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Abstract
Permutation codes under different metrics have been extensively studied due to their poten-
tials in various applications. Generalized Cayley metric is introduced to correct generalized
transposition errors, including previously studied metrics such as Kendall’s τ -metric, Ulam
metric andCayleymetric as special cases. Since the generalized Cayley distance between two
permutations is not easily computable, Yang et al. introduced a related metric of the same
order, named the block permutation metric. Given positive integers n and d , let CB(n, d)

denote the maximum size of a permutation code in Sn with minimum block permutation dis-
tance d . In this paper, we focus on the theoretical bounds of CB(n, d) and the constructions
of permutation codes under block permutation metric. Using a graph theoretic approach, we
improve the Gilbert–Varshamov type bound by a factor of �(log n), when d is fixed and n
goes into infinity. We also propose a new encoding scheme based on binary constant weight
codes. Moreover, an upper bound beating the sphere-packing type bound is given when d is
relatively close to n.
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1 Introduction

Let Sn be the symmetric group on n elements. A permutation code is a subset of Sn with some
certain constraints. Permutation codes under several different metrics are widely used due
to their various applications. Especially in recent years, permutation codes under Kendall’s
τ -metric, Ulam metric and Cayley metric have been extensively studied in clouding stor-
age systems, genome resequencing and the rank modulation scheme of flash memories
[3,4,6,8,10,12,16,18]. Under these metrics, codes are designed to correct transposition errors
or translocation errors. In [5], Chee and Vu introduced the generalized Cayley metric which
includes the metrics aforementioned as special cases. However, the generalized Cayley dis-
tance between two permutations is in general not easily computable and thus the construction
of codes is difficult. In [17], Yang et al. introduced the block permutation metric which could
be simply computed and is of the same order as the generalized Cayley metric. By the met-
ric embedding method, the problem of constructing codes in the generalized Cayley metric
is transformed into constructing codes in the block permutation metric. Several theoretical
bounds (Gilbert–Varshamov type and sphere-packing type) and constructions of codes under
block permutation metric are shown in [17].

In this paper we further consider permutation codes in Sn under the block permutation
metric. We first establish a connection between permutation codes and independent sets in a
corresponding graph and then study the bounds of the independence number of the graph. By
this graph theoretic approach, we improve the Gilbert–Varshamov type bound asymptotically
by a factor of �(log n), when the minimum distance d is fixed while n goes into infinity.
We also propose a new encoding scheme based on certain constructions of binary constant
weight codes. Compared with the known constructions, we improve the size of codes by
a factor of �(n2d−4). As for the upper bound, each permutation can be represented as a
corresponding characteristic set and then we apply some methods from extremal set theory
to obtain an upper bound of a new type, which beats the sphere-packing type bound when d
is relatively close to n.

The rest of this paper is organized as follows. In Sect. 2, we review some basic backgrounds
about block permutation metric. In Sect. 3, we introduce some relevant terminologies and
results from extremal graph theory and then establish the correspondence between permuta-
tion codes and independent sets in some certain graph. The asymptotic improvement of the
Gilbert–Varshamov type bound is presented in Sect. 4. Section 5 contains a new encoding
scheme based on binary constant weight codes. The upper bound based on extremal set theory
is presented in Sect. 6. We conclude in Sect. 7.

2 Block permutationmetric

In this section, we give some definitions and notations for permutation codes under block
permutation metric.

Let [n] denote {1, 2, 3, . . . , n}. π = (π(1), π(2), . . . , π(n)) is a permutation over [n],
known as the vector notation of a permutation. The symbol ◦ denotes the composition of
permutations. Specifically, for two permutations σ and τ , their composition, denoted by
σ ◦ τ , is the permutation with σ ◦ τ(i) = σ(τ(i)) for all i ∈ [n]. All the permutations
under this operation form the noncommutative group Sn known as the symmetric group on
[n] of size |Sn | = n!. The subsequence of σ from indices i to j is written as σ [i : j] �
(σ (i), σ (i + 1), . . . , σ ( j)).
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Permutation codes under block permutation metric 2627

Definition 2.1 Apermutationπ ∈ Sn is calledminimal if and only if no consecutive elements
in π are also consecutive in the identity permutation e = (1, 2, . . . , n), i.e., for all 1 � i �
n − 1, π(i + 1) �= π(i) + 1. Denote the set of all the minimal permutations in Sn as Dn .

Definition 2.2 The block permutation distance dB(π1, π2) between two permutations
π1, π2 ∈ Sn is equal to d if

π1 = (ψ1, ψ2, . . . , ψd+1) , π2 = (
ψσ(1), ψσ(2), . . . , ψσ(d+1)

)
,

where σ ∈ Dd+1, ψk = π1
[
ik−1 + 1 : ik

]
for 0 = i0 < i1 < · · · < id < id+1 = n and

1 � k � d + 1.

The definition suggests that in order to turn π1 into π2, one way is to first divide π1 into
d + 1 segments π1 = (ψ1, ψ2, . . . , ψd+1) and then perform a block level permutation of
these segments according to a permutation σ ∈ Dd+1. The constraint of σ being minimal
indicates that dB(π1, π2) = d if and only if d + 1 is the minimum number of segments that
π1 needs to be divided into for such an operation. This definition is somehow not intuitive
enough and thus Yang et al. [17] found another way to characterize the block permutation
distance explicitly by the characteristic set of a permutation.

Definition 2.3 The characteristic set A (π) for any π ∈ Sn is defined as set of all the consec-
utive pairs in π , i.e.,

A (π) � {(π (i) , π (i + 1)) | 1 � i < n} .

Note that the characteristic set of a permutation is equivalent to representing a permutation
by a directedHamiltonian path on n vertices. That is, theHamiltonian path corresponding toπ

is the set of edges in {(x, y)|x, y ∈ [n], (x, y) ∈ A(π)}. The following ideawill be frequently
used throughout the paper. Given a subset of A(π), the directed edges corresponding to the
subset constitute a disjoint union of several directed paths (an isolated vertex v will be also
regarded as a path starting and ending with v). Then π should be obtained by concatenating
these directed paths into a directed Hamiltonian path.

Let Pn be the set {(i, j)| i �= j, i ∈ [n], j ∈ [n]}. |Pn | = n(n − 1). For each permutation
π ∈ Sn , the corresponding characteristic set A (π) is then a subset of Pn of cardinality
|A (π)| = n− 1. The block permutation metric can be characterized by the characteristic set
and then some basic properties of the metric can be derived. These are summarized in the
following two lemmas proposed in [17].

Lemma 2.4 For all π1, π2 ∈ Sn,

dB (π1, π2) = |A (π1) \ A (π2)| .
Lemma 2.5 For allπ1, π2, π3 ∈ Sn, the block permutation distance dB satisfies the following
properties:

1. (Symmetry) dB (π1, π2) = dB (π2, π1).
2. (Left-invariance) dB (π3 ◦ π1, π3 ◦ π2) = dB (π1, π2).
3. (Triangle Inequality) dB (π1, π3) � dB (π1, π2) + dB (π2, π3) .

The following example shows how to compute the block permutation distance between
two permutations following the terminologies above.

Example 2.6 Let π1 = (4, 8, 3, 2, 6, 7, 5, 1, 9), π2 = (6, 7, 8, 3, 2, 5, 1, 9, 4). Their charac-
teristic sets are

A(π1) = {(4, 8), (8, 3), (3, 2), (2, 6), (6, 7), (7, 5), (5, 1), (1, 9)},
A(π2) = {(6, 7), (7, 8), (8, 3), (3, 2), (2, 5), (5, 1), (1, 9), (9, 4)},
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and thus we have

dB(π1, π2) = |A (π1) \ A (π2)| = |{(4, 8), (2, 6), (7, 5)}| = 3.

On the other hand, to compute dB(π1, π2) by Definition 2.2, we should findψi , 1 � i � 4
and σ ∈ D4 as follows:

ψ1 = (4), ψ2 = (8, 3, 2), ψ3 = (6, 7), ψ4 = (5, 1, 9), σ = (3, 2, 4, 1).

Then we have

π1 = (ψ1, ψ2, ψ3, ψ4),

π2 = (ψσ(1), ψσ(2), ψσ(3), ψσ(4)),

and thus dB(π1, π2) = 3.

Note that it is usually not easy to find such ψi and σ to compute the block permutation
distance between two permutations, while finding the difference between two characteristic
sets is relatively easier. Next we introduce the permutation code under block permutation
metric.

Definition 2.7 Given positive integers n and d , C ⊆ Sn is called an (n, d)-permutation code
under block permutation metric, if dB(σ, π) � d for any two distinct permutations σ, π ∈ C.
Let CB(n, d) denote the maximum size of an (n, d)-permutation code C.

The best known upper bound and lower bound of CB(n, d) are proposed in [17], which are
the so-called sphere-packing type bound and Gilbert–Varshamov type bound. Both bounds
are derived from the estimation on the size of a block permutation ball.

Definition 2.8 For given integers n, t and a given center pointπ ∈ Sn , the t-block permutation
ball centered at π is defined as the set of all permutations σ ∈ Sn , dB (π, σ ) � t . We denote
the t-block permutation ball centered at π as bB (n, t, π) .

Note that by the left-invariance property of dB , the size of bB (n, t, π) is independent of
the center π and thus we can denote the size of the ball as |bB (n, t) |.
Lemma 2.9 [17] For given integers n and t, t � n − √

n − 1, denote the size of a t-block
permutation ball as |bB (n, t)|, then we have

t∏

i=1

(n − i) � |bB (n, t)| �
t∏

i=0

(n − i) .

Lemma 2.10 [17] For given integers n and t, let d = 2t + 1, then we can bound CB(n, d) as

n!
|bB (n, 2t)| � CB(n, d) � n!

|bB (n, t)| .

In [17] several constructions of (n, d)-permutation codes with d = 2t+1 were presented,
including a code of size n!

q2d−3 , where n(n−1) � q � 2n(n−1) is a prime number. Moreover
[17] contains some explicit systematic constructions and decoding algorithms.
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3 Graphmodels

We use the standard terminologies and notations in graph theory. A graph G consists of a
set of vertices V (G) and a set of edges E(G). Each edge is a pair of vertices. Two vertices
u and v are called adjacent if there is an edge {u, v} ∈ E (G). We say that H is a subgraph
of G if V (H) ⊂ V (G) and E(H) ⊂ E(G). Furthermore if H contains all edges of G
joining two vertices in V (H), then H is said to be the subgraph of G induced by V (H).
The neighborhood of a vertex v is the set of all vertices adjacent to v, denoted by �(v). The
neighborhood graph of v is the subgraph induced by �(v). The size of |�(v)| is called the
degree of the vertex v. Let	(G) denote the maximum vertex degree. An independent set in a
graph is a set of vertices where every pair is nonadjacent. The size of the largest independent
set in G is called the independence number, denoted as α(G).

In this section we introduce a natural relationship between codes and independent sets
of a corresponding graph. Take the set of all the candidate codewords as the vertex set of a
graph (say for example, the vertex set could be {0, 1}n when we consider binary codes of
length n, or it could be Sn when we consider permutation codes). Two candidate codewords
with distance less than d are connected via an edge. Then we can take any independent set
of this graph as a code since every two distinct codewords have distance no less than d . Thus
we have a correspondence between an independent set and a code with minimum distance d .
The problem of estimating the maximal size of a code turns into analyzing the independence
number of the corresponding graph. This well-known approach has already been shown to
be powerful in studying several kinds of codes. Take the permutation code under Hamming
metric as an example. Gao et al. [7] improved the Gilbert–Varshamov bound by a factor of
�(log n), when the minimum distance d is fixed and n goes into infinity. Tail et al. [14]
improved the Gilbert–Varshamov bound by a factor of�(n), when d

n is fixed and n goes into
infinity. Recently, Wang et al. [16] used a coloring approach to analyze the independence
number and improved the Gilbert–Varshamov bound by a factor of�(n)when the minimum
distance d is fixed and n goes into infinity.

Herewe introduce some results about the independence number of locally sparse graphs.A
graph is called triangle-free if and only if the neighborhood of every vertex is an independent
set. Ajtai et al. [1] showed the relationship between triangle-free property and independence
number in the following lemma.

Lemma 3.1 Let G be a graph with maximum degree 	. If G is triangle-free, then we have

α(G) � |V (G)|
8	

log2 	.

In [2] the lemma above was extended from triangle-free graphs into graphs with relatively
few triangles.

Lemma 3.2 Let G be a graph with maximum degree 	. If G has at most T triangles, then
we have

α(G) � |V (G)|
10	

(
log2 	 − 1

2
log2

(
T

|V (G)|
))

.

Note that a graph has relatively few triangles when the neighborhoods of its vertices are
relatively sparse. Jiang and Vardy [11] generalized the results above for locally sparse graphs
as follows.
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Lemma 3.3 Let G be a graph with maximum degree 	. Suppose for any vertex v ∈ V (G),
the subgraph induced by the neighborhood of v has at most P edges, then we have

α(G) � |V (G)|
10	

(
log2 	 − 1

2
log2

(
P

3

))
.

4 An asymptotic improvement of the lower bound

Before presenting the main results of this section, it should be noted that CB(n, d) can be
determined under some special cases.

Theorem 4.1 CB(n, 1) = n!. CB(n, 2) = (n − 1)!. CB(n, n − 1) � n and equality holds if n
is not 3 or 5.

Proof 1. Trivially take all the permutations in Sn and we have CB(n, 1) = n!.
2. It is easy to check that for any two permutations π and σ , dB(π, σ ) = 1 if and only if

σ is a cyclic shift of π . That is, if π = (π(1), . . . , π(n)) and dB(π, σ ) = 1, then σ is
of the form σ = (π(t), . . . , π(n), π(1), . . . , π(t − 1)) for some 2 � t � n. Under the
operation of cyclic shifting, Sn is divided into (n − 1)! equivalent classes where each
class is known as a circular permutation. By picking an arbitrary permutation from each
equivalent class we obtain an (n, 2)-permutation code of cardinality (n − 1)!.

3. For any two distinct permutations π and σ in an (n, n − 1)-permutation code, their
characteristic sets are disjoint according to Lemma 2.4. Since each characteristic set is a
subset of Pn of cardinality n − 1, |Pn | = n(n − 1), then the number of codewords is at
most n.

(a) Suppose n is even, n = 2p. Definea2i−1 = 2i−1 for 1 � i � p anda2i = 2p−2i for
1 � i � p−1, i.e., (a1, a2, . . . , an−1) = (1, 2p−2, 3, 2p−4, . . . , p, . . . , 4, 2p−3,
2, 2p−1). For every 1 � i � n, let the i-th codeword be (i, i+a1, i+a1+a2, . . . , i+
k∑

j=1
a j , . . . , i +

n−1∑

j=1
a j ), where each entry is taken modulo n (and note that we use

‘n’ instead of ‘0’ for some entry). It is routine to check that
2i∑

j=1
a j ≡ −i (mod n),

1 � i � p − 1 and
2i−1∑

j=1
a j ≡ i (mod n), 1 � i � p. Therefore

k∑

j=1
a j are distinct

modulo n for 1 � k � n. So these n codewords defined above are indeed codewords
in Sn . For every pair (c, d) with d − c ≡ ak (mod n), it appears exactly once, in the

i-th codeword with c ≡ i +
k−1∑

j=1
a j and d ≡ i +

k∑

j=1
a j .

(b) Suppose n is odd. To construct an (n, n−1)-permutation code of size n, consider the
complete directed graph on n + 1 vertices [n] ∪ {∞}. For each π , its characteristic
set A(π) also represents the directed Hamiltonian path on n vertices. Further add the
edges (∞, π(1)) and (π(n),∞) into A(π). Then each permutation corresponds to
a directed Hamiltonian cycle on [n] ∪ {∞}. Thus an (n, n − 1)-permutation code of
size n is equivalent to a Hamiltonian decomposition in the complete directed graph
on [n]∪{∞}. Hamiltonian decomposition is a well studied topic, for example in [15].
It has been shown that for odd integers n � 7, the edges of the complete directed
graph on n + 1 vertices can be partitioned into n directed Hamiltonian cycles.
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Therefore, CB(n, n − 1) � n and equality holds if n is even or n � 7 is odd. Moreover,
it can be easily checked that CB(3, 2) = 2 and CB(5, 4) = 4.

��

Remark 4.2 When n + 1 is prime, there is another construction of an (n, n − 1)-permutation
code of size n different from the one in the proof above. Consider the code {(i, 2i, . . . , (n −
1)i, ni) : 1 � i � n}, with each entry modulo (n + 1). It is straightforward to check that
every pair of (a, b) appears exactly once (in the i th codeword, i ≡ (b − a) (mod n + 1)).

After solving these special cases, the rest of this section is devoted to improving the asymp-
totic lower bound of CB(n, d) with d � 3 being a fixed constant, while n approaches infinity.
The idea is to analyze the independence number of the corresponding block permutation
graph, defined as follows.

Definition 4.3 For given positive integers n and d � 3, the (n, d)-block permutation graph
Gn,d is the graph with vertex set Sn and edge set {(π, σ ) : π �= σ, dB(π, σ ) < d}.

The codewords of an (n, d)-permutation code under block permutation metric are vertices
of an independent set inGn,d . Conversely, any independent set inGn,d is an (n, d)-permutation
code. To get a lower bound of CB(n, d) via the graph theoretic approach using Lemma 3.3,
we need to calculate some parameters of the graph Gn,d .

Let Hn,d be the subgraph induced by the neighborhood of the identity permutation
(1, 2, 3, . . . , n), and let R(n, k) be the set of all permutations in Sn which are exactly at
distance k from the identity, i.e.,

R(n, k) = {σ ∈ Sn : dB(σ, id) = k}.

Then the induced subgraph Hn,d has the vertex set V (Hn,d) =
d−1⋃

k=1
R(n, k). The size of

R(n, k) is a well-studied topic in [13].

Lemma 4.4 [13] For all integers 1 � k � n − 1,

|R(n, k)| = k!
(
n − 1

k

) k∑

i=0

(−1)k−i (i + 1)

(k − i)! .

Since
(n
a

) = �(na)when a is a fixed positive integer and n goes to infinity, then asymptoti-

cally |R(n, k)| = �(nk), 1 � k � d−1 and thus |bB(n, d−1)| =
d−1∑

k=0
|R(n, k)| = �(nd−1),

when d is fixed and n goes to infinity.
To apply Lemma 3.3, we already have V (Gn,d) = n! and Gn,d is a regular graph of degree

	 = bB (n, d − 1) − 1 = �(nd−1). The remaining parameter to compute is P(n, d), the
number of edges in the induced subgraph Hn,d .

Lemma 4.5 For a fixed positive integer d � 3, P(n, d) = O(n2d−3) when n goes to infinity.

Proof The number of vertices in R(n, k) is asymptotically �(nk). Thus the number of edges
connecting some π ∈ R(n, k1) and some σ ∈ R(n, k2) is �(nk1+k2) = O(n2d−3) as long
as k1 + k2 � 2d − 3. Therefore, to prove the lemma we only need to focus on bounding the
number of edges connecting some π ∈ R(n, d − 1) and some σ ∈ R(n, d − 1).
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Consider the characteristic sets of suchπ and σ . |A(id)\A(π)| = |A(id)\A(σ )| = d−1.
Let x(π, σ ) be the number of consecutive pairs in A(id) contained in neither A(π) nor A(σ ),
i.e.,

x(π, σ ) = |(A(id) \ A(π)
) ∩ (

A(id) \ A(σ )
)|.

For a fixedπ ∈ R(n, d−1), the number of permutationsσ ∈ R(n, d−1)with x(π, σ ) = x
is at most �

((d−1
x

)( n−d
d−1−x

)) = �(nd−1−x ). This is because A(id) \ A(σ ) contains exactly
x pairs out of the d − 1 pairs in A(id) \ A(π) and d − 1 − x pairs out of the n − d pairs
in A(id) ∩ A(π) and every proper choice of A(id) \ A(σ ) only induces a constant number
of permutations σ . Recall that |R(n, d − 1)| = �(nd−1) and then the number of edges
connecting π, σ ∈ R(n, d−1)with 1 � x(π, σ ) � d−1 is at most�(n2d−3). Therefore, to
prove the lemma we only need to focus on bounding the number of edges connecting some
π ∈ R(n, d − 1) and some σ ∈ R(n, d − 1), with x(π, σ ) = 0. Now we claim that in fact
there are no such edges.

Since x(π, σ ) = 0, then
(
A(id) \ A(σ )

) ⊂ (
A(π) \ A(σ )

)
and thus dB(π, σ ) � d − 1.

If π and σ are connected, then it must hold that dB(π, σ ) = d − 1 and

A(id) \ A(σ ) = A(π) \ A(σ )

and simultaneously

A(id) \ A(π) = A(σ ) \ A(π).

Up until now, based on these two formulas, we can observe that π , σ , and the identity
permutation induce three different Hamiltonian paths and no arc is involved in exactly one
path (for example, if an arc only appears in A(π), then the constraint A(id)\ A(σ ) = A(π)\
A(σ ) is violated). The remaining task is then to show that such three different Hamiltonian
paths cannot exist.

Now consider the n − d pairs in A(π) ∩ A(σ ). In the graph with vertex [n], label all
the directed edges (x, y) where (x, y) ∈ A(π) ∩ A(σ ) and call this graph G. The union
of A(π) ∩ A(σ ) and A(id) \ A(σ ) is A(π), the directed Hamiltonian path corresponding
to π . Therefore G is a union of d non-intersecting directed paths (there may exist isolated
vertices and each isolated vertex is also considered as a directed path), where the j th path
is denoted as Pj = (x j → · · · → y j ), indicating that it starts with x j and ends with y j ,
1 � j � d . The directed Hamiltonian path corresponding to π is then a concatenation of
these paths and without loss of generality it can be written as P1 → P2 → · · · → Pd . Since
the edges connecting the Pj ’s arise from A(id) \ A(σ ), then it implies that x j+1 = y j + 1
for 1 � j � d − 1.

Now since the directed Hamiltonian path corresponding to σ is also formed by using the
d − 1 edges in A(id) \ A(π) to connect the Pj ’s, then there are only two cases. The first
case is when x1 �= yd + 1, then there is only a unique way to connect the Pj ’s via edges
corresponding to consecutive pairs, i.e., σ = π . The other case is when x1 = yd + 1 and
the directed Hamiltonian path corresponding to σ will be of the form Pt → Pt+1 → · · · →
Pd → P1 → · · · → Pt−1. However, since d � 3, then σ and π will share d − 2 edges
{(y j , x j+1)| j �= t − 1, 1 � j � d − 1}, which contradicts to x(π, σ ) = 0.

Therefore, the last kind of edges we focus on do not exist at all and the total number of
edges in the graph Hn,d is P(n, d) = O(n2d−3). ��

Now we are ready to apply Lemma 3.3 to obtain the new lower bound of CB(n, d).
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Theorem 4.6 When d is fixed, d � 3 and n goes into infinity, there exists an (n, d)-
permutation code under block permutation metric with size

CB(n, d) = α(Gn,d) � n!
10	

(
log2 	 − 1

2
log2

(
P(n, d)

3

))
= �

(
n! log n
nd−1

)
.

Particularly, it improves the Gilbert–Varshamov bound by a factor of �(log(n)).

Proof Using our graph notations, the Gilbert–Varshamov bound is

AGV (n, d) := n!
1 + 	(n, d)

= �

(
n!

nd−1

)
.

By Lemmas 3.3 and 4.5, we have

α(Gn,d)

AGV (n, d)
�

n!
10	(n,d)

(
log2 	(n, d) − 1

2 log2
(
P(n,d)

3

))

n!
1+	(n,d)

� 1

10
log2

⎛

⎝ 	(n, d)
√

P(n,d)
3

⎞

⎠ � 1

10
log2

(
cbnd−1

csnd− 3
2

)

= c log(n),

where cb, cs and c are constants independent of n.
Hence we have

α(Gn,d)

AGV (n, d)
= �(log(n)).

��

5 Construction

In this section, we propose a new construction of permutation codes under block permutation
metric. Themain idea arises from constructing constant weight binary codes under Hamming
metric [9].

Recall that Pn = {(x, y) : x �= y, x, y ∈ [n]} and |Pn | = n(n − 1). Suppose q � n(n −
1)/2 is a prime number. From Bertrand’s postulate, there is always such a q , n(n − 1)/2 �
q � n(n − 1).

Let V : P → Fq be a map from P to the finite field Fq such that for distinct pairs (x, y)
and (x ′, y′), V(x, y) = V(x ′, y′) if and only if x ′ = y and y′ = x . The range of V has size
n(n − 1)/2 and can be satisfied since we set q � n(n − 1)/2.

Then for any permutation π ∈ Sn , V maps its characteristic set A(π) = {(π(i), π(i+1)) |
1 � i < n} into {V((π(i), π(i + 1)) | 1 � i < n}, which is a subset of Fq of cardinality
n − 1. Denote these n − 1 elements as γ1, γ2, . . . , γn−1.

We then define a map F from Sn to F
d−1
q as follows:

F(π) = (F1(π), F2(π), ..., Fd−1(π)),
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where

F1(π) =
∑

1�i�n−1

γi ,

F2(π) =
∑

1�i< j�n−1

γiγ j ,

F3(π) =
∑

1�i< j<k�n−1

γiγ jγk,

...

Theorem 5.1 Forany twodistinct permutationsπ, σ ∈ Sn, if F(π) = F(σ ), thendB(π, σ ) �
d.

Proof Suppose on the contrary that there exist two distinct permutations π, σ ∈ Sn such
that F(π) = F(σ ) and dB(π, σ ) = δ < d . Recall that dB(π, σ ) = |A(π) \ A(σ )| =
|A(σ ) \ A(π)|. Therefore V maps the set A(π) \ A(σ ) into a subset {α1, α2, . . . , αδ} and
similarly V maps the set A(σ ) \ A(π) into a subset {β1, β2, . . . , βδ}.

The condition F(π) = F(σ ) will infer the following equations.

ζ1 =
∑

1�i�δ

αi =
∑

1�i�δ

βi ,

ζ2 =
∑

1�i< j�δ

αiα j =
∑

1�i< j�δ

βiβ j ,

. . .

ζd−1 =
∑

i1<...<id−1

αi1 . . . αid−1 =
∑

i1<...<id−1

βi1 . . . βid−1 .

Consider the polynomial xδ − ζ1xδ−1 + ζ2xδ−2 −· · ·+ (−1)δ+1ζδ = ∏
1�i�δ(x −αi ) =∏

1�i�δ(x − βi ). Then {α1, α2, . . . , αδ} and {β1, β2, . . . , βδ} are both the zeros of this
polynomial and thus these two sets are identical.

Consider the complete directed graph with vertex set [n] where each permutation cor-
responds to a directed Hamiltonian path indicated by its characteristic set. Now the path
indicating π and the path indicating σ share n−1− δ directed edges in A(π)∩ A(σ ). Due to
the property of the map V , the set E of edges (without considering directions at this moment)
corresponding to the pairs {α1, α2, . . . , αδ} = {β1, β2, . . . , βδ} are uniquely determined.
With the given directions on the edges A(π) ∩ A(σ ), there is a unique way to choose the
directions for the edges in E to obtain a Hamiltonian path. Therefore π should be the same
as σ , a contradiction. ��

Therefore, we can construct (n, d)-permutation codes under block permutation metric as
follows.

Theorem 5.2 For every f ∈ F
d−1
q , Cf (n, d) = {π |π ∈ Sn, F(π) = f} is an (n, d)-

permutation code under block permutation metric.

Consider all the vectors f ∈ F
d−1
q and then {Cf (n, d) : f ∈ F

d−1
q } is a partition of

Sn , where each component Cf (n, d) is a permutation code under block permutation metric.
Suppose Cfmax(n, d) is the one with maximal size, then by pigeonhole principle, we obtain
that |Cfmax(n, d)| � n!

|Fd−1
q | = n!

qd−1 = �( n!
n2d−2 ).
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In [17], Yang et al. constructed a permutation code of size n!
q2d−3 = �( n!

n4d−6 ), where q is
a prime number such that n(n − 1) � q � 2n(n − 1). So our construction improves the size
of permutation codes by a factor of �(n2d−4).

6 An upper bound

In this section, we obtain a new upper bound by means of analyzing the characteristic sets
of the codewords. Recall that for each permutation π ∈ Sn , its characteristic set A(π) =
{(π(i), π(i + 1))|1 � i < n} is a subset of Pn of cardinality |A(π)| = n − 1. Denote
I (π1, π2) = |A(π1) ∩ A(π2)|, then we have

Lemma 6.1 For any π1, π2 ∈ Sn, dB(π1, π2) � d if and only if I (π1, π2) � n − d − 1.

Given an (n, d)-permutation code C, let F be the collection of all the characteristic sets
A(π) of the codewords, i.e., F = {A(π)|π ∈ C}. We translate the problem of analyzing the
bound of codes into the following extremal set theory problem: find the maximal size of a
family F of (n − 1)-subsets of Pn satisfying that the intersection of each pair of subsets is at
most n − d − 1. Then we can obtain an upper bound of a new type as follows.

Theorem 6.2 For given integers n and d,

|F | �
(n
d

)(n
d

)
(n − d)!

(n−1
n−d

) .

Proof Let T (n, d) be the family of all possible (n − d)-subsets of some A(π), π ∈ Sn . Each
A(π) ∈ F contains

(n−1
n−d

)
such subsets. By Lemma 6.1, any (n − d)-subset in T (n, d) is

contained in the characteristic set of at most one codeword. Therefore |F |(n−1
n−d

)
� |T (n, d)|.

The remaining problem is to estimate |T (n, d)|. For each set A ∈ T (n, d), consider the
n × n matrix M = (mi, j ) where

mi, j =
{
1, if pair (i, j) ∈ A,

0, otherwise.

Since A is an (n − d)-subset of some A(π), π ∈ Sn , then the matrix should contain exactly
n − d entries of ‘1’ and the weight of each column and row is at most 1. Then the number
of distinct A is upper bounded by the number of ways to select n − d rows and n − d
columns and construct a permutation matrix from the chosen sub-matrix. Hence T (n, d) �
( n
n−d

)( n
n−d

)
(n − d)!. Therefore we have |F | � (nd)(

n
d)(n−d)!
(n−1
n−d)

. ��

By Lemmas 2.9 and 2.10, if t � n − √
n − 1, denote the sphere-packing bound as

ASP (n, 2t + 1), which falls in the range

n!
t∏

i=0
(n − i)

� ASP (n, 2t + 1) � n!
t∏

i=1
(n − i)

.

Denote our new type upper bound (nd)(
n
d)(n−d)!
(n−1
n−d)

as Anew(n, d).

Corollary 6.3 Given n and d = 2t + 1, if t � n − √
n − 1, n ·

t∏

i=0
(n − i) � d · d! and

d � n − 1, then Anew(n, d) � ASP (n, d).
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Table 1 A comparison of new bound and sphere-packing bound with some small parameters

n d Sphere-packing bound Theorem 6.2 n d Sphere-packing bound Theorem 6.2

13 9 � 40320 24787 18 11 � 479001600 262461363

15 11 � 362880 44672 18 13 � 39916800 1423607

16 11 � 3628800 762415 19 11 � 6227020800 5263805324

17 11 � 39916800 13771113 19 13 � 479001600 28551213

17 13 � 3628800 74696 20 13 � 6227020800 601078154

Better results are highlighted in bold

In Table 1 we list several cases for small parameters as supporting evidences to show that
the new bound in Theorem 6.2 works better than sphere-packing bound when d is relatively
close to n. Note that the values of sphere-packing bound in this table say that the size of
codes is upper bounded by some value x , where x is not less than the values shown in the
table. (For example, the size of a (13,9)-code is upper bounded by x , where x � 40320. It
doesn’t necessarily suggest that the size of a (13,9)-code is upper bounded by 40320. Our
new result indicates that the size of a (13,9)-code is upper bounded by 24787, which is indeed
an improvement over the sphere-packing bound.)

7 Conclusion

In this paper, we establish the correspondence between permutation codes and the inde-
pendent sets of block permutation graphs. Using this approach, we improve the Gilbert–
Varshamov bound asymptotically by a factor of �(log n) when the minimum distance d is
fixed and n goes into infinity. As for the upper bound, we clarify the relationship between
block permutation distance of permutations and the intersection of their characteristic sets.
Using some counting methods, we derive an upper bound of a new type, which beats the
sphere-packing bound when d is relatively close to n. Moreover, we present the existence
of a permutation code which improves the size of the known result by a factor of �(n2d−4).
Explicit encoding schemes achieving this size are considered for future research.
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