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Abstract
In this paper, a new method for the construction of the exponent matrix of quasi-cyclic 
low-density parity-check (QC-LDPC) codes is proposed. The entries of the exponent 
matrix are based on the column multipliers. To find the column multipliers, a parameter 
S
�
 is defined which gives the value of column multiplier of the � th column. The proposed 

method reduced the complexity related to the formation of the exponent matrix and results 
in (3,L)-QC-LDPC codes with girth at least eight, for L > 3 . Also, a lower bound on the 
size of the circulant permutation matrix (CPM) for a QC-LDPC code is derived, and the 
codes constructed by this method are optimal to the given bound. Further, most of the 
codes constructed using this method are of smaller CPM size. Specifically, for L > 25 , our 
constructed QC-LDPC codes have the shortest CPM size compared to the existing ones in 
the literature.

Keywords  Quasi-cyclic low-density parity-check codes · Girth · Circulant permutation 
matrix · Exponent matrix

Mathematics Subject Classification  94B60 · 94B65

1  Introduction

In the last 50 years, LDPC codes came to prominence, since they outperform in iterative 
decoding and show the capacity approaching performance. QC-LDPC codes, an important 
class of LDPC codes perform very well in encoding as well as in decoding because of its 
quasi-cyclic nature and so, have been adopted by many communication systems [2]. A reg-
ular-(J,L)-QC-LDPC code with CPM size q , is specified by a parity-check matrix (PCM) 
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H, which is a J × L array of q × q circulant permutation matrices (CPMs). The CPM I
(
eij
)
 , 

1 ≤ i ≤ J, 1 ≤ j ≤ L , is the q × q identity matrix in which ones in each row are cyclically 
shifted to the right by eij positions. The matrix 

[
eij
]
J×L

 is called the exponent matrix. The 
one can derive a PCM from an exponent matrix by replacing its elements with the cor-
responding circulant matrices. The iterative decoding performance of QC-LDPC codes 
depends upon the girth of the code. Girth is the length of the shortest cycle present in the 
Tanner graph representation of code [9]. QC-LDPC codes, free from short-cycles, i.e., with 
girth at least six have better decoding performance in comparison with codes having short-
cycles. Therefore, to construct QC-LDPC codes with girth six or more and having the min-
imum CPM size is the core aim of current research [1, 3–7, 10, 12, 20]. QC-LDPC codes 
are also used as underlying codes for the construction of QC-LDPC lattices to achieve the 
sphere-bound [6].

Although QC-LDPC codes can be constructed by a variety of methods, the construc-
tions based on exponent matrices or base matrices have attracted much attention [3, 5, 8, 
11, 13, 14]; these constructions give ease to find the short-cycles even when the code has 
large block length. The construction of QC-LDPC codes with base matrices can further be 
categorised as the algebraic methods [8, 15–18] and the search based methods [1, 3, 13, 
14]. The method based on difference matrices is also seemed useful to generate the QC-
LDPC codes of more considerable girth and with less complexity [1].

At the outset, in 2004, the girth-6 (J,L)-QC-LDPC codes for J = 2, 3, 4, 5, 6 have been 
constructed with a combination of algebraic method and the computer search, but the 
search was limited to only L = 13 [3]. The necessary and sufficient conditions for (J,L)-
QC-LDPC codes for given girth were also derived in [3]. Later on, a significant part of 
the work has been devoted to the search of QC-LDPC codes with the minimum CPM size 
and higher girth [4, 5, 10, 12, 13, 20]. The work was extended in [18], which proposed 
the girth-8 (3,L)-QC-LDPC codes of smaller CPM size. In continuity, (5,L) and (6,L)-QC-
LDPC codes with girth at least eight were deterministically constructed by [19] and proved 
that (5,L) and (6,L)-QC-LDPC codes always exist for CPM size q ≥ (2L + 3)(L − 1) + 1 
and q ≥ 2(L + 5)(L − 1) + 1 respectively, which were the improvements over two existing 
bounds L2(L − 1) + 1 and (L2 + 1)(L − 1) + 1 , respectively. Similar work was done by [14], 
which searched the ((3,4,5,6),L)-QC-LDPC codes with girth at least eight for L ≤ 25 , out 
of which most of the codes are of smaller size in comparison with existing codes. In litera-
ture, it is observed that the most of the algebraic constructions of (J,L)-QC-LDPC codes 
are based on row multipliers, as in [5], girth-8 (J,L)-QC-LDPC codes for J = 3, 4, 5, 6 , 
were constructed by row multipliers 

(
0, 1,L, L + 1, L2, L2 + 1

)
 . In [17], row multipliers, to 

construct a girth-8 QC-LDPC code were derived using the greatest common divisor (GCD) 
method. In [19], (J, L)-QC-LDPC codes with girth at least eight were constructed by taking 
the row multipliers 

(
0, 1,L, L + 1, L2, L2 + 1, L2 + L, L2 + L + 1

)
 , for J = 3 to 8 . Therefore, 

we can see that most of the existing methods concentrated only on row multipliers to con-
struct the exponent matrices of QC-LDPC codes and also the codes constructed by row 
multipliers have larger CPM size for larger values of L.

In this paper, a new way to construct the exponent matrix E of a QC-LDPC code is 
proposed, which is based on the column multipliers. The idea gives an algebraic structure 
of (3,L)-QC-LDPC codes with girth at least eight, and having smaller CPM size as com-
pared to the respective codes constructed by row multipliers. The structure of the exponent 
matrix based on column multipliers is defined as follow:

Definition 1.1  Let E =
[
eij
]
 be an exponent matrix of order 3 × L , such that 

eij = (i − 1)
(
Sj − 1

)
 for all 1 ≤ i ≤ 3 , 1 ≤ j ≤ L (L > 3) . i.e.
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Here, S� gives us the value of column multiplier for the � th column. The exponent matrix is 
derived with the help of generator column [0, 1, 2]T by multiplying it with different column 
multipliers. To find the adequate values of column multipliers, S� is defined as follow:

Definition 1.2  S� = 1 +
k∑

m=0

�m�m , where, �m =

⌊
�+2m−1

2m+1

⌋
 and �m =

3m+1

2
 such that 

2k ≤ 𝛼 < 2k+1 , � ∈ ℕ and k ∈ ℤ
∗.

Example  If L = 7 , then the column multipliers S� for 1 ≤ � ≤ 7 are 1, 2, 4, 5, 10, 11, 13 
respectively, and the corresponding exponent matrix E is given by:

This exponent matrix has corresponded to a (3,7)-QC-LDPC code with girth at least eight.
Also, a lower bound q ≥ 2SL − 1 for the minimum CPM size q of (3,L)-QC-LDPC codes 

with girth at least eight, has been proposed, which is the tightest bound among the lit-
erature. The main advantage of this method is that it is an algebraic based method due to 
which it reduces the complexity and gives ease to derive the exponent matrix for any value 
of L > 3 . Moreover, all the codes constructed from this method are optimal to the given 
lower bound on the minimum CPM size and for L > 25 are of shortest CPM size as com-
pared to existing QC-LDPC codes of girth at least eight.

The rest of the paper is ordered as follow: In Sect. 2, the construction and the bound on 
the minimum CPM size for (3,L)-QC-LDPC codes with girth at least eight are presented. 
The conclusion of the paper is given in Sect. 3.

2 � Construction of (3,L)‑QC‑LDPC codes with girth at least 8

In this section, explicit construction of the exponent matrix of a girth-8 QC-LDPC code is 
given. To define the essential properties and characteristics of S� , some of the lemmas are 
proved. With the help of these lemmas and theorems, it is proved that the exponent matrix 
E corresponds a (3,L)-QC-LDPC codes of girth at least eight.

Lemma 2.1  If 𝛼 < 𝛽 then 𝛼m < 𝛽m, for at least one of the value of m such that 0 ≤ m ≤ k, 
m ∈ ℤ

∗ and 2k ≤ 𝛼 < 𝛽 < 2k+1.

Proof 

Case 1 If � = � + 1

Sub-case 1.1 When � is odd,
Since � = � + 1 and � is odd ⇒ � is even

E =

⎡
⎢⎢⎣

�
S1 − 1

�
.0

�
S2 − 1

�
.0

�
S3 − 1

�
.0�

S1 − 1
�
.1

�
S2 − 1

�
.1

�
S3 − 1

�
.1�

S1 − 1
�
.2

�
S2 − 1

�
.2

�
S3 − 1

�
.2

……

……

……

�
SL − 1

�
.0�

SL − 1
�
.1�

SL − 1
�
.2

⎤
⎥⎥⎦
3×L

E =

⎡⎢⎢⎣

0 0 0

0 1 3

0 2 6

0 0 0

4 9 10

8 18 20

0

12

24

⎤⎥⎥⎦
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⇒ there exists a number t ∈ ℕ such that �

2
= t and �

2
= t −

1

2
 

∴ 𝛽0 =

⌊
𝛽+20−1

20+1

⌋
=

⌊
𝛽

2

⌋
= t and 𝛼0 =

⌊
𝛼+20−1

20+1

⌋
=

⌊
𝛼

2

⌋
=

⌊
t −

1

2

⌋
= t − 1 ⇒ 𝛼0 < 𝛽0

Sub-case 1.2 When � is even
We, further divide it into two cases

Sub-case 1.2.a When � = 2k

Then, �k =
⌊
2k+1+2k−1

2k+1

⌋
= 1 and 𝛼k =

⌊
2k+2k−1

2k+1

⌋
= 0 ⇒ 𝛼k < 𝛽k

Sub-case 1.2.b When � ≠ 2k

Since � is even, therefore, there exists at least one i (0 < i < k) such that 2i|� but 
2i+1∤�

therefore, �i =
⌊
�+2i−1

2i+1

⌋
 and �i =

⌊
�+2i−1

2i+1

⌋
=

⌊
�+2i

2i+1

⌋

as, 2i|� then there exists a number t ∈ ℕ such that �
2i
= t

but 2i+1∤� ⇒ 2i+1∤2i.t ⇒ 2∤t ⇒ t is odd and so, let t+1
2

= n ∈ ℕ

now, �i =

⌊
�+2i−1

2i+1

⌋
 and �i =

⌊
�+2i

2i+1

⌋
 ⇒ �i =

⌊
2i.t+2i−1

2i+1

⌋
= n − 1 and 

𝛽i =

⌊
2i.t+2i

2i+1

⌋
= n ⇒ 𝛼i < 𝛽i.

Case 2 When 𝛽 > 𝛼 + 1

Let, � = � + n where n ≥ 2

then 𝛽0 =
⌊
𝛽+20−1

20+1

⌋
=

⌊
𝛽

2

⌋
=

⌊
𝛼+n

2

⌋
≥

⌊
𝛼

2
+ 1

⌋
>

⌊
𝛼

2

⌋
=

⌊
𝛼+20−1

20+1

⌋
= 𝛼0

⇒ 𝛼0 < 𝛽0.

Hence, the proof is complete. 						            □

Lemma 2.2  If 𝛼 < 𝛽 then S𝛼 < S𝛽 for all �, � ∈ ℕ.

Proof  Since, 𝛼 < 𝛽 ⇒ 𝛼+2m−1

2m+1
<

𝛽+2m−1

2m+1
 ∀m ∈ ℤ

∗
⇒

⌊
�+2m−1

2m+1

⌋
≤

⌊
�+2m−1

2m+1

⌋
 ∀m ∈ ℤ

∗ 
⇒ �m ≤ �m ∀m ∈ ℤ

∗ ⇒ �m�m ≤ �m�m ∀m ∈ ℤ
∗ from Lemma 2.1, we have 𝛼m < 𝛽m for at 

least one value of m ⇒

k∑
m=0

𝛼m𝜁m <
k∑

m=0

𝛽m𝜁m where 𝛼 < 𝛽 < 2k+1 ⇒ S𝛼 < S𝛽.

Lemma 2.3  If � = 2k then S� = �k ∀ k ≥ 0.

Proof  Since,

𝛼m =

⌊
𝛼 + 2m − 1

2m+1

⌋
and 0 ≤ m ≤ k

⇒ 𝛼m =

⌊
2k + 2m − 1

2m+1

⌋
=

⌊
2k−m−1 +

1

2
−

1

2m+1

⌋
=

{
2k−1−m when 0 ≤ m < k

0 m ≥ k

⇒ S𝛼 = 1 +

k∑
m=0

𝛼m𝜁m = 1 + 𝛼0𝜁0 + 𝛼1𝜁1 +…+ 𝛼k−1𝜁k−1 + 𝛼k𝜁k

⇒ S𝛼 = 1 + 2k−1

(
30 + 1

2

)
+ 2k−2

(
31 + 1

2

)
+…+ 2k−1−k−1

(
3k−1 + 1

2

)
+ 0.

(
3k + 1

2

)
= 𝜁k
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Hence, the proof is complete. 						            □

Theorem 2.4  If  0 < 𝛼 < 𝛽 < 𝛾 then 2S� ≠ S� + S�  for all �, �, � ∈ ℕ.

Proof  Since, 0 < 𝛼 < 𝛽 < 𝛾 , and let k is any positive integer, then the following cases 
arise:

Case 1 When � = 2k , � and � may have any value.
Since � = 2k , we have from Lemma 2.3, S� = �k ∀ k ≥ 0 , and also 𝛽 < 𝛾 ⇒ 𝛾 ≥ 2k + 1

Case 2 When � = 2k + 1 and

Sub-case 2.1 � ≤ 2k+1 and � may have any value
Since � = 2k + 1 , � ≤ 2k+1 and � may have any value

we have, S� = 1 +
k+1∑
m=0

�m�m ≤ 1 +
k∑

m=0

2k−m�m = 1 + 2

k∑
m=0

2k−1−m�m

since 𝛼 < 𝛽 = 2k + 1 ⇒ 𝛼 ≤ 2k ⇒ S𝛼 ≤ 𝜁k [ ∵ of Lemma 2.3]
we have from (2.1), S𝛾 + 1 + S𝛼 ≤ S𝛾 + 1 + 𝜁

k
≤ 2S𝛽 ⇒ S𝛾 + S𝛼 < 2S𝛽 ⇒ 2S𝛽 ≠ S𝛼 + S𝛾.

⇒ 𝛾
m
≥

�
2k + 1 + 2m − 1

2m+1

�
=

�
2k−m−1 +

1

2

�
=

⎧
⎪⎨⎪⎩

2k−1−m when 0 ≤ m < k

1 m = k

0 otherwise

and 𝛽
m
=

�
2k + 2m − 1

2m+1

�
=

�
2k−m−1 +

1

2
−

1

2m+1

�
=

�
2k−1−m when 0 ≤ m < k

0 m = k

⇒ S𝛾 = 1 +

k�
m=0

𝛾
m
𝜁
m
≥ 1 +

k−1�
m=0

2k−1−m𝜁
m
+ 𝜁

k
≥ 1 +

k�
m=0

𝛽
m
𝜁
m
+ 𝜁

k
= 2S𝛽

⇒ S𝛾 + S𝛼 > 2S𝛽 and so 2S𝛽 ≠ S𝛼 + S𝛾

⇒ 𝛽
m
=

⌊
2k + 1 + 2m − 1

2m+1

⌋
=

⌊
2k−m−1 +

1

2

⌋
=

{
2k−1−m when 0 ≤ m < k

1 m = k

and 𝛾
m
≤

⌊
2k+1 + 2m − 1

2m+1

⌋
=

⌊
2k−m +

1

2
−

1

2m+1

⌋
=

{
2k−m when 0 ≤ m ≤ k

0 m = k + 1

(2.1)

⇒ S� ≤ 1 + 2

k−1∑
m=0

2
k−1−m�

m
+ �

k

⇒ S� ≤ 1 + 2

k∑
m=0

�
m
�
m
− 2�

k
�
k
+ �

k
= 2S� − 1 − �

k

⇒ S� + 1 + �
k
≤ 2S�
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Sub-case 2.2 𝛾 > 2k+1 and � may have any value
Since 𝛾 > 2k+1 ⇒ 𝛾 ≥ 2k+1 + 1

and 𝛽m =

{
2k−1−m when 0 ≤ m < k

1 m = k

now, S𝛾 = 1 +
k+1∑
m=0

𝛾m𝜁m > 1 +
k∑

m=0

2k−m𝜁m + 𝜁k+1

Case 3. When 2k + 1 < 𝛽 < 2k+1 

Sub-case 3.1 𝛾 > 2k+1 and � may have any value
since 2k + 1 < 𝛽 < 2k+1 , 2k+1 < 𝛾 and 𝛼 < 𝛽 ⇒ � ≥ 2k+1 + 1 

⇒ �m ≥

�
2k+1+1+2m−1

2m+1

�
=

�
2k−m +

1

2

�
=

⎧
⎪⎨⎪⎩

2k−m when 0 ≤ m ≤ k

1 m = k + 1

0 otherwise

and, 𝛽m <

⌊
2k+1+2m−1

2m+1

⌋
=

⌊
2k−m +

1

2
−

1

2m+1

⌋
=

{
2k−m when 0 ≤ m ≤ k

0 m = k + 1

we have, S𝛾 = 1 +
k+1∑
m=0

𝛾m𝜁m = 1 +
k∑

m=0

𝛾m𝜁m + 𝛾k+1𝜁k+1 > 1 +
k∑

m=0

2k−m𝜁m + 𝜁k+1 

⇒ S𝛾 > 1 +

k∑
m=0

2k−m𝜁
m
+ S2k+1 [∵ of Lemma 2.3, 𝜁

k+1 = S2k+1 ]

⇒ S𝛾 > 1 +

k∑
m=0

𝛽
m
𝜁
m
+ S2k+1 > S𝛽 + S𝛽[∵ of Lemma 2.2]

⇒ S𝛾 > 2S𝛽 ⇒ S𝛾 + S𝛼 > 2S𝛽 ⇒ 2S𝛽 ≠ S𝛼 + S𝛾

Sub-case 3.2 � ≤ 2k+1 and � may have any value
since 2k + 1 < 𝛽 < 2k+1 , � ≤ 2k+1 and 𝛼 < 𝛽

⇒ 𝛾m >

�
2k+1 + 1 + 2m − 1

2m+1

�
=

�
2k−m +

1

2

�
=

⎧
⎪⎨⎪⎩

2k−m when 0 ≤ m ≤ k

1 m = k + 1

0 otherwise

⇒ S𝛾 > 1 + 2

k∑
m=0

2
k−1−m𝜁

m
+ 𝜁

k+1 = 1 + 2

k−1∑
m=0

2
k−1−m𝜁

m
+ 2.2

k−1−k𝜁
k
+ 𝜁

k+1

⇒ S𝛾 > 1 + 2

k−1∑
m=0

𝛽
m
𝜁
m
+ 𝜁

k
+ 𝜁

k+1 = 1 + 2

k∑
m=0

𝛽
m
𝜁
m
− 2𝛽

k
𝜁
k
+ 𝜁

k
+ 𝜁

k+1

⇒ S𝛾 > 2S𝛽 − 1 − 𝜁
k
+ 𝜁

k+1 = 2S𝛽 − 1 −
3k + 1

2
+

3k+1 + 1

2
= 2S𝛽 − 1 + 3

k > 2S𝛽

⇒ S𝛾 > 2S𝛽 ⇒ S𝛾 + S𝛼 > 2S𝛽 ⇒ 2S𝛽 ≠ S𝛼 + S𝛾
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now, 

Therefore, for all the cases S� + S� ≠ 2S� . Hence, the proof is complete. 		       □

Theorem 2.5  The exponent matrix E is corresponded to a QC-LDPC code with girth at 
least 8 and with CPM size q ≥ 2SL − 1.

Proof  To prove that the corresponding codes are of girth at least 8, firstly we have to prove 
that there is no 4-cycle. For this, if possible, let us suppose there is a 4-cycle present in ath 
and bth rows and cth and dth columns. So by Theorem 2.1 of [3], we have

also 0 < (a − b)
(
Sc − Sd

)
= (b − a)

(
Sd − Sc

)
< 2

(
SL − 1

)
< q therefore, 

(a − b)
(
Sc − Sd

)
≡ 0(modq) becomes a simple equation i.e. (a − b)

(
Sc − Sd

)
= 0 and so, 

we have a = b or Sc = Sd , which is not possible. Therefore, there is no 4-cycle present in 
QC-LDPC codes corresponding to exponent matrix E . 				          □

Now, we will prove that there is no 6-cycle present in the corresponding QC-LDPC codes. 
If possible, suppose there is a 6-cycle present in 1st, 2nd and 3rd rows and dth, eth and fth col-
umns. So again, by Theorem 2.1 of [3], we have

⇒ 𝛾m ≤

�
2k+1 + 2m − 1

2m+1

�
=

�
2k−m +

1

2
−

1

2m+1

�
=

�
2k−m when 0 ≤ m ≤ k

0 m = k + 1

and 𝛽m ≥ 2k + 2 =

�
2k + 2 + 2m − 1

2m+1

�
=

�
2k−m−1 +

1

2
+

1

2m+1

�
=

⎧⎪⎨⎪⎩

2k−1 + 1 when m = 0

2k−1−m 0 < m ≤ k − 1

1 when m = k

S𝛾 = 1 +

k+1∑
m=0

𝛾
m
𝜁
m
= 1 + 𝛾0𝜁0 +

k−1∑
m=1

𝛾
m
𝜁
m
+ 𝛾

k
𝜁k + 𝛾

k+1𝜁k+1 < 1 +

k−1∑
m=0

2k−m𝜁
m
+ 𝜁

k

⇒ S𝛾 < 1 + 2

k−1∑
m=0

2k−1−m𝜁
m
+ 𝜁

k
< 1 + 2

k∑
m=0

𝛽
m
𝜁
m
− 2𝛽

k
𝜁
k
+ 𝜁

k

⇒ S𝛾 + S𝛼 < 2S𝛽

(
eac − ebc

)
+
(
ebd − ead

)
≡ 0(modq)

⇒

(
(a − 1)

(
Sc − 1

)
− (b − 1)

(
Sc − 1

))
+
(
(b − 1)

(
Sd − 1

)
− (a − 1)

(
Sd − 1

))
≡ 0(modq)

⇒

(
Sc − 1

)
(a − b) −

(
Sd − 1

)
(a − b) ≡ 0(modq) ⇒ (a − b)

(
Sc − Sd

)
≡ 0(modq)

since, q ≥ 2SL − 1, 1 ≤ a < b ≤ 3 and 1 ≤ c < d ≤ L

⇒ 1 ≤ Sc < Sd ≤ SL[∵ of Lemma 2.2]
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substitute the values of eij for different values of i and j , and after some simple calcula-
tions, we get

From Eqs. (2.2) and (2.3), we have

since d < e < f ≤ L ⇒ Sd < Se < Sf ≤ SL ⇒ Se + Sf ≤ SL − 1 + SL ≤ q and also 2Sd < q 
hence, both the sides of Eqs. (2.2) and (2.3), are less than q so that the equations can be 
written as a simple equation, i.e., Se + Sf = 2Sd < Se + Sd ⇒ Sf < Sd , which contradicts 
the Lemma 2.2. Similarly, the remaining four equations also become simple equations. 
Now, from Eqs. (2.4) and (2.5), we have 2Sf = Sd + Se < Se + Se ⇒ 2Sf < 2Se ⇒ Sf < Se 
which is not possible, because Sd < Se < Sf  . Similarly, from Eqs. (2.6) and (2.7), we have 
2Se = Sd + Sf  where, d < e < f  , which contradicts the Theorem 2.4 and so, 2Se ≠ Sd + Sf  . 
Hence, all the six equations are not satisfied, which contradicts our supposition that there 
exists a 6-cycle.

Therefore, QC-LDPC codes corresponded by exponent matrix E are free from 4-cycles, 
and 6-cycles. Moreover, it is also make cleared from the above theorem that the proposed 
codes satisfy the tightest lower bound q ≥ 2SL − 1 on the minimum CPM size q , and hence 
are of the smallest size in literature. To validate our claim, we compare the minimum CPM 
size of our proposed girth-8 QC-LDPC codes with the ones in [18] (see Table 1).

(
e1d − e3d

)
+
(
e3e − e2e

)
+
(
e2f − e1f

)
≡ 0(modq)(

e1d − e3d
)
+
(
e3f − e2f

)
+
(
e2e − e1e

)
≡ 0(modq)(

e2d − e3d
)
+
(
e3f − e1f

)
+
(
e1e − e2e

)
≡ 0(modq)(

e1d − e2d
)
+
(
e2e − e3e

)
+
(
e3f − e1f

)
≡ 0(modq)(

e2d − e3d
)
+
(
e3e − e1e

)
+
(
e1f − e2f

)
≡ 0(modq)(

e1d − e2d
)
+
(
e2f − e3f

)
+
(
e3e − e1e

)
≡ 0(modq)

(2.2)Se + Sf ≡ 2Sd(modq)

(2.3)Sf + Se ≡ 2Sd(modq)

(2.4)2Sf ≡
(
Sd + Se

)
(modq)

(2.5)2Sf ≡
(
Sd + Se

)
(modq)

(2.6)2Se ≡
(
Sd + Sf

)
(modq)

(2.7)2Se ≡
(
Sd + Sf

)
(modq)

Se + Sf ≡ 2Sd(modq)

Table 1   Comparison on the minimum CPM size q of the proposed (3,L)-QC-LDPC codes with the codes 
given by [18] for girth at least 8 and for 26 ≤ L ≤ 40

L 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Proposed 219 223 225 235 237 241 243 487 489 493 495 505 507 511 513
[18] 339 379 393 436 451 497 513 562 579 631 649 704 723 781 801
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3 � Conclusion

A new and simple method to construct the exponent matrix for a QC-LDPC code is given 
in this paper. The method is capable of constructing the exponent matrix of order 3 × L , 
for any value of L > 3 , by using the column multipliers. For the proposed method, a lower 
bound on the minimum CPM size q is given, which is the tightest lower bound in literature. 
Moreover, all the constructed QC-LDPC codes by the proposed method are optimal to the 
given bound. Most of the constructed codes are of the smallest CPM size in comparison 
with existing codes based on algebraic constructions.
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