely studied in [26].

A bent function that coincides with its dual is called self-dual. Open questions which are
relevant to the class of bent functions are also relevant for the self-dual bent functions. A
difficult problem is the complete characterization and description of the class of self-dual
bent functions and estimation of its cardinality. There are a number of articles which are
devoted to these and other problems. In particular, in the article [3] Carlet et al. explored
self-dual bent functions: all equivalence classes of self-dual bent functions in 2, 4, and
6 variables and all quadratic self-dual bent functions in 8 variables relative to an affine
transformation which preserves self-duality are given; it has been proved that the Hamming
distance between a self-dual bent function and an anti-self-dual bent function in n variables
is exactly 2n−1. Also self-dual bent functions obtained by some primary and secondary
constructions have been explored. In [10] the classification of all quadratic self-dual bent
functions is presented by Hou. Feulner et al. [9] with a help of computers have determined
classes of affine equivalence of quadratic and cubic self-dual bent functions in 8 variables
with respect to the mentioned above restricted form of affine transformation. Several new
constructions of (anti-)self-dual bent functions were proposed in [16,17]. The upper bound
for the cardinality of the set of self-dual bent functions which follows from the exact number
of formally self-dual bent functions is presented by Hyun and Lee [11]. In [23] Sok et
al. discovered a connection between quaternary self-dual bent functions and self-dual bent
Boolean functions. The complete Hamming distance spectrum between self-dual Maiorana–
McFarland bent functions was obtained in [14].

In the current work we find necessary and sufficient conditions for self-duality of bent
functions constructed via iterative construction of Canteaut and Charpin [1] (2003) in a
simplified form which was also discovered by Preneel et al. [21] (1990). This construction
allows to obtain a bent function in n+2 variables through concatenation of four bent functions
in n variables provided their duals satisfy the certain condition. We obtain new iterative
construction of self-dual bent functions and provide a lower bound for the cardinality of the
set of self-dual bent iterative functions.We use the correspondence of self-dual bent functions
to eigenvectors of the Sylvester type Hadamard matrix and prove that within the set of sign
functions of self-dual bent functions in n � 4 variables there exists a basis of the eigenspace
of the Sylvester Hadamard matrix attached to the eigenvalue 2n/2. Based on this result we
prove that sets of self-dual and anti-self-dual bent functions in n � 4 variables are mutually
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Metrical properties of self-dual bent functions 203

maximally distant sets and they are metrically regular for any positive even n. We prove that
minimal Hamming distance between self-dual bent functions is equal to 2n/2. We prove that
every bent function in n � 6 variables is affinely equivalent to its dual bent function.

The work has the following structure: basic definitions are in the Sect. 2, and in Sect. 3
some known results are listed and new ones are given. Necessary and sufficient conditions for
self-duality of bent iterative functions are found (Theorem 1) and it is proved that within the
set of sign functions of self-dual bent functions in n � 4 variables there exists a basis of the
eigenspace of the Sylvester Hadamard matrix attached to the eigenvalue 2n/2 (Theorem 2).
New construction of iterative self-dual bent functions is proposed (Corollary 1) and a bound
is given for the cardinality of the set of iterative self-dual bent functions (Corollary 2). It is
proved that there exist self-dual bent functions of any algebraic degree (Proposition 3). In
Sect. 4 metrical properties, in particular, minimal Hamming distance is presented (Propo-
sition 4), metrical complements of the sets of self-dual and anti-self-dual bent functions in
n � 4 variables (Theorem 3) and metrical regularity of these sets (Theorem 4) are studied.
In Sect. 5 we prove that all bent functions in at most 6 variables are affinely equivalent to
their dual bent functions (Proposition 7). The conclusion is in Sect. 6.

2 Notation and definitions

Let F
n
2 be the set of binary vectors of length n.

ABoolean function f in n variables is anymap fromF
n
2 toF2. The set of Boolean functions

in n variables is denoted by Fn .
The (0, 1)-sequence defined by ( f (v0) , f (v1) , . . . , f (v2n−1)) is called the truth table

of f ∈ Fn , where

v0 = (0, 0, . . . , 0) ∈ F
n
2

v1 = (0, 0, . . . , 0, 1) ∈ F
n
2

...

v2n−1 = (1, 1, . . . , 1) ∈ F
n
2,

ordered by lexicographical order.
The sign function F of a Boolean function f ∈ Fn is a real-valued function F(x) =

(−1) f (x), x ∈ F
n
2. Obviously, we have (−1) f (x) = 1 − 2 f (x) for any x ∈ F

n
2.

We will denote the sign function by F = (−1) f and refer to it as to a vector F =(
(−1) f (v0), (−1) f (v1), . . . , (−1) f (v2n−1)

)
from the set {±1}2n (it is also known as a (1,−1)-

sequence of the function f ∈ Fn , see [6]).
Two Boolean functions in n variables are said to be affinely equivalent if there exists an

affine transformof coordinates and an affine shift that transformone function into another. The
Hamming weight wt(x) of the vector x ∈ F

n
2 is the number of nonzero coordinates of x . The

Hammingweightwt( f ) of the function f ∈ Fn is theHammingweight of its vector of values.
The sign ⊕ denotes a sum modulo 2. The Hamming distance dist( f , g) between Boolean
functions f , g in n variables is the cardinality of the set

{
x ∈ F

n
2 : f (x) ⊕ g(x) = 1

}
. The

degree deg( f ) of a Boolean function is the maximal degree of monomials which occur
in its algebraic normal form (ANF, Zhegalkin polynomial) with nonzero coefficients. For

x, y ∈ F
n
2, we denote 〈x, y〉 =

n⊕
i=1

xi yi . The Walsh–Hadamard transform (WHT) of the

Boolean function f in n variables is the integer function W f : F
n
2 → Z, defined as
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W f (y) =
∑
x∈Fn2

(−1) f (x)⊕〈x,y〉, y ∈ F
n
2 .

A Boolean function f in an even number n of variables is said to be bent if

|W f (y)| = 2n/2

for all y ∈ F
n
2. The set of bent functions in n variables is denoted by Bn .

In other words, the function f is bent if and only if for its sign function F it holds
Hn F ∈ {±1}2n . From the definition above it follows that for any y ∈ F

n
2 we have

W f (y) = (−1) f̃ (y)2n/2

for some f̃ ∈ Fn .
The Boolean function f̃ defined above is called the dual function of the bent function f .

The duality of bent functions was introduced by Dillon [8].
Some known properties of dual functions (see [2]):

– Every dual function is a bent function;
– If f̃ is dual to f and ˜̃f is dual to f̃ , then ˜̃f = f ;
– The mapping f −→ f̃ which acts on the set of bent functions, preserves the Hamming

distance.

If bent function f coincides with its dual it is said to be self-dual bent. A bent function
which coincides with the negation of its dual is called an anti-self-dual bent. The set of (anti-)
self-dual bent functions in n variables, according to [10], is denoted by SB+(n)

(
SB−(n)

)
.

Let In be the identity matrix of size n and Hn = H⊗n
1 be the n-fold tensor product of the

matrix H1 with itself, where

H1 =
(
1 1
1 −1

)
.

It is known the Hadamard property of this matrix

HnH
T
n = 2n I2n ,

where HT
n is transpose of Hn (it holds HT

n = Hn since Hn is symmetric).
Denote Hn = 2−n/2Hn , this matrix is symmetric and orthogonal. Since all rows of the

matrix Hn correspond to sign functions of all linear functions (see [6] for instance), equiva-
lently, a bent function in n variables can be defined as a Boolean functionwhose sign function,
say F , satisfies Hn F ∈ {±1}2n .

A non-zero vector v ∈ C
n is called an eigenvector of a complex square n × n matrix A

attached to the eigenvalue λ ∈ C if Av = λv. A linear span of eigenvectors attached to the
eigenvalue λ ∈ C is called the eigenspace associated with λ.

Consider a linear mapping ϕ : C
n → C

n represented by a n × n complex matrix A. A
kernel of ϕ is the set

Ker (ϕ) = {
x ∈ C

n |Ax = 0 ∈ C
n}

,

where 0 is a zero element of the space C
n .

From the definition of self-duality it follows that a sign function of any self-dual bent
function is the eigenvector of Hn attached to the eigenvalue 1 (equivalently, the eigenvector
of Hn attached to the eigenvalue 2n/2), that is an element from the subspaceKer (Hn − I2n ) =
Ker

(
Hn − 2n/2 I2n

)
. The same holds for a sign function of any anti-self-dual bent function,

which obviously is an eigenvector ofHn attached to the eigenvalue (−1), that is an element
from the subspace Ker (Hn + I2n ) = Ker

(
Hn + 2n/2 I2n

)
.
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Metrical properties of self-dual bent functions 205

The algebraic normal form (ANF, Zhegalkin polynomial) of a Boolean function f ∈ Fn

is defined to be

f (x1, x2, . . . , xn) =
⊕

(i1,i2,...,in)∈Fn2
ai1i2...,in x

i1
1 xi22 . . . , xinn ,

where az ∈ F2 for any z ∈ F
n
2 (with the convention 00 = 1).

The algebraic degree deg( f ) of a Boolean function f is themaximal degree of monomials
which occur in its algebraic normal form with nonzero coefficients.

3 Characterization of self-dual bent functions

Further we assume that n is an even positive number.

3.1 Some known results

Below we list some known facts which characterize the set of self-dual bent functions and
will be used as auxiliary statements throughout the paper.

The next statement shows that there exists a one-to-one correspondence between self-dual
and anti-self-dual bent functions.

Proposition 1 ([3], Theorems 5.1, 5.3) Let n be an even integer and Z be a sign function of
some function from Fn−1. If Z + 2Hn−1

2n/2 Z is also a sign function of some function from Fn−1,
then

– the vector
(
Z + 2

2n/2 Hn−1Z , Z
)
is the sign function of a self-dual bent function in n

variables;

– the vector
(
Z ,−Z − 2

2n/2 Hn−1Z
)
is the sign function of an anti-self-dual bent function

in n variables.

Moreover sign functions of all self-dual and anti-self-dual bent functions satisfy this decom-
position.

Denote, according to [12], the orthogonal group of index n over the field F2 as

On =
{
L ∈ GL(n, 2)|LLT = In

}
,

where LT denotes the transpose of L .
It is known that the following composition of an affine transform of coordinates and an

affine shift preserves self-duality of a bent function.

Proposition 2 ([3], Theorem 4.6, [9], Theorem 1) Let f be a self-dual bent function in n
variables. If L ∈ On, b ∈ F

n
2 with wt(b) even and c ∈ F2 then the function

f (L(x ⊕ b)) ⊕ 〈b, x〉 ⊕ c

is also self-dual bent.
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3.2 Bent iterative functions (BI)

In the article [1] the decompositions of bent functions are studied. In particular, the authors
have proved that restrictions of a function f ∈ Bn to a subspace V ⊆ F

n
2 of codimension 2

and to its cosets are bent if and only if the second derivative of its dual bent function with
respect to V⊥ is constant equal to 1. This result can be interpreted as an iterative construction
of bent functions. The iterative construction was studied by Tokareva in [27] in a simplified
form and a lower bound on its cardinality was introduced.

The necessary and sufficient conditions for the construction of bent function in n + 2
variables through concatenation of four bent functions in n variables were also found by
Preneel et al. [21, Theorem 7, Corollary 2].

Below we present the form of the construction given in [27].
Let f0, f1, f2, f3 be Boolean functions in n variables. Consider a Boolean function g in

n + 2 variables which is defined as

g(00, x) = f0(x), g(01, x) = f1(x),

g(10, x) = f2(x), g(11, x) = f3(x),

where x ∈ F
n
2.

In [27, Theorem 2] (see also [21, Theorem 7, Corollary 2]) it was proved that under
condition f0, f1, f2 ∈ Bn the function g is bent if and only if f3 ∈ Bn and

f̃0 ⊕ f̃1 ⊕ f̃2 ⊕ f̃3 = 1.

Bent functions which are obtained by this construction are called bent iterative functions
(BI). In the article [5] the comparison of cardinalities of different known iterative construc-
tions of bent functions was presented and the class BI had the biggest cardinality among
them.

The set of bent functions in n variables obtained by this construction is denoted by BIn .
The set of (anti-)self-dual bent functions from BIn is denoted by SB

+
BI(n)

(
SB−

BI(n)
)
.

We will need the following

Lemma 1 Assume g ∈ BIn+2 then g ∈ SB+
BI(n) if and only if it holds

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2 f̃0 = f0 + f1 + f2 + f3 − 1,

2 f̃1 = f0 − f1 + f2 − f3 + 1,

2 f̃2 = f0 + f1 − f2 − f3 + 1,

2 f̃3 = f0 − f1 − f2 + f3 + 1.

Proof Let Fi be a sign function of the function fi , i = 0, 1, 2, 3. We have G =
(F0, F1, F2, F3) ∈ {±1}2n+2

. Vector G will be a sign function of self-dual bent function
if and only if

G̃ = Hn+2G = 1

2(n+2)/2

⎛
⎜⎜⎝
Hn Hn Hn Hn

Hn −Hn Hn −Hn

Hn Hn −Hn −Hn

Hn −Hn −Hn Hn

⎞
⎟⎟⎠

⎛
⎜⎜⎝
F0
F1
F2
F3

⎞
⎟⎟⎠

= 2n/2

2(n+2)/2

⎛
⎜⎜⎝
F̃0 + F̃1 + F̃2 + F̃3
F̃0 − F̃1 + F̃2 − F̃3
F̃0 + F̃1 − F̃2 − F̃3
F̃0 − F̃1 − F̃2 + F̃3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
F0
F1
F2
F3

⎞
⎟⎟⎠ = G.
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Metrical properties of self-dual bent functions 207

Rewrite this equality by using the fact that for any f ∈ Fn and every x ∈ F
n
2 it is true

(−1) f (x) = 1 − 2 f (x), the same holds for F̃i .
⎛
⎜⎜⎝
1 − 2 f0
1 − 2 f1
1 − 2 f2
1 − 2 f3

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎜⎝
1 − 2 f̃0 + 1 − 2 f̃1 + 1 − 2 f̃2 + 1 − 2 f̃3
1 − 2 f̃0 − 1 + 2 f̃1 + 1 − 2 f̃2 − 1 + 2 f̃3
1 − 2 f̃0 + 1 − 2 f̃1 − 1 + 2 f̃2 − 1 + 2 f̃3
1 − 2 f̃0 − 1 + 2 f̃1 − 1 + 2 f̃2 + 1 − 2 f̃3

⎞
⎟⎟⎠

= 1

2

⎛
⎜⎜⎝
4 − 2 f̃0 − 2 f̃1 − 2 f̃2 − 2 f̃3
−2 f̃0 + 2 f̃1 − 2 f̃2 + 2 f̃3
−2 f̃0 − 2 f̃1 + 2 f̃2 + 2 f̃3
−2 f̃0 + 2 f̃1 + 2 f̃2 − 2 f̃3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
2 − f̃0 − f̃1 − f̃2 − f̃3
− f̃0 + f̃1 − f̃2 + f̃3
− f̃0 − f̃1 + f̃2 + f̃3
− f̃0 + f̃1 + f̃2 − f̃3

⎞
⎟⎟⎠ .

In this case we have

2

⎛
⎜⎜⎝

f0
f1
f2
f3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f̃0 + f̃1 + f̃2 + f̃3 − 2
f̃0 − f̃1 + f̃2 − f̃3
f̃0 + f̃1 − f̃2 − f̃3
f̃0 − f̃1 − f̃2 + f̃3

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠ = H2

⎛
⎜⎜⎝

f̃0
f̃1
f̃2
f̃3

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ .

Then

2H2

⎛
⎜⎜⎝

f0
f1
f2
f3

⎞
⎟⎟⎠ = H2H2

⎛
⎜⎜⎝

f̃0
f̃1
f̃2
f̃3

⎞
⎟⎟⎠ + H2

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ = 4

⎛
⎜⎜⎝

f̃0
f̃1
f̃2
f̃3

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

2
−2
−2
−2

⎞
⎟⎟⎠ .

It is equal to the condition

2

⎛
⎜⎜⎝

f̃0
f̃1
f̃2
f̃3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f0 + f1 + f2 + f3
f0 − f1 + f2 − f3
f0 + f1 − f2 − f3
f0 − f1 − f2 + f3

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ .


�
By Proposition 1 for sign functions F0, F1, F2, F3 we have(

F0
F1

)
=

(
F2
F3

)
+ 2

2n/2 Hn−1

(
F2
F3

)
=

(
F2
F3

)
+ 2

2n/2

(
Hn−2 Hn−2

Hn−2 −Hn−2

) (
F2
F3

)

=
(
F2
F3

)
+

(Hn−2 Hn−2

Hn−2 −Hn−2

) (
F2
F3

)
=

(
F2 + F̃2 + F̃3
F3 + F̃2 − F̃3

)
,

so we obtain two equalities which follow from the system above.
At the same time (Hn−2F0

Hn−2F1

)
=

(
F̃0
F̃1

)
=

(
F̃2 + F2 + F3
F̃3 + F2 − F3

)
,

and we obtain two equalities which are derived from the system of equalities

2

⎛
⎜⎜⎝
F0
F1
F2
F3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
F̃0 + F̃1 + F̃2 + F̃3
F̃0 − F̃1 + F̃2 − F̃3
F̃0 + F̃1 − F̃2 − F̃3
F̃0 − F̃1 − F̃2 + F̃3

⎞
⎟⎟⎠

in the proof of Lemma 1.
Thus the decomposition model from Proposition 1 is considered in Lemma 1.
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Theorem 1 Let g ∈ BIn+2, then g ∈ SB+
BI(n) if and only if there exists such pair of functions

g1, g2 ∈ Bn and a function h ∈ Fn that:

f0 = (g1 ⊕ g2) h ⊕ g1 = g̃2,

f1 = (g1 ⊕ g2) h ⊕ g2 = g̃1 ⊕ h,

f2 = (g1 ⊕ g2) h ⊕ g2 ⊕ h = g̃1,

f3 = (g1 ⊕ g2) h ⊕ g1 ⊕ h ⊕ 1 = g̃2 ⊕ h ⊕ 1.

Remark 1 It can be proved that the function h is uniquely defined by a pair of bent functions
g1, g2: h = g1 ⊕ g̃1 ⊕ g2 ⊕ g̃2.

Proof By the previous lemma we have
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 f̃0 = f0 + f1 + f2 + f3 − 1,

2 f̃1 = f0 − f1 + f2 − f3 + 1,

2 f̃2 = f0 + f1 − f2 − f3 + 1,

2 f̃3 = f0 − f1 − f2 + f3 + 1.

Denote h = f1 ⊕ f2, i.e. f1 = f2 + h − 2 f2h, then
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 f̃0 = f0 + f2 + h − 2 f2h + f2 + f3 − 1,

2 f̃1 = f0 − f2 − h + 2 f2h + f2 − f3 + 1,

2 f̃2 = f0 + f2 + h − 2 f2h − f2 − f3 + 1,

2 f̃3 = f0 − f2 − h + 2 f2h − f2 + f3 + 1.

and hence, ⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2 f̃0 = f0 + 2 f2 + h − 2 f2h + f3 − 1,

2 f̃1 = f0 − h + 2 f2h − f3 + 1,

2 f̃2 = f0 + h − 2 f2h − f3 + 1,

2 f̃3 = f0 − 2 f2 − h + 2 f2h + f3 + 1.

Consider these equalities with respect to the function h:

– for any x ∈ F
n
2 such that h(x) = 0 we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 f̃0 = f0 + 2 f2 + f3 − 1,

2 f̃1 = f0 − f3 + 1,

2 f̃2 = f0 − f3 + 1,

2 f̃3 = f0 − 2 f2 + f3 + 1,

i.e., in this case it holds

f0 = f3 ⊕ 1, f2 = f̃0, f̃3 = f̃0 ⊕ 1,

– for any x ∈ F
n
2 such that h(x) = 1 we have

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2 f̃0 = f0 + f3,

2 f̃1 = f0 + 2 f2 − f3,

2 f̃2 = f0 − 2 f2 − f3 + 2,

2 f̃3 = f0 + f3.
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i.e., in this case it holds

f0 = f3, f2 = f̃1, f̃2 = f2 ⊕ 1.

Investigation of these constraints yields

f3 = h f0 ⊕ (h ⊕ 1)( f0 ⊕ 1) = f0 ⊕ h ⊕ 1,

f2 = h
(
f̃2 ⊕ 1

) ⊕ (h ⊕ 1) f̃0 = h
(
f̃2 ⊕ f̃0

) ⊕ f̃0 ⊕ h,

f1 = f2 ⊕ h = h
(
f̃2 ⊕ f̃0

) ⊕ f̃0.

Rewrite these expressions in R

f3 = 1 − f0 − h + 2h f0,

f2 = f̃0 − h f̃0 − h f̃2 + h,

f1 = f̃0 − h f̃0 + h f̃2

and substitute to the initial system:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2 f̃0 = f0 + (
f̃0 − h f̃0 + h f̃2

) + (
f̃0 − h f̃0 − h f̃2 + h

) + (1 − f0 − h + 2h f0) − 1,

2 f̃1 = f0 − (
f̃0 − h f̃0 + h f̃2

) + (
f̃0 − h f̃0 − h f̃2 + h

) − (1 − f0 − h + 2h f0) + 1,

2 f̃2 = f0 + (
f̃0 − h f̃0 + h f̃2

) − (
f̃0 − h f̃0 − h f̃2 + h

) − (1 − f0 − h + 2h f0) + 1,

2 f̃3 = f0 − (
f̃0 − h f̃0 + h f̃2

) − (
f̃0 − h f̃0 − h f̃2 + h

) + (1 − f0 − h + 2h f0) + 1.

Then we obtain ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h f̃0 = h f0,

f̃1 = f0 + h − h f̃2 − h f0,

f̃2 = f0 − h f0 + h f̃2,

f̃3 = 1 − f̃0 − h + 2h f̃0.

and therefore ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h f̃0 = h f0,

f̃1 = h
(
f̃2 ⊕ 1

) ⊕ (h ⊕ 1) f0,

f̃2(h ⊕ 1) = f0(h ⊕ 1),

f̃3 = f̃0 ⊕ h ⊕ 1.

Rewrite the third equality in the form:

f0 = h f0 ⊕ f̃2(h ⊕ 1) = h f̃2 ⊕ f̃2 ⊕ h f̃0.

Then the second equality will be

f̃1 = h
(
f̃2 ⊕ 1

) ⊕ (h ⊕ 1) f0 = h
(
f̃2 ⊕ 1

) ⊕ (h ⊕ 1)
(
h f̃2 ⊕ f̃2 ⊕ h f̃0

)

= h f̃2 ⊕ h ⊕ h f̃2 ⊕ h f̃2 ⊕ h f̃0 ⊕ h f̃2 ⊕ f̃2 ⊕ h f̃0 = f̃2 ⊕ h.

Denote g1 = f̃2 and g2 = f̃0 then the result follows. 
�
Corollary 1 Functions

f (y1, y2, x) = (y1 ⊕ y2)
(
f (x) ⊕ f̃ (x)

) ⊕ f (x) ⊕ y1y2,

f ′ (y1, y2, x) = (y1 ⊕ y2) (ϕ(x) ⊕ ω(x)) ⊕ ϕ(x) ⊕ α1y1 ⊕ α2y2 ⊕ y1y2,
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where

y1, y2, α1, α2 ∈ F2, α1 ⊕ α2 = 1, x ∈ F
n
2,

f ∈ Bn, ϕ ∈ SB+(n), ω ∈ SB−(n),

are self-dual bent functions in n + 2 variables.

Proof We obtain the first one for the case g1 ⊕ g̃1 = g2 ⊕ g̃2 and hence, h = 0. Then a sign
function is equal to (G1,G2,G2,−G1), where G1 and G2 are sign functions of functions
g1 and g2 respectively. The second construction occurs when g1 ⊕ g̃1 = g2 ⊕ g̃2 ⊕ 1, and
therefore h = 1. In this case a sign function is equal to (G2,G1,−G1,G2). Also conditions
g̃2 = g2 ⊕ 1 and g̃1 = g1 hold. 
�

Remark 2 The first construction from those listed above (for f ) was presented in [3] as an
example of the construction which uses the indirect sum of bent functions, see [4]. It is worth
noting that the second construction (for f ′) can also be obtained from indirect sum of bent
functions.

Corollary 2 It holds

|Bn−2| + ∣∣SB+(n − 2)
∣∣2 �

∣∣SB+
BI(n)

∣∣ � |Bn−2|2 .

Proof Constructions of self-dual functions mentioned in Corollary 1 form two disjoint sets
of self-dual bent functions (see the proof of Corollary 1), hence

∣∣SB+
BI(n)

∣∣ � |Bn−2| + ∣∣SB+(n − 2)
∣∣ · ∣∣SB−(n − 2)

∣∣ ,

but since by Proposition 1 there exists the correspondence between self-dual and anti-self-
dual bent function, the mentioned lower bound follows.

The upper bound follows from Proposition 1 or the notion that the function h is uniquely
defined by the functions g1, g2. 
�

3.3 Algebraic degree

Bent functions in 2k variables which have a representation

f (x, y) = 〈x, π(y)〉 ⊕ g(y),

where x, y ∈ F
k
2, π : F

k
2 → F

k
2 is a permutation and g is a Boolean function in k vari-

ables, form the Maiorana–McFarland class of bent functions, denoted by M2k . A dual of a
Maiorana–McFarland bent function f (x, y) is equal to

f̃ (x, y) = 〈π−1(x), y〉 ⊕ g
(
π−1(x)

)
,

(Carlet [2]).
From this construction it is clear that if n � 4 then for any number d ∈ {2, 3, . . . , n/2}

there exists a bent function in n variables of degree d . We will prove that this statement holds
within self-dual bent functions.

Proposition 3 For any even n � 4 and number d ∈ {2, 3, . . . , n/2} there exists a self-dual
bent function in n variables of degree d.
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Proof The statement is obvious for d = 2 because

f (x) =
n/2⊕
i=1

x2i−1x2i , x ∈ F
n
2,

is a quadratic self-dual bent function for any even n.
Assume d � 3. Denote k = (n − 2)/2. Consider the function f ∈ M2k :

f (x, y) = 〈x, π(y)〉 , x, y ∈ F
k
2.

where the mapping π(y) = (π1(y), π2(y), . . . , πk(y)) has the following coordinate func-
tions: for any y ∈ F

k
2

πd−1(y) = yd−1 ⊕
d−2∏
j=1

y j ,

πi (y) = yi , i ∈ {1, 2, . . . , k} \ {d − 1}.
All non-trivial component functions of π are balanced hence it is indeed a permutation.
Moreover it is clear that π = π−1.

Thus we have

f (x, y) =
k⊕

i=1

xi yi ⊕ xd−1

d−2∏
j=1

y j , x, y ∈ F
k
2,

f̃ (x, y) =
k⊕

i=1

xi yi ⊕ yd−1

d−2∏
j=1

x j , x, y ∈ F
k
2,

then

f (x, y) ⊕ f̃ (x, y) = xd−1

d−2∏
i=1

yi ⊕ yd−1

d−2∏
j=1

x j , x, y ∈ F
k
2.

Consider a Boolean function g in 2k + 2 variables:

g (u, v, x, y) = (u ⊕ v)
(
f (x, y) ⊕ f̃ (x, y)

) ⊕ f (x, y) ⊕ uv

= (u ⊕ v)

⎛
⎝xd−1

d−2∏
i=1

yi ⊕ yd−1

d−2∏
j=1

x j

⎞
⎠ ⊕

⎛
⎝

k⊕
i=1

xi yi ⊕ xd−1

d−2∏
j=1

y j

⎞
⎠ ⊕ uv,

where u, v ∈ F2, x, y ∈ F
k
2. This function has algebraic degree d and by Corollary 1 it is

self-dual. 
�

3.4 Dimension of linear span of the set of sign functions of (anti-)self-dual bent
functions

It is known that
dim (Ker (Hn ± I2n )) = 2n−1,

where dim(V ) is the dimension of the subspace V ⊆ R
2n . Moreover, since the matrix Hn

is symmetric, it holds that the subspaces Ker (Hn + I2n ) and Ker (Hn − I2n ) are mutually
orthogonal.

Recall a linear algebra lemma from [3]
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Lemma 2 ([3], Lemma 5.2) The spectrum ofHn consists of the eigenvalues 1 and (−1) and
each of them has the same multiplicity 2n−1. A basis of the eigenspace corresponding to 1 is
formed from the rows of the matrix

(
Hn−1 + 2n/2 I2n−1 , Hn−1

)
. An orthogonal decomposition

of R
2n in eigenspaces of Hn is

R
2n = Ker

(
Hn + 2n/2 I2n

) ⊕ Ker
(
Hn − 2n/2 I2n

)
,

where the symbol ⊕ denotes a direct sum of subspaces.

For n = 2 there are two self-dual bent functions, namely x1x2 and x1x2 ⊕ 1, which
have sign functions (1, 1, 1,−1) and (−1,−1,−1, 1) respectively. These sign functions are
linearly dependent vectors in R

4. The set SB−(2) consists of functions x1x2 ⊕ x1 ⊕ x2 and
x1x2⊕ x1⊕ x2⊕1 with sign functions (1,−1,−1,−1) and (−1, 1, 1, 1) respectively. These
sign functions are linearly dependent vectors in R

4 as well.
The next result shows that for n � 4 it is possible to find 2n−1 (anti-)self-dual bent

functions in n variables with linearly independent sign functions. Since the dimension of
Ker (Hn ± I2n ) is equal to 2n−1, the found subset will be an example of the basis of the
subspace Ker (Hn − I2n ).

Theorem 2 The linear span of sign functions of (anti-)self-dual bent functions in n � 4
variables has dimension 2n−1.

Proof Notice that if the statement holds for self-dual bent functions it also holds for anti-
self-dual bent functions by the correspondence between SB+(n) and SB−(n).

We are to find a subset of 2n−1 self-dual bent functions in n variables with linearly
independent sign functions. The proof will be led by the induction.

Base of induction: For n = 4 we have 10 self-dual bent functions having value 0 on the
vector (0, 0, 0, 0) ∈ F

4
2 and 10 their negations. Sign functions of the first 8 of them (according

to the lexicographical order of their vectors of values) yield a matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 −1 −1 1 −1 1 −1 1 −1 −1 1
1 1 1 1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 1
1 1 1 −1 1 1 1 −1 1 1 1 −1 −1 −1 −1 1
1 1 1 −1 1 −1 −1 −1 −1 1 1 1 1 1 1 −1
1 1 1 −1 −1 1 1 1 1 −1 −1 −1 1 1 1 −1
1 1 −1 1 1 −1 1 1 1 −1 1 1 −1 −1 1 −1
1 −1 1 1 1 1 −1 1 1 1 −1 1 −1 1 −1 −1
1 −1 −1 1 −1 1 −1 1 −1 −1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which has a rank equal to 8 = 2n−1.
Induction step: Let the statement hold for any even n ∈ [4, n0] for some n0 � 4.

Assume that n = n0 + 2. Then by induction assumption we have 2(n−2)−1 = 2n−3 self-
dual bent functions f n−2

1 , f n−2
2 , . . . , f n−2

2n−3 in n − 2 variables with linearly independent

sign functions Fn−2
1 , Fn−2

2 , . . . , Fn−2
2n−3 respectively. By using the correspondence between

self-dual and anti-self-dual bent functions we can obtain 2n−3 anti-self-dual bent func-
tions gn−2

1 , gn−2
2 , . . . , gn−2

2n−3 in n − 2 variables with linearly independent sign functions

Gn−2
1 ,Gn−2

2 , . . . ,Gn−2
2n−3 respectively.

Now recall iterative constructions of self-dual bent functions from the Corollary 1. Let F
and G be sign functions of any self-dual and anti-self-dual bent functions in n − 2 variables
respectively, then the following sign functions
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F = (F, F, F,−F) ,

G = (G,−G,−G,−G) ,

FG = (F,−G,G, F) ,

will be sign functions of self-dual bent functions in n variables. By using first two construc-
tions applied to the mentioned sets of self-dual and anti-self-dual bent functions we obtain
2n−3 sign functions of self-dual bent functions of the form

Fn
i =

(
Fn−2
i , Fn−2

i , Fn−2
i ,−Fn−2

i

)
,

and 2n−3 ones of the form

Gn
j =

(
Gn−2

j ,−Gn−2
j ,−Gn−2

j ,−Gn−2
j

)
,

where i, j = 1, 2, . . . , 2n−3. Note that sets SF = {
Fn
i

}2n−3

i=1 and SG = {
Gn

i

}2n−3

i=1 both consist
of linearly independent vectors by the choice of the base functions, moreover for any pair we
have

〈F,G〉 = 〈F,G〉 − 〈F,G〉 − 〈F,G〉 + 〈F,G〉 = 0,

therefore linear spans of the sets SF and SG intersect only in zero element of R
2n , that is

(SF ∪ SG) consists of 2n−3 + 2n−3 = 2n−2 linearly independent vectors.
Use the third construction and consider 2n−2 self-dual bent functions in n variables with

sign functions

(FG)n1 =
(
Fn−2
1 ,−Gn−2

1 ,Gn−2
1 , Fn−2

1

)
,

(FG)n2 =
(
Fn−2
2 ,−Gn−2

1 ,Gn−2
1 , Fn−2

2

)
,

...

(FG)n2n−3 =
(
Fn−2
2n−3 ,−Gn−2

1 ,Gn−2
1 , Fn−2

2n−3

)
,

(FG)n2n−3+1 =
(
F,−Gn−2

1 ,Gn−2
1 , F

)
,

(FG)n2n−3+2 =
(
Fn−2
2n−3 ,−Gn−2

2 ,Gn−2
2 , Fn−2

2n−3

)
,

(FG)n2n−3+3 =
(
Fn−2
2n−3 ,−Gn−2

3 ,Gn−2
3 , Fn−2

2n−3

)
,

...

(FG)n2n−2 =
(
Fn−2
2n−3 ,−Gn−2

2n−3 ,G
n−2
2n−3 , F

n−2
2n−3

)
,

where F = β1F
n−2
1 +β2F

n−2
2 +· · ·+β2n−3Fn−2

2n−3 for some β ∈ R
2n−3

such that
2n−3∑
i=1

βi �= 1,

e.g. β1 = −1 and β2 = β3 = · · · = β2n−3 = 0.
Now prove that these vectors are linearly independent. Assume that there exists such

non-trivial λ ∈ R
2n−2

that
2n−2∑
i=1

λi (FG)ni = 0 ∈ R
2n .
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It is easy to see that coefficientsλ2n−3+2, λ2n−3+3, . . . , λ2n−2 must be equal to zero by linear
independence of SG. Then if λ2n−3+1 = 0 we must put zeros for the rest of the coefficients

by linear independence of SF, that implies a contradiction with non-triviality of λ ∈ R
2n−2

.
So, λ2n−3+1 �= 0 and we have

2n−3∑
i=1

λi F
n−2
i + λ2n−3+1F

=
2n−3∑
i=1

λi F
n−2
i + λ2n−3+1

⎛
⎝

2n−3∑
i=1

βi F
n−2
i

⎞
⎠ = 0 ∈ R

2n−2
,

therefore
λi = −λ2n−3+1βi ,

for i = 1, 2, . . . , 2n−3. But then

2n−3∑
i=1

λi G
n−2
1 + λ2n−3+1G

n−2
1 = −

2n−3∑
i=1

λ2n−3+1βi G
n−2
1 + λ2n−3+1G

n−2
1

= λ2n−3+1

⎛
⎝1 −

2n−3∑
i=1

βi

⎞
⎠Gn−2

1 = 0 ∈ R
2n−2

,

that does not hold for
2n−3∑
i=1

βi �= 1 since λ2n−3+1 �= 0 and
∣∣∣
∣∣∣Gn−2

1

∣∣∣
∣∣∣ > 0.

Thus the set SFG = {
(FG)ni

}2n−2

i=1 consists of 2n−2 linearly independent vectors. It remains
to note that

〈AB,F〉 = 〈A, F〉 − 〈B, F〉 + 〈B, F〉 − 〈A, F〉 = 0,

〈AB,G〉 = 〈A,G〉 + 〈B,G〉 − 〈B,G〉 − 〈A,G〉 = 0,

that is linear spans of the sets SF ∪ SG and SFG intersect only in the zero element of R
2n ,

hence the set (SF ∪ SG ∪ SFG) consists of 2n−3 + 2n−3 + 2n−2 = 2n−1 linearly independent
vectors. 
�
Corollary 3 Let f ∈ (

SB+(n) ∪ SB−(n)
)
and F = (F0, F1, F2, F3) ∈ {±1}2n be its sign

function, where F0, F1, F2, F3 ∈ {±1}2n−2
. Then

〈F0, F1〉 + 〈F2, F3〉 = 0,

〈F0, F2〉 + 〈F1, F3〉 = 0.

Proof Assume that f ∈ SB+(n). Then there exist such α, β ∈ R
2n−3

and γ ∈ R
2n−2

that

F =
2n−3∑
i=1

αiFn
i +

2n−3∑
j=1

β jGn
j +

2n−2∑
k=1

γk (FG)nk ,

where sets SF = {
Fn
i

}2n−3

i=1 , SG =
{
Gn

j

}2n−3

j=1
and SFG = {

(FG)nk

}2n−2

k=1 are defined as in the

proof of the Theorem 2. It is enough to notice that the mentioned above relations hold for
every function from the set (SF ∪ SG ∪ SFG).
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The case f ∈ SB−(n) follows from the correspondence between SB+(n) and SB−(n).

�

4 Metrical properties

In the following section we study minimal Hamming distance between (anti-)self-dual bent
functions and investigate metrical complements of the sets of self-dual and anti-self-dual
bent functions.

4.1 Minimal Hamming distance

It is known in [13] that the minimal Hamming distance between distinct bent functions
is equal 2n/2. We prove that this bound is tight both for self-dual and anti-self-dual bent
functions.

Proposition 4 Let n � 4, then the minimal Hamming distance between distinct self-dual bent
functions in n variables is equal to 2n/2.

Proof For n = 4 consider two functions from SB+(n):

f4(x) = x1x2 ⊕ x3x4, g4(x) = f4 (Ax) = x1x4 ⊕ x2x3,

where

A =

⎛
⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ .

It is clear that
f4(x) ⊕ g4(x) = (x1 ⊕ x3) (x2 ⊕ x4) ,

hence, dist ( f4, g4) = 4 = 2n/2.
For every even n � 6 construct a pair of self-dual bent functions fn, gn ∈ SB+(n) with

sign functions
Fn = (Fn−2,−Rn−2, Rn−2, Fn−2) ,

and
Gn = (Gn−2,−Rn−2, Rn−2,Gn−2) ,

respectively, where Fn−2 and Gn−2 are sign functions of bent functions fn−2 ∈ SB+(n − 2)
and gn−2 ∈ SB+(n − 2).

The vector R2m is a sign function of anti-self-dual bent function r ∈ SB−(2m):

r(x) =
m⊕
i=1

x2i−1x2i ⊕ x2m−1 ⊕ x2m, x ∈ F
2m
2 .

Thus we have

dist ( fn, gn) = 2 · dist ( fn−2, gn−2) = 22 · dist ( fn−4, gn−4) = · · ·
= 2k · dist ( fn−2k, gn−2k) = · · · = 2(n−4)/2 · dist ( f4, g4) = 2n/2.


�
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Corollary 4 For n � 4 the minimal Hamming distance between distinct anti-self-dual bent
functions in n variables is equal to 2n/2.

Proof The result follows by using the correspondence between self-dual and anti-self-dual
bent functions (Proposition 1). 
�

4.2 Metrical complement and regularity

Let X ⊆ F
n
2 be an arbitrary set and let y ∈ F

n
2 be an arbitrary vector. Define the distance

between y and X as dist(y, X) = min
x∈X dist(y, x). The maximal distance from the set X is

d(X) = max
y∈Fn2

dist(y, X).

In coding theory this number is also known as the covering radius of the set X . A vector
z ∈ F

n
2 is calledmaximally distant from a set X if dist(z, X) = d(X). The set of all maximally

distant vectors from the set X is called themetrical complement [19] of the set X and denoted
by X̂ . A set X is said to bemetrically regular if ̂̂X = X . Define, following Tokareva, a subset
of Boolean functions to be metrically regular if the set of corresponding vectors of values is
metrically regular [25].

Example 1 In [28] it was proved that affine function can be defined as a Boolean function that
is at the maximal possible distance from the set of all bent functions. Since bent functions are
precisely such functions that are maximally distant from affine functions, it can be concluded
that sets of affine functions and bent functions in n variables are metrically regular.

Sets of functions which have maximum distance from partition set functions were studied
in [24], it was shown that partition set functions defined by some partition are mutually
maximally distant sets.

TheHammingdistance between self-dual and anti-self-dual bent functions is characterized
by the following statement.

Proposition 5 ([3], Proposition 3.2) The Hamming distance between any pair of bent func-
tions f , g, where f ∈ SB+(n) and g ∈ SB−(n), is equal 2n−1.

Since for any f ∈ SB+(n) its negation f ⊕ 1 is also a self-dual bent function by Propo-
sition 2, the covering radius of SB+(n) is at most 2n−1 and from the Proposition 5 it follows
that the covering radius of SB+(n) is exactly 2n−1.

In the following theorem we investigate Boolean functions which are maximally distant
from the the sets SB+(n) and SB−(n), thus obtaining a metrical complement of the set of
(anti-)self-dual bent functions.

Theorem 3 Let n � 4, then the following statements hold:

– The metrical complement of the set of self-dual bent functions is the set of anti-self-dual
bent functions;

– The metrical complement of the set of anti-self-dual bent functions is the set of self-dual
bent functions.

Proof From Proposition 5 it follows the inclusion

SB−(n) ⊆ ̂SB+(n). (1)
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By Theorem 2 among sign functions of self-dual bent functions in n variables there exists
a subset of 2n−1 linearly independent vectors. Denote these vectors by F+

1 , F+
2 , . . . , F+

2n−1

and corresponding self-dual bent functions in n variables by f +
1 , f +

2 , . . . , f +
2n−1 .

Now let f ∈ Fn be an arbitrary function from ̂SB+(n), i.e. such one, that dist
(
f ,SB+(n)

)
= 2n−1, from which it follows that dist( f , g) = 2n−1 for any g ∈ SB+(n). By using
Lemma 2 consider the decomposition for the sign function F of f , F = F+ + F−, where
F± ∈ Ker (Hn ∓ I2n ), see also [7]. The vectors F+ and F− are orthogonal since they
correspond to distinct eigenvalues of the real symmetric matrixHn . Then it holds 〈F, F〉 =
〈F+, F+〉 + 〈F−, F−〉. Since F+ ∈ Ker (Hn − I2n ), for some α ∈ R

2n−1
we have F+ =

2n−1∑
i=1

αi F
+
i . Then we obtain

〈F, F〉 =
〈
F,

2n−1∑
i=1

αi F
+
i

〉
+ 〈

F, F−〉 =
2n−1∑
i=1

αi
〈
F, F+

i

〉
︸ ︷︷ ︸

=0

+ 〈
F, F−〉

= 〈
F, F−〉 = 〈

F+ + F−, F−〉 = 〈
F−, F−〉

,

therefore
〈
F+, F+〉 = 0 that is F+ is a zero vector. Then F = F− ∈ Ker (Hn + I2n ) and

immediately f ∈ SB−(n).
Thus we have an inclusion

̂SB+(n) ⊆ SB−(n). (2)

Both inclusions 1 and 2 yield the result

̂SB+(n) = SB−(n).

The second statement of the Theorem follows from the correspondence between self-dual
and anti-self-dual bent functions (Proposition 1). 
�

For n = 2 the Boolean function x1x2⊕ x1 is at the distance 2 = 2n−1 from the set SB+(2)

but it is not an anti-self-dual bent, hence SB−(2) ⊂ ̂SB+(2) that is ̂SB+(2) �= SB−(2). It is

clear that ̂SB−(2) �= SB+(2) aswell. ThenSB+(2) andSB−(2) are notmetrical complements
of each other.

Theorem 4 The sets SB+(n), SB−(n) are metrically regular sets, both with covering
radius 2n−1.

Proof For the case n = 2 denote

M = {x1x2 ⊕ x1, x1x2 ⊕ x2, x1x2 ⊕ x1 ⊕ 1, x1x2 ⊕ x2 ⊕ 1} ⊂ F2.

Recall that
SB+(2) = {x1x2, x1x2 ⊕ 1}

and
SB−(2) = {x1x2 ⊕ x1 ⊕ x2, x1x2 ⊕ x1 ⊕ x2 ⊕ 1} .

Obviously, we have

dist
(
SB+(2), M

) = dist
(
SB−(2), M

) = 2 = 2n−1,

M̂ = SB+(2) ∪ SB−(2).
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It holds
̂SB+(2) = M ∪ SB−(2),

Metrical complement of the set M ∪SB−(2) coincides with SB+(2), therefore SB+(2) is
a metrically regular set.

Furthermore, it holds
̂SB−(2) = M ∪ SB+(2),

Metrical complement of the set M ∪ SB+(2) coincides with SB−(2), hence SB−(2) is a
metrically regular set as well.

The case n � 4 follows from the Theorem 3. 
�
Let X ⊆ F

n
2 be a metrically regular set with covering radius r . Then, according to [20],

sets X , X̂ are said to be strongly metrically regular, if for any y ∈ F
n
2 it holds

dist (y, X) + dist
(
y, X̂

)
= r .

Define, as before, a pair of sets of Boolean functions to be a pair of strongly metrically
regular sets if the sets of corresponding vectors of values are strongly metrically regular.

Proposition 6 For n � 4 the sets SB+(n) and SB−(n) are not strongly metrically regular.

Proof Consider the linear function f (x) ≡ 0. It holds

dist
(
f ,SB+(n)

) = dist
(
f ,SB−(n)

) = 2n−1 − 2n/2−1,

hence
dist

(
f ,SB+(n)

) + dist
(
f ,SB−(n)

) = 2n − 2n/2 > 2n−1

for n > 2. 
�

4.3 Bounds on the Hamming distance from self-dual bent functions

In this section we study bounds on the maximal Hamming distance from the sets SB+(n)

and SB−(n) that is
max

f ∈Fn\SB−(n)
dist

(
f ,SB+(n)

)

and
max

f ∈Fn\SB+(n)
dist

(
f ,SB−(n)

)
.

Lemma 3 A function f ∈ Bn is (anti-)self-dual if and only if for any constant y ∈ F
n
2 and

for the function Fy ∈ Fn, defined as

Fy(x) = f (x) ⊕ 〈x, y〉 ⊕ f (y), x ∈ F
n
2

it holds wt
(
Fy

) = 2n−1 − 2n/2−1
(
2n−1 + 2n/2−1 respectively

)
.

Proof Let f ∈ SB+(n). Then for any y ∈ F
n
2 we have

(−1) f (y)2n/2 =
∑
x∈Fn2

(−1)〈x,y〉⊕ f (x)⊕ f (y)⊕ f (y)

= (−1) f (y)
∑
x∈Fn2

(−1)〈x,y〉⊕ f (x)⊕ f (y) = (−1) f (y)
∑
x∈Fn2

(−1)Fy(x).
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Hence wt
(
Fy

) = 2n−1 − 2n/2−1, where Fy(x) = f (x) ⊕ 〈x, y〉 ⊕ f (y).
Now assume that wt

(
Fy

) = 2n−1 − 2n/2−1 for any y ∈ F
n
2.

∑
y∈Fn2

(−1) f (y)⊕ f̃ (y) = 2−n/2
∑
y∈Fn2

W f (y)(−1) f (y)

= 2−n/2
∑
y∈Fn2

⎛
⎝ ∑

x∈Fn2
(−1)Fy(x)

⎞
⎠ = 2−n/2

∑
y∈Fn2

2n/2 = 2n .

Thus f ∈ SB+(n). The proof for anti-self-dual case is similar and is omitted. 
�
Theorem 5 It holds

max
f ∈Fn\SB−(n)

dist
(
f ,SB+(n)

)
� 2n−1 − 2n/2−1 + 1.

Proof Consider the function

f (x) = (x1 ⊕ 1) (x2 ⊕ 1) · · · · · (xn ⊕ 1) , x ∈ F
n
2 .

Its vector of values is equal to (1, 0, 0, . . . , 0) ∈ F
2n
2 . Let g ∈ SB+(n), then by Lemma 3

the Hamming weight of a function g(x) ⊕ g (v0), x ∈ F
n
2, is equal to 2

n−1 − 2n/2−1. That is
wt(g) = 2n−1 − (−1)g(v0)2n/2−1.

Thus for any g ∈ SB+(n) such that g (v0) = 0 it holds

dist( f , g) = 2n−1 − 2n/2−1 + 1,

and for any g ∈ SB+(n) such that g (v0) = 1 it holds

dist( f , g) = 2n−1 + 2n/2−1 − 1.

As a result we have

dist
(
f ,SB+(n)

) = min
g∈SB+(n)

dist( f , g) =

= min(2n−1 − 2n/2−1 + 1, 2n−1 + 2n/2−1 − 1) = 2n−1 − 2n/2−1 + 1.


�
Corollary 5

max
f ∈Fn\SB+(n)

dist
(
f ,SB−(n)

)
� 2n−1 − 2n/2−1 + 1.

Proof The statement follows from the correspondence between SB+(n) and SB−(n). 
�

5 Affine equivalence of bent function in small number of variables and
its dual

In this section we state some connections between known isometric mappings of the set of
bent functions in the case of small number of variables.

Let ϕ : A → Fn , where A ⊆ Fn .
Amappingϕ is said to be isometricmapping of the set A ⊆ Fn if it preserves theHamming

distance between functions from the set A, that is for any f , g ∈ A it holds

dist(ϕ( f ), ϕ(g)) = dist( f , g).
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It is known [26] that every isometric mapping of the set of all Boolean functions to itself
that transforms the set of bent functions to itself is a combination of an affine transformation
of coordinates and a shift by an affine function. The mapping f → f̃ defined on the set of
bent functions, preserves the Hamming distance [2] that is it is an isometric mapping of the
set Bn .

Langevin et al. in [15] mentioned that the problem of checking the equivalence of bent
function and its dual is not a trivial one. The general problem of determining whether two
Boolean functions are equivalent or inequivalent was arisen by Dillon in [8].

We study the problem for small number of variables.

Proposition 7 Any bent function in at most 6 variables is affinely equivalent to its dual bent
function.

Proof For each of cases n = 2, 4 there exists only one class of affine equivalence with
representative x1x2 and x1x2 ⊕ x3x4 respectively, that is every bent function in 2 and 4
variables is affinely equivalent to its dual.

In the case n = 6 there are four classes Ci , i = 1, 2, 3, 4, of affine equivalence with the
following representatives [22]:

f1(x) = x1x2 ⊕ x3x4 ⊕ x5x6,

f2(x) = x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6,

f3(x) = x1x2x3 ⊕ x2x4x5 ⊕ x1x2 ⊕ x1x4 ⊕ x2x6 ⊕ x3x5 ⊕ x4x5,

f4(x) = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x1x4 ⊕ x2x6 ⊕ x3x4 ⊕ x3x5 ⊕ x3x6 ⊕ x4x5 ⊕ x4x6,

where x ∈ F
6
2.

Assume that in some class of affine equivalence, say C , there exists a bent function f ′
which is affinely equivalent to its dual bent function. Every bent function f from this class
is affinely equivalent to the bent function f ′, then bent functions f̃ and f̃ ′ are also affinely
equivalent since affine equivalence of two bent functions implies affine equivalence of their
duals. In this case f̃ also belongs to the class C , therefore every bent function from the class
C is affinely equivalent to its dual bent function.

Thus it is enough to show that in every equivalence class of bent functions in 6 variables
there exists a bent function which is affinely equivalent to its dual bent function.

1. The function f1(x) = x1x2 ⊕ x3x4 ⊕ x5x6 is self-dual bent [3, Table 3];
2. Consider the binary matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and Maiorana–McFarland bent function

f (x) = f2 (Ax) = 〈(x1, x2, x3) , (x4, x5, x6)〉 ⊕ x4x5x6

= 〈(x1, x2, x3) , π (x4, x5, x6)〉 ⊕ g (x4, x5, x6) ,

where π : F
3
2 → F

3
2 is the identity permutation and g(y) = y1y2y3 for any y ∈ F

3
2. By

using the form of the dual to the bent function from the Maiorana–McFarland class we
obtain
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f̃ (x) = 〈
π−1 (x1, x2, x3) , (x4, x5, x6)

〉 ⊕ g
(
π−1 (x1, x2, x3)

)

= x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x1x2x3 = f2(x);
3. Consider the binary matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, c = (0, 1, 0, 0, 0, 0) ∈ F
6
2

and the function

f (x) = f3(Ax) ⊕ 〈c, x〉 = x4(x1 ⊕ x2)x3 ⊕ (x1 ⊕ x2)x6x5 ⊕ x4(x1 ⊕ x2) ⊕
⊕x4x6 ⊕ (x1 ⊕ x2)(x2 ⊕ x4) ⊕ x3x5 ⊕ x6x5 ⊕ x2

= (x1 ⊕ x2)x3x4 ⊕ (x1 ⊕ x2)x5x6 ⊕ x1x4 ⊕
x2x4 ⊕ x4x6 ⊕ x1x2 ⊕ x1x4 ⊕ x2x2 ⊕ x2x4 ⊕ x3x5 ⊕ x6x5 ⊕ x2

= (x1 ⊕ x2)x3x4 ⊕ (x1 ⊕ x2)x5x6 ⊕ x1x2 ⊕ x3x5 ⊕ x4x6 ⊕ x5x6.

This bent function is a self-dual bent [3, Table 3].
4. Suppose that in the classC4 there exists a bent function f which is not affinely equivalent

to f̃ , it means that f̃ ∈ C1∪C2∪C3. But in this case, due to the previous considerations, it
holds ˜̃f = f ∈ C1 ∪C2 ∪C3. Since C4 ∩ (C1 ∪ C2 ∪ C3) = ∅, there is a contradiction.
Hence every bent function f from the class C4 is affinely equivalent to its dual bent
function f̃ . 
�
In fact, the graph whose vertices correspond to classes of affine equivalence of bent

functions in n variables and an edge between two vertices v and v′, which correspond to
affine equivalence classes C and C ′ respectively, exists if and only if for any f ∈ C it holds
f̃ ∈ C ′. It is clear that this graph has the following properties:

– There are isolated vertices, for instance that ones which include self-dual or anti-self-dual
bent functions;

– The rest of the vertices have degree 1, thus the corresponding edges form a matching.

6 Conclusion

In this work we study metrical properties of bent functions which coincide with their duals
and bent functions which coincide with negations of their duals namely minimal Hamming
distance and metrical regularity of the sets of self-dual and anti-self-dual bent functions.

It is interesting to continue the study of iterative self-dual bent functions and obtain new
constructions in addition to those mentioned in Corollary 1.
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6. Cusick T.W., Stănică P.: Cryptographic Boolean Functions and Applications. Academic Press, London
(2017).

7. Danielsen L.E., Parker M.G., Solé P.: The Rayleigh Quotient of Bent Functions. Springer Lecture Notes
in Computer Science, vol. 5921, pp. 418–432. Springer, Berlin (2009).

8. Dillon J.: Elementary Hadamard difference sets. PhD. dissertation, Univ. Maryland, College Park (1974).
9. Feulner T., Sok L., Solé P., Wassermann A.: Towards the classification of self-dual bent functions in eight

variables. Des. Codes Cryptogr. 68(1), 395–406 (2013).
10. Hou X.-D.: Classification of self dual quadratic bent functions. Des. Codes Cryptogr. 63(2), 183–198

(2012).
11. Hyun J.Y., Lee H., Lee Y.: MacWilliams duality and Gleason-type theorem on self-dual bent functions.

Des. Codes Cryptogr. 63(3), 295–304 (2012).
12. JanuszG.J.: Parametrization of self-dual codes by orthogonalmatrices. Finite FieldsAppl. 13(3), 450–491

(2007).
13. KolomeecN.A.: The graph ofminimal distances of bent functions and its properties. Des. Codes Cryptogr.

85(3), 1–16 (2017).
14. Kutsenko A.V.: The Hamming distance spectrum between self-dual Maiorana–McFarland bent functions.

J. Appl. Ind. Math. 12(1), 112–125 (2018).
15. Langevin P., Leander G., McGuire G.: Kasami bent function are not equivalent to their duals. Finite Fields

Appl. 461, 187–197 (2008).
16. Luo G., Cao X., Mesnager S.: Several new classes of self-dual bent functions derived from involutions.

Cryptogr. Commun. https://doi.org/10.1007/s12095-019-00371-9 (2019).
17. Mesnager S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory

60(7), 4397–4407 (2014).
18. Mesnager S.: Bent Functions: Fundamentals and Results, p. 544. Springer, Berlin (2016).
19. Oblaukhov A.K.: Metric complements to subspaces in the Boolean cube. J. Appl. Ind. Math. 10(3),

397–403 (2016).
20. Oblaukhov A.K.: A lower bound on the size of the largest metrically regular subset of the Boolean cube.

Cryptogr. Commun. 11(4), 777–791 (2019).
21. Preneel B., Van Leekwijck W., Van Linden L., Govaerts R., Vandewalle J.: Propagation characteristics of

Boolean functions. In: Advances in Cryptology-EUROCRYPT. Lecture Notes in Computer Science, vol.
473, pp. 161–173. Springer, Berlin (1990).

22. Rothaus O.S.: On bent functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).
23. Sok L., Shi M., Solé P.: Classification and construction of quaternary self-dual bent functions. Cryptogr.

Commun. 10(2), 277–289 (2017).
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