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Abstract
By using linear algebra over finite commutative rings, wewill present some judging criterions
for linear complementary dual (LCD) codes over rings, in particular, free LCD codes over
finite commutative rings are described.Byusing freeLCDcodes overfinite commutative rings
and the Chinese Remainder Theorem, LCD codes over semi-simple rings are constructed and
the equivalence of free codes and free LCD codes is given. In addition, all the possible LCD
codes over chain rings are determined. We also generalize the judging criterion for cyclic
LCD codes over finite fields to cyclic LCD codes over chain rings. Based on the above results
and the Chinese Remainder Theorem, we also present results for LCD codes over principal
ideal rings.

Keywords Principal ideal rings · Chain rings · LCD codes · Chinese Remainder Theorem ·
Generating polynomial

Mathematics Subject Classification 94B05

1 Introduction

A linear complementary dual code (LCD) is defined as a linear code C satisfying C∩C⊥ = {0},
where C⊥ is the dual code of C. LCD codes recently attractedmuch attention due to their wide
applications in data storage communications systems, consumer electronics and cryptography
[2,3]. Jin [6] showed that some Reed–Solomon codes are equivalent to LCD codes, and Li et
al. [7] constructed several families of LCD cyclic codes. Two families of BCH codes which
are LCD codes were constructed in [8]. Mesnager et al. [12] constructed algebraic geometry
LCD codes which can be applied against side-channel attacks. More recent results related to
LCD codes can be referred to [14–17].

Some researchwork onLCDcodes over finite Frobenius rings are also carried out. In 2015,
Liu et al. [9] studied LCD codes over chain rings, and as the main result, they presented a
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condition for a free code over chain rings to be an LCD code. In 2017, LCD λ-constacyclic
codes over a finite commutative semi-simple ring which can be decomposed into direct sums
of some finite fields were studied in [4], and necessary and sufficient conditions for the
existence of LCD λ-constacyclic codes were given.

The aim of this paper proceeds to give contributions along the direction of LCD codes over
rings. We will present some judging criterions on LCD codes over any finite commutative
ring. In particular, we provide descriptions of free LCD codes over finite commutative rings.
By using theChineseRemainder Theorem,we also construct free LCDcodes over finite semi-
simple rings. Furthermore, we will present some results about the equivalence of free codes
and free LCD codes over finite commutative rings. We next confine the study to chain rings,
and will determine all LCD codes over chain rings, and this result substantially improves that
obtained in [9]. Based the above result and by using the structure of cyclic codes over chain
rings, i.e. generating set in standard form [13], we also provide the description of cyclic LCD
codes over chain rings which generalizes that given by Massey [18]. Finally, we will present
some results about general LCD codes and free cyclic LCD codes over principal ideal rings.

A finite local commutative ring with identity is defined as a one containing a unique
maximal ideal. Denote K the residue finite field of any local commutative ring R. There is
a canonical homomorphism from R to K under which the image of r ∈ R is denoted by r .
A linear code C with length n over any commutative ring R (not confined to a local ring)
is defined as a submodule of Rn , and call C free if it is a free submodule of Rn . If R is
local, then for a codeword c = (c1, c2, . . . , cn) ∈ C, define c = (c1, c2, . . . , cn) and define
C = {c | c ∈ C}. Similarly, define G = (gi j ) for a matrix G = (gi j ) over R. Also define
H(x) = Hmxm+Hm−1xm−1+· · ·+H0 for H(x) = Hmxm+Hm−1xm−1+· · ·+H0 ∈ R[x].

For any square matrix A over a finite commutative ring, if the determinant of A, det(A),
is a unit, then call A nonsingular. According to linear algebra, if A is nonsingular, then the
system of equations AX = 0 has only the zero solution.

A finite chain ring is a special family of local commutative rings whose maximum ideal
is principal, and there have been many papers dedicated to such rings. LetR be a chain ring,
and let γ be a fixed generator of the maximal ideal of R with the residue field K = R/γ R.
Then γ is nilpotent, and assume ν is the smallest positive integer such that γ ν = 0. Then all
the ideals of R are 〈γ i 〉 = γ iR, 0 ≤ i ≤ ν. Any element r ∈ R can be written as r = γ j u
with u a unit, and call the unique integer j the order of r , denoted by ord(r). Obviously
ord(0) = ν.

Definition 1 Let R be a chain ring. The order of a vector v = (v1, . . . , vk) ∈ Rk , denoted
by ord(v), is defined as min{ord(vi ) | i = 1, . . . , k}.

2 LCD codes over finite commutative rings

The aim of this section is to present some results about LCD codes over any finite commu-
tative ring. Any finite commutative ring is always assumed to have an identity element. The
following facts are useful.

Lemma 2 [11] The linear system of equations AX = 0 with A a square matrix over any
commutative ring has a nontrivial solution if and only if det(A) is a zero divisor in the ring.

Since an element in a finite ring is either a zero divisor or a unit, Lemma 2 can also be
stated as the following

123



Linear complementary dual codes over rings 3079

Lemma 3 The linear system of equations AX = 0 with A a square matrix over any finite
commutative ring has only the zero solution if and only if A is nonsingular.

Remark 4 Let C ∈ Rn be a linear code over any finite commutative ringR. Define a generator
matrix of C as a matrix G with rows being a generating set of C with the smallest size. In
particular, when C is a free code, then the rows of any generator matrix G are a group of basis
elements of C, and so the number of rows of any generator matrix of a free code C is uniquely
determined. For a general linear code C, there is no concept of basis elements, but we may fix
any generating setW of C with the smallest size and then arrange the elements ofW as rows
to get a generator matrixG. Throughout the paper, we always suppose that a generator matrix
of C be defined as the above. Assume C is a linear code with a k × n generator matrix G and
c ∈ C ∩ C⊥, then one can write c = XT G for some column vector X = (x1, x2, . . . , xk)T ;
on the other hand, since the fact c ∈ C⊥ also holds, which is equivalent to that the codeword
c = XT G is perpendicular to each row of G, we should have GGT X = 0 according to the
definition of the usual inner product. Thus, C is an LCD code, i.e., C ∩ C⊥ = {0}, if and only
if GGT X = 0 yields cT = GT X = 0. Since GT X = 0 always leads to GGT X = 0, we
obtain the following theorem.

Theorem 5 Let C ∈ Rn be a linear code over any finite commutative ring R with a k × n
generator matrix G. Then C is an LCD code if and only if the linear system of equations
GT X = 0 and GGT X = 0 have the same set of solutions.

Definition 6 Let C be a free code with a generator matrix G, then the number of basis
elements, i.e., the number of rows of G, is called the dimension of C denoted by dim(C).

Obviously, the dimension of a free code is exactly the usual dimension of a code over a
field.

Let notations be the same as in Remark 4. If C is free, then GT X = 0 is equivalent to
X = 0. Thus, for a free code C, Theorem 5 can be restated as: C is an LCD code if and only
if GGT X = 0 has only the zero solution. This fact combined Lemma 3 yields the following
theorem.

Theorem 7 Assume R is any finite commutative ring, and assume C is a free code, then C is
an LCD code if and only if GGT is nonsingular.

Lemma 8 [5] (Chinese Remainder Theorem) Assume R is a finite commutative ring with a
group of pairwise relatively prime ideals P1, . . ., Pt . Then there is an isomorphism denoted
by CRT from (R/P1, . . ., R/Pt ) to R/(P1 ∩ P2 ∩ · · · ∩ Pt ), and R/(P1 ∩ P2 ∩ · · · ∩ Pt )

is call the Chinese product of the rings R/P1, . . ., R/Pt .

Lemma 9 [10] Any finite commutative ringR is the Chinese product of some local ringsR1,
. . ., Rt , that is, R = CRT (R1, . . . ,Rt ).

Denote by �: R → (R1, . . . ,Rt ) the inverse map of CRT , and denote the composed
map of � and the projection map (R1, . . . ,Rt ) → Ri , 1 ≤ i ≤ t , by �i , that is, �i :
R → Ri , 1 ≤ i ≤ t . These maps can be naturally extended to Rn coordinately and to R[x].
Thus, for a code C ⊂ Rn , we have C = CRT (C1, . . . , Ct ) with Ci ∈ Rn

i being a code over
Ri , 1 ≤ i ≤ t . In particular, a code C = CRT (C1, . . . , Ct ) over R is cyclic if and only if
each Ci is cyclic over Ri , 1 ≤ i ≤ t . Furthermore, C⊥ = CRT (C⊥

1 , . . . , C⊥
t ), thus, C is an

LCD code over R if and only if each Ci is an LCD code over Ri , 1 ≤ i ≤ t . The following
result is also a direct consequence of the definition of the Chinese product.
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Lemma 10 Assume C = CRT (C1, . . . , Ct ). Then the code C is free with dim(C) = k if and
only if each Ci is free with dim(Ci ) = k, 1 ≤ i ≤ t .

Lemmas 9 and 10 transfer the problem of constructing free LCD codes over finite com-
mutative rings to that of constructing free LCD codes over finite local commutative rings. To
find the relationship of free LCD codes over finite local commutative rings and LCD codes
over the residue fields, we present

Definition 11 [11] TheMcCoy-rank of a matrix Am×n over commutative ringsR is defined
as the largest nonnegative integer s such that Anni(Fs(A)) = 0, where Anni(Fs(A)) = {r ∈
R : r Fs(A) = 0} and Fs(A) is the ideal of R generated by all the determinants of the s × s
submatrices of A with F0(A) = R and Fs(A) = 0 for s > min{m, n}.
Definition 12 A Noetherian ring is called a full quotient ring if every element is either a unit
or a zero divisor.

It was shown in [11, p. 89] that a full quotient ring R satisfies

〈a1, . . . , at 〉 = R if and only if ∩t
i=1 Anni(〈ai 〉) = 0, (1)

where 〈a1, . . . , at 〉 stands for the ideal generated by ai ∈ R for 1 ≤ i ≤ t .
Since any finite commutative ring is a full quotient ring, we have

Lemma 13 Any finite commutative ringR satisfies (1), or equivalently, for any ideal I � R,
we can find a non-zero element a ∈ R such that a I = 0.

Lemma 14 If R is a finite local commutative ring with the unique maximal ideal M, then
the McCoy-rank of any matrix A over R is the largest nonnegative integer s such that there
exists an s × s submatrix of A whose determinant is a unit.

Proof Assume the integer s0 is the largest one such that there exists an s0 × s0 submatrix of
A whose determinant is a unit and assume s1 = McCoy-rank(A). Then Fs0(A) = R, thus,
Anni(Fs0(A)) = 0, and thus s0 ≤ s1.

Since s1 = McCoy-rank(A), it follows that Anni(Fs1(A)) = 0. Thus, Fs1(A) = R by
Lemma 13. If the determinants of all the s1 × s1 submatrices of A are zero divisors, then
Fs1(A) ⊂ M, and we get a contradiction to Fs1(A) = R, and this shows that there exists an
s1 × s1 submatrix of A whose determinant is a unit. We thus obtain s1 ≤ s0. 
�
Lemma 15 [11, p. 85] Let An×k be a matrix over any commutative ring, then the linear
system of equations AX = 0 has a nontrivial solution X = (x1, . . . , xk)T if and only if the
McCoy-rank of A is less than k.

Theorem 16 Let C ⊂ Rn be a free code over a finite local commutative ringRwith dim(C) =
k, and let Gk×n be any generator matrix of C. Then the matrix G contains a k × k submatrix
whose determinant is a unit.

Proof Since G is a generator matrix of the free code C, the linear system of equations
GT X = 0 has only the zero solution, we thus get McCoy-rank(GT ) = McCoy-rank(G) = k
by Lemma 15, and thus G contains a k × k submatrix whose determinant is a unit due to
Lemma 14. 
�
Corollary 17 AssumeR is any finite local commutative ring with residue field K , and assume
C is a free code, then C is an LCD code over R with dim(C) = k if and only if C is an LCD
code over K with dim(C) = k.
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LetR be any finite commutative ring with prime idealsPi for 1 ≤ i ≤ t which are also all
the maximal ideals ofR. Then the radical Rad(R) ofR is Rad(R) = ∩t

i=1Pi . Furthermore,
according to Lemma 9 and its proof (see [10]), we obtain that R = CRT (R1, . . . ,Rt ) for
some local ringsRi , and the residue field of each local ringRi is exactlyR/Pi for 1 ≤ i ≤ t .
Use the notations Ri −→ Ri = R/Pi for 1 ≤ i ≤ t and R −→ R/Rad(R) to stand for
the standard maps, and these maps can be also extended toRn

i andRn coordinately. We can
thus construct the following diagram

(R1, . . . ,Rt ) −→ R
↓ ↓

(R1, . . . ,Rt ) −→ R/Rad(R),

where the horizontal maps are the Chinese product CRT . It can be checked that this diagram
is commutative, and the commutative diagram induces the following commutative diagram
for codes with length n

(C1, . . . , Ct ) −→ C
↓ ↓

(C1, . . . , Ct ) −→ (C + (Rad(R))n)/(Rad(R))n .

(2)

By using this commutative diagram for codes, Lemma 10 and Corollary 17, we obtain

Theorem 18 If C ⊂ Rn is a free LCD code over any finite commutative ringRwith dim(C) =
k, then C/(Rad(R))n is also a free LCD code overR/Rad(R) with dim(C/(Rad(R))n) = k.

Remark 19 For any finite commutative ringR,R/Rad(R) is a semi-simple ring over which
LCD codes were studied in [4].

Recently, Carlet et al. [3] showed that any linear code over finite fields with q elements
is equivalent to an LCD code only if q ≥ 4, and their method to obtain the result is to use
the system generator matrix of an equivalent code. By using Theorem 16 and transferring
the method to free codes over rings, we can also present similar results for the equivalence
of free codes and LCD codes over finite local commutative rings.

Definition 20 A code C′ is called equivalent to C over finite commutative rings if the code-
words of C′ are obtained by permuting the coordinate positions and multiplying a unit in each
coordinate position of all the codewords of C.

Theorem 21 Let C ⊂ Rn be any free code over a finite commutative local ring R. Assume
the residue field of R contains at least 4 elements, then the code C is equivalent to an LCD
code.

Proof Assume dim(C) = k. Since any generator generator matrix of the free code C contains
a nonsingular k× k submatrix by Theorem 16, C is equivalent to a free code generated by the
matrix (Ik, Ak×(n−k)), where Ik stands for the k × k identity matrix overR. Consider a code
C′ generated by (Ik, Ak×(n−k))diag(a1, . . . , ak, 1, . . . , 1), where diag(a1, . . . , ak, 1, . . . , 1)
stands for the diagonal matrix with the first diagonal elements ai (1 ≤ i ≤ k) being units in
R and other diagonal elements all being 1. By borrowing the proof of the main result in [3]
and Theorem 7, we can show that C′ is equivalent to an LCD code by choosing the units ai
for 1 ≤ i ≤ k properly, which is operated on condition that the residue field ofR contains at
least 4 elements. 
�
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By checking the proof of Theorem 21, it is observed that the key to the theorem is that
a generator matrix of a free code over finite commutative local rings contains a nonsingular
submatrix. We may also demand a free code over any finite commutative ring satisfy this
condition, and then get a similar result. To this end, note that if any generator matrix Gk×n of
a free code over finite commutative rings contains a nonsingular k × k matrix, then so does
any other generator matrix. By using Lemma 9 and Theorem 21, we obtain

Theorem 22 Assume R is any finite commutative ring with prime ideals P1, . . ., Pt , and
assume each field R/Pi contains at least 4 elements. Then any free code C ⊂ Rn with a
generator matrix containing a nonsingular k × k submatrix is equivalent to an LCD code.

3 LCD codes over chain rings

Theorem 7 holds particularly whenR is a finite chain ring, and this is exactly the main result
in [9], but what we are concerned is how to describe any LCD code over chain rings rather
than only a free LCD code. Or equivalently, what we are concerned is whether all the possible
LCD codes over chain rings can be determined. We will give a positive answer for the above
question in this section, and our result is the following theorem.

Theorem 23 Assume C ⊂ Rn is a linear code with a k × n generator matrix G over a chain
ring R. Then, C is an LCD if and only if C is free and GGT is nonsingular.

Proof Sufficient conditions are assured by Theorem 7, and we only need to check the nec-
essary conditions. Assume C is an LCD code, then from the results in [13], we may in
general assume G = D˜G, where D = diag(γ i1 , . . . , γ ik ) is a k × k diagonal matrix with
0 ≤ i j ≤ ν − 1 for 1 ≤ j ≤ k and ˜G is a generator matrix of a free code. Consider the
linear system equations GGT X = D˜G˜GT DX = 0, where X = (x1, . . . , xk)T . Since C is
an LCD code, it follows that GT X = 0 for any solution X of GGT X = 0. We state that
˜G˜GT is nonsingular, otherwise, the linear system equations ˜G˜GT X = 0 will have a nonzero
solution X0 by Lemma 3, and we may further modify X0 by multiplying it γ j for suitable
j ≥ 0 such that γ j X0 �= 0 and ord(γ j X0) = ν − 1. It follows that γ j X0 = DY for some
Y �= 0. Thus, we get GGTY = D˜G˜GT DY = D˜G˜GT (γ j X0) = γ j D˜G˜GT X0 = 0, and
then GTY = ˜GT DY = 0. It follows that DY = γ j X0 = 0 since ˜G is a generator matrix
of a free code, and this yields a contradiction to DY = γ j X0 �= 0, and such a contradiction
shows that ˜G˜GT is nonsingular.

As a next step, we state that the matrix D is an identity matrix by showing i j = 0 for
any 1 ≤ j ≤ k. Otherwise, find a Z ∈ Rk such that ord(Z) = ν − 1 with DZ = 0. The
fact that ˜G˜GT is nonsingular yields a Y ∈ Rk with ord(Y ) = ord(Z) = ν − 1 such that
Z = ˜G˜GTY . We can thus find a X ∈ Rk with Y = DX , then we get 0 = DZ = D˜G˜GTY =
D˜G˜GT DX = GGT X . It follows GT X = ˜GT DX = 0, and this yields DX = Y = 0, i.e.
ord(Y ) = ν, since ˜G is a generator matrix of a free code. We then get a contradiction to
ord(Y ) = ν − 1. Thus, D is an identity matrix, and so G = ˜G and C is free, furthermore,
GGT = ˜G˜GT is nonsingular. 
�

3.1 Cyclic LCD codes over chain rings

Cyclic codes have more interesting structures than general linear codes, and Massey gave
a judging criterion for a cyclic LCD code over finite fields [18] by using the generating
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polynomial of the code. For cyclic codes over chain rings, the detailed structure was given
in [13], and in the section we will use this structure and Theorem 23 to generalize the result
in [18].

Let G(x) = Gmxm +Gm−1xm−1 +· · ·+G0 with Gm �= 0 and G0 a unit be a polynomial
over a ring, then define ˜G(x) = G0

−1xmG(1/x) and call ˜G(x) the reciprocal polynomial of
G(x).

Lemma 24 [18] If C ∈ Kn is a cyclic code generated by a monic polynomial g(x), i.e.
C = 〈g(x)〉, over a field K , then C is an LCD code if and only if g̃(x) = g(x) and each monic
irreducible factor of g(x) has the same multiplicity in g(x) and in xn − 1.

Using Theorem 23 and Lemma 24, we can now describe cyclic LCD codes over chain
rings.

Theorem 25 A cyclic code C ∈ Rn over a chain ring R with the residue field K is an LCD
code if and only if C = 〈G(x)〉, where G(x) is monic with G(x)|xn − 1, ˜G(x) = G(x), and
G(x) and (xn − 1)/G(x) are coprime.

Proof We first show the necessary conditions. Assume C is an LCD code. Then it follows
that C is free and thus C is an LCD code by Theorem 23 and Corollary 17. Thus, C = 〈g(x)〉
with g(x) satisfying the conditions in Lemma 24. Assume p = charK and n = ptn1 with
p � n1 and t ≥ 0. Write xn − 1 = g1(x)p

t · · · gi (x)pt · · · gr (x)pt with gi (x), 1 ≤ i ≤ r ,
monic coprime irreducible polynomials in K [x]. Without loss of generality, we may assume
g(x) = g1(x)p

t · · · gi (x)pt . By Hensel’s lemma, we get xn − 1 = f1(x) · · · fi (x) · · · fr (x)
in R[x] such that fi (x), 1 ≤ i ≤ r , are monic coprime polynomials and f i (x) = gi (x)p

t
,

and thus xn − 1 = f1(x) · · · fi (x) · · · fr (x) is the unique primary factorization of xn − 1 in
R[x] [10]. Thus, G(x) = f1(x) · · · fi (x) is the unique monic Hensel lift of g(x) such that
G(x)|xn − 1, G(x) = g(x) and G(x) and xn − 1/G(x) being coprime. Since xn − 1 =
˜G(x)((xn −1)/˜G(x)) and ˜G(x) = ˜G(x) = g̃(x) = g(x), we get ˜G(x) is also a monic Hensel
lift of g(x), and so ˜G(x) = G(x). Finally, using the similar arguments as in the proof of [13,
Theorem 4.4] and noting that C is free, we can obtain C = 〈G(x)〉.

Conversely, assume C = 〈G(x)〉 and G(x) satisfies the conditions in the Theorem. Then,
C and C = 〈G(x)〉 have the same minimum number of generators, and thus C is free. To
show C is an LCD code, it suffices to show that C is an LCD code by Corollary 17. Thus, we
check G(x) satisfies the conditions in Lemma 24. It is obvious that G(x)|xn − 1 and G(x)
and (xn − 1)/G(x) are coprime since G(x) and (xn − 1)/G(x) are coprime. Thus, all the
irreducible factors of G(x) have the same multiplicity in G(x) and in xn − 1. Finally, the

fact ˜G(x) = G(x) yields that ˜G(x) = ˜G(x) = G(x). 
�
Example 26 As an example, we determine all the possible cyclic LCD codes C ⊂ Rn over
the chain ring R = Fq + uFq + · · · + uk−1Fq , where uk = 0 and Fq is a finite field with q
elements satisfying (n, q) = 1, i.e, n and q are relatively prime. It was shown that any cyclic
code over a chain ring has a unique generating set in standard form [13], and according to
the proof of [1, Theorem 2.2], the generating set in standard form for a cyclic code over R
should be {ua0ga0(x), ua1ga1(x), . . . , uas gas (x)}, where 0 ≤ a0 < a1 < · · · < as ≤ k − 1,
gas (x)|gas−1(x)| · · · |ga0(x)|xn − 1 and each gai (x) ∈ Fq [x]. We thus get each gai (x) is the
Hensel lift of gai (x) = gai (x) according to the proof of [13, Theorem 4.4], i.e., each gai (x)
is the Hensel lift of itself. Thus, the generating set in standard form for any free code C ⊂ Rn

is exactly the monic generating polynomial of C over Fq . Thus, according to the proof of
Theorem 25, we obtain any cyclic LCD code C overR = Fq + uFq + · · ·+ uk−1Fq satisfies
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C = 〈g(x)〉, where g(x) ∈ Fq [x] generates a cyclic LCD code over Fq . Or equivalently, all
cyclic LCD codes overR = Fq +uFq +· · ·+uk−1Fq have the same generating polynomials
as the ones over Fq .

4 LCD codes over principal ideal rings

A ring R is called a principal ideal ring if each ideal of R is generated by one element.
Any finite principal ideal ring R is a Chinese product of some, say t , chain rings [5]. That
is, R = CRT (R1, . . . ,Rt ) for some local rings Ri , 1 ≤ i ≤ t . By using this fact and
Theorems 23 and 25, we can judge whether a code over a principal ideal ring is an LCD
code. Note however the necessary conditions of Theorems 23 and 25 may not be right for a
code over a principal ideal ring since an LCD code may not be free. See the following

Example 27 Consider a code C over Z6 with a generator matrix

G =
(

1 3 3
0 4 4

)

.

Then C = CRT (C1, C2) with C1 being a code over Z2 and C2 being a code over Z3, and C1
and C2 are generated by

(

1 1 1
)

and
(

1 0 0
0 1 1

)

over Z2 and Z3, respectively.
It can be checked that both C1 and C2 are LCD codes, and thus C is an LCD code over Z6.

However, It can be seen that C is not free and

GGT =
(

1 0
0 2

)

is not nonsingular.

For any LCD code over principal ideal rings, we can give a description as follows.

Theorem 28 If C ⊂ Rn is any LCD code over principal ideal ringsR, then C/(Rad(R))n is
also an LCD code over R/Rad(R).

Proof SinceR = CRT (R1, . . . ,Rt ) for chain ringsRi and C is an LCD code, it follows that
C = CRT (C1, . . . , Ct ) for LCD codes Ci over chain rings Ri , 1 ≤ i ≤ t . Thus, Theorem 23
yields that each Ci is a free LCD code over the chain ringRi for 1 ≤ i ≤ t , and thus each Ci
is an LCD code over the residue field ofRi for 1 ≤ i ≤ t by Corollary 17. It thus follows by
commutative diagram (2) that C/(Rad(R))n is an LCD code over R/Rad(R). 
�

Based on Theorem 23, for free cyclic codes over principal ideal rings we may similarly
present a judging criterion by using polynomials.

Theorem 29 A free cyclic code C = CRT(C1, . . . , Ct ) over a principal ideal ring R is an
LCD code if and only if C = 〈ξ(x)〉 with ξ(x) monic satisfying ξ(x)|xn − 1 and ξ(x) and
(xn − 1)/ξ(x) are coprime, furthermore,˜ξ(x) = ξ(x).
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Proof Assume the free cyclic code C is an LCD code. Then, since C = CRT (C1, . . . , Ct ),
each Ci , 1 ≤ i ≤ t is free and with the same minimum number of generators as C, and
also each Ci is a cyclic LCD code over the finite chain ring Ri . It follows from Theorem
25 that Ci = 〈Gi (x)〉, where Gi (x) ∈ Ri [x] satisfies the conditions in Theorem 25 and
all the Gi (x), 1 ≤ i ≤ t , have the same degree. Let ξ(x) = CRT (G1(x), . . . ,Gt (x)),
then ξ(x) is monic and has the same degree as each Gi (x). It follows that ˜ξ(x) =
CRT (˜G1(x), . . . , ˜Gt (x)) =CRT (G1(x), . . . ,Gt (x)) = ξ(x) and C = CRT (C1, . . . , Ct ) =
CRT (〈G1(x)〉, . . . , 〈Gt (x)〉) = 〈ξ(x)〉. Since xn −1 = CRT (xn −1, . . . , xn −1) and each
Gi (x)|xn − 1, it follows that ξ(x)|xn − 1. Since Gi (x) and xn − 1/Gi (x) are coprime for
each 1 ≤ i ≤ t , it follows that ξ(x) and (xn − 1)/ξ(x) = CRT ((xn − 1)/G1(x), . . . , (xn −
1)/Gt (x)) are coprime.

Conversely, we show that C is an LCD code on condition that C = 〈ξ(x)〉 with ξ(x)
satisfying the conditions of the theorem. Since C = CRT (C1, . . . , Ct ), it suffices to show each
Ci , 1 ≤ i ≤ t , is anLCDcode. LetGi (x) = �i (ξ(x)), 1 ≤ i ≤ t . Then,Ci = 〈Gi (x)〉, and the
conditions satisfied by ξ(x) yield Gi (x)monic, Gi (x)|xn −1 and Gi (x) and (xn −1)/Gi (x)
are coprime. Further, for each 1 ≤ i ≤ t , ˜Gi (x) = �i (˜ξ(x)) = �i (ξ(x)) = Gi (x). It follows
that each Ci , 1 ≤ i ≤ t , is an LCD code by Theorem 25. 
�

5 Conclusion

We gave judging criterions on LCD codes over finite commutative rings. Particularly, free
LCD codes were described by using their generator matrices over rings. Using Chinese
Remainder Theorem, we gave a construction of LCD codes over semi-simple rings and
presented results about the equivalence of free codes and LCD codes over finite commutative
rings. In addition, all the possible LCD codes over chain rings were determined, and the
judging criterion on cyclic LCD codes over finite fields was generalized to cyclic LCD codes
over chain rings. Based on above results and the Chinese Remainder Theorem, we also
presented results about LCD codes over principal ideal rings.
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