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Abstract
Impossible differential and zero correlation linear cryptanalysis are two important cryptana-
lytic methods. In this paper, we study the security of some Feistel structures against these two
cryptanalytic methods. Throughout this paper, we consider the impossible differential and
zero correlation linear hull that are independent of the choices of the non-linear parts. Based
on that, a method is introduced to estimate the number of rounds that the longest impossi-
ble differential could cover for one kind of Feistel-SP structure. Fortunately, our method
also applies to some generalized Feistel structures, such as the Type-2 generalized Feistel
structure. Then we project our results to zero correlation by the links between impossible
differential and zero correlation linear hull. Lastly, as an application of our method, we prove
that there do not exist 15-round impossible differential and zero correlation linear hull for
LBlock and TWINE.
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1 Introduction

Feistel structure and its variants are widely used in the designs of block ciphers, such as the
Camellia [1], LBlock [17] and TWINE [13]. Thus the security of Feistel structure against
known cryptanalytic techniques attract many attention. Impossible differential cryptanalysis
(IDC) [3,8] and zero correlation linear cryptanalysis (ZCLC) [4] are extensions of the dif-
ferential cryptanalysis [2] and linear cryptanalysis [10], respectively. It had been shown that
these two attacks are very efficient against many block ciphers [5,6,9,14,15]. However, the
security of the Feistel cipher against IDC and ZCLC have not been well studied.

In IDC and ZCLC, the key point is constructing impossible differential (ID) or zero
correlation linear hull (ZCLH) that cover as many rounds as possible. Thus to prove the
security of Feistel structure against IDC and ZCLC, a common way is to estimate the number
of rounds that the longest ID and ZCLH could cover. Based on that, Sun et al. studied the
security of the Feistel structure with SP-type round functions (Feistel-SP structure in short)
in [12]. They considered the ID and ZCLH that are independent of S-boxes. In the rest of
this paper, all the ID and ZCLH represent the impossible differential and zero correlation
linear hull that are independent of S-boxes. Furthermore, the authors defined a special class
of ID and ZCLH, named independent ID and independent ZCLH (see definition 3 of
[12]), respectively. Let b be the size of the S-box and m be the number of S-boxes for the
Feistel-SP structure. In the case that m ≤ 2b−1 − 1, Sun et al. gave upper bounds on the
rounds that the longest independent ID and independent ZCLH could cover. Note that the
independent ID and independent ZCLH can not cover all the ID and ZCLH for the Feistel-SP
structure, and thus Sun’s upper bounds are incomplete.

In this paper, we focus on the Feistel-SP structure whose P is a permutation matrix, and
we denote this structure as Feistel∗-SP structure. We aim to provide upper bounds on the
rounds that the longest ID and ZCLH could cover for this structure. The main results of this
paper are as follows.

1. Based on the characteristic matrix proposed by Kim et al. [7], a new way is introduced
to predict the internal difference for Feistel∗-SP block ciphers.

2. A necessary and sufficient condition is given to judge whether a differential is impossible
or not for Feistel∗-SP structure. Combined with our new difference-prediction way, we
show that the length of ID for Feistel∗-SP structure is upper bounded by the diffusion
order of the characteristic matrixes. Moreover, based on the links between ID and ZCLH,
we project our results to ZCLH.

3. For generalized Feistel structures, we show that if their characteristic matrices are
1-property matrixes, then the above method is also valid. For example, the Type-2
generalized Feistel structure [18] has 1-property characteristic matrices.

4. Based on our method, we prove that there do not exist 15-round ID and ZCLH for LBlock
and TWINE.

The rest of this paper is organized as follows. Section 2 introduces some necessary pre-
liminaries. Section 3 introduces our new way to predict the internal differences for Feistel∗-
SP block ciphers. Section 4 gives upper bounds on the rounds of ID and ZCLH for the
Feistel∗-SP structure. Section 5 makes an application of our method to LBlock and TWINE.
Finally, conclusions are drawn in Sect. 6.
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Fig. 1 Feistel structure with
SP-type round function

2 Preliminaries

Let ε be a Feistel structure as shown in Fig. 1, where S is the S-box and P is the matrix
of the permutation layer. Throughout this paper, we only deal with the P which is a
permutation matrix. In [7], the characteristic matrices of ε are defined as follows.

Definition 1 ([7]) Let (X0, X1, . . . , Xn−1) and (Y0, Y1, . . . , Yn−1) be the input and output
of ε, respectively. The n × n encryption characteristic matrix En of ε is defined as: if Yi is
affected by X j , then the (i, j) entry of En is set to 1; if Yi is affected by S(X j ), then the
entry of En is set to s; and the (i, j) entry is set to 0 if Yi is not affected by X j . Reversely,
the decryption characteristic matrix of ε can be defined similarly.

According to Definition 1, we have

En =
(
s · P, I
I , O

)
and De =

(
O, I
I , s · P

)
,

where I and O are n
2 × n

2 identity and zero matrices, respectively.

Definition 2 ([7]) Let � = (Δ0,Δ1, . . . , Δn−1) be a difference vector. Then, the character-
istic vector V = (v0, v1, . . . , vn−1) corresponding to � is defined as

vi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if Δi = 0,
1∗, if Δi is a nonzero fixed difference,
1, if Δi is a nonzero nonfixed difference,
2∗, if Δi is a difference of the form 1 ⊕ 1∗,
?, if Δi is a nonfixed difference.

In [7], the author defined the multiplication between characteristic matrices and charac-
teristic vectors as

M · V =
⎛
⎝n−1∑

j=0

(M)0, j · v j , . . . ,

n−1∑
j=0

(M)n−1, j · v j

⎞
⎠ ,

where (M)i, j is the (i, j) entry of the characteristic matrix M for 0 ≤ i, j ≤ n − 1.
It can be seen that (M)i, j ·v j represents the impact of the j th subblock input difference on

the i th subblock output difference. The multiplication table of (M)i, j ·v j is given in Table 1.
The addition (M)i, j · v j + (M)i, j ′ · v j ′ represents the exclusive-or of corresponding

differences, which is defined as⎧⎨
⎩
0 + v = v for v ∈ {0, 1∗, 1, 2∗, ?};
? + v =? for v ∈ {0, 1∗, 1, 2∗, ?};
1∗ + 1 = 2∗ and 1 + 2∗ =?.
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Table 1 Multiplication table of
(M)i, j · v j [7]

(M)i, j · v j Meaning

0 · v j = 0 The i-subblock output difference is
not affected by the j-subblock
input difference

1 · v j = v j The i-subblock output difference is
affected by the j-subblock input
difference

s · v j The i-subblock output difference is
affected by the difference after the
S-box for the j-subblock input
difference

s · 0 = 0 For a zero difference, the output
difference after a S-box is still zero

s · 1∗ = 1
s · 1 = 1

For any nonzero difference, the
output difference after a S-box will
become nonzero nonfixed
difference

s · 2∗ =?
s · 1 =?

For a nonfixed difference, the output
difference after a S-box is still
nonfixed

Let ΔP be the input difference of ε. It is shown in [7] that the output difference of ΔP
after r rounds has the following form

r︷ ︸︸ ︷
En · (En · (· · · (En·VP ))), (1)

where VP is the characteristic vector of ΔP . Thus the r th round output difference of ε can
be predicted round by round based on En. The same also applies to De from the decryption
direction. According to Eq. (1), the 1st round output difference can be predicted from entries
of En directly. While for r > 1, we can not predict the r th round output difference from
entries of En directly. To solve this problem, we propose an another way to predict the output
difference.

3 A newway to predict the internal difference

Let M be the encryption or decryption characteristic matrix of ε throughout this section. Let
V = (v0, v1, . . . , vn−1) be the characteristic vector of an input difference. In this section, we
will prove that

r︷ ︸︸ ︷
M · (M · (· · · (M ·V))) = Mr · V (2)

for r ≥ 1. Hence, the r th round output difference can be predicted from entries ofMr directly.
In order to computeMr , we need to define themultiplication and addition for entries ofM .

First, we introduce two new entries 1+ s and 2s. For v ∈ {0, 1∗, 1, 2∗, ?}, set (1+ s) · v = 0
and (2s) · v = 0 if v = 0; set (1 + s) · 1∗ = 2∗ and (2s) · 1∗ =? if v = 1∗; otherwise,
set (1 + s) · v =? and (2s) · v =?. Then, the multiplication and addition for elements in
{0, 1, s, 1 + s, 2s} are given as follows.
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– Multiplication

– Set 0 · x = 0 for x ∈ {0, 1, s, 1+ s, 2s}, since 0 · (x ·v) = 0 ·v, where v is an arbitray
element of {0, 1∗, 1, 2∗, ?}.

– Set 1 · x = x for x ∈ {0, 1, s, 1 + s, 2s}, since 1 · (x · v) = x · v.
– Set s ·0 = 0, since s · (0 ·v) = 0 ·v; set s · x = s for x = 1 or s, since s · (x ·v) = s ·v

when x = 1 or s; set s · x = 2s for x = 1 + s or 2s, since s · (x · v) = (2s) · v when
x = 1 + s or 2s.

Note that cases “(1 + s) · x” and “(2s) · x” will not appear in M · Mi , thus definitions of
“(1 + s) · x” and “(2s) · x” are omitted.

– Addition

– Set 0+x = x+0 = x for x ∈ {0, 1, s, 1+s, 2s}, since 0·v+x ·v = x ·v+0·v = x ·v.
– Set 1+1 = 0, since 1 ·v+1 ·v = 0; by the definition of 1+ s, we have 1+ s = s+1;

set 1+ (1+ s) = (s+ 1)+ 1 = s, since 1 · v + (1+ s) · v = (s+ 1) · v + 1 · v = s · v;
set 1 + 2s = 2s + 1 = 2s, since 1 · v + (2s) · v = (2s) · v + 1 · v = (2s) · v.

– Set x+y = y+x = 2s for x, y ∈ {s, 1+s, 2s}, since x ·v+y ·v = y ·v+x ·v = (2s)·v
for x, y ∈ {s, 1 + s, 2s}.

It can be seen that the set {0, 1, s, 1+s, 2s} is closed under the operations of multiplication
and addition. Thus Mr is still a matrix over {0, 1, s, 1 + s, 2s}. Based on these definitions,
we give some properties that are needed to prove our conclusion.

Corollary 1 If x0 ∈ {0, 1, s} and x1 ∈ {0, 1, s, 1 + s, 2s}, we have x0 · (x1 · v) = (x0 · x1) · v
for v ∈ {0, 1∗, 1, 2∗, ?}. If x0, x1 ∈ {0, 1, s, 1 + s, 2s}, we have x0 · v + x1 · v = (x0 + x1) · v
for v ∈ {0, 1∗, 1, 2∗, ?}.

Lemma 1 Let x0 ∈ {0, 1, s} and x1, x2 ∈ {0, 1, s, 1 + s, 2s}. If (x1, x2) �= (1, 1), (1, 1 + s)
and (1 + s, 1), then we have

x0 · (x1 · v1 + x2 · v2) = (x0 · x1) · v1 + (x0 · x2) · v2

for v1, v2 ∈ {0, 1∗, 1, 2∗, ?}.

Proof When x0 ∈ {0, 1}, the conclusion is obvious. Thus, we only need to prove this lemma
for x0 = s.

Case 1 x1 or x2 equals to 0. Without loss of generality, we set t1 = 0. Then we have
x0 · (x1 · v1 + x2 · v2) = s · (x2 · v2) and (x0 · x1) · v1 + (x0 · x2) · v2 = (s · x2) · v2. According
to Corollary 1, we have s · (x2 · v2) = (s · x2) · v2.

Case 2 x1 or x2 equals to 1. Without loss of generality, we can set x1 = 1. Since (x1, x2) �=
(1, 1) and (1, 1 + s), x2 should be s or 2s. If x2 = s, then we have x0 · (x1 · v1 + x2 · v2) =
s · (v1 + s · v2) and (x0 · x1) · v1 + (x0 · x2) · v2 = s · v1 + s · v2. Since

s · (v1 + s · v2) =
⎧⎨
⎩
s · v2, if v1 = 0,
s · v1, if v2 = 0,
?, if v1 �= 0 and v2 �= 0.

and

s · v1 + s · v2 =
⎧⎨
⎩
s · v2, if v1 = 0,
s · v1, if v2 = 0,
?, if v1 �= 0 and v2 �= 0.

(3)
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we have s · (v1 + s · v2) = s · v1 + s · v2. If x2 = 2s, then s · (v1 + x2 · v2) = s · (v1 + 2s · v2)
and s · v1 + (s · 2s) · v2 = s · v1 + 2s · v2. Since

s · (v1 + 2s · v2) =
{
s · v1, if v2 = 0,
?, if v2 �= 0.

and

s · v1 + 2s · v2 =
{
s · v1, if v2 = 0,
?, if v2 �= 0.

equation s · (v1 + 2s · v2) = s · v1 + 2s · v2 holds.
Case 3 x1 = s or x2 = s. Without loss of generality, we can set x1 = s. If x2 = s, then we

have s · (x1 · v1 + x2 · v2) = s · (s · v1 + s · v2) and (s · x1) · v1 + (s · x2) · v2 = s · x1 + s · x2.
Note that

s · (s · v1 + s · v2) =
⎧⎨
⎩
s · v2, if v1 = 0,
s · v1, if v2 = 0,
?, if v1 �= 0 and v2 �= 0,

combined with Eq. (3), we have s · (s · v1 + s · v2) = s · v1 + s · v2. If x2 = 1+ s or 2s, then
we have

s · (s · v1 + x2 · v2) =
{
s · v1, if v2 = 0,
?, if v2 �= 0.

For s · v1 + (s · x2) · v2, we have the same conclusion, which implies s · (s · v1 + x2 · v2) =
s · v1 + (s · x2) · v2.

Case 4 When x1, x2 ∈ {1 + s, 2s} , we have

s · (x1 · v1 + x2 · v2) =
{
0, if v1 = v2 = 0
?, otherwise.

It can be verified that (s · x1) · v1 + (s · x2) · v2 has the same result. Thus, we have s · (x1 ·
v1 + x2 · v2) = (s · x1) · v1 + (s · x2) · v2 for x1, x2 ∈ {1 + s, 2s}. 	

Remark 1 Since for the following conclusions, their proofs for M = En are similar with that
for M = De, we only give their proofs for M = En.

Lemma 2 Let x1 and x2 be any two elements in the i th row of Mt for 1 ≤ i ≤ n and t ≥ 1.
Then (x1, x2) can not equal to (1, 1), (1, 1 + s) or (1 + s, 1).

Proof We prove this lemma by mathematical induction on t . If t = 1, then x1 x2 are two
elements in the i th row of M , and thus this lemma can be gotten immediately. Assume
this result is true for t < r . Next we prove this result for t = r . When t = r , we have
Mr = M · Mr−1. Let

Mr−1 =
(
M0, M1

M2, M3

)
.

Then

Mr =
(
s · P, I

I , O

)
·
(
M0, M1

M2, M3

)
=
(
M

′
0 + M2, M

′
1 + M3

M0, M1

)
.

where M
′
0 = s · P ·M0 and M

′
1 = s · P ·M1. Since s · x ∈ {0, s, 2s} for x ∈ {0, 1, s, 1+ s, 2s},

all entries of M
′
0 and M

′
1 belong to {0, s, 2s}. For any 0 ≤ j0 ≤ n−1

2 < j1 ≤ n − 1 and
0 ≤ i ≤ n/2 − 1, we have ⎧⎨

⎩
(Mr )i, j0 =

(
M

′
0

)
i, j0

+ (M2)i, j0

(Mr )i, j1 =
(
M

′
1

)
i, j1

+ (M3)i, j1

.
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Since ((M2)i, j0 , (M3)i, j1) �= (1, 1), (1, 1 + s) or (1 + s, 1) by assumption and (M
′
0)i, j0 ,

(M
′
0)i, j0 ∈ {0, s, 2s}, we have ((Mr )i, j0 , (M

r )i, j1) �= (1, 1), (1, 1 + s) or (1 + s, 1). For
0 ≤ j0 < j1 ≤ n−1

2 or n+1
2 ≤ j0 < j1 ≤ n − 1, we have similar conclusions. Thus pairs

(1, 1), (1, 1 + s) and (1 + s, 1) do not appear in the i th row of Mr for 0 ≤ i ≤ n−1
2 . 	


Lemma 3 The equation M · (Mt · V) = (M · Mt ) · V holds for t ≥ 1.

Proof Let M = (
ai, j

)
n×n and Mt = (

bi, j
)
n×n . Since

Mt · V =
⎛
⎝n−1∑

j=0

b0, j · v j , . . . ,

n−1∑
j=0

bn−1, j · v j

⎞
⎠ ,

we have

M · (Mt · VP ) =
(

n−1∑
m=0

a0,m · um, . . . ,

n−1∑
m=0

an−1,m · um
)

, (4)

where um = ∑n−1
j=0 bm, j · v j for 0 ≤ m ≤ n − 1. On one hand, by Corollary 1, Lemmas 1

and 2, we have

n−1∑
m=0

ak,m · um =
n−1∑
m=0

ak,m ·
⎛
⎝n−1∑

j=0

bm, j · v j

⎞
⎠

=
n−1∑
m=0

n−1∑
j=0

(ak,m · bm, j ) · v j

=
n−1∑
j=0

(
n−1∑
m=0

ak,m · bm, j

)
· v j . (5)

On the other hand, we have

(M · Mt ) · V =
(

n−1∑
m=0

ak,m · bm, j

)

n×n

· V

=
⎛
⎝n−1∑

j=0

(
n−1∑
m=0

a0,m · bm, j

)
· v j , . . . ,

n−1∑
j=0

(
n−1∑
m=0

an−1,m · bm, j

)
· v j

⎞
⎠ . (6)

By Eqs. (4), (5) and (6), this lemma is gotten. 	

By Lemma 3, we know that Eq. (2) holds. Notice that when r is big enough, there will be

no entries “0” and “1” in Mt . We denote the minimum integer t , such that there are no entries
“0” and “1” in Mt , as the diffusion order of M , represented by R(M). Then we present
some properties that are relevant to the diffusion order.

Corollary 2 If r = R(M), then we have(
Mr · V)i = 1, 2∗ or ?

for 0 ≤ i ≤ n − 1, where (Mr · V)i represents the i th entry of vector (Mr · V)i . If r =
R(M) + 1, then we have{

(Mr · V)i =? and (Mr · V)i+n/2−1 = 1, 2∗ or ? when M = En,

(Mr · V)i+n/2−1 =? and (Mr · V)i = 1, 2∗ or ? when M = De
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for 0 ≤ i ≤ n/2 − 1. If r > R(M) + 1, then we have
(
Mr · V)i =?

for 0 ≤ i ≤ n − 1.

Proof Since V is nonzero, there must be a nonzero entry in V . Without loss of generality,
we assume v j is nonzero, i.e. v j = 1 or 1∗. When r = R(M), we know that there are no
entries “0” and “1” in Mr . Thus, we have (Mr )i, j = s, 1 + s or 2s for 0 ≤ i ≤ n − 1. Since
v j = 1 or 1∗, we have (Mr )i, j · v j = 1, 2∗, or ?, which implies that (Mr · V)i = 1, 2∗ or ?.

When r = R(M) + 1, we know that{
(Mr · V)i = s · (Mr−1 · V)P−1

t (i) + (
Mr−1 · V)i+n/2−1

(Mr · V)i+n/2−1 = (
Mr−1 · V)i

for 0 ≤ i ≤ n/2 − 1, where Pt is the permutation on {0, 1, . . . , n/2 − 1} induced by matrix
P . Note that

(
Mr−1 · V) j = 1, 2∗ or ? for 0 ≤ j ≤ n − 1. Thus, we have (Mr · V)i =? and

(Mr · V)i+n/2−1 = 1, 2∗ or ? for 0 ≤ i ≤ n/2 − 1.
The case for r > R(M) + 1 can be proved similarly with the case that r = R(M) + 1.

	


4 Upper bounds on the rounds of ID and ZCLH for "

In this section, we first introduce Wu and Wang’s method which aims to searching ID. Then
we give upper bounds on the rounds of ID and ZCLH.

4.1 Wu andWang’s method

In [16], Wu and Wang introduced the difference propagation system, which describes the
difference propagation behavior for a block cipher. For a Feistel cipher, let ΔXi−1 =
(ΔXi−1, j )0≤ j≤n/2−1 and ΔXi = (ΔXi, j )0≤ j≤n/2−1 respectively represent the left and the
right branch input difference of the i th round. Then the difference propagation system can
be built as:{

S(ΔXi, j ) ⊕ ΔYi, j = 0 for 1 ≤ i ≤ r and 0 ≤ j ≤ n/2 − 1,
P · ΔY T

i ⊕ ΔXi−1 ⊕ ΔXi = 0 for 1 ≤ i ≤ r .
(7)

where ΔYi = (ΔYi, j )0≤ j≤n/2−1 is the output difference of ΔXi after the S-boxes. This
system can be further divided into two subsystems: L and NL, where L includes all linear
equations and NL includes all nonlinear equations.

Based on the difference proposition system, Wu and Wang introduced an algorithm to
search ID for Feistel ciphers. Throughout this paper, we call this algorithm asWW -algorithm.
The idea of this algorithm is simple: given the plaintext and ciphertext differences, the internal
differences can be predicted based on system (7), and some new “known” variables can
be gotten. Then based on these known variables, the algorithm can continue predict new
information. This progress will terminate if a contradiction is detected or no new information
is gotten.

Then we introduce that how does the algorithm predict information from the difference
proposition system.
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Fig. 2 3-round Feistel structure

Lemma 4 ([16]) Suppose L has solutions and L′ is the reduced augmented matrix of L, then
(1) If an affine equation with only one variable, i.e., ΔX ⊕ c = 0 (c is a constant), is found

in L′, then ΔX �= 0 if and only if c �= 0.
(2) If a linear equation with two variables, i.e., ΔX ⊕ΔY = 0, is found in L′, then ΔX �= 0

if and only if ΔY �= 0.

Lemma 5 ([16]) Suppose S is a bijective S-box. For an equation S(ΔX) ⊕ ΔY = 0, ΔX is
zero (resp. nonzero) if and only if ΔY is zero (resp. nonzero).

Based on the above principles, theWW -algorithm can predict the internal differenceswhen
the plaintext and ciphertext differences are given. Throughout this paper, let ΔP and ΔC
represent the plaintext and the ciphertext difference, respectively. DenoteΔP = ΔPL ||ΔPR

(resp. ΔC = ΔCL ||ΔCR), then the difference ΔX2 in Fig. 2 can be computed by ΔX2 =
S(ΔPL) ⊕ ΔPR (resp. ΔX2 = S(ΔCR) ⊕ ΔCL ). This means that the difference ΔX2

can be gotten merely from ΔP (resp. ΔC). Besides, since ΔX2 = S−1(ΔPL ⊕ ΔCR),
then the difference ΔX2 can also be gotten from ΔP combined with ΔC . Based on these
observations, we divide the information gotten from WW -algorithm into three classes: the
first class information represented by A is the information gotten from ΔP; the second
class information represented by B is the information gotten from ΔC ; while the third class
information represented by C is the information gotten from ΔP combined with ΔC . From
Lemmas4 and5,we canget that the elements inA,B andC have the difference forms0, 1∗ or 1.

Then two conditions are given in [16] to judge whether there is a contradiction for the
differential ΔP → ΔC .

Proposition 1 ([16]) For an r-round Feistel cipher, differential ΔP → ΔC is an impossible
differential if one of the following two situations happens:

(i) System L has no solution, i.e., the rank of its coefficient matrix is not equal to the rank
of its augment matrix.

(ii) There exists a variable of system (7) with both zero and nonzero values.

In [11], Sun et. al. proved that theWW -algorithm can find all truncated impossible differ-
entials for Feistel-SP blocks, and so we have
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Corollary 3 Differential ΔP → ΔC is an ID of a Feistel-SP structure if and only if one of
the two conditions in Proposition 1 holds.

Based on the above theories, we give uppers bound on the rounds of ID and ZCLH for ε.

4.2 Upper bounds on the rounds of ID and ZCLH

4.2.1 Upper bound for ID

Theorem 1 If r ≥ R(En) + R (De) + 1, then there does not exist r-round ID for ε.

Before proving this theorem, we still need some other properties.

Lemma 6 The following two conditions are equivalent.

(1) Differential ΔP → ΔC is an r-round ID of ε;
(2) There exists an variable ΔXi, j in the difference proposition system such that ΔXi, j has

two unequal values.

Proof “(1)→(2)”. By Corollary 3, we know that ΔP → ΔC is an ID if and only if one of
the two situations in Proposition 1 happens.

For situation (ii), there is an variable with both zero and nonzero values. If the variable is
some ΔXi, j , then this lemma is obvious. If the variable is some ΔYi, j , then ΔXi, j is also an
variable with both zero and nonzero values since S(ΔXi, j ) = ΔYi, j .

For situation (i), if we fix the order of all variables in system (7) as

x = [
ΔX0,ΔX1,ΔX2,ΔX3, . . . , ΔXr ,ΔXr+1,ΔY1, . . . , ΔYr

]
,

then the linear system L can be represented as A · xT = 0, where

A =

⎡
⎢⎢⎢⎣
I O I O · · · O O O P O · · · O
O I O I · · · O O O O P · · · O
...

...
...

...
. . .

...
...

...
...

...
. . .

...

O O O O · · · I O I O O · · · P

⎤
⎥⎥⎥⎦ .

Since that P is a permutation matrix, any two equations in L have at most one common term,
which is some ΔXi, j . Hence we know that if each linear equation of L has two unknown
variables, then the equations in L are linearly independent, i.e., system L has solutions.
Moving all known variables to the right of the equation. Thus if system L has no solution,
then there exist two rows such that ΔXi, j = u0 and ΔXi, j = u1 with u0 �= u1.

(2)→(1). Obviously. 	

Lemma 7 Let u0 and u1 be the two unequal values of ΔXi, j in Lemma 6. Then the pair
(u0, u1) can not confirm to the following forms⎧⎨

⎩
(?, x) or (x, ?), where x ∈ {0, 1∗, 1, 2∗, ?},
(1, x) or (x, 1), where x ∈ {1∗, 1, 2∗},
(2∗, x) or (x, 2∗), where x ∈ {0, 2∗}.

Proof Note that ? represents a non-fixed difference, thus if difference ΔXi, j confirms to ?,
then ΔXi, j can assume any of the 2b values, where b is the bit number of ΔXi, j . Thus, if
u0 or u1 confirms to ?, then u0 will equal to u1 with a positive probability. Similarly, if one
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of u0 and u1 confirms to 1 and the other one is not the zero difference, then u0 will equal to
u1 with a positive probability. If u0 or u1 confirms to 2∗, without loss of generality assume
u0 confirms to 2∗. Then u0 can be disposed as u0 = u′

0 ⊕ Δ, where u′
0 is a nonzero fixed

difference and Δ is a nonzero non-fixed difference. Thus, u0 can equal to any value except
u′
0. Thus, if u1 confirms to 0 or 2∗, then u0 will equal to u1 with a positive probability. 	

Next we present some properties about the internal differences based on the characteristic

matrices.

Lemma 8 Let Vp and Vc be the characteristic vectors of ΔP and ΔC, respectively. If the
value of ΔXi, j (0 ≤ i ≤ r , 0 ≤ j ≤ n/2 − 1) is gotten from ΔP (resp. ΔC), then the value
of ΔXi, j confirms to (Eni · Vp) j+n/2−1(resp. (Der−i · Vc) j+n/2−1).

Proof If the value of ΔXi, j is gotten from ΔP (resp. ΔC ), then ΔXi, j can be seen as the
output difference ofΔP (resp.ΔC) after i (resp. r − i) rounds encryption (resp. decryption).
Thus by the analysis of Sect. 3, we know that the value of ΔXi, j confirms to (Eni · Vp) j
(resp. (Der−i · Vc) j ). 	

Lemma 9 The third class information C is empty if r ≥ R(En) + R(De) + 1.

Proof We prove this lemma by negative approach. Assuming that C is nonempty, then we
will show that there always exists a contradiction. Since C is nonempty, there exist an element
v in the C, which is gotten before all the other elements in C. Without loss of generality, we
set that v indicates the difference value of ΔXi, j .

ReplacingΔYi, j by S(ΔXi, j ) in system (7), then there are only three equations containing
ΔXi, j , which are

(i) S(ΔXi−1,P−1
t ( j)) ⊕ ΔXi−2, j ⊕ ΔXi, j = 0,

(ii) S(ΔXi, j ) ⊕ ΔXi−1,Pt ( j) ⊕ ΔXi+1,Pt ( j) = 0,
(iii) S(ΔXi+1,P−1

t ( j)) ⊕ ΔXi, j ⊕ ΔXi+2, j = 0.

We can see the information of ΔXi, j must be predicted through one of the three equations.
If the information is predicted through equation (i), then variables ΔXi−1,P−1

t ( j) and
ΔXi−2, j must be known before ΔXi, j . Let vi−1,P−1

t ( j) and vi−2, j respectively be difference
values of ΔXi−1,P−1

t ( j) and ΔXi−2, j gotten by the WW -algorithm. Note that v is gotten
before all the other element in C, thus we have

vi−1,P−1
t ( j) ∈ A, vi−2, j ∈ B, or

vi−1,P−1
t ( j) ∈ B, vi−2, j ∈ A.

If vi−1,P−1
t ( j) ∈ A, vi−2, j ∈ B, then vi−1,P−1

t ( j) and vi−1, j confirms to(
Eni−1 · Vp

)
P−1
t ( j)+n/2−1 and

(
Der−i+2 · Vc

)
j+n/2−1, respectively, by Lemma 8. As r ≥

R(En)+R(De)+1, if i−1 ≤ R(En)+1 then r−i+2 ≥ R(De)+1.ByCorollary 2,we know
that vi−2, j confirms to ?, which contradicts with that vi−2, j ∈ B. If i − 1 ≥ R(En)+ 2, then
we have vi−1,P−1

t ( j) confirms to ? byCorollary 2,which contradictswith that vi−1,P−1
t ( j) ∈ A.

If vi−1,P−1
t ( j) ∈ B, vi−2, j ∈ A, then vi−1,P−1

t ( j) and vi−2, j confirm to(
Der−i+1 · Vc

)
P−1
t ( j)+n/2+1 and

(
Eni−2 · Vp

)
j+n/2−1, respectively. If i − 2 ≤ R(En) − 1,

then r − i + 1 ≥ R(De)+ 1 and vi−1,P−1
t ( j) confirms to ? by Corollary 2. It contradicts with

that vi−1,P−1
t ( j) ∈ B. If i − 2 = R(En), then r − i + 1 ≥ R(De) . By Corollary 2, we know

that vi−1,P−1
t ( j) and vi−2, j confirm to 1, 2∗ or ?. Since

ΔXi, j = S(ΔXi−1,P−1
t ( j)) ⊕ ΔXi−2, j , (8)
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Fig. 3 Dual structure of ε

we have v confirms to ?, which contradicts with that v ∈ C. If i − 2 = R(En) + 1, then
r−i+1 ≥ R(De)−1. On one hand, we have

(
Eni−2 · Vp

)
j+n/2−1 = 1, 2∗ or ?. On the other

hand, note that
(
Der−i+1 · Vc

)
P−1
t ( j)+n/2+1 = (

Der−i+2 · Vc
)
P−1
t ( j) and r−i+2 ≥ R(De),

we have
(
Der−i+1 · Vc

)
P−1
t ( j)+n/2+1 = 1, 2∗ or ?. By Eq. (8), we have v confirms to ?, which

contradicts with that v ∈ C. If i−2 ≥ R(En)+2, then vi−2, j confirms to ?, which contradicts
with that vi−1,P−1

t ( j) ∈ A.
When the information of ΔXi, j is gotten from equation (i) or (ii), we have the similar

proofs. Thus the assumption that C is nonempty is invalid. 	


By the proof of Lemma 9, we can see that the internal differences gotten fromΔP together
with ΔC confirm to the form ? when r ≥ R(En) + R(De) + 1. Then we give the proof of
Theorem 1.

Proof (Proof of Theorem 1) We prove this theorem by negative approach. Assuming that
ΔP → ΔC be an r -round ID of εr . By Lemma 6, we know that there exists an variable
ΔXi, j with two unequal values. By Lemmas 7 and 9, these two values must come from ΔP
and ΔC , respectively. On one hand, we have that the two values can not confirm to the forms
given in Lemma 7.

On the other hand, we have that the two values ofΔXi, j should confirm to (Eni ·VP )n/2+ j

and (Der−i · VC )n/2+ j , respectively. If i > m + 1, we have (Eni · VP )n/2+ j = ? by
Corollary 1. If i = m + 1, then r − i ≥ m, which implies that (Eni ·VP )n/2+ j = 1, 2∗ or ?
and (Der−i · VC )n/2+ j = 1, 2∗ or ? by Corollary 1. If i ≤ m, then we have r − i ≥ m + 1
and (Der−i ·VC )n/2+ j = ?. It can be seen that the two unequal values of ΔXi, j confirm to
forms given in Lemma 7, which implies a contradiction. Thus, there is no r -round ID for ε

if r ≥ R(En) + R(De) + 1. 	


4.2.2 Upper bound for ZCLH

In [11], Sun et al. gave the definition of dual structure for the Feistel structure.

Definition 3 ([11]) Let FSP be a Feistel structure with SP-type round function. Let σ be the
operation that exchanges the left and right halves of a state. Then the dual structure F⊥

SP of
FSP is defined as σ ◦ FPT S ◦ σ .

It can be verified that if P is a permutation matrix, thenFPT S is equivalent toFSPT . Thus
the dual structure of ε can be represented by the structure ε⊥ in Fig. 3. Based on the dual
structure, Sun et al. proved the following theorem.
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Fig. 4 Type-2 generalized Feistel
structure

Theorem 2 ([11]) a → b is an r-round ID of FSP if and only if it is an r-round ZCLH of
F⊥
SP .

So we know that searching ZCLH of ε is equivalent to searching ID of ε⊥. Then based
on the theories of Sect. 4.2.1, the upper bound on the rounds of ZCLH for ε can be gotten.

4.2.3 Extension of our method

Except for the Feistel∗-SP structure, our method also applies to some other Feistel structures
to prove their security against IDC and ZCLC. Note that if the nonlinear part of a Feistel
structure is bijective, we can treat it as an S-box. Thus saccording to Definition 1, we can
define the characteristic matrices for any Feistel structures with bijective nonlinear parts.
Then we define a special kind of characteristic matrix.

Definition 4 Let M be a characteristic matrix of a Feistel structure. If the number of entry
“s” and the number of entry “1” in each column and row are all at most 1, then M is called
1-property matrix.

By the analysis in Sects. 3 and 4.2.1, we know that if the characteristic matrices of a Feistel
structure are 1-propertymatrix, then our method can apply to this kind Feistel structure. For
example, the Type-2 generalized Feistel structure [18] in Fig. 4. If we treat its round function
as an S-box, then its characteristic matrices are 1-property matrix. Then by our method, we
get that the longest ID and ZCLH of this structure will not exceed 10 rounds.

5 Applications to LBlock and TWINE

In this section, we apply our method to block ciphers LBlock and TWINE, respectively.
Based on some properties of LBlock and TWINE, tight bounds on the rounds of ID and
ZCLH of these two ciphers are given.

5.1 Bounds for LBlock

LBlock is a lightweight block cipher proposed by Wu and Zhang in ACNS’11. The round
function of LBlock is given in Fig. 5. According toDefinition 1, the encryption and decryption
matrices of LBlock are

En =
(
P1 · (s · P0), P1
I , O

)
and De =

(
O, I

P−1
1 , s · P0

)
,

123



2696 D. Yang et al.

Fig. 5 Round function of LBlock

Fig. 6 Dual structure of round function of LBlock

respectively, where

P0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It can be seen that P1 is the matrix representation of the operation “≫ 8”.
The dual structure of the round function of LBlock is given in Fig. 6. The encryption and

decryption matrices of the dual structure are

En⊥ =
(
O, P1
I , s · P−1

0

)
and De⊥ =

(
(s · P−1

0 ) · P−1
1 , I

P−1
1 , O

)
,

respectively. It can be seen that En, De, R(En⊥) and R(De⊥) are 1-property matrix. By
computation, we have R(En) = R(De) = R(En⊥) = R(De⊥) = 8. Thus according to
Theorem 1, we know that the rounds of ID and ZCLH of LBlock is upper bounded by 17.
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Next, we present some properties of character matrices of LBlock. Based on these prop-
erties, tight bounds for ID and ZCLH of LBlock are given.

Let N j
M be the number of entries “0” and “1” in the j th row of matrix M . By computation,

we have ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N j
En7

= 0, N j+8
En7

= 1,

N j
De7

= 1, N j+8
De7

= 0,

N j
(En⊥)7

= 1, N j+8
(En⊥)7

= 0,

N j
(De⊥)7

= 0, N j+8
(De⊥)7

= 1,

for 0 ≤ j ≤ 7. (9)

By the above observations on characteristic matrices of LBlock, we have the following
lemma.

Lemma 10 LetV be a characteristic vector of LBlock. Let WH (V) be the number of nonzero
entries in V. If WH (V) ≥ 3, then we have (Mi · V) j =? for i ≥ 7 and 0 ≤ j ≤ 15, where
M is a characteristic matrix of LBlock.

Proof According to (9), we know that the number of “0” and “1” in each row of Mi is at
most 1 for i ≥ 7. Thus if WH (V) ≥ 3, then there exist two positions j0 and j1 in the j th
row of Mi for i ≥ 7 such that (V) j0 �= 0, (V) j1 �= 0 and (Mi ) j, j0 , (M

i ) j, j1 ∈ {s, 1+ s, 2s}.
Since

(Mi · V) j = (Mi ) j, j0 · (V) j0 + (Mi ) j, j1 · (V) j, j1 ,

we have (Mi · V) j =?. 	

Based on Lemma 10, we have:

Corollary 4 Let VP and VC be the characteristic vectors of ΔP and ΔC, respectively. If
WH (VP ) ≥ 3 or WH (VC ) ≥ 3, then the third class information is empty when r ≥ 15.

Corollary 5 If WH (VP ) ≥ 3 or WH (VC ) ≥ 3, and if r ≥ 15, then ΔP → ΔC is an r -round
possible differential of LBlock.

The proofs of Corollaries 4 and 5 are similar with that of Lemma 9 and Theorem 1,
respectively. Then, we give the upper bounds on the rounds of ID and ZCLH for LBlock.

Theorem 3 If r ≥ 15, then there do not exist r-round ID and ZCLH of LBlock.

Proof By Corollary 5, we only need to check if there exist 15 -round ID ΔP → ΔC with
WH (VP ) < 3 and WH (VC ) < 3. By checking out all these 15-round differentials by the
WW -algorithm, there is no 15-round ID. Thus there does not exist r -round ID of LBlock
when r ≥ 15.

Notice that En⊥ and De⊥ have similar properties with matrices En and De, thus we have
the same conclusion for ZCLH. 	


5.2 Bounds for TWINE

TWINE is a lightweight block cipher proposed by Suzaki et al. [13]. The round functions of
TWINE adopt an variant of the Type-2 generalized Feistel structure (see Fig. 7). According
to Definition 1, the encryption and decryption matrices of round function of TWINE are
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Fig. 7 Round function of TWINE

Fig. 8 Dual structure of round function of TWINE

En =
(
s · P0, P0

P1, O

)
, De =

(
O, P−1

1

P−1
0 , s · P−1

1

)
,

respectively, where

P0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The dual structure of TWINE is given in Fig. 8, and the encryption and decryption matrices
of the dual structure are

En⊥ =
(

O, P0
P1, s · P0

)
, De⊥ =

(
s · P−1

1 , P−1
1

P−1
0 , O

)
,

respectively. By computation, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(En) = R(De) = R(En⊥) = R(De⊥) = 8,

N 2 j
En7

= 0, N 2 j+1
En7

= 1,

N 2 j
De7

= 1, N 2 j+1
De7

= 0,

N 2 j
(En⊥)7

= 1, N 2 j+1
(En⊥)7

= 0,

N 2 j
(De⊥)7

= 0, N 2 j+1
(De⊥)7

= 1,

for 0 ≤ j ≤ 7.

Similar with the analysis in Sect. 5.1, we have:

Theorem 4 There do not exist r-round ID or ZCLH of TWINE if r ≥ 15.
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6 Conclusion

In this paper, we studied the security of the Feistel∗-SP structure. Upper bounds on the
rounds of ID and ZCLH of this structure are given. Moreover, we showed that our method
also apply to some generalized Feistel structures, such as the Type-2 generalized Feistel
structure. As applications of our method, we proved that there do not exist 15-round ID and
ZCLH for LBlock and TWINE. In our future work, we will focus on the security for more
generic Feistel-SP structures.
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