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Abstract
With a small suitable modification, dropping the projectivity condition, we extend the notion
of a Frobenius algebra to grant that a Frobenius algebra over a Frobenius commutative ring is
itself a Frobenius ring. The modification introduced here also allows Frobenius finite rings to
be precisely those rings which are Frobenius finite algebras over their characteristic subrings.
From the perspective of linear codes, our work expands one’s options to construct new finite
Frobenius rings from old ones. We close with a discussion of generalized versions of the
MacWilliams identities that may be obtained in this context.
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1 Introduction

The core ingredient of the definition of a Frobenius algebra A finitely generated as a module
over its commutative ground ring K , as it appears in the literature, is the requirement that
there exist a non degenerate associative K -bilinear form on A; this requirement mimics
accurately the definition of a Frobenius algebra over a field. However, that definition also
includes the somewhat technical requirement that A be projective as a K -module. At first,
since all modules over a field are indeed free and hence projective, the extra condition appears
innocuous. Furthermore, the extra condition apparently served the purpose of affording the
result, mentioned without a detailed proof in [9, p. 434], that every Frobenius algebra over
a Frobenius commutative ring is a Frobenius ring. Unfortunately, not every finite Frobenius
ring is projective over its characteristic subring.

In this paper we remove the projectivity technical requirement from the usual definition
of a Frobenius algebra over a commutative ring and propose that said expression be used
instead for a properly modified notion. We show that thus extending the definition affords us
a very natural result, namely, that a finite ring A of characteristic n is Frobenius if and only
if it is a (not necessarily projective) Frobenius algebra over its characteristic ring Zn . We,
therefore, adopt the expression non projective Frobenius algebra over a ring when all else is
satisfied but possibly not the projectivity requirement. Notice that, as is a common practice
in mathematics, our expression “non projective”, is a less pedantic option to express “not
necessarily projective”.

An additional benefit from our approach is that we may adapt, without using the projec-
tivity of A over K , the arguments in the usual proof that Frobenius algebras over a field are
Frobenius as rings to the case of non projective Frobenius algebras over a ring (Theorem 1).
This result is interesting in its own right and has potential to open many doors in the realm
of applications. Note that one may also derive Theorem 1 from the recent analysis of the
Frobenius property for Artin algebras in [7]. However, while more general, this approach is
significantly more technical and we felt that there is value in sharing our proof here in hopes
that it would be more accessible for a larger group of interested readers.

One of the motivations behind this extension of the expression non projective Frobenius
algebra over a ring arises because of applications of this notion in the algebraic theory of
error-correcting codes. Finite Frobenius rings are extensively used as alphabets for ring-linear
block codes; Frobenius algebras over a finite field are an important example of Frobenius
rings. In contrast, a well known characterization of Frobenius rings [12] may be rephrased by
asserting that a finite ring is Frobenius if and only if there exists a non degenerate associative
bilinear form over its characteristic subring.

The fundamental problem in the theory of linear codes is the analysis and classification of
linear codes over an alphabet, usually a finite field F . Since there is a tremendous number of
subspaces for the vector space Fn the task at hand is quitemonumental. A common frequently
successful practice has been to filter the codes considered in the following manner: add an
F-algebra structure on the vector space Fn (let us refer to Fn , equipped with the additional
structure, as An to remind us of the fact that it is now an algebra of dimension n) and
consider, say, only those subspaces which are (left, right, two-sided) ideals of An . We refer
to the additional algebraic structure on Fn as the ambient (or the ambient space) of the codes
targeted and to the criterion applied to choose the codes we wish to consider as the filter
being applied.

As the interest in studying codes in ambients endowed with additional algebraic structure
expanded from considering field alphabets to ring alphabets, Frobenius rings have tended to
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Some remarks on non projective Frobenius algebras and linear codes 3

become central to the conversation. The reason for this preference goes back to papers that
show that the fundamental structural properties of codes over fields extend to codes that have
Frobenius rings as their alphabets. In fact, there is plenty of evidence to show that Frobenius
rings are precisely the extent to which this type of considerations can be extended if one
wishes to acquire the desired structural properties. For the properties to hold, the alphabet
must be Frobenius.

In this paper, we investigate an alternative role that Frobenius rings appear to play very
naturally in this context. It seems to be the case that coding-theoretic structural properties
are attained, regardless of the structure of the alphabet, when the ambient is a non projective
Frobenius algebra over a commutative ring possibly other than the alphabet. For example, it
may be that the ambient is a non projective Frobenius algebra over its characteristic subring.

We illustrate our ideas by taking advantage of the fact that every finite Frobenius ring of
characteristic n can be seen as a non projective Frobenius Zn-algebra. Our examples include
constructing a family of non projective Frobenius algebras based on factor algebras of skew
polynomial algebras and using them as the ambient algebra for a wide class of analogues to
skew cyclic block codes.

This note is organized as follows. Section 2 provides, with the generality needed here, the
statements and proofs of preliminary results on balanced (also called associative) bilinear
forms over bimodules; we only include proofs that we deemed illustrative. Section 3 provides
our proposed definition of a non projective Frobenius algebra over a commutative ring and
various equivalent characterizations; as mentioned above, projectivity of the algebra over the
base ring is not required. One of these equivalent conditions is the existence of a Frobenius
functional, which will be seen to generalize the generating character and play a similar role
to it. In Sect. 4, we extend results from [11] on annihilators associated to a non degenerate
bilinear form from a finite Frobenius ring to a non projective Frobenius algebra. Section 5
contains our observation that, given an algebra R over a Frobenius commutative ring K such
that R is finitely generated as a K -module, then R is a non projective Frobenius algebra
over K if and only if R is a Frobenius ring. This, in particular, applies to finite rings, viewed
as algebras over their characteristic subrings. We also include a method, based on skew
polynomials, to construct new Frobenius algebras from a given one. From the point of view
of codes, this gives a way to construct new finite Frobenius rings from old ones; this is further
discussed in Sect. 6. That section also contains a discussion of how the general results on
bilinear forms defined on modules over non projective Frobenius algebras, developed in the
previous sections, may be applied to get the main results of [11]. We close that section with
a discussion of those bilinear forms for which a version of MacWilliams identities stated in
[11] holds.

2 Preliminaries on bilinear forms and annihilators

All rings we consider will be unital and possibly non commutative. Let A, B be rings and M
an A−B-bimodule.Wewill simply say that AMB is a bimodule.We also use the notation AM
to declare that M is a left A-module, and MB for right B-modules. Systematic introductions
to the theory of modules over non commutative rings are [8], or [1]. Everything in this section
follows from [1, §30]. For convenience, however, we state the results here in the form they are
needed, and provide their proofs in this more limited scope to keep the paper self-contained.
Given a second bimodule BNA, the abelian group N∗ = homA(N , A) of all homomorphisms
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4 J. Gómez-Torrecillas et al.

of right A-modules is endowed with the structure of a bimodule AN∗
B by the rule

(a f b)(n) = a f (bn), a ∈ A, b ∈ B, f ∈ N∗, n ∈ N .

A straightforward argument shows that the formula

〈m, n〉 = α(m)(n), m ∈ M, n ∈ N

provides a bijective correspondence between A-bilinear maps

〈−,−〉 : M × N → A

and homomorphisms of left A-modules

α : M → N∗.

Moreover, 〈−,−〉 is associative (or balanced), in the sense that 〈mb, n〉 = 〈m, bn〉 for all
m ∈ M, n ∈ N , b ∈ B, if and only if the corresponding α : M → N∗ is a homomorphism
of right B-modules.

Analogously, the additive group ∗M = homA(M, A) of all homomorphisms of left A-
modules is a B − A-bimodule via the rule

(b f a)(m) = f (mb)a, b ∈ B, a ∈ A, f ∈ ∗M .

The assignment

〈m, n〉 = β(n)(m), m ∈ M, n ∈ N

gives a bijective correspondence between A-bilinear forms

〈−,−〉 : M × N → A

and homomorphisms of right A-modules

β : N → ∗M .

Again, the condition of being the bilinear form associative is equivalent to require that β is
a homomorphism of left B-modules.

Definition 1 Let 〈−,−〉 : M × N → A be an A-bilinear form, and

α : M → N∗, β : N → ∗M

the corresponding homomorphisms of A-modules defined as before. We say that 〈−,−〉 is
right (resp. left) non degenerate if α (resp. β) is injective. When 〈−,−〉 is left and right non
degenerate, we just say that the bilinear form is non degenerate.

A left module AL is an injective cogenerator if the exactness of a sequence of morphisms
of left A-modules

X �� Y �� Z

is equivalent to the exactness of the corresponding sequence of additive groups

homA(Z , L) �� homA(Y , L) �� homA(X , L) .

That is, AL is both injective and cogenerator (see [1, Proposition 18.14]).
Recall that a left artinian ring A is Quasi-Frobenius (QF) if A A is an injective cogenerator.

Equivalently, A is right artinian and AA is an injective cogenerator (see [8, Theorem 13.2.1]).
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Some remarks on non projective Frobenius algebras and linear codes 5

The length of a right A-module X will be denoted by lt(XA), for a left A-module Y , by
lt(AY ). From now on, unless otherwise stated, we will assume that all A-modules are of finite
length. A (left and right) artinian ring A is QF if and only if lt(AX∗) = lt(XA) for every
finitely generated right A-module XA and lt(∗YA) = lt(AY ) for every finitely generated left
A-module AY (see [8, Theorem 13.3.2]). We assume in the rest of this section that A is a
Quasi-Frobenius ring (see [8, Ch. 13] for various additional characterizations of these rings,
including the original definition due to Nakayama).

Lemma 1 If there is a non degenerate A-bilinear form 〈−,−〉 : M×N → A, then lt(AM) =
lt(NA).

Proof The following computation, which uses that both α and β are injective maps, gives
the statement.

lt(AM) ≤ lt(AN
∗) = lt(NA) ≤ lt(∗MA) = lt(AM). �	

Next lemma, as well as Proposition 1 below, can be deduced from [1, Theorem 30.1].

Lemma 2 Assume that lt(AM) = lt(NA). An A-bilinear form 〈−,−〉 : M × N → A is left
non degenerate if and only if it is right non degenerate. In such a case, both α and β are
isomorphisms.

Proof Assume that 〈−,−〉 is right non degenerate, that is, the homomorphism of left A-
modules α : M → N∗ is injective. Since A is QF, lt(AN∗) = lt(NA) = lt(AM). Therefore,
α is an isomorphism. In order to prove that 〈−,−〉 is left non degenerate, let n ∈ N such
that β(n) = 0. This means that, for everym ∈ M , 0 = β(n)(m) = 〈m, n〉 = α(m)(n). Since
α is surjective, we get that ϕ(n) = 0 for all ϕ ∈ N∗. This implies that n = 0, since A is an
injective cogenerator right A-module. Therefore, β is injective. We so far have proved that
if 〈−,−〉 is right non degenerate, then it is left non degenerate, and α is an isomorphism. By
symmetry, we get the full statement of the lemma. �	

Now, for an A-bilinear form 〈−,−〉 : M × N → A, and subsets S ⊆ N , T ⊆ M , we
define

′S = {m ∈ M | 〈m, s〉 = 0, ∀s ∈ S} ,

T ′ = {n ∈ N | 〈t, n〉 = 0, ∀t ∈ T } .

Clearly, ′S is a left A-submodule of M , while T ′ is a right A-submodule of N .

Proposition 1 Assume that 〈−,−〉 is non degenerate. For every A-submodule X (resp. Y ) of
NA (resp. of AM) we have that (′X)′ = X and ′(Y ′) = Y .

Proof From Lemma 1, lt(AM) = lt(NA). Consider the commutative diagram of left A-
modules with exact rows

0 �� (N/X)∗ �� N∗ �� X∗ �� 0

0 �� ′X ��

α′′
��

M ��

α

��

M/′X ��

α′

��

0

,

where α′(m + ′X)(n) = 〈m, n〉 for all m ∈ M, n ∈ X , and α′′(m)(n + X) = 〈m, n〉 for
all m ∈ ′X , n ∈ N . We see that α′ is injective, so, α being an isomorphism by Lemma 2,
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6 J. Gómez-Torrecillas et al.

we get that α′ is an isomorphism, too. This implies that α′′ is an isomorphism. Therefore,
′X ∼= (N/X)∗ and X∗ ∼= M/′X as A-modules. Analogously, we have isomorphisms of
A-modules Y ′ ∼= ∗(M/Y ) and ∗Y ∼= N/Y ′.

Now, observe that X ⊆ (′X)′. Thus, from the isomorphisms (′X)′ ∼= ∗(M/′X) and
X∗ ∼= M/′X , we get

lt((′X)′) = lt(∗(M/′X)) = lt(M/′X) = lt(X∗) = lt(X),

which is only possible if X = (′X)′. Analogously, ′(Y ′) = Y . �	
Remark 1 With the notation of Proposition 1, we get from its proof that there are iso-
morphisms of A-modules M/′X ∼= X∗ and N/Y ′ ∼= ∗Y , as well as ′X ∼= (N/X)∗ and
Y ′ ∼= ∗(M/Y ). Moreover,

α(′X) = {ϕ ∈ N∗ : ϕ(X) = 0}. (1)

Corollary 1 The map ′(−) gives an anti-isomorphism, with inverse (−)′, between the lattices
of right A-submodules of N and of left A-submodules of M.

If 〈−,−〉 is associative, then we easily get from Proposition 1 the following refinement
of Corollary 1.

Corollary 2 If 〈−,−〉 is associative, then the map ′(−) gives an anti-isomorphism, with
inverse (−)′, between the lattices of B − A-subbimodules of N and of A − B-subbimodules
of M.

Remark 2 As already observed before, the statement of Proposition 1 can be deduced from [1,
Theorem 30.1]. Indeed, the key ingredient to get a double annihilator property with respect
to a non degenerate bilinear form with values in a bimodule U is that the duals with respect
to U take simples to simples (see [1, Theorem 30.1] for the precise statement). This is the
case for several formulations of the double annihilator property in the realm of linear codes
with finite (bi)modules as alphabets, like [4,6,12].

3 Non projective Frobenius algebras

A left and right artinian ring Awith Jacobson radical J isFrobenius if there are isomorphisms
of modules

Soc(A A) ∼= A/J , Soc(AA) ∼= A/J , (2)

where the notation Soc(X) stands for the socle of a (left or right) module X . Every Frobenius
ring is QF [8, Corollary 13.4.3]. Moreover, in order to prove that a given QF ring A is
Frobenius one only needs to check one of the isomorphisms in (2). Every commutative QF
ring is Frobenius [8, p. 361].

Let R be an algebra over a commutative Frobenius ring K . Setting A = K and B = R in
the framework of Sect. 2, we may thus consider the bimodules N = R RK and M = K RR .
Therefore, R∗ = ∗R = homK (R, K ) is endowed with the right and left R-module structures

( f b)(b′) = f (bb′) = (b′ f )(b), b, b′ ∈ R, f ∈ R∗.

This gives, indeed, an R−R-bimodule structure on R∗. Next, wematerialize the discussion of
Sect. 2 to this framework. Recall that a K -bilinear form 〈−,−〉 : R × R → K is associative
if

〈
bb′, b′′〉 = 〈

b, b′b′′〉 for all b, b′, b′′ ∈ R.
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Some remarks on non projective Frobenius algebras and linear codes 7

Proposition 2 Let R be an algebra over a commutative Frobenius ring K . Assume R to
be finitely generated as a K -module. The following structures related to R are in bijective
correspondence.

1. Associative non degenerate K -bilinear forms

〈−,−〉 : R × R → K .

2. Isomorphisms of right R-modules α : R → R∗.
3. Isomorphisms of left R-modules β : R → R∗.
4. K-linear forms ε ∈ R∗ such that εR = R∗.
5. K-linear forms ε ∈ R∗ such that Rε = R∗.

Proof The equivalence between (1), (2) and (3) follows from Lemma 2 and the discussion
previous to Definition 1. We only discuss the equivalence between (2) and (4), since that
between (3) and (5) is symmetric. If there is an isomorphism of right R-modulesα : R → R∗,
then ε = α(1) generates R∗ as a right R-module. Conversely, given ε ∈ R∗ such that R∗ =
εR, we have the surjective homomorphism of right R-modules α : R → εR = R∗ given by
α(b) = εb. Since K is Frobenius, lt(RK ) = lt(R∗

K ), and we get that α is an isomorphism,
indeed. Let us finally argue that the linear form appearing in (4) coincides with that of (5).
Let b, b′ ∈ R. Then

〈
b, b′〉 = α(b)(b′) = (εb)(b′) = ε(bb′) = (b′ε)(b) = β(b′)(b). Thus,

Rε = R∗. �	
Definition 2 An algebra R over a commutative Frobenius ring K is said to be non projective
Frobenius if R is finitely generated as a K -module and there exits a non degenerate K -bilinear
form 〈−,−〉 : R × R → K . The K -linear form ε : R → K provided by Proposition 2 will
be referred to as the Frobenius functional.

Remark 3 It follows from Proposition 2 that a Frobenius K -algebra in the sense of [3] is non
projective Frobenius. The converse is not true (see Remark 8).

Remark 4 We have already seen that the additional structure maps that, according to Propo-
sition 2, make a K -algebra non projective Frobenius, are related by the following equalities

α(b)(b′) = 〈
b, b′〉 = β(b′)(b),

ε = α(1) = β(1), α(b) = εb, β(b) = bε,

ε(bb′) = 〈
b, b′〉 ,

for all b, b′ ∈ R.

Remark 5 As a consequence of Lemma 2 and Proposition 2, and from their proofs, we see
that, in the latter, we may replace condition (1) by only requiring the bilinear form to be
either left or right non degenerate. Also, in conditions (2) and (3) we only need to require
one of α or β to be surjective.

Example 1 Every semisimple algebra R over a commutative Frobenius ring K with RK

finitely generated is a non projective Frobenius algebra. By virtue of Wedderburn–Artin
Theorem, it suffices by proving this when R is simple. In this case, R R ∼= �n for a simple
left R-module�. Now, R∗ ∼= (�∗)n as right R-modules. Since K is Frobenius, R and R∗ have
the same length as K -modules. Therefore, � and �∗ have the same length as K -modules.
This implies (look at R as a matrix ring over a division K -algebra) that �∗ is a simple right
R-module. Since its multiplicity in R∗ is n, we deduce that R ∼= R∗ as right R-modules.
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8 J. Gómez-Torrecillas et al.

4 Annihilators in non projective Frobenius extensions

Let us come back to the situation of a pair of bimodules AMB and BNA with a non degenerate
A-bilinear map 〈−,−〉 : M×N → A. Assume, in addition, that A is a non projective Frobe-
nius algebra over a Frobenius commutative ring K , with Frobenius functional ε : A → K .
The corresponding associative non degenerate K -bilinear form (see Proposition 2) will be
denoted by 〈−,−〉ε , and it obeys the rule

〈
a, a′〉

ε
= ε(aa′), a, a′ ∈ A.

Define, for each subset S ⊆ N ,

εS = {m ∈ M : ε(〈m, s〉) = 0 ∀s ∈ S},
which is a K -submodule of M . Analogously, for every subset T ⊆ M we get the K -
submodule of N

T ε = {n ∈ N : ε(〈t, n〉) = 0 ∀t ∈ T }.
Indeed, εS and T ε are the left and right orthogonal K -submodules of S and T with respect
to the K -bilinear form

[−,−]ε : M × N → K , [m, n]ε = ε(〈m, n〉).
Obviously, ′S ⊆ εS and T ′ ⊆ T ε .

Proposition 3 Let S and T be A-submodules of NA and AM, respectively. Then

′S = εS, T ′ = T ε .

Thus, εS and T ε are A-submodules of, respectively, AM and NA. Moreover,

(′S)′ = S = (εS)ε, ′(T ′) = T = ε(T ε).

Proof To prove the equality εS = ′S, we just need to check the inclusion εS ⊆ ′S. Let
a ∈ A,m ∈ M, s ∈ S. If m ∈ εS, then, since S is a submodule of NA, we have

0 = ε(〈m, sa〉) = ε(〈m, s〉 a) = 〈〈m, s〉 , a〉ε .

Now a ∈ A is arbitrary and 〈−,−〉ε is non degenerate, we thus get that 〈m, s〉 = 0. Hence,
m ∈ ′S. For the proof of the second part, observe that the bilinear form [−,−]ε is non
degenerate: if m ∈ M is such that [m, n]ε = 0 for all n ∈ N , then m ∈ εN = ′N = {0}.
Hence, [−,−]ε is left non degenerate. The argument on the right is similar. By Proposition 1,
(εS)ε = S and ε(T ε) = T . �	

For a subset S ⊆ A, we have the left (resp. right) ideal of A defined by

lannA (S) = {a ∈ A : as = 0 ∀s ∈ S}
(resp. by)

rannA (S) = {a ∈ A : sa = 0 ∀s ∈ S}.
Corollary 3 For any non projective Frobenius algebra A with Frobenius functional
ε : A → K, every right ideal S of A, and every left ideal T of A, we have

lannA (S) = εS, rannA (T ) = T ε .
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Some remarks on non projective Frobenius algebras and linear codes 9

Therefore,

rannA (lannA (S)) = S, lannA (rannA (T )) = T .

Proof Setting M = N = A in Proposition 3, and the bilinear form 〈−,−〉 to be the mul-
tiplication map of A, we get the statement, since ′S = lannA (S), while T ′ = rannA (T ).

�	

Remark 6 It follows from Corollary 3 and [8, Theorem 13.2.1] that every non projective
Frobenius algebra over a Frobenius commutative ring is a Quasi-Frobenius ring. Next section
is devoted to sharpen this result.

5 Non projective Frobenius algebras and Frobenius rings

Let R an algebra over a commutative Frobenius ring K with RK finitely generated. Let J
denote the Jacobson radical of R. Since R is an artinian ring, the socle Soc(X) of every
R-module X is an essential submodule, in the sense that every nonzero submodule of X
intersects non trivially Soc(X). It follows from [1, Theorem 18.10 and Proposition 18.12]
that two injective R-modules are isomorphic if, and only if, they have isomorphic socles.

It is well known that, if XR is finitely generated, then

Soc(XR) = {x ∈ X : x J = 0}.
Therefore, Soc(R∗

R) may be computed as

Soc(R∗
R) = { f ∈ R∗ : f (J ) = 0} ∼= (R/J )∗R ∼= (R/J )R, (3)

where the last isomorphism of R/J -modules (and, hence, of R-modules) holds because R/J
is semisimple, and Example 1 applies.

Theorem 1 Let R be an algebra over a commutative Frobenius ring K with RK finitely
generated. Then R is a non projective Frobenius K -algebra if and only if R is a Frobenius
ring.

Proof Assume first that R is Frobenius as a ring. Then Soc(RR) ∼= (R/J )R . By (3),
(R/J )R ∼= Soc(R∗

R). Now, RR is injective because it is Frobenius, and R∗
R is injective

because K is Frobenius. Since they have isomorphic socles, it follows that RR ∼= R∗
R , and

R is a non projective Frobenius algebra. Conversely, Corollary 3 implies that R is Quasi-
Frobenius. Since R is non projective Frobenius, we have an isomorphism of R-modules
RR ∼= R∗

R . Therefore, taking (3) into account, we get

Soc(RR) ∼= Soc(R∗
R) ∼= (R/J )R .

Hence, R is a Frobenius ring. �	

Remark 7 Theorem 1 can also be deduced from [7, Proposition 1.5], since the commutative
Frobenius base ring K is a minimal injective cogenerator of the category of K -modules.

Corollary 4 Let R be a finite ring of characteristic n. Then R is a Frobenius ring if and only
if R is a non projective Frobenius Zn-algebra.
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10 J. Gómez-Torrecillas et al.

Remark 8 A non projective Frobenius algebra need not be projective over its commutative
base Frobenius ring. One of the simplest examples is the ring R = Z2 ×Z4, which is clearly
Frobenius and, by Corollary 4, a non projective Frobenius algebra over Z4. However, R is
not projective as a Z4-module, so it is not a Frobenius algebra in the classical setting.

Next, we will describe a method for constructing Frobenius rings from skew polynomial
rings with coefficients in a non projective Frobenius algebra.

Let A be a non projective Frobenius algebra over a Frobenius commutative ring K with
Frobenius functional ε : A → K , and associative non degenerate K -bilinear form

〈−,−〉ε : A × A → K , 〈a, b〉ε = ε(ab).

Consider the skew polynomial ring S = A[x; σ ], where σ is a K -algebra automorphism
of A, and let f = ∑m

i=0 fi x i ∈ S be a monic polynomial such that S f = f S. Since S f
is a twosided ideal of S, we get the K -algebra R = S/S f , which is finitely generated as
a K -module because f is monic. Indeed, every g ∈ S can be written as g = q f + r , for
suitable q, r ∈ S with r of degree smaller than m. This implies, always with f monic, that
AR ∼= Am . In other words, we will identify the elements of R with polynomials in S with
degree less than m, with the operations made modulo f . For g ∈ R, the notation g0 stands
for its term of degree 0. Finally, we assume that f0 is a unit of A.

Theorem 2 R is a non projective Frobenius K -algebra with nondegenerate associative bilin-
ear form

〈−,−〉 : R × R → K , 〈g, h〉 = ε((gh)0).

Therefore, R is a Frobenius ring.

Proof A straightforward computation modulo f shows that, for

g =
m−1∑

i=0

gi x
i , h =

m−1∑

i=0

hi x
i ∈ R,

we have

(gh)0 = g0h0 −
m−1∑

i=1

gm−iσ
m−i (hi ) f0. (4)

Obviously, 〈−,−〉 is K -bilinear. In order to prove that it is non degenerate it suffices, by
Remark 5, to show that 〈−,−〉 is right non degenerate. So, let g ∈ R such that 〈g, h〉 = 0
for all h ∈ R. Let λ ∈ A. Taking h = λ ∈ A in (4), we get that

0 = ε(g0λ) = 〈g0, λ〉ε .

Since 〈−,−〉ε is non degenerate, we deduce that g0 = 0. Now, let i ∈ {1, . . . ,m}. Setting
h = λxi in (4), we have

0 = −ε(gm−iσ
m−i (λ) f0) = −

〈
gm−i , σ

m−i (λ) f0
〉

ε
.

Now, λ ∈ A is arbitrary, f0 ∈ A is a unit, and σm−i is an automorphism of A, so, we get from
the non degeneracy of 〈−,−〉ε that gm−i = 0. Thus, g = 0, and 〈−,−〉 is non degenerate.
By Theorem 1, R is a Frobenius ring. �	
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Some remarks on non projective Frobenius algebras and linear codes 11

6 Codes with a Frobenius alphabet

Let A be a finite ring. Considering A as an additive group, it is well known that it is isomorphic
to the group Â of its complex characters (the group homomorphisms from A toC×). The ring
structure of A leads to an additional A-bimodule structure on Â (see [12]). It was observed
in [12] that A is a Frobenius ring precisely when Â is cyclic either as a left or as a right
A-module. A module generator is then called generating character. Let us see how this result
fits in the theory so far developed in this paper for non projective Frobenius algebras.

Let n be the characteristic of A, and consider Zn ⊆ C
× as the group of nth roots of unity.

Recall that the abelian group Zn has a unique structure of ring, and that it is Frobenius. Now,
we have

Â = homZ(A,C×) = homZ(A,Zn) = homZn (A,Zn) = A∗.

Thus, the A-bimodule A∗ is, in this case, nothing but the bimodule of characters of A.
Therefore, in view of Corollary 4, the equivalent conditions of Proposition 2 characterize

when the finite ring A is Frobenius. Indeed, we may explicitly state the following reformu-
lation of some results from [12].

Theorem 3 [12, Theorems 3.10 and 4.3] Let A be a finite ring of characteristic n. The
following structures related to A are in bijective correspondence.

1. Associative non degenerate bilinear forms A × A → Zn .

2. Isomorphisms of right A-modules α : A → Â.
3. Isomorphisms of left A-modules β : A → Â.
4. Characters ε ∈ Â such that εA = Â.
5. Characters ε ∈ Â such that Aε = Â.

Moreover, A is a Frobenius ring if and only if any of these structures does exist.

Let A be a finite Frobenius ring of characteristic n, and Frobenius functional (or generating
character) ε : A → Zn . Let 〈−,−〉 : M × N → A a non degenerate bilinear form, where
AM and NA are finite A-modules. We know that lt(AM) = lt(NA) and, by Lemma 2,
AM ∼= AN∗ and NA ∼= M∗

A. Let us see that this framework covers the module-theoretical
setting considered in [11].

Example 2 Consider an anti-automorphism θ : A → A, and a left module AM . We can
consider the right A-module N whose underlying additive group is M , with the right A-
module structure defined by ma = θ−1(a)m for all a ∈ A,m ∈ M . Then, as already
observed in [11, Remark 4.9], a non degenerate A-bilinear form 〈−.−〉 : M × N → A is,
precisely, a non degenerate sesquilinear form in the sense of [11, §3]. When M has to be
considered as the word ambient space for A-linear codes, a natural choice is to put M = An

with its canonical left A-module structure.

Example 3 Of course, the same finite abelian group M may support both a left A-module
structure and a right A-module structure. This case, considered in [11, §4], is clearly covered
by our general formalism. Here, a natural choice is M = An with its canonical A-bimodule
structure.

Next, we will see how the results in [11] are derived from our general theory. So, fix a
non degenerate A-bilinear form 〈−,−〉 : M × N → A, where A is a finite Frobenius ring of
characteristic n, and AM , NA are finite modules. Let ε : A → Zn be a Frobenius functional
(that is, a generating character). According to examples 2 and 3, this setting covers all cases
considered in [11].
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12 J. Gómez-Torrecillas et al.

Proposition 4 [11, Propositions 3.7 and 4.7] If T ⊆ M is a left A-submodule and S ⊆ N is
a right A-submodule, then

(′S)′ = S = (εS)ε, ′(T ′) = T = ε(T ε).

Proof In view of Corollary 4, this proposition is a particular case of Proposition 3. �	
By |X | we denote the cardinal of a finite set X .

Theorem 4 [11, Theorems 3.6 and 4.6] Let S ⊆ NA and T ⊆ AM be submodules. Then
|S||′S| = |M | = |N | and |T ||T ′| = |M | = |N |.
Proof Consider the non degenerate Zn-bilinear form [−,−]ε : M × N → Zn defined by
[m, n]ε = ε(〈m, n〉) for m ∈ M, n ∈ N . By Proposition 3, ′S = εS, the latter being the
left orthogonal of S with respect to [−,−]ε . Now, by Remark 1, we have an isomorphism
of Zn-modules M/εS ∼= homZn (S,Zn). Therefore, |M | = |εS|| homZn (S,Zn)| = |εS||S|,
since homZn (S,Zn) is nothing but the character group of S. Now, M ∼= homZn (N ,Zn) ∼= N ,
which gives that |M | = |N |. �	

Recall that the Hamming weight wt(x) of a vector x ∈ An is defined by the number of
nonzero components of x . Given an additive codeC ⊆ An , the Hamming weight enumerator
of C is the complex polynomial in two variables X , Y

WC (X , Y ) =
∑

x∈C
Xn−wt(x)Ywt(x).

A general version of MacWilliams identity appears in [11, Theorem 5.2]. Unfortunately, it
is not valid for every non degenerate bilinear form, as the following example shows.

Example 4 Set A = F2, and let 〈−,−〉 : F2
2 ×F

2
2 → F2 the non degenerate F2-bilinear form

defined by the non singular matrix

Q =
(
1 1
0 1

)
,

that is, 〈x, y〉 = xt Qy for all x, y ∈ F
2
2. Let C ⊆ F

2
2 the linear code C = {(0, 0), (1, 0)}. Its

dual (with respect to 〈−,−〉) is ′C = {(0, 0), (1, 1)}. Therefore,
WC (X , Y ) = X2 + XY , W′C (X , Y ) = X2 + Y 2.

If the MacWilliams identity stated in [11, Theorem 5.2] were applicable to 〈−,−〉, then we
would have

W′C (X , Y ) = 1

2
WC (X + Y , X − Y ) = X2 + XY .

Therefore, the identities from [11, Theorem 5.2] do not hold for a general non degenerate
bilinear form.

Theorem 5.2 in [11] is a consequence of [13, Theorem 11.3] whenever the isomorphisms

α : Am → Âm, α(x)(y) = ε(〈x, y〉)
and

β : Am → Âm, β(x)(y) = ε(〈y, x〉)
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are isometries with respect to the Hamming weights in Am and Âm . This is the statement of
[11, Lemma 5.3], which does not hold for an arbitrary non degenerate A-bilinear form on
Am . The argument is valid, however, for suitable bilinear forms. To be more precise, let ei
denote, for i = 1, . . . ,m, the vector of Am whose only nonzero component is the i th, which
is 1. The Hamming weight of ϕ ∈ Âm is computed as the Hamming weight of its image
under the group isomorphism

Âm → Âm, ϕ �→ (ϕ(e1·), . . . , ϕ(em ·)),
where ϕ(ei ·)(a) = ϕ(eia) for all a ∈ A and i = 1, . . .m. That is, wt(ϕ) is the number of
indexes i ∈ {1, . . . ,m} such that ϕ(ei ·) �= 0. Recall that a square matrix with coefficients in
a ring is said to bemonomial if each row and column contains exactly one nonzero entry and
that nonzero entry is a unit.

Lemma 3 The group isomorphism α : Am → Âm preserves the Hamming weight if and only
if the matrix Q = (〈

ei , e j
〉)
1≤i, j≤m

is monomial.

Proof Given a, b ∈ A, and i, j ∈ {1, . . . ,m}, we have
αaei (e j ·)(b) = ε(

〈
aei , e j b

〉
) = ε(a

〈
ei , e j

〉
b). (5)

If α preserves the Hamming weight, then wt(αei ) = 1 for each i ∈ {1, . . . ,m}. Thus, given
i , there is a unique j ∈ {1, . . . ,m} such that αei (e j ·) �= 0. By (5),

〈
ei , e j

〉 �= 0. Furthermore,
for k �= j , we get from (5) that ε(〈ei , ek〉 b) = 0 for every b ∈ A and, hence, 〈ei , ek〉 = 0.
We have thus seen that the i-th row of Q has only one nonzero entry, namely

〈
ei , e j

〉
. This

implies, taking into account that 〈−,−〉 is non degenerate, that Q is a monomial matrix.
Conversely, assume that Q is a monomial matrix. Since α is already an isomorphism of

additive groups, in order to prove that it preserves the Hamming weight, it will suffice if
we check that wt(α(aei )) = 1 for every 0 �= a ∈ A and every i = 1, . . . ,m. Given i ,
let j ∈ {1, . . . ,m} the unique index such that

〈
ei , e j

〉 �= 0. By (5), α(aei )(ek ·) = 0 for all
k �= j . But α(aei )(e j ·) �= 0 because, otherwise, ε(

〈
aei , e j

〉
b) = 0 for all b ∈ A, whence〈

aei , e j
〉 = 0. This is not possible, as 〈−,−〉 is non degenerate and aei �= 0. �	

Theorem 5 [11, Theorem 5.2] Let 〈−,−〉 : Am × Am → A be a non degenerate A-bilinear
form such that the matrix Q = (〈

ei , e j
〉)
1≤i, j≤m

is monomial. Let C ⊆ Ambe a left (resp.

right) A-linear code C ⊆ Am, and set D = C ′ (resp. D = ′C). Then

WD(X , Y ) = 1

|C |WC (X + (|A| − 1)Y , X − Y ).

Proof Under the hypotheses on 〈−,−〉, α is an isometry by Lemma 3. By Proposition 3,
′C = εC . Moreover, by (1), applied to the bilinear form [−,−]ε = ε ◦ 〈−,−〉,

α(εC) = {ϕ ∈ Âm : ϕ(C) = 0}.
Thus, MacWilliams formula follows from [13, Theorem 11.3] . As for the D = C ′ case
concerns, the same argument works, by virtue of an obvious version of Lemma 3 for β. �	

We conclude this section by giving some examples of non projective Frobenius algebras
for which the annihilators with respect to their associative bilinear forms are the Euclidean
duals with respect to certain bases. The notation X⊥ will be used to denote the Euclidean
dual of a given code X , with respect to the Euclidean product which will be clear in each
situation.
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14 J. Gómez-Torrecillas et al.

Example 5 Let G be a finite group, and consider the group algebra A = ZnG, which is a
basic example of Frobenius Zn-algebra, with the associative non degenerate bilinear form
defined by

〈
∑

g∈G
αgg,

∑

h∈G
βhh

〉

=
∑

g∈G
αgβg−1 .

Note that, if we denote by [−,−] the obvious euclidean bilinear form on A, then [a, b] =
〈a, θ(b)〉, for all a, b ∈ A, where θ : A → A denotes the involution determined by θ(g) =
g−1 for g ∈ G. Hence, S⊥ = θ(S′) for every subset S of A, which implies that if C is a left
ideal of A, then C⊥ is a left ideal of A, too.

Let σ be an automorphism of a finite Frobenius ring A of characteristic n. Consider a
Frobenius functional (or generating character) ε : A → Zn , and the non degenerate Zn-
bilinear form given by 〈a, b〉 = ε(ab) for all a, b ∈ A. Let m be a multiple of the order
of σ . The polynomial xm − 1 ∈ S = A[x; σ ] is central, so we may consider the finite ring
A = S/S(xm − 1), which is a Frobenius ring and a non projective Frobenius Zn-algebra,
according to Proposition 2, with the nondegenerate associative Zn-bilinear form

〈−,−〉A : A × A → Zn, 〈 f , g〉 = ε(( f g)0). (6)

On the other hand, looking at A as a free A-module of rank m with basis {1, x, . . . , xm−1},
we have the Euclidean A-bilinear form

[−,−] : A × A → A, [ f , g] =
m−1∑

i=0

fi gi .

Proposition 5 Let θ : A → A be defined by

θ

(
m−1∑

i=0

fi x
i

)

=
m−1∑

i=0

σ−i ( fi )x
−i .

Then θ is a Zn-algebra involution. Moreover, for every left A-submodule V of A, we have

V⊥ = ′θ(V ).

Proof By [5, Lemma 26], θ is a Zn-algebra involution. Now, for f , g ∈ A, a straightforward
computation gives that ( f θ(g))0 = [ f , g]. Therefore, by (6),

〈 f , θ(g)〉A = ε([ f , g]). (7)

Given f ∈ V⊥, and θ(g) ∈ θ(V ), we get from (7) that 〈 f , θ(g)〉A = 0. Hence, f ∈ ′θ(V ),
and we obtain the inclusion of Zn-modules V⊥ ⊆ ′θ(V ). Now, since 〈−,−〉A and [−,−]
are non degenerate, we may apply Theorem 4 to both bilinear forms, and get

|′θ(V )| = |A|
|θ(V )| = |A|

|V | = |V⊥|

which implies the equality V⊥ = ′θ(V ). �	
Following [2], left ideals of A are called σ -cyclic codes. The following consequence

generalizes [2, Corollary 18] from fields to finite Frobenius rings.

Corollary 5 If C is a σ -cyclic code, then C⊥ is a σ -cyclic code.

Proof Since C is a left ideal ofA, we get that θ(C) is a right ideal ofA and, therefore, ′θ(C)

is a left ideal. By Proposition 5, C⊥ becomes a left ideal of A. �	
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