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Abstract
Lattice basis reduction algorithms have been used in cryptanalysis. The most famous algo-
rithm is LLL, proposed by Lenstra, Lenstra, Lovász, and one of its typical improvements is
LLLwith deep insertions (DeepLLL). A DeepLLL-reduced basis is LLL-reduced, and hence
its quality is at least as good as LLL. In practice, DeepLLL often outputs a more reduced
basis than LLL, but no theoretical result is known. First, we show provable output quality
of DeepLLL, strictly better than that of LLL. Second, as a main work of this paper, we
propose a new variant of DeepLLL. The squared-sum of Gram–Schmidt lengths of a basis is
related with the computational hardness of lattice problems such as the shortest vector prob-
lem (SVP). Given an input basis, our variant monotonically decreases the squared-sum by a
given factor at every deep insertion. This guarantees that our variant runs in polynomial-time.

Keywords Lattice basis reduction · LLL with deep insertions · Shortest vector problem
(SVP) · Shortest diagonal problem (SDP)

Mathematics Subject Classification 68R01 · 06B99

1 Introduction

For a positive integer n, let b1, . . . ,bn ∈ R
n be n linearly independent column vectors. The

set of integral linear combinations of bi is called a (full-rank) lattice of dimension n. The
n × n matrix B = [b1, . . . ,bn] is called a basis of the lattice. From a given basis, lattice
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basis reduction aims to find a new basis with short and nearly orthogonal basis vectors. The
LLL algorithm [17] is the most famous, and it computes a reduced basis with provable output
quality in polynomial-time (see [20] for details). A blockwise generalization of LLL is the
block Korkine-Zolotarev (BKZ) reduction algorithm proposed by Schnorr and Euchner [22].
Recently, BKZ 2.0 [6], terminating-BKZ [15], and progressive-BKZ [3] have been developed
as efficient variants of BKZ. Another improvement of LLLwas suggested also in [22], whose
idea is called a deep insertion. While only adjacent basis vectors are swapped in LLL, non-
adjacent vectors can be swapped in DeepLLL. Although the output quality of DeepLLL is
better than LLL in practice (see [13] for experimental results), the complexity of DeepLLL
is potentially super-exponential. In order to address this problem, Fontein, Schneider and
Wagner [11] proposed variants of DeepLLL, which are proven to run in polynomial-time.
As a recent work, Yamaguchi and Yasuda [25] embed DeepLLL into BKZ as a subroutine
alternative to LLL, called DeepBKZ, and have found a number of new solutions for the
Darmstadt SVP challenge [8] of dimensions from 102 to 127 over a single thread of a
general-purpose server with an Intel Xeon CPU E5-2670@2.60GHz.

Since any DeepLLL-reduced basis is LLL-reduced, it satisfies the provable output quality
of LLL. In this paper, we show the following provable output quality of DeepLLL, better
than that of LLL (since 1 + α

4 < α due to α > 4
3 , the following properties are stronger than

[20, Theorem 9 in Chapter 2]):

Theorem 1 For a reduction parameter 1
4 < δ < 1, set α = 4

4δ−1 . Let B = [b1, . . . ,bn] be a
δ-DeepLLL-reduced basis of a lattice L. Then

1. ‖b1‖ ≤ α(n−1)/2n
(
1 + α

4

)(n−1)(n−2)/4n
vol(L)1/n.

2. For all 1 ≤ i ≤ n, ‖bi‖ ≤ α1/2
(
1 + α

4

)(n−2)/2
λi (L).

3.
n∏

i=1

‖bi‖ ≤
(
1 + α

4

)n(n−1)/4
vol(L).

Here vol(L) is the volume of L and λi (L) the i-th successive minimum of L for 1 ≤ i ≤ n
(see [20, Def ini tion 13 in Chapter 2] for definition).

For a basis B = [b1, . . . ,bn], let B∗ = [b∗
1, . . . ,b

∗
n] denote its Gram-Schmidt orthogo-

nalization (GSO). The squared-sum of the lengths of the GSO vectors is defined as

SS(B) :=
n∑

i=1

‖b∗
i ‖2.

Let σ(L) denote the smallest value of SS(B)1/2 when B ranges over all bases for a lattice
L , and ρ(L) the covering radius of L . By [19, Theorem 7.9], we have λn(L) ≤ 2ρ(L) ≤
σ(L) ≤ √

nλn(L). Given a basis of L , the shortest diagonal problem (SDP) is to find a new
basis B with SS(B) = σ(L)2. This is related with various lattice problems [19, Figure 7.1].
For example, the size of SS(B) is related with the closest vector problem (CVP) since one
can find a lattice vector within distance 1

2SS(B)1/2 from a target vector by Babai’s algorithm
[4]. Recently, Kashiwabara and Teruya have found new solutions for the Darmstadt SVP
challenge of dimensions from134 to 150with significant computational power overmassively
parallelized servers [24]. (cf., Around September 2018, many records had been updated by
the sub-sieving technique [9] for dimensions up to 155 over less 80 threads with 256 or 512
GByte RAM.) Kashiwabara-Teruya’s implementation relies on the strategy of [10], based
on Schnorr’s random sampling [21]. In their preprocessing, they manage to decrease SS(B)

123



A new polynomial-time variant of LLL with deep insertions 2491

as much as possible to sample shorter lattice vectors (see [26] for analysis of [10]). It is
mentioned also in [2, Section 6.1] that more short lattice vectors could be sampled over a
basis B with smaller SS(B). (In a recent paper [18], Matsuda et al. gave a deep investigation
for the strategy of [10] using the Gram-Charlier approximation, in order to precisely estimate
the success probability of sampling short lattice vectors over a reduced basis.) In this paper,
we propose a new variant of DeepLLL, which decreases SS(B) by a given factor 0 < η ≤ 1 at
every deep insertion. In particular, the GSO formula [25, Theorem 1] enables us to efficiently
compute the difference between SS(B) and SS(C) before updating the GSO of the new basis
C obtained by a deep insertion. The complexity of our variant is bounded by the size of
SS(B), and it runs in polynomial-time for 0 < η < 1.

Notation The symbols Z,Q, and R denote the ring of integers, the field of rational numbers,
and the field of real numbers, respectively. In this paper,we represent all vectors in column for-
mat. For a = (a1, . . . , an)� ∈ R

n , let ‖a‖ denote its Euclidean norm. For a = (a1, . . . , an)�
and b = (b1, . . . , bn)� ∈ R

n , let 〈a,b〉 denote the inner product ∑n
i=1 aibi .

2 Preliminaries: lattices, LLL and DeepLLL

In this section, we review lattices and the LLL algorithm [17]. We also present the DeepLLL
algorithm [22] and its variants.

2.1 Lattices and GSO

For a positive integer n, linearly independent vectors b1, . . . ,bn ∈ Z
n define a (full-rank)

lattice (we consider only integral lattices for simplicity)

L =
{

n∑
i=1

xibi ∈ Z
n : xi ∈ Z (1 ≤ ∀i ≤ n)

}

of dimension n with basis B = [b1, . . . ,bn] ∈ Z
n×n . Every lattice has infinitely many

bases; If B1 and B2 are two bases of the same lattice, then there exists a unimodular matrix
V ∈ GLn(Z) such that B1 = B2V. Given a basis B of L , the volume of L is defined as
vol(L) := | det(B)|, independent of the choice of bases. TheGSO of B = [b1, . . . ,bn] is the
orthogonal family [b∗

1, . . . ,b
∗
n], recursively defined by

⎧⎪⎪⎨
⎪⎪⎩

b∗
1 := b1,

b∗
i := bi −

i−1∑
j=1

μi, jb∗
j , μi, j := 〈bi ,b∗

j 〉
‖b∗

j‖2
for 1 ≤ j < i ≤ n.

Every basis should be regarded as an ordered set for its GSO since the GSO vectors depend
on the order of basis vectors. Let B∗ = [b∗

1, . . . ,b
∗
n] ∈ Q

n×n and U = (μi, j ) ∈ Q
n×n ,

where we set μi,i = 1 for all i and μi, j = 0 for all j > i . Then B = B∗U� and vol(L) =∏n
i=1 ‖b∗

i ‖. For 2 ≤ � ≤ n, let π� denote the orthogonal projection from R
n over the

orthogonal supplement of the R-vector space 〈b1, . . . ,b�−1〉R. We set π1 = id (the identity

map). Specifically, we have π�(x) = ∑n
i=�

〈x,b∗
i 〉

‖b∗
i ‖2 for any vector x ∈ R

n .
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2.2 LLL-reduction

Definition 1 Let B = [b1, . . . ,bn] be a basis of a lattice L , and B∗ = [b∗
1, . . . ,b

∗
n] its GSO

with coefficients μi, j . For a parameter 1
4 < δ < 1, the basis B is called δ-LLL-reduced if the

following two conditions are satisfied:

(i) (Size-reduced) |μi, j | ≤ 1
2 for all 1 ≤ j < i ≤ n.

(ii) (Lovász’ condition) δ‖b∗
k−1‖2 ≤ ‖πk−1(bk)‖2 for all 2 ≤ k ≤ n. Since πk−1(bk) =

b∗
k + μk,k−1b∗

k−1, this condition can be rewritten as

‖b∗
k‖2 ≥ (δ − μ2

k,k−1)‖b∗
k−1‖2. (1)

Any LLL-reduced basis satisfies the following properties (e.g., see [20, Theorem 9 in
Chapter 2] or [5, Theorems 4.7 and 4.8] for details):

Theorem 2 For a reduction parameter 1
4 < δ < 1, set α = 4

4δ−1 as Theorem 1. Let B =
[b1, . . . ,bn] be a δ-LLL-reduced basis of a lattice L. Then

1. ‖b1‖ ≤ α(n−1)/4vol(L)1/n.
2. For all 1 ≤ i ≤ n, ‖bi‖ ≤ α(n−1)/2λi (L).

3.
∏n

i=1
‖bi‖ ≤ αn(n−1)/4vol(L).

Note that these properties are strictly weaker than that of Theorem 1.

2.3 DeepLLL-reduction and the DeepLLL algorithm

In LLL [17], only adjacent basis vectors bk−1 and bk can be swapped. In the DeepLLL
algorithm [22], non-adjacent basis vectors can be changed; For a reduction parameter 1

4 <

δ < 1, a basis vector bk is inserted between bi−1 and bi for 1 ≤ i < k ≤ n if the deep
exchange condition ‖πi (bk)‖2 < δ‖b∗

i ‖2 is satisfied. In this case, the new GSO vector at the
i-th position is given by πi (bk), which is strictly shorter than the old GSO vector b∗

i . The
notion of DeepLLL-reduction is defined as follows:

Definition 2 For a reduction parameter 1
4 < δ < 1, a basis B = [b1, . . . ,bn] is called

δ-DeepLLL-reduced if the following two conditions are satisfied:

(i) The basis B is size-reduced.
(ii) We have ‖πi (bk)‖2 ≥ δ‖b∗

i ‖2 for all 1 ≤ i < k ≤ n [(in particular, the case i = k − 1
is equivalent to Lovász’ condition (1)].

Let Sn denote the group of permutations among n elements. Given an element σ ∈ Sn

and a basis B = [b1, . . . ,bn], let σ(B) := [bσ(1), . . . ,bσ(n)] denote the reordered basis. For
1 ≤ i < k ≤ n, we define σi,k ∈ Sn as σi,k(�) = � for � < i or � > k, σi,k(i) = k, and
σi,k(�) = � − 1 for i + 1 ≤ � ≤ k. In other words, the reordered basis is given by

σi,k(B) = [b1, . . . ,bi−1,bk,bi , . . . ,bk−1,bk+1, . . . ,bn],
which is obtained by inserting bk between bi−1 and bi (i.e., a deep insertion). In Algorithm 1,
we present the DeepLLL algorithm to find a DeepLLL-reduced basis [22] (see also [5, Figure
5.1] or [7, Algorithm 2.6.4] for more details). Here we present the explicit GSO formula [25,
Theorem 1] for the reordered basis:
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Algorithm 1 DeepLLL [22]

Input: A basis B = [b1, . . . , bn ] of a lattice L , and a reduction parameter 1
4 < δ < 1

Output: A δ-DeepLLL-reduced basis B of L
1: Set k ← 2
2: while k ≤ n do
3: Size-reduce B = [b1, . . . , bn ] /∗ At each k, we recursively change bk ← bk − 
μk, j �b j for 1 ≤ j ≤

k − 1 (e.g., see [12, Algorithm 24] for details) ∗/
4: Set C ← ‖bk‖2 and i ← 1
5: while i < k do
6: if C ≥ δ‖b∗

i ‖2 then

7: Compute C ← C − μ2
k,i‖b∗

i ‖2 and set i ← i + 1 /∗ C = ‖πi (bk )‖2 ∗/
8: else
9: Set B ← σi,k (B) and update the GSO of B /∗ A deep insertion ∗/
10: Set k ← max(i, 2) and go back to step 3
11: end if
12: end while
13: Set k ← k + 1
14: end while

Theorem 3 LetB = [b1, . . . ,bn] be a basis, andB∗ = [b∗
1, . . . ,b

∗
n] its GSOwith coefficients

μi, j and B j = ‖b∗
j‖2. For 1 ≤ i < k ≤ n, let C = σi,k(B), and C∗ = [c∗

1, . . . , c
∗
n] its GSO

with C j = ‖c∗
j‖2. Then Ci = D(k)

i and

C j = D(k)
j

D(k)
j−1

Bj−1

for i + 1 ≤ j ≤ k, where set D(k)
� = ‖π�(bk)‖2 = ∑k

j=� μ2
k, j B j for 1 ≤ � ≤ k.

2.4 Variants of the DeepLLL algorithm

While the complexity of LLL is polynomial-time in the dimension of an input basis, DeepLLL
has potentially super-exponential complexity and no provable upper bound is known. In
order to address the problem, Schnorr and Euchner in [22, Comments in Section 3] proposed
insertion restriction; In step 9 of Algorithm 1, deep insertions B ← σi,k(B) are performed
only in case of either i < ε or k − i ≤ ε for fixed ε. DeepLLL with such restriction
seems to run in polynomial-time in practice. However, such restriction does not guarantee
polynomial-time complexity. In contrast, Fontein, Schneider and Wagner [11] proposed two
polynomial-time variants of DeepLLL, called “PotLLL” and “PotLLL2”. To introduce their
variants, let us define the following value:

Definition 3 The potential of a basis B = [b1, . . . ,bn] is defined as

Pot(B) :=
n∏

i=1

vol(Li )
2 =

n∏
i=1

‖b∗
i ‖2(n−i+1),

where Li is the lattice spanned by [b1, . . . ,bi ] for 1 ≤ i ≤ n.

The potential plays an important role in showing that LLL is a polynomial-time algo-
rithm (e.g., see [5, Theorem 4.19]). Fontein et al. give the following key lemma [11, Lemma
1] for complexity analysis of their variants, and define the following notion of reduction [11,
Definition 4]:
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Lemma 1 Let B = [b1, . . . ,bn] be a basis. For 1 ≤ i < k ≤ n, let C = σi,k(B) denote the
reordered basis by a deep insertion. Then we have

Pot(C) = Pot(B)

k−1∏
j=i

‖π j (bk)‖2
‖b∗

j‖2
.

Proof Fixing k, it is proved in [11] by induction on i from k − 1 to 1. With Theorem 3, we
can directly prove it; Here we simply write D� for D

(k)
� . Then

Pot(C)

Pot(B)
=
Dn−i+1
i × ∏k

j=i+1

(
Dj

D j−1
Bj−1

)n− j+1

∏k
j=i B

n− j+1
j

=
Dn−i+1
i ×

(
Di+1
Di

)n−i ( Di+2
Di+1

)n−i−1 · · ·
(

Dk
Dk−1

)n−k+1

Bi · · · Bk−1 · Bn−k+1
k

=Di · · · Dk−1 · Dn−k+1
k

Bi · · · Bk−1 · Bn−k+1
k

= Di · · · Dk−1

Bi · · · Bk−1

since Dk = Bk . This completes the proof. ��

Definition 4 For a reduction parameter 1
4 < δ < 1, a basis B = [b1, . . . ,bn] is called

δ-PotLLL-reduced if the following two conditions are satisfied:

(i) The basis B is size-reduced.
(ii) We have δPot(B) ≤ Pot(σi,k(B)) for all 1 ≤ i < k ≤ n.

For 1
4 < δ < 1, any δ-PotLLL-reduced basis B is also δ-LLL-reduced since δPot(B) ≤

Pot(σk−1,k(B)) if and only if δ‖b∗
k−1‖2 ≤ ‖πk−1(bk)‖2 by Lemma 1, which is just Lovász’

condition (1). The PotLLL algorithm is shown in [11, Algorithm 1] to obtain a δ-PotLLL-
reduced basis. Specifically, it computes the index i = argmin1≤ j<kPot(σ j,k(B)) for 2 ≤
k ≤ n, and it performs a deep insertion if δPot(B) > Pot(σi,k(B)). In PotLLL, every deep
insertion decreases Pot(B) by a factor of at least δ for an input basis B. This is same as in
LLL, and hence the complexity of PotLLL is polynomial-time [11, Proposition 1].

3 Proof of Theorem 1

Here we prove Theorem 1. Let B = [b1, . . . ,bn] be a δ-DeepLLL-reduced basis for 1
4 <

δ < 1. Let B∗ = [b∗
1, . . . ,b

∗
n] denote its GSO with coefficients μi, j . For α = 4

4δ−1 , we first
show that

‖b∗
i ‖2 ≤ α

(
1 + α

4

)k−i−1 ‖b∗
k‖2 (2)

for all 1 ≤ i < k ≤ n. Fix 2 ≤ k ≤ n. We shall prove (2) by induction on index i from
k − 1 to 1; The case i = k − 1 is equivalent to ‖b∗

k−1‖2 ≤ α‖b∗
k‖2, which holds for any

δ-DeepLLL-reduced basis (even for any δ-LLL-reduced basis). For 2 ≤ j ≤ k − 1, we
assume inequality (2) holds for i = j, . . . , k − 1, and consider the case of i = j − 1. It
follows from two conditions (i) and (ii) in Definition 2 that we have
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δ‖b∗
j−1‖2 ≤ ‖π j−1(bk)‖2

≤ ‖b∗
k‖2 + 1

4

k−1∑
h= j−1

‖b∗
h‖2.

Combining this with inequality (2) for j ≤ i ≤ k − 1, we have

(
δ − 1

4

)
‖b∗

j−1‖2 ≤ ‖b∗
k‖2 + 1

4

k−1∑
h= j

‖b∗
h‖2

≤
⎛
⎝1 + α

4

k−1∑
h= j

(
1 + α

4

)k−h−1

⎞
⎠ ‖b∗

k‖2

=
(
1 + α

4

)k− j ‖b∗
k‖2.

This shows that inequality (2) holds for the case i = j − 1, and thus it completes the proof
of (2) by induction.

From inequality (2), we can easily prove Theorem 1 as follows:

1. From inequality (2), we have ‖b1‖2 ≤ α
(
1 + α

4

)k−2 ‖b∗
k‖2 for all 2 ≤ k ≤ n. By

multiplying the inequalities, we have

‖b1‖2n ≤ ‖b∗
1‖2

n∏
k=2

α
(
1 + α

4

)k−2 ‖b∗
k‖2

≤ αn−1
(
1 + α

4

)(n−1)(n−2)/2
vol(L)2.

This implies ‖b1‖ ≤ α(n−1)/2n
(
1 + α

4

)(n−1)(n−2)/4n
vol(L)1/n .

2. From condition (i) in Definition 2 and inequality (2), we have

‖bi‖2 ≤ ‖b∗
i ‖2 + 1

4

i−1∑
j=1

‖b∗
j‖2

≤
⎛
⎝1 + 1

4

i−1∑
j=1

α
(
1 + α

4

)i− j−1

⎞
⎠ ‖b∗

i ‖2

=
(
1 + α

4

)i−1 ‖b∗
i ‖2 (3)

for all 1 ≤ i ≤ n. On the other hand, we see from (2) that

‖b∗
i ‖2 ≤ α

(
1 + α

4

)n−i−1
min
i≤ j≤n

‖b∗
j‖2

for all 1 ≤ i ≤ n. Furthermore, since λi (L) ≥ mini≤ j≤n ‖b∗
j‖ [20, Lemma 7 in Chapter

2], we have ‖b∗
i ‖2 ≤ α

(
1 + α

4

)n−i−1
λi (L)2. Combining this with (3), we obtain

‖bi‖2 ≤ α
(
1 + α

4

)n−2
λi (L)2.
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3. By multiplying inequalities (3) for 1 ≤ i ≤ n, we have

n∏
i=1

‖bi‖2 ≤ vol(L)2
n∏

i=1

(
1 + α

4

)i−1 =
(
1 + α

4

)n(n−1)/2
vol(L)2.

This completes the proof of Theorem 1. ��

4 New polynomial-time variant of DeepLLL

In this section, we propose a new polynomial-time variant of DeepLLL, and show experi-
mental results on our variant.

4.1 S2LLL-reduction

Given a basis B, our variant aims to decrease SS(B) by every deep insertion. Since LLL
decreases SS(B) by every swap [26, Lemma 5.2], ours can be regarded as a generalization of
LLL in terms of decreasing SS(B). While the complexity of LLL and PotLLL for an input
basis B is bounded by the size of Pot(B), the complexity of our variant is bounded by the
size of SS(B). We define a new notion of reduction as follows:

Definition 5 For 0 < η ≤ 1, a basis B = [b1, . . . ,bn] is called η-S2LLL-reduced if the
following two conditions are satisfied:

(i) The basis B is size-reduced.
(ii) We have ηSS(B) ≤ SS(σi,k(B)) for all 1 ≤ i < k ≤ n.

In particular, when η = 1, we simply call the basis B to be S2LLL-reduced.

S2LLL-reduced bases have a local property; If B = [b1, . . . ,bn] is S2LLL-reduced,
then B′ = [πi (bi ), πi (bi+1), . . . , πi (b j )] is also S2LLL-reduced for all 1 ≤ i ≤ j ≤ n.
We remark that any orthogonal basis B is η-S2LLL-reduced for any 0 < η ≤ 1 since
SS(B) = SS(σi,k(B)) = ∑n

i=1 ‖bi‖2 for any 1 ≤ i < k ≤ n. Therefore it is clear that any
η-S2LLL reduced basis is not always LLL-reduced (e.g., for b1 = (3, 0)� and b2 = (0, 1)�,
the basis B = [b1,b2] is η-S2LLL-reduced for any 0 < η ≤ 1, but it is not δ-LLL-reduced
for any 1

4 < δ < 1). In contrast, for non-orthogonal bases, we have the following relation:

Proposition 1 For 0 < η ≤ 1, let B = [b1, . . . ,bn] be an η-S2LLL-reduced basis, and
B∗ = [b∗

1, . . . ,b
∗
n] its GSO with coefficients μi, j and B j = ‖b∗

j‖2. Assume μ j+1, j �= 0 for

all 1 ≤ j ≤ n − 1. Set N = min1≤ j≤n−1

(
μ2

j+1, j B j

)
> 0 and

M = N

(1 − η)SS(B) + N
.

If M > 1
4 , then B is δ-LLL-reduced for any 1

4 < δ < M. In particular, any S2LLL-reduced
basis (i.e., η = 1) is also δ-LLL-reduced for any 1

4 < δ < 1.

Proof Suppose that a pair (bk−1,bk) does not satisfy Lovász’ condition (1) for some 2 ≤
k ≤ n and 1

4 < δ < M . Let C = σk−1,k(B) = [c1, . . . , cn] denote the basis obtained by
swapping bk with bk−1. By [26, Lemma 5.2], we have

SS(B) − SS(C) = μ2
k,k−1(1 − δk−1)

δk−1
Bk−1, (4)
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A new polynomial-time variant of LLL with deep insertions 2497

Algorithm 2 S2LLL
Input: A basis B = [b1, . . . , bn ] of a lattice L , and a factor 0 < η ≤ 1
Output: An η-S2LLL-reduced basis of L
1: Set k ← 2.
2: while k ≤ n do
3: Size-reduce B = [b1, . . . ,bn ] as well as in Algorithm 1
4: Compute i ← argmax1≤�≤k−1(S�,k ) for fixed k /∗ See (5) for S�,k ∗/
5: if Si,k ≤ (1 − η)SS(B) then
6: Set k ← k + 1
7: else
8: Set B ← σi,k (B), and update the GSO of B /∗ A deep insertion ∗/
9: Set k ← max(i, 2) and go back to step 3
10: end if
11: end while

wherewe set δk−1 := Bk + μ2
k,k−1Bk−1

Bk−1
. Since (bk−1,bk) does not satisfy Lovász’ condition

(1), we have δk−1 < δ. Then

SS(B) − SS(C) >
μ2
k,k−1(1 − δ)

δ
Bk−1 ≥ (1 − δ)

δ
N .

Since B is η-S2LLL-reduced, we have SS(B) − SS(C) ≤ (1 − η)SS(B), and hence
(1 − δ)

δ
N < (1 − η)SS(B). This implies δ > M , which is a contradiction. ��

Remark 1 In the above proposition, the factor η is required to be very close to 1 for M > 1
4 .

For example, let b1 = (3, 1)� and b2 = (0, 1)�. The basis B = [b1,b2] is η-S2LLL-
reduced for η = 100

109 ≈ 0.917 since SS(B) = 109
10 and SS([b2,b1]) = 10. Since μ2,1 = 1

10
and N = 1

10 , we have M = 1
10 < 1

4 . However, we see that B is not δ-LLL-reduced for any
1
4 < δ < 1.

4.2 S2LLL algorithm

Let B = [b1, . . . ,bn] be a basis, and B∗ = [b∗
1, . . . ,b

∗
n] its GSO with coefficients μi, j and

Bj = ‖b∗
j‖2. For 1 ≤ i < k ≤ n, let C = σi,k(B) denote the reordered basis. If the case

i = k − 1, the difference SS(B) − SS(C) is given by (4). For general i < k, by Theorem 3,
the difference is calculated as

Si,k := SS(B) − SS(σi,k(B)) =
k−1∑
j=i

μ2
k, j B j

(
Bj

D(k)
j

− 1

)
. (5)

Algorithm 2 is our variant of DeepLLL, which we call the S2LLL algorithm. In step 4 of
Algorithm 2, we can compute the difference S�,k from (5) without computing the GSO of the
reordered basis σ�,k(B). This makes S2LLL practical. Since deep insertions are performed
only when

Si,k > (1 − η)SS(B) ⇐⇒ SS(σi,k(B)) < ηSS(B),

S2LLL with factor η decreases SS(B) by a factor of at least η by every deep insertion. Then
we obtain the following proposition on the complexity, which guarantees that S2LLL with
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2498 M. Yasuda, J. Yamaguchi

0 < η < 1 runs in polynomial-time (this argument is the same as in [11, Proposition 1] for
the complexity analysis of PotLLL).

Proposition 2 If 0 < η < 1, the number of deep insertions in S2LLL (Algorithm 2) for an
input basis B is at most O

(
log1/η (SS(B))

)
.

We remark that both PotLLL and S2LLL have polynomial-time complexity by construc-
tion, but their output quality cannot be covered by Theorem 1 since their output bases are no
longer DeepLLL-reduced.

Remark 2 Under the randomness assumption in [21], Fukase and Kashiwabara [10] gave
an analytic form of the distribution of random sampling vectors over a lattice basis B =
[b1, . . . ,bn]. in particular, the mean μ and the variance σ 2 of the expected distribution are
given as

μ =
∑n

i=1 ‖b∗
i ‖2

12
and σ 2 =

∑n
i=1 ‖b∗

i ‖4
180

.

This implies that more short lattice vectors could be sampled over a basis with smaller SS(B),
as mentioned in Sect. 1. This is the origin to consider SS(B) in solving the SVP. In 2017,
Aono and Nguyen [2] introduced lattice enumeration with discrete pruning to generalize
random sampling, and also provided a deep analysis of discrete pruning by using the volume
of the intersection of a ball with a box. In particular, under the randomness assumption, the
expectation of the length of a short vector generated by lattice enumeration with discrete
pruning from so-called a tag t = (t1, . . . , tn) ∈ Z

n is roughly given by

E(t) =
n∑

i=1

(
t2i
4

+ ti
4

+ 1

12

)
‖b∗

i ‖2,

which is a generalization of themeanμ. However, it is shown in [2] that empirical correlation
between E(t) and the volume of ball-box intersection is negative. This is statistical evidence
why decreasing SS(B) is important instead of increasing the volume of ball-box intersection.
Furthermore, the calculation of the volume presented in [2] is much less efficient than the
computation of SS(B). In 2018, Matsuda et al. [18] investigated the strategy of [10] by
the Gram-Charlier approximation in order to precisely estimate the success probability of
sampling short lattice vectors, and also discussed the effectiveness of decreasing SS(B) for
sampling short lattice vectors. Hence we focus on SS(B) to develop a reduction algorithm in
this paper.

4.3 Experimental results on S2LLL

In this subsection, we show experimental results to compare DeepLLL, PotLLL and S2LLL.
In our experiments, we used NTL library [23] of C++ programs. In our implementation, we
used the int data type for the lattice basis B, and the long double for its GSO information.
We also used the gcc 6.4.0 compiler with option O3 -std=c++11. Furthermore, we used a
single thread of a 64-bit PC with Intel Xeon CPU E3-1225 v5@3.30GHz and 4.0GB RAM.
We took several bases from the Darmstadt SVP challenge [8] of dimensions n = 100, 110,
120, 130, 140, and 150 (these bases are random lattices in the sense of Goldstein and Mayer
[14]), and reduced them by LLL with reduction parameter δ = 0.99 for input bases. We also
used δ = 0.99 for DeepLLL and PotLLL.
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4.3.1 Choosing suitable factors of S2LLL

Here we discuss how to set a factor η of S2LLL, corresponding to δ = 0.99 of DeepLLL and
PotLLL. Fix a basis B = [b1, . . . ,bn] with Bj = ‖b∗

j‖2. From Proposition 1, we roughly
expect

δ ≈ N

(1 − η)SS(B) + N
⇐⇒ 1 − η ≈ 1 − δ

δ
· N

SS(B)
,

where N = min1≤ j≤n−1(μ
2
j+1, j B j ) denotes the same as in Proposition 1 (we expect N �= 0

for all bases in the Darmstadt SVP challenge). In our experiments, input bases B are LLL-
reduced with δ = 0.99. Under the geometric series assumption (GSA) [21], we roughly have
Bi/Bi+1 ≈ q2 for 1 ≤ i ≤ n − 1, where the constant q depends on lattice basis reduction
algorithms. According to [20, p. 52 in Chapter 2], we have q ≈ 1.022 ≈ 1.04 in practice for
random lattices. Then we can roughly obtain

1 − η ≈ 1 − δ

δ
· N

SS(B)
≈ 1 − δ

12δ
· q2 − 1

q2n − 1

where we simply estimate N = μ2
n,n−1Bn−1 ≈ Bn−1

12 since the expected value of μ2
n,n−1

with |μn,n−1| ≤ 1
2 is 1

12 . For example, by taking q = 1.04 and n = 100, we have 1 − η =
2.69×10−8 andwemay take η = 1−10−8. Similarly, we obtain η = 1−10−9 and 1−10−10

for n = 120 and 140, respectively. However, from the below experimental results, such 1−η

seems too small, and η = 1 − 10−6 might be sufficient for n = 100–150 since the output
quality of S2LLL with η = 1 − 10−6 is almost equal to that with η = 1.

4.3.2 Comparison of DeepLLL, PotLLL and S2LLL

In our experiments, we performed DeepLLL with insertion restriction of blocksizes ε =
5, 10, 20 (which we write DeepLLL-5, -10, -20 for short), PotLLL, and S2LLL with factors
η = 1, 1 − 10−8, 1 − 10−6 and 1 − 10−4. In Figures 1, 2, 3, 4, 5, and 6, we show transition
of SS(B) in DeepLLL, PotLLL and S2LLL for bases B of dimensions n = 100–150, where
every B is an LLL-reduced basis of the basis generated by the generator in [8] with seed 0.
Specifically, in the figures, we show a relation between transition of SS(B) and the number of
deep insertions required in algorithms. (Data of DeepLLL-20 is not drawn because it requires
about 10 times more deep insertions than DeepLLL-10.)

Fig. 1 Transition of SS(B) in DeepLLL, S2LLL and PotLLL for an LLL-reduced basis B of a lattice L of
dimension n = 100 (x-axis: the number of deep insertions, y-axis: the value of SS(B)) (Color figure online)
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Fig. 2 Same as Table 1, but n = 110 (Color figure online)

Fig. 3 Same as Table 1, but n = 120 (Color figure online)

Fig. 4 Same as Table 1, but n = 130 (Color figure online)

(a) S2LLL can decrease SS(B)with much less deep insertions than DeepLLL.While S2LLL
decreases SS(B) monotonically, the size of SS(B) sometimes increases during execution
of DeepLLL. More specifically, S2LLL with factors 1− 10−6 ≤ η ≤ 1 decreases SS(B)

by almost the same size as DeepLLL-5, but DeepLLL-5 requires about 2–3 times more
deep insertions. Compared to S2LLL, DeepLLL-10 and -20 output smaller SS(B), but
they require much more deep insertions (e.g., in n = 100, DeepLLL-20 requires 618,162
deep insertions, about 100 times more than S2LLL).

(b) For factors 1−10−6 ≤ η ≤ 1, S2LLLoutputs almost same size of SS(B)with almost same
number of deep insertions. In some cases, smaller η (e.g., η = 1−10−6) outputs slightly
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Fig. 5 Same as Table 1, but n = 140 (Color figure online)

Fig. 6 Same as Table 1, but n = 150 (Color figure online)

smaller SS(B) than η = 1. This is due to the order of deep insertions during execution;
certain sequences of deep insertions enable to decrease SS(B) more significantly (e.g.,
DeepLLL sometimes increases SS(B) during execution, but DeepLLL-ε with ε ≥ 10
decreases SS(B) more than S2LLL in total).

(c) As seen from Figures 1, 2, 3, 4, 5, and 6, the number of deep insertions required in
PotLLL is little less than S2LLL with factors 1 − 10−6 ≤ η ≤ 1, but S2LLL decreases
SS(B) more than PotLLL.

Remark 3 The HKZ-reduction [16] is an ideal reduction for SVP (see also [19, Chapter
7]); A basis B = [b1, . . . ,bn] of a lattice L is called HKZ-reduced if the following two
conditions are satisfied; (i) The basis B is size-reduced. (ii) We have ‖b∗

i ‖ = λ1(πi (L)) for
all 1 ≤ i ≤ n. On the other hand, a random lattice L of dimension n satisfies asymptotically
λ1(L) ≈ √

n/(2πe)vol(L)1/n with overwhelming probability (see [1] for details). For an
HKZ-reduced basis B = [b1, . . . ,bn], we can roughly estimate every length ‖b∗

i ‖ as

‖b∗
i ‖ = λ1(πi (L)) ≈

√
n − i + 1

2πe
vol(πi (L))1/(n−i+1).

Since vol(πi (L)) = vol(L)/
∏i−1

j=1 ‖b∗
j‖ for 2 ≤ i ≤ n, we estimate

SS(B) ≈ 1

2πe

n∑
i=1

(n − i + 1)

(
vol(L)∏i−1
j=1 ‖b∗

j‖

)2/(n−i+1)

. (6)
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Table 1 The average of the Hermite factor constant γ 1/n of S2LLL with factor η in dimensions n = 100–150

n η = 1 η = 1 − 10−8 η = 1 − 10−6 η = 1 − 10−4

100 1.01420 1.01408 1.01424 1.01457

110 1.01430 1.01425 1.01422 1.01483

120 1.01418 1.01420 1.01425 1.01494

130 1.01421 1.01418 1.01418 1.01520

140 1.01415 1.01419 1.01412 1.01544

150 1.01419 1.01417 1.01420 1.01568

In Figures 1, 2, 3, 4, 5, and 6, we draw a line of the value (6) as an HKZ-bound of SS(B).
Compared to the HKZ-bound, the value of SS(B) obtained by S2LLL becomes greater for
higher dimensions n. This shows that SS(B) should be decreased much more for solving
SVP or SDP (shortest diagonal problem).

4.3.3 Hermite factor of S2LLL

Let L be a lattice of dimension n. The Hermite factor of a lattice basis reduction algorithm
for a basis of L is defined by

γ := ‖b1‖
vol(L)1/n

(7)

with the output basis B = [b1, . . . ,bn] (assume that b1 is shorter than the other b j ). This
factor is experimentally investigated in [13], and it is shown that the factor gives a good
index to measure the practical output quality of a lattice basis reduction algorithm. The
output quality becomes better as γ is smaller. According to experimental results [13, Figure
5], the value γ 1/n converges a constant in practical algorithms such as LLL, DeepLLL and
BKZ for large n. The limiting constant is called the Hermite factor constant.

InTable 1,we summarize experimental results of the average of theHermite factor constant
γ 1/n of S2LLLwith several factors η for lattice dimensions n = 100–150. In our experiments,
for each dimension n, we generated 100 lattice bases by using the generator in the Darmstadt
SVP challenge [8] with seeds 0–99. We reduced every basis by LLL with δ = 0.99 in
preprocessing, and took it as an input for S2LLL. We see from Table 1 that the average of
γ 1/n of S2LLL is almost equal for factors 1 − 10−6 ≤ η ≤ 1. Moreover, the average with
each factor of 1−10−6 ≤ η ≤ 1 is about γ 1/n = 1.01420 for n = 100–150. In contrast, from
experimental results [13, Table 1], the average of the Hermite factor constant of LLL (resp.,
BKZ-20, BKZ-28, and DeepLLL-50) for random lattices is γ 1/n = 1.0219 (resp., 1.0128,
1.0109, and 1.011). Moreover, from [11, Table 1], the average of the Hermite factor constant
of BKZ-5 (resp., PotLLL, DeepLLL-5, DeepLLL-10, and BKZ-10) is γ 1/n = 1.0152 (resp.,
1.0146, 1.0137, 1.0129, and 1.0139) in dimension 100 (default parameter of [11] is set
as δ = 0.99 for all algorithms). From these results, we estimate that S2LLL with factors
1 − 10−6 ≤ η ≤ 1 has almost the same output quality as BKZ-10, PotLLL and DeepLLL-5
in terms of the Hermite factor. (cf., According to [11, Figure 2], for dimensions n = 40–400,
DeepLLL-5 and PotLLL have almost same performance, and BKZ-10 is slower.)
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4.3.4 Summary on the practical output quality of S2LLL

From our experimental results, S2LLL with factors 1 − 10−6 ≤ η ≤ 1 has almost the same
output quality as DeepLLL-5 with δ = 0.99 in terms of both decreasing SS(B) and the
Hermite factor γ . Different from DeepLLL, S2LLL is proven to run in polynomial-time
for 0 < η < 1, and it decreases SS(B) with about 2 or 3 times less deep insertions than
DeepLLL-5. In fact, S2LLL is much faster than DeepLLL in our experiments. Moreover,
since DeepLLL-5 has almost the same implementation performance as the polynomial-time
variant PotLLL from [11, Figure 2], S2LLL is more efficient than PotLLL for decreasing
SS(B) (S2LLL also decreases SS(B) more than PotLLL).

4.3.5 Preliminary experiments of S2LLL with random sampling

Here we give preliminary experiments of S2LLL with random sampling for the Darmstadt
SVP challenge [8]. For simplicity, we used Schnorr’s random sampling [21] in our experi-
ments. Given a basis B = [b1, . . . ,bn] of a lattice L and a parameter 1 ≤ u < n of search
space, it samples a short lattice vector v = ∑n

i=1 νib∗
i ∈ L satisfying

νi ∈
⎧⎨
⎩

(−1/2, 1/2] if 1 ≤ i < n − u,

(−1, 1] if n − u ≤ i < n,

{1} if i = n.

Let Su,B denote the set of lattice vectors v = ∑n
i=1 νib∗

i satisfying the above condition. Since
the number of candidates for νi with |νi | ≤ 1/2 (resp. |νi | ≤ 1) is 1 (resp. 2), there are 2u

short lattice vectors in Su,B.
In Table 2, we show the average and standard deviation of norms of short lattice vectors,

sampled by Schnorr’s random sampling with u = 25 over LLL-reduced and S2LLL-reduced
bases of dimensions n = 100–150 for the SVP challenge [8] with seed 0. For every reduced
basis, we sampled 100,000 different lattice vectors. In the SVP challenge, a vector over an
n-dimensional lattice L with norm less than at least

1.05 · Γ (n/2 + 1)1/n√
π

· vol(L)1/n

can be submitted to enter the hall of frame, where Γ is the Gamma function. We write this
norm as the target norm in Table 2.We see from Table 2 that an S2LLL-reduced basis is much

Table 2 The average and standard deviation of norms of short lattice vectors, sampled by Schnorr’s random
sampling (with parameter u = 25) over LLL-reduced and S2LLL-reduced bases of dimensions n = 100–150
for the Darmstadt SVP challenge [8] with seed 0

n Target norm of the challenge [8] LLL (δ = 0.99) S2LLL (η = 1 − 10−8)

Average SD Average SD

100 2666.50 7892.13 689.99 5558.07 399.69

110 2789.44 10, 349.11 927.48 6302.49 463.38

120 2907.37 12, 613.96 1105.84 7209.72 526.94

130 3030.91 14, 925.14 1311.96 8440.73 645.13

140 3140.67 18, 945.05 1631.50 9444.47 707.72

150 3245.20 24, 317.82 2125.78 10, 898.33 817.56
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more suitable than an LLL-reduced basis for sampling shorter lattice vectors. However, it
is yet insufficient to achieve the target norm of the SVP challenge. Actually, even 5 times
standard deviation around the average of S2LLL does not reach the target norm, and hence the
probability of sampling a lattice vector with norm less than the target norm is extremely low
under the assumption that norms of sampled lattice vectors follow the normal distribution.
For example, in order to reduce a basis much more, we need to embed the S2LLL algorithm
in BKZ as an alternative subroutine to LLL, like DeepBKZ [25].

5 Conclusion and future work

We showed provable output quality of DeepLLL (Theorem 1), strictly stronger than that
of LLL (Theorem 2). We also proposed a polynomial-time variant of DeepLLL (S2LLL
in Sect. 4), which enables us to monotonically decrease the squared-sum SS(B) of Gram-
Schmidt lengths of an input basis B. (Note that provable output quality of S2LLL cannot be
covered by Theorem 1.) Thanks to the explicit GSO formula [25] (Theorem 3), we can keep
track of SS(B) efficientlywithout computing theGram-Schmidt vectors exactly. Furthermore,
we showed practical output quality of S2LLL by experiments.

As discussed in the previous subsection, S2LLL is much more suitable than LLL for
sampling shorter lattice vectors. But it is yet insufficient to find a solution of the Darmstadt
SVP challenge [8] in dimensions n ≥ 100. As a future work, we would like to embed S2LLL
in BKZ as an alternative subroutine to LLL, like DeepBKZ [25], in order to reduce an input
basis much more for sampling very short lattice vectors. (We might need to modify the
enumeration algorithm in BKZ to match with S2LLL.)
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