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Abstract
For any positive odd integer n, a precise representation for cyclic codes over Z4 of length 2n
is given in terms of the Chinese Remainder Theorem. Using this representation, an efficient
encoder for each of these codes is described. Then the dual codes are determined precisely
and this is used to study codeswhich are self-dual. In particular, the number of self-dual cyclic
codes over Z4 of length 2n can be calculated from 2-cyclotomic cosets modulo n directly.
Moreover, mistakes in Blackford (Discret Appl Math 128:27–46, 2003) and Dougherty and
Ling (Des Codes Cryptogr 39:127–153, 2006) are corrected. As an application, all 315
self-dual cyclic codes over Z4 of length 30 are listed. Among these codes, there are some
new cyclic self-dual Z4-codes C with parameters (30, |C| = 230, dH = 6, dL = 12) and
(30, |C| = 230, dH = 5, dL = 10). From these codes and applying the Gray map from Z4

onto F
2
2, formally self-dual and 2-quasicyclic binary codes with basic parameters [60, 30, 12]

and [60, 30, 10] are derived respectively.
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1 Introduction

In [17], it was shown that many interesting binary linear and nonlinear codes were in fact
the images under a Gray map of codes over the ring Z4. This important discovery caused an
enormous amount of activity in studying codes in this ambient space and linear codes overZ4

has become one of the most widely studied areas of algebraic coding theory. More precisely,
Z4 modules are studied together with the following Gray map ψ from Z4 onto F

2
2, defined

by 0 �→ 00, 1 �→ 01, 2 �→ 11 and 3 �→ 10, to obtain good binary codes. As a consequence
of these discoveries, codes over rings have become a widely studied branch of coding theory.

We begin with the necessary definitions for codes over rings. Let A be a commutative
finite ring with identity 1 �= 0, and let A× be the multiplicative group of invertible elements
of A. A code over A of length N is a nonempty subset C of AN . The code C is said to be linear
if C is an A-submodule of AN . Specifically, C is called a Z4-linear code when A = Z4. All
quaternary codes, i.e., codes overZ4, in this paper are assumed to be linear. The ambient space
AN is equipped with the usual Euclidian inner product, i.e., [a, b] = ∑N−1

j=0 a jb j , where

a = (a0, a1, . . . , aN−1), b = (b0, b1, . . . , bN−1) ∈ AN , and the dual code is defined by
C⊥ = {a ∈ AN | [a, b] = 0,∀b ∈ C}. If C = C⊥, C is called a self-dual code over A. Self-dual
codes are an important and widely studied family of codes. As an example of the importance
of quaternary self-dual codes, see [19], where the authors find extremal unimodular lattices
of length 72 using self-dual quaternary codes. For an encyclopedic description of self-dual
codes, see [23].

Cyclic codes are one of the most studied families of codes. One important reason for this
is that they have a canonical representation in polynomial rings. This representation allows
for a classification of these and a description of their structure. We define a code C to be
cyclic if (cN−1, c0, c1, . . . , cN−2) ∈ C for all (c0, c1, . . . , cN−1) ∈ C. We use the natural
connection of cyclic codes to polynomial rings, where the vector c = (c0, c1, . . . , cN−1) is
viewed as a polynomial c(x) = ∑N−1

j=0 c j x j . Under this association, the cyclic code C is an

ideal in the polynomial residue ring A[x]/〈xN − 1〉 since addition and multiplication of a
scalar from A follows from the code being linear and multiplication by x corresponds to the
cyclic shift. If σ is the cyclic shift operator, then a code C is said to be quasicyclic of index k
if k is the smallest integer with σ k(C) = C.

Let C be a nonzeroZ4-linear code of length N . Then C has a generator matrix of the form:

GC =
(
Ik0 A B
0 2Ik1 2C

)

U ,

whereU is a suitable N × N permutation matrix, Ik0 and Ik1 denote the k0 × k0 and k1 × k1
identity matrices, respectively, A and C are Z2-matrices, and B is a Z4-matrix. Then C is an
abelian group of type 4k02k1 and contains 22k0+k2 codewords (cf. Wan [25, Proposition 1.1]).

Cyclic codes over Z4 of length n were first studied in [4] as a projection of codes over the
p-adics. A more detailed study appeared in [21], where specific polynomial representations
of cyclic codes were given. In [22], Pless et al. characterized nontrivial cyclic self-dual codes
overZ4 of certain length n by describing generators of such codes. In particular, all examples
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Construction and enumeration for self-dual cyclic codes overZ4 2421

of nontrivial cyclic self-dual codes over Z4 up to length 39 were given. For example, there
is only 1 nontrivial cyclic self-dual code over Z4 of length 23.

In [12], Dougherty and Fernandez studied the ranks and kernels of cyclic codes over Z4

of odd length. In [20], Jitman and Sangwisut studied the hulls of cyclic codes over Z4 of
length n, and a characterization for hulls was established in terms of the generators viewed
as ideals in the quotient ring Z4[x]/〈xn − 1〉. In [16], Gao et al. investigated double cyclic
codes over Z4, i.e., Z4[x]-submodules of Z4[x]/〈xr − 1〉 × Z4[x]/〈xs − 1〉, where both r
and s are odd positive integers. Some optimal or suboptimal nonlinear binary codes were
obtained from this family of codes.

In general, cyclic codes were studied where the length was relatively prime to the charac-
teristic of the ring since this simplified the algebra significantly. Later cyclic codes where the
length was not relatively prime to 4 were studied. The first step was done by Abualrub and
Oehmke in [1], where they determined the generators for cyclic codes over Z4 for lengths
of the form 2k . Later, Blackford in [3] and [2] gave a description for cyclic codes over Z4 of
length 2n in terms of the discrete Fourier transform and by the following ring isomorphism:

Z4[x]
〈x2n − 1〉

∼= R[x]
〈xn − u〉

∼= R[x]
〈g1(x)〉 × · · · × R[x]

〈gr (x)〉 ,

where

R := Z4[u]
〈u2 − 1〉 = {a + bu | a, b ∈ Z4} (u2 = 1)

and xn −u = g1(x)g2(x) . . . gr (x) and g1(x), g2(x), . . . , gr (x) are monic, basic irreducible
and pairwise coprime polynomials inR[x] (see [3, p. 29]). Using this foundation, generator
polynomials, parity check matrices, and dual codes over Z4 of length 2n were given in [3].

Completing the remaining cases, as a generalization and further development of [3] and
[2], Dougherty and Ling in [13] determined the structure of cyclic codes overZ4 for arbitrary
even length in terms of the discrete Fourier transform.

It is not easy to explicitly give all distinct cyclic codes over Z4 of length 2n (resp. 2kn)
nor to explicitly give all self-dual cyclic codes by use of expressions for cyclic codes given
in [3] (resp. [13]). As an example, see Sect. 2.4 “Examples” in [3, pp. 38–39].

To be precise, there are some mistakes in the description of self-dual cyclic codes over Z4

of length 2n in [13]. We shall explain what these are presently.
Proposition 5.8 of [13] (see p. 151) states: “The number of self-dual cyclic codes over Z4

of length 2kn is given by
∏

α∈J̃ Mα

∏
α∈K Nα .”

For any integer α, 0 ≤ α ≤ n− 1, let J (2)
α be the 2-cyclotomic coset modulo n containing

α, i.e., J (2)
α = {2 jα | j = 0, 1, . . . ,mα −1} (mod n), wheremα = |J (2)

α |. In [13, Proposition
5.8], J̃ ∪ K is a complete set of 2-cyclotomic coset representatives modulo n, satisfying the
following conditions:

(1) 0 ∈ J̃ , and J (2)
n−α = J (2)

α for all 0 �= α ∈ J̃ ;

(2) J (2)
α ∩ J (2)

n−α = ∅ for all α ∈ K .

When k = 1, Nα = 5+2mα ([13, p. 140] or [3, Corollary 1]) for all α ∈ J̃ ∪K , and Mα = 1
[13, Corollary 5.7(i)] for all α ∈ K . In this case, [13] claimed the following:

(1) The number of self-dual cyclic codes over Z4 of length 2n is given by
∏

α∈K
(5 + 2mα ).
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(2) If there exists e such that −1 ≡ 2e mod n, then there is only one cyclic self-dual code
over Z4 of length 2n where n is odd, namely 2(Z4)

2n [13, Corollary 5.9].

Both of these statements require correction. The first statement is missing a term (which
proves to be quite important). In Theorem 3 in this paper, we prove the following correction:

• The number of self-dual cyclic codes over Z4 of length 2n is given by
∏

0 �=α∈J̃
(1 + 2mα/2)

∏

α∈K
(5 + 2mα ).

We can compare these two results. As −1 ≡ 2 (mod 3), −1 ≡ 22 (mod 5), −1 ≡ 23

(mod 9), −1 ≡ 24 (mod 17), −1 ≡ 25 (mod 33), −1 ≡ 25 (mod 11), −1 ≡ 26 (mod 13)
and −1 ≡ 27 (mod 43), the results in [13] would imply that there is only one cyclic self-dual
code over Z4 of length 2n for n = 3, 5, 9, 11, 13, 17, 33, 43. However, the number N of
cyclic self-dual code over Z4 with length 2n for n = 3, 5, 9, 11, 13, 17, 33, 43 is given by
the following table.

n N n N n N n N

3 3 9 27 13 65 33 107811
5 5 11 33 17 289 43 2146689

As an initial improvement for the partial results in [13], Cao et al. presented a clearer
concatenated structure for every cyclic code over Z4 of length 4n using the following ring
isomorphism (see [8, Theorem 2.6]):

Z4[x]
〈x4n − 1〉

∼= A[x]
〈x4 − y〉

∼= R1[x]
〈x4 − y〉 × · · · × Rr [x]

〈x4 − y〉
and ideals of each ring Ri [x]

〈x4−y〉 (see [8, Theorem 3.3]), where

A := Z4[y]
〈yn − 1〉 =

⎧
⎨

⎩

n−1∑

j=0

a j y
j | a0, a1, . . . , an−1 ∈ Z4

⎫
⎬

⎭
(yn = 1),

Ri = Z4[y]
〈 fi (y)〉 , 1 ≤ i ≤ r , and f1(y), . . . , fr (y) are monic, basic irreducible and pairwise

coprime polynomials in Z4[y] satisfying yn − 1 = f1(y) . . . fr (y). It can still be difficult
to construct cyclic codes over Z4 of length 4n by use of the representation given in [8], as
the expression for ideals of each ring Ri [x]

〈x4−y〉 is still complicated. Therefore, it is necessary to
adopt a new approach for representing all distinct cyclic codes over Z4 of even length. It is
then possible to determine which codes among them are self-dual.

Throughout the rest of this paper, we let n be an positive odd integer. Then, cyclic codes
over Z4 of length 2n are viewed as ideals in the polynomial ring Z4[x]/〈x2n − 1〉, using the
canonical representation. In this paper, we give another description for ideals ofZ4[x]/〈x2n−
1〉 by the using the following ring isomorphism:

Z4[x]
〈x2n − 1〉

∼= Z4[x]
〈 f1(x2)〉 × · · · × Z4[x]

〈 fr (x2)〉 ,

and by examining the ideals in each ring Z4[x]
〈 fi (x2)〉 , where f1(x), . . . , fr (x) are monic, basic

irreducible and pairwise coprime polynomials in Z4[x] satisfying xn − 1 = f1(x) . . . fr (x).
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Construction and enumeration for self-dual cyclic codes overZ4 2423

Recall the following easy proposition.

Proposition 1 Let C be a quaternary cyclic code of length 2n. Then ψ(C) is a binary (not
necessarily linear) quasicyclic code of length 4n and index 2, where ψ : Z

2n
4 → F

4n
2 is the

Gray map.

Proof Follows from a straightforward computation. ��
We organize the paper as follows. In Sect. 2, we give a new representation and an efficient

encoder for each cyclic code over Z4 of length 2n (Theorem 2.1). In Sect. 3, we introduce
necessary notation needed in this paper and give a proof for Theorem 1. In Sect. 4, we present
the dual code for each of these cyclic codes. In Sect. 5, we list all distinct self-dual cyclic
codes over Z4 of length 2n and count the number of these codes. In Sect. 6, we list all 315
self-dual cyclic codes over Z4 of length 30 explicitly. Among these codes, we obtain 24 new
and good cyclic self-dual Z4-codes C with parameters (30, |C| = 230, dH = 6, dL = 12) and
(30, |C| = 230, dH = 5, dL = 10), where dH and dL are the minimum Hamming distance
and the minimum Lee distance of the code C, respectively. In Sect. 7, we study the lifts of
cyclic codes and an isomorphism on the set of cyclic codes.

2 Representation and encoding for cyclic codes over Z4 of length 2n

In this section, we give a new representation and an efficient encoder for each cyclic code
over Z4 of length 2n.

In this paper, we will regard the binary field F2 = Z2 = {0, 1} as a subset of the ring
Z4 = {0, 1, 2, 3}, even though F2 is not a subring of Z4. Using this, any element a of Z4 has
a unique 2-expansion, namely a = a0 + 2a1, where a0, a1 ∈ F2. We define the following
projection to the binary field a = a0 = a (mod 2). Then − : Z4 → F2 is a surjective ring
homomorphism. The map extends naturally to Z4[y] by applying it to the coefficients of the
polynomial. Let y be an indeterminate over Z4 and F2. Define

f (y) = f (y) =
d∑

i=0

bi y
i , ∀ f (y) =

d∑

i=0

bi y
i ∈ Z4[y].

The map − is a surjective ring homomorphism from Z4[y] onto F2[y].
Recall that a monic polynomial f (y) ∈ Z4[y] of positive degree is defined to be basic

irreducible if f (y) is an irreducible polynomial in F2[y] (cf. Wan [26, Sect. 13.4]).
Throughout this paper, we assume the following factorization of yn − 1:

yn − 1 = f1(y) f2(y) . . . fr (y), (1)

where f1(y), f2(y), . . . , fr (y) are pairwise coprime monic basic irreducible polynomials in
Z4[y] with degree deg( fi (y)) = mi for all i = 1, . . . , r . Additionally, we will adopt the
following notation.

(1) The ring A = Z4[x]
〈x2n−1〉 = {∑2n−1

j=0 a j x j | a j ∈ Z4, j = 0, 1, . . . , 2n − 1} where the

arithmetic is done modulo x2n − 1. Cyclic codes over Z4 of length 2n are viewed as
ideals of the ring A.

(2) The ring Ki = Z4[x]
〈 fi (x2)〉 = {∑2mi−1

j=0 a j x j | a j ∈ Z4, j = 0, 1, . . . , 2mi − 1} where the
arithmetic is done modulo fi (x2). We regard Ki as a subset of the ring A.
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(3) The set Ti = {∑mi−1
j=0 t j x j | t j ∈ {0, 1}, j = 0, . . . ,mi − 1}. Then |Ti | = 2mi . We

regard Ti as a subset of the ring Ki . Hereafter, the set Ti will appear frequently in the
succeeding results.

(4) Denote by Fi (y) = yn−1
fi (y)

∈ Z4[y]. Since gcd(Fi (y), f i (y)) = 1, we see that Fi (y)
and fi (y) are coprime in Z4[y] (cf. [26, Lemma 13.5]). Hence there are polynomials
ui (y), vi (y) ∈ Z4[y] such that

ui (y)Fi (y) + vi (y) fi (y) = 1, (2)

and deg(ui (y)) < deg( fi (y)) = mi . Then define θi (x) ∈ A by the following equation

θi (x) ≡ ui (x
2)Fi (x

2) = 1 − vi (x
2) fi (x

2) (mod x2n − 1). (3)

(5) There is a unique element wi (x) in Ti such that fi (x)2 = 2 f i (x)wi (x) in the ring Ki

and wi (x) �= 0 (see Lemma 5 of this paper).

For any ideal Ci in the ring Ki = Z4[x]/〈 fi (x2)〉, recall that the annihilating ideal of Ci

is defined as Ann(Ci ) = {α ∈ Ki | αβ = 0,∀β ∈ Ci }.
The following theorem will give a description of all distinct ideals in A.

Theorem 1 Every cyclic code C over Z4 of length 2n is a unique direct sum of its subcodes:

C =
r⊕

i=1

Ci =
r∑

i=1

Ci = {ξ1(x) + · · · + ξr (x) | ξi (x) ∈ Ci , i = 1, . . . , r},

where

Ci = θi (x)Ci = {θi (x)b(x) | b(x) ∈ Ci } (mod x2n − 1)

is a subcode of C for all i , 1 ≤ i ≤ r , and Ci is an ideal of Ki listed by the following table.

Case Ci type of Ci |Ci | Ann(Ci )

1. 〈0〉 4020 1 〈1〉
2. 〈1〉 42mi 20 24mi 〈0〉
3. 〈2〉 4022mi 22mi 〈2〉
4. 〈2 f i (x)〉 402mi 2mi 〈 fi (x), 2〉
5. 〈 fi (x), 2〉 4mi 2mi 23mi 〈2 f i (x)〉
6. 〈 fi (x) + 2h(x)〉 4mi 20 22mi 〈 fi (x) + 2(wi (x) + h(x))〉

where h(x) ∈ Ti . Then the number of ideals in Ki is 5 + 2mi .
An encoder for each subcode Ci , is given by the following:

Case 1. Ci = {0}.
Case 2. Ci = {∑2mi−1

j=0 a j x jθi (x) | a j ∈ Z4, j = 0, 1, . . . , 2mi − 1}.
Case 3. Ci = {∑2mi−1

t=0 2bt xtθi (x) | bt ∈ {0, 1}, t = 0, 1, . . . , 2mi − 1}.
Case 4. Ci = {∑mi−1

t=0 2bt xt f i (x)θi (x) | bt ∈ {0, 1}, t = 0, 1, . . . ,mi − 1}.
Case 5. Ci = {∑mi−1

j=0 a j x j fi (x)θi (x) +∑mi−1
t=0 2bt xtθi (x) | a j ∈ Z4, bt ∈ {0, 1}, j =

0, 1, . . . ,mi − 1 and t = 0, 1, . . . ,mi − 1}.
Case 6. Ci = {∑mi−1

j=0 a j x j ( fi (x) + 2h(x)) θi (x) | a j ∈ Z4, j = 0, 1, 2, . . ., mi − 1}.
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Let 4k0,i 2k1,i be the type of the subcode Ci given above for all 1 ≤ i ≤ r . Then C is of type

4
∑r

i=1 k0,i 2
∑r

i=1 k1,i .

Hence the number of codewords in C is
∏r

i=1 |Ci | = 22
∑r

i=1 k0,i+
∑r

i=1 k1,i and the minimum
Hamming distance (Lee distance and Euclidean distance) of C satisfies

dmin(C) ≤ min{dmin(θi (x)Ci ) | i = 1, . . . , r}.
Moreover, the number of all cyclic codes C overZ4 of length 2n is equal to

∏r
i=1(5+2mi ).

Using the notation of Theorem 1, C =⊕r
j=1 θ j (x)C j is called the canonical form decom-

position of the cyclic code C over Z4 of length 2n.

Remark 1 For each integer i , 1 ≤ i ≤ r , by Theorem 1, we know thatKi = Z4[x]
〈 fi (x2)〉 is a local

ring with unique maximal ideal 〈 fi (x), 2〉 and a non-principal ideal ring with 5+ 2mi ideals.
However, Z4[x]

〈 fi (−x2)〉 is a finite chain ring with unique maximal ideal 〈 fi (x)〉 and a principal
ideal ring with 5 ideals (cf. [7, Theorem 3.2]).

3 Proof of Theorem 1

In this section, we give a complete proof of Theorem 1.
First, by substituting x2 for y in Eqs. (1) and (2) in Sect. 2, we obtain

x2n − 1 = f1(x
2) f2(x

2) . . . fr (x
2) and ui (x

2)Fi (x
2) + vi (x

2) fi (x
2) = 1 (4)

in Z4[x] respectively, where Fi (x2) = x2n−1
fi (x2)

∈ Z4[x]. From this, by Eq. (3) in Sect. 2 and
the Chinese Remainder Theorem for commutative rings, one can easily verify the following
conclusions. Here we omit the proofs.

Lemma 1 Let A = Z4[x]
〈x2n−1〉 and Ki = Z4[x]

〈 fi (x2)〉 .

(i) In the ringA, we have θ1(x) + · · · + θr (x) = 1, θi (x)2 = θi (x) and θi (x)θ j (x) = 0 for
all 1 ≤ i �= j ≤ r .

(ii) We have that A = A1 + · · · + Ar , where Ai = Aθi (x) is the ideal of A generated
by θi (x), and Ai is a commutative ring with θi (x) as its multiplicative identity for all
i = 1, . . . , r . Moreover,A is a direct sum of ringsA1, . . . ,Ar withAiA j = {0} for all
i �= j .

(iii) For each integer i , 1 ≤ i ≤ r , the map φi defined by

φi : a(x) �→ θi (x)a(x) (mod x2n − 1), ∀a(x) ∈ Ki .

is a ring isomorphism from Ki onto Ai .
(iv) Define a map φ by the rule: for any ai (x) ∈ Ki , 1 ≤ i ≤ r , let

φ(a1(x), . . . , ar (x)) =
r∑

i=1

φi (ai (x)) =
r∑

i=1

θi (x)ai (x) (mod x2n − 1).

Then φ is a ring isomorphism from K1 × · · · × Kr onto A.

We now present a canonical form decomposition for any cyclic code over Z4 of length
2n, i.e., any ideal of the ring A = Z4[x]/〈x2n − 1〉.
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Proposition 2 Let C ⊆ A. Then C is a cyclic code over Z4 of length 2n if and only if for each
integer i , 1 ≤ i ≤ r , there is a unique ideal Ci of the ring Ki such that C = ⊕r

i=1 Ci =∑r
i=1 Ci , where

Ci = θi (x)Ci = {θi (x)ci (x) | ci (x) ∈ Ci } (mod x2n − 1).

Moreover, the number of codewords in C is equal to |C| =∏r
i=1 |Ci |.

Proof Let C be a cyclic code over Z4 of length 2n. By Lemma 1(iv) and the properties of
isomorphic rings, there is a unique ideal C of the direct product ringK1 ×· · ·×Kr such that
C = φ(C). Hence for each integer i , 1 ≤ i ≤ r , there is a unique ideal Ci of Ki such that
C = C1 × · · · × Cr . This implies that

C = {φ(c1(x), . . . , cr (x)) | ci (x) ∈ Ci , i = 1, . . . , r}

=
r∑

i=1

{θi (x)ci (x) | ci (x) ∈ Ci } (mod x2n − 1).

Then the conclusion follows from Lemma 1(i), Ci = θi (x)Ci ⊆ Ai for all i and |C| = |C | =
|C1 × · · · × Cr | =∏r

i=1 |Ci |. ��
In order to present all cyclic codes overZ4 of length 2n, it is sufficient, using Proposition 2,

to determine all ideals of the ring Ki = Z4[x]/〈 fi (x2)〉, where fi (x) is a monic basic
irreducible polynomial in Z4[x] of degree mi and fi (x) | (xn − 1), 1 ≤ i ≤ r .

Let i be a positive integer, 1 ≤ i ≤ r . Since fi (y) is a monic basic irreducible polynomial
in Z4[y] of degree mi by the notation of Sect. 2, f i (y) is an irreducible polynomial in F2[y]
of degree mi and fi (x2) = f i (x)

2 as polynomials in F2[x]. We will adopt the following
notation from now on.

(1) The ring Γi = Z4[y]
〈 fi (y)〉 = {∑mi−1

j=0 a j y j | a j ∈ Z4, j = 0, . . . ,mi − 1} where the
arithmetic is done modulo fi (y).

(2) The ring Γ i = F2[y]
〈 f i (y)〉 = {∑mi−1

j=0 b j y j | b j ∈ F2, j = 0, . . . ,mi − 1} where the

arithmetic is done modulo f i (y).
(3) The ringKi = F2[x]

〈 f i (x2)〉 = F2[x]
〈 f i (x)2〉 = {∑2mi−1

j=0 b j x j | b j ∈ F2, j = 0, 1, 2, . . ., 2mi −1}
where the arithmetic is done modulo f i (x)

2.

As we regard F2 as a subset of Z4, we will regard Γ i as a subset of Γi even though Γ i

is not a subring of Γi . Similarly, we will regard Ki as a subset of the ring Ki = Z4[x]
〈 fi (x2)〉 . If

needed, the reader is referred back to this identification of Ki with a subset of Ki .
We collect a few results from [26] and [5]whichwewill need andwe state themas a lemma.

The following conclusion depends on that fi (x) is monic basic irreducible, fi (x)|(xn − 1)
in Z4[x] and n is odd.

Lemma 2 (i) [26, Theorems 14.1 and 14.8] The ring Γi is a Galois ring of characteristic 4
and cardinality 4mi and Γi = Z4[ζi ], where ζi = y+〈 fi (y)〉 ∈ Γi satisfying fi (ζi ) = 0,
ζ 2mi −1
i = 1 and ζ n

i = 1 in Γi .
Denote by ζ i = y+〈 f i (y)〉 ∈ Γ i . ThenΓ i = F2[ζ i ], which is a finite field of cardinality
2mi , f i (x) =∏mi−1

j=0 (x−ζ
2 j

i ) over Γ i . Moreover, the homomorphism − fromZ4[y] onto
F2[y] induces a surjective ring homomorphism from Γi onto Γ i by the rule that

ξ �→ ξ =
mi−1∑

j=0

a jζ
j
i , ∀ξ =

mi−1∑

j=0

a jζ
j
i ∈ Γi with a0, a1, . . . , ami−1 ∈ Z4.
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Every element ξ of Γi has a unique 2-expansion: ξ = b0 + 2b1, b0, b1 ∈ Γ i . Hence
ξ = b0 and that ξ is an invertible element of Γi if and only if b0 �= 0. Therefore,
|Γ ×

i | = (2mi − 1)2mi .

(ii) (cf. [5, Lemma 2.3(ii)]) We have that fi (x) =∏mi−1
j=0 (x − ζ 2 j

i ) over Γi .

Obviously, Ki is a ring but it is important to note that Ki is not a subring of Ki . Our next
lemma is a result from [6].

Lemma 3 (cf. [6, Lemma 3.7])

(i) The ringKi is a finite chain ring with maximal ideal 〈 f i (x)〉 = f i (x)Ki . The nilpotency
index of f i (x) in Ki is 2, and Ki/〈 f i (x)〉 ∼= F2[x]/〈 f i (x)〉.
Therefore, all ideals of Ki are given by: f i (x)

lKi , l = 0, 1, 2.
(ii) Every element β of Ki has a unique f i (x)-expansion:

β = t0(x) + t1(x) f i (x), t0(x), t1(x) ∈ Ti .

Then β is an invertible element of Ki , i.e., β ∈ K×
i if and only if t0(x) �= 0.

(iii) We have | f i (x)lKi | = |F2[x]/〈 f i (x)〉|2−l = 2mi (2−l), for l = 0, 1, 2.

We require two additional lemmas before proceeding to the proof.

Lemma 4 Every element a(x) of the ring Ki has a unique 2-expansion:

a(x) = a0(x) + 2a1(x), a0(x), a1(x) ∈ Ki ,

where Ki is viewed as a subset of Ki . Then a(x) ∈ K×
i if and only if a0(x) ∈ K×

i .

Proof Let a(x) = ∑2mi−1
j=0 a j x j ∈ Ki = Z4[x]/〈 fi (x2)〉, where a j ∈ Z4. Then each

a j ∈ Z4 has a unique 2-expansion: a j = a j,0 + 2a j,1 where a j,0, a j,1 ∈ F2. Let as(x) =
∑2mi−1

j=0 a j,s x j for s = 0, 1. Then a0(x), a1(x) ∈ Ki and a(x) is uniquely expressed as
a(x) = a0(x) + 2a1(x).

Now, leta(x) ∈ K×
i . Then there existsb(x) = b0(x)+2b1(x) ∈ K×

i ,whereb0(x), b1(x) ∈
Ki , such that

a0(x)b0(x) + 2(a0(x)b1(x) + a1(x)b0(x)) = a(x)b(x) = 1 in Ki .

This implies a0(x)b0(x) = 1 in Ki , and hence a0(x) ∈ K×
i .

Conversely, let a0(x) ∈ K×
i . Then there exist b0(x), c(x) ∈ Ki such that a0(x)b0(x) =

1 + 2c(x). We select b1(x) = a0(x)−1(a1(x)b0(x) + c(x)) ∈ Ki in which a0(x)−1 ∈ Ki

being the inverse of a0(x), and set b(x) = b0(x) + 2b1(x) ∈ Ki . Then by a0(x)b1(x) =
a1(x)b0(x) + c(x) (mod 2), we have

a(x)b(x) = 1 + 2c(x) + 2((a0(x)b1(x) + a1(x)b0(x)) = 1 in Ki .

This implies that a(x) ∈ K×
i . ��

Let 1 ≤ i ≤ r . As fi (x) ∈ Z4[x], we have f i (x) ∈ Z2[x] and hence f i (x)
2 = f i (x

2) as
polynomials in Z2[x]. This implies that fi (x)2 − fi (x2) ≡ 0 (mod 2). Therefore, 2 always
divides fi (x)2 − fi (x2) as polynomials in Z[x].
Lemma 5 Let 1 ≤ i ≤ r , and fi (x) be a monic basic irreducible divisor of xn − 1 in Z4[x]
satisfying Eq. (1) with degree mi , where n is odd. Then
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(i) There is a polynomial gi (x) in Z4[x] has degree deg(gi (x)) ≤ mi − 1 and satisfies
fi (x)2 = fi (x2) + 2 fi (x)gi (x). Precisely, we have

gi (x) = fi (x)2 − fi (x2)

2 fi (x)
(mod 4),

where we regard fi (x) ∈ Z[x] and do calculations in the ring Z[x].
(ii) Let wi (x) ∈ Ti satisfy wi (x) ≡ gi (x) (mod 2), i.e. wi (x) = gi (x). Then

fi (x)
2 = 2 f i (x)wi (x) in Ki and wi (x) �= 0.

Proof (i) Since fi (x) is monic basic irreducible, fi (x)|(xn − 1) in Z4[x] and n is odd, by
Lemma 2 we have that Γi = Z4[ζi ], where ζi = y + 〈 fi (y)〉 ∈ Γi satisfying ζ 2mi −1

i = 1,

i.e., ζ 2mi
i = ζi , and fi (x) =∏mi−1

k=0 (x − ζ 2k
i ) in Γi [x]. From this, we deduce that

fi (x
2) =

mi−1∏

k=0

(x2 − ζ 2k
i ) =

mi−1∏

k=0

(x2 − ζ 2k+1

i ) =
mi−1∏

k=0

(
x2 − (ζ 2k

i )2
)

.

Then since x2 − (ζ 2 j

i )2 = (x − ζ 2 j

i )(x + ζ 2 j

i ) and 4 = 0 in Z4, we have

fi (x)
2 =

mi−1∏

k=0

(x − ζ 2k
i )2 =

mi−1∏

k=0

(
x2 − 2ζ 2k

i x + (ζ 2k
i )2

)

=
mi−1∏

k=0

((
x2 − (ζ 2k

i )2
)

− 2ζ 2k
i (x − ζ 2k

i )
)

=
mi−1∏

k=0

(
x2 − (ζ 2k

i )2
)

− 2
mi−1∑

k=0

ζ 2k
i (x − ζ 2k

i )
∏

0≤ j≤mi−1, j �=k

(
x2 − (ζ 2 j

i )2
)

= fi (x
2) + 2 fi (x)gi (x),

where

gi (x) =
mi−1∑

k=0

ζ 2k
i

∏

0≤ j≤mi−1, j �=k

(x + ζ 2 j

i ) ∈ Γi [x] with deg(gi (x)) ≤ mi − 1. (5)

This implies gi (x) = fi (x)2− fi (x2)
2 fi (x)

which is a polynomial. From these and by fi (x), fi (x)2,

fi (x2) ∈ Z4[x], we deduce that that gi (x) ∈ Z4[x], since Z4 is a subring of Γi .
(ii) As we viewed the finite field F2 as the subset {0, 1} ⊂ Z4, we have that wi (x) =

gi (x) ∈ F2[x]. Since fi (x)2 = fi (x2) + 2 fi (x)gi (x) and 4 = 0 in Z4, it follows that
fi (x)2 ≡ 2 f i (x)gi (x) (mod fi (x2)). This implies

fi (x)
2 = 2 f i (x)gi (x) = 2 f i (x)wi (x) in Ki .

By Eq. (5), we have

wi (x) = gi (x) =
mi−1∑

k=0

ζ
2k

i

∏

0≤ j≤mi−1, j �=k

(x − ζ
2 j

i ) ∈ F2[x],

where ζ i is a root of the monic irreducible polynomial f i (x) in the finite field Γ i satisfying

ζ
2mi −1
i = 1 by Lemma 2(i). For any integer t , 0 ≤ t ≤ mi − 1, we see that wi (ζ

2t

i ) =
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ζ
2t

i
∏

0≤ j≤mi−1, j �=t (ζ
2t

i − ζ
2 j

i ) �= 0, since ζ i , ζ
2
i , . . . , ζ

2mi−1

i are all distinct roots of f i (x)

in the finite field Γ i . From this, we deduce that wi (x) and f i (x) are coprime polynomials
in F2[x]. This implies that wi (x) is an invertible element of the finite field F2[x]

〈 f i (x)〉 . From this

and since deg(wi (x)) ≤ deg(gi (x)) < mi = deg( f i (x)), we deduce that wi (x) �= 0. ��
Remark 2 The proof the this lemma depends heavily on Lemma 2(ii). The premise condition
of Lemma 2(ii) is that fi (x) is monic basic irreducible, fi (x) is a divisor of xn − 1 in Z4[x]
and n is odd. If this prerequisite is not met, the conclusion does not necessarily hold. For
example, let f (x) = x3 + x + 1 ∈ Z4[x]. It is clear that f (x) is monic basic irreducible in
Z4[x]. But

g(x) = (x3 + x + 1)2 − (x6 + x2 + 1)

2(x3 + x + 1)
= x4 + x3 + x

x3 + x + 1
/∈ Z4[x].

In fact, we notice that x3 + x + 1 is a divisor of x14 − 1 but it is not a divisor of x7 − 1 in
Z4[x]. Hence there is no odd positive integer n such that (x3 + x + 1) | (xn − 1) in Z4[x].

We can now state the proof of Theorem 1.

Proof By Proposition 2, we need to first prove that all distinct ideals of the ring Ki are given
by the table in Theorem 1.

Let τ be the surjective ring homomorphism from Ki onto Ki induced by − : Z4 → F2 in
the natural way:

τ : a(x) �→ τ(a(x)) = a0(x) = a(x) (mod f i (x
2) = f i (x)

2),

for all a(x) = a0(x) + 2a1(x) ∈ Ki with a0(x), a1(x) ∈ Ki (see Lemma 4).
Let C be an ideal of Ki , and denote by τ |C the restriction of τ to the ideal C of Ki . Then

τ |C is a surjective ring homomorphism from C onto τ(C) = {τ(c(x)) | c(x) ∈ C}. This
implies τ(C) ∼= C/ker(τ |C ) where ker(τ |C ) = {c(x) ∈ C | τ(c(x)) = 0} is the kernel of
τ |C . Therefore, |C | = |τ(C)||ker(τ |C )|.

Let (C : 2) = {a(x) ∈ Ki | 2a(x) ∈ C}. Then (C : 2) is an ideal of Ki satisfying
C ⊆ (C : 2). Since τ is a surjective ring homomorphism, both τ(C) and τ(C : 2) are ideals
of Ki . As Ki is a finite chain ring, by Lemma 3(i) there is a unique pair (l, s) of integers,
0 ≤ s ≤ l ≤ 2, such that

τ(C) = f i (x)
lKi and τ(C : 2) = f i (x)

sKi . (6)

By the definition of τ and the fact that 2 · 2 = 0, we have

ker(τ |C ) = {2c1(x) ∈ C | c1(x) ∈ Ki }
= {2(c1(x) + 2b(x)) ∈ C | c1(x) + 2b(x) ∈ Ki , c1(x), b(x) ∈ Ki }
= 2(C : 2) = 2τ(C : 2).

This implies that |ker(τ |C )| = |τ(C : 2)|. From this, by Eq. (6) and Lemma 3(iii), we deduce
that

|C | = |τ(C)||τ(C : 2)| = 2mi (2−l) · 2mi (2−s) = 2mi (4−(l+s)). (7)

Then, since 0 ≤ s ≤ l ≤ 2, we have the following six cases:
Case 1. s = l = 2.
By Eq. (7), we have |C | = 1, and hence C = 〈0〉.
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Case 2. s = l = 0.
By Eq. (7), we have that |C | = 24mi = 42mi = |Ki |. Hence C = Ki = 〈1〉. Then,

by the definition of Ki in Sect. 2, we have that C = {∑2mi−1
j=0 a j x j | a j ∈ Z4, j =

0, 1, . . . , 2mi − 1} and C is of type 42mi 20.
Case 3. l = 2 and s = 0.
In this case, τ(C) = f i (x)

2Ki = {0} and τ(C : 2) = f i (x)
0Ki = Ki by Eq. (6). Then

by Lemma 4 and the definition of τ , we see that C = 2Ki = 〈2〉 and C = {2∑2mi−1
t=0 bt xt |

bt ∈ {0, 1}, t = 0, 1, . . . , 2mi − 1}. Hence C is of type 4022mi and |C | = 22mi .
Case 4. l = 2 and s = 1.
In this case, τ(C) = {0} and τ(C : 2) = f i (x)

1Ki = f i (x)Ki by Eq. (6). Then by
Lemma 4 and the definition of τ , we have that C = 2 f i (x)Ki = 〈2 f i (x)〉 and C =
{2∑mi−1

t=0 bt xt f i (x) | bt ∈ {0, 1}, t = 0, 1, 2, . . ., 2mi − 1}. Hence C is of type 402mi and
|C | = 2mi .

Case 5. l = 1 and s = 0.
In this case, τ(C) = f i (x)

1Ki = f i (x)Ki and τ(C : 2) = Ki by Eq. (6). The latter
implies 2 ∈ C and the former implies fi (x)+ 2v(x) ∈ C for some v(x) ∈ Ki . From this, we
deduce that fi (x) = ( fi (x) + 2v(x)) − 2 · v(x) ∈ C . Hence 〈 fi (x), 2〉 ⊆ C .

Conversely, let c(x) ∈ C . By c(x) ∈ τ(C) = f i (x)Ki , there exist a(x), b(x) ∈ Ki such
that c(x) = a(x) fi (x) + 2b(x) = a(x) · fi (x) + 2 · b(x) ∈ 〈 fi (x), 2〉. Therefore, we have
C = 〈 fi (x), 2〉, and |C | = 23mi by Eq. (7).

By Lemma 5, we have that fi (x)2 = 2 f i (x)wi (x) ≡ 0 (mod C). From this and since
C = 〈 fi (x), 2〉 = fi (x)Ki + 2Ki , we deduce that

C =
{ mi−1∑

j=0

a j x
j fi (x) + 2

mi−1∑

t=0

bt x
t | a j ∈ Z4, bt ∈ {0, 1}, j, t = 0, 1, . . . ,mi − 1

}

.

Hence C is of type 4mi 2mi .
Case 6. l = s = 1.
In this case, |C | = 22mi by Eq. (7). Then by Eq. (6), we have τ(C) = f i (x)Ki and τ(C :

2) = f i (x)Ki . The latter implies 2 f i (x) ∈ C and the former implies fi (x) + 2v(x) ∈ C for
some v(x) ∈ Ki . By Lemma 4, there is a unique pair (a(x), b(x)) of elements inKi such that
v(x) = a(x)+2b(x). From this, we deduce that fi (x)+2v(x) = fi (x)+2(a(x)+2b(x)) =
fi (x)+2a(x). As a(x) ∈ Ki , by Lemma 3 (ii) there is a unique pair (h(x), q(x)) of elements
in Ti such that a(x) = h(x) + q(x) f i (x). Therefore,

fi (x) + 2h(x) = ( fi (x) + 2(h(x) + q(x) f i (x))
)− q(x) · 2 f i (x) ∈ C .

This implies that 〈 fi (x) + 2h(x)〉 ⊆ C .
Conversely, let c(x) ∈ C . Since c(x) ∈ τ(C) = f i (x)Ki , there exist a(x), b(x) ∈ Ki

such that c(x) = a(x) fi (x) + 2b(x) = a(x) · ( fi (x) + 2h(x)) + 2d(x), where d(x) =
b(x) − a(x)h(x) ∈ Ki satisfying

2d(x) = c(x) − a(x) · ( fi (x) + 2h(x)) ∈ C,
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i.e., d(x) ∈ (C : 2). This implies that d(x) ∈ τ(C : 2) = f i (x)Ki . Hence there exist
u(x), v(x) ∈ Ki such that d(x) = u(x) fi (x) + 2v(x). Therefore, we have

c(x) = a(x) · ( fi (x) + 2h(x)) + 2(u(x) fi (x) + 2v(x))

= a(x) · ( fi (x) + 2h(x)) + 2u(x) · f i (x)

= a(x) · ( fi (x) + 2h(x)) + 2u(x) · ( fi (x) + 2h(x))

= a(x) · ( fi (x) + 2h(x)) + 2u(x) · ( fi (x) + 2h(x))

= (a(x) + 2u(x)) · ( fi (x) + 2h(x)) ∈ 〈 fi (x) + 2h(x)〉.
It follows that C = 〈 fi (x) + 2h(x)〉, where h(x) ∈ Ti .

By 2 f i (x) ∈ C and Lemma 5, we have that fi (x)2 = 2 f i (x)wi (x) ≡ 0 (mod C). From
this, we deduce that

C = ( fi (x) + 2h(x))Ki

=
⎧
⎨

⎩

mi−1∑

j=0

a j x
j ( fi (x) + 2h(x)) | a j ∈ Z4, j = 0, 1, . . . ,mi − 1

⎫
⎬

⎭
.

Hence C is of type 4mi 20.
As stated above, we conclude that all distinct ideals of Ki are given by the table in

Theorem 1.
Now, let Mi be the set of all ideals in Ki listed in the table of Theorem 1 and Ci ∈ Mi .

It is clear that Ann(Ci ) = Di , where Di ∈ Mi satisfies the following conditions:

Ci · Di = {0} and |Di | = Max{|J | | Ci · J = {0}, J ∈ Mi }.
Then the conclusion for each Ann(Ci ) follows from Lemma 5 and a direct calculation.

Finally, by Lemma 1(iii) we see that φi |Ci is an isomorphism of abelian groups from
the ideal Ci of Ki onto the subcode code Ci of C. Then the conclusion for the type and an
encoder of Ci follows immediately from the fact that Ci = θi (x)Ci . This concludes the proof
of Theorem 1. ��

4 Dual codes of cyclic codes over Z4 of length 2n

In this section, we determine the dual code of each cyclic code over Z4 of length 2n.
For any a = (a0, a1, . . . , a2n−1) ∈ Z

2n
4 , we will identify a with a(x) = ∑2n−1

j=0 a j x j ∈
A = Z4[x]/〈x2n − 1〉. In the ring A, we have that x2n = 1, and hence x−1 = x2n−1.
Moreover, we have x2n ≡ 1 (mod fi (x2)) since fi (x2) is a divisor of x2n −1 in Z4[x]. This
implies that x2n = 1 and x−1 = x2n−1 in the ring Ki = Z4[x]/〈 fi (x2)〉 for all i . Define

μ(a(x)) = a(x−1) = a0 +
2n−1∑

j=1

a j x
2n− j , ∀a(x) ∈ A.

It is clear thatμ is a ring automorphism ofA satisfyingμ−1 = μ. Now, by a direct calculation
we get the following lemma.

Lemma 6 Let a, b ∈ Z
2n
4 where b = (b0, b1, . . . , b2n−1). Then [a, b] = 0 if a(x)μ(b(x)) =

0 in the ring A where b(x) =∑2n−1
j=0 b j x j .
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For any polynomial f (y) = ∑d
j=0 c j y

j ∈ Z4[y] of degree d ≥ 1, recall that the recip-

rocal polynomial of f (y) is defined as f̃ (y) = f̃ (y) = yd f ( 1y ) =∑d
j=0 c j y

d− j , and f (y)

is said to be self-reciprocal if f̃ (y) = δ f (y) for some δ ∈ Z
×
4 = {1,−1}. It is known

that ˜̃f (y) = f (y) if f (0) �= 0, and ˜f (y)g(y) = f̃ (y)g̃(y) for any monic polynomials
f (y), g(y) ∈ Z4[y] with positive degrees satisfying f (0), g(0) ∈ Z

×
4 . Then by Eq. (1) in

Sect. 2, we have

yn − 1 = −(1 − yn) = − ˜(yn − 1) = − f̃1(y) f̃2(y) . . . f̃r (y).

Since f1(y), f2(y), . . . , fr (y) are pairwise coprime monic basic irreducible polynomials in
Z4[y], f̃1(y), f̃2(y), . . . , f̃r (y) are pairwise coprime basic irreducible polynomials in Z4[y]
as well. Hence, for each integer i , 1 ≤ i ≤ r , there is a unique integer i ′, 1 ≤ i ′ ≤ r , such
that f̃i (y) = δi fi ′(y) where δi ∈ {1,−1}.

Assume that fi (y) = ∑mi
j=0 c j y

j where c j ∈ Z4. Then deg( fi (x2)) = 2deg( fi (y)) =
2mi and

x2mi fi (x
−2) = (x2)mi

mi∑

j=0

c j (x
2)− j =

mi∑

j=0

c j (x
2)mi− j = f̃i (x

2) = δi fi ′(x
2).

Then by Eq. (3) in Sect. 2 and x2n = 1 in A, we obtain

μ(θi (x)) = 1 − x2n−2(deg(vi (y))+mi )(x2deg(vi (y))vi (x
−2))(x2mi fi (x

−2))

= 1 − x2n−2(deg(vi (y))+mi )ṽi (x
2) f̃i (x

2)

= 1 − hi (x) fi ′(x
2),

where hi (x) = δi x2n−2(deg(vi (y))+mi )ṽi (x2) ∈ A. Similarly, by Eq. (3), it follows that
μ(θi (x)) = gi (x)Fi ′(x2) for some gi (x) ∈ A. Then from these and Eq. (3), we deduce
that μ(θi (x)) = θi ′(x).

As stated above, we see that, for each 1 ≤ i ≤ r , there is a unique integer i ′, 1 ≤ i ′ ≤ r ,
such that μ(θi (x)) = θi ′(x). We continue the use of μ to denote this map i �→ i ′; i.e.,
μ(θi (x)) = θμ(i)(x).

Whetherμ denotes the automorphism ofA or this map on the set {1, . . . , r} is determined
by the context.

Lemma 7 Using the notation above, we have the following conclusions.

(i) The map μ is a permutation on {1, . . . , r} satisfying μ−1 = μ.
(ii) After a rearrangement of θ1(x), . . . , θr (x), there are integers λ, ε such that μ(i) = i

for all i = 1, . . . , λ andμ(λ+ j) = λ+ε + j for all j = 1, . . . , ε, where λ ≥ 1, ε ≥ 0
and λ + 2ε = r .

(iii) For each integer i , 1 ≤ i ≤ r , there is a unique element δi ∈ {1,−1} such that
f̃i (x) = δi fμ(i)(x).

(iv) For any integer i , 1 ≤ i ≤ r , μ(θi (x)) = θμ(i)(x) in the ring A, and μ(Ai ) = Aμ(i).
(v) Let μ|Ai : Ai → Aμ(i) be the restriction of μ on Ai , and define

μi (c(x)) = c(x−1) = c(x2n−1)
(
mod fμ(i)(x

2)
)
, ∀c(x) ∈ Ki .

Thenμi = φ−1
μ(i)μ|Ai φi , which is a ring isomorphism fromKi ontoKμ(i). Moreover, we

have μ−1
i = μμ(i) where μμ(i) : Kμ(i) → Ki is defined by μμ(i)(a(x)) = a(x−1) =

a(x2n−1) (mod fi (x2)) for all a(x) ∈ Kμ(i).
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Proof Statements (i)–(iii) follow from the definition of the map μ.
(iv) Since μ(θi (x)) = θμ(i)(x) and Ai = θi (x)A, it follows that μ(Ai ) =

μ(θi (x))μ(A) = θμ(i)(x)A = Aμ(i).
(v) Let c(x) ∈ Ki . By Lemma 1(iii) and θμ(i)(x) = μ(θi (x)) = 1 − hi (x) fi ′(x2) =

1 − hi (x) fμ(i)(x2), we have
(
φ−1

μ(i)μ|Ai φi

)
(c(x)) = (φ−1

μ(i)μ|Ai ) (θi (x)c(x)) = φ−1
μ(i)

(
μ(θi (x))c(x

−1)
)

= (
1 − hi (x) fμ(i)(x

2)
)
c(x−1) (mod fμ(i)(x

2))

≡ c(x−1) (mod fμ(i)(x
2)).

This implies μi (c(x)) =
(
φ−1

μ(i)μ|Ai φi

)
(c(x)) for all c(x) ∈ Ki . Hence μi = φ−1

μ(i)μ|Ai φi ,

which is a ring isomorphism from Ki onto Kμ(i) by (iv) and Lemma 1(iii).
Finally, μ−1

i = μμ(i) follows from the definition of μi for any i . ��
Lemma 8 Let a(x) = ∑r

i=1 θi (x)ξi , b(x) = ∑r
i=1 θi (x)ηi ∈ A, where ξi , ηi ∈ Ki . Then

a(x)μ(b(x)) =∑r
i=1 θi (x)(ξi · μ−1

i (ημ(i))).

Proof Asμ−1
i (ημ(i)) ∈ μ−1

i (Kμ(i)) = Ki by Lemma 7(v), it follows that ξi ·μ−1
i (ημ(i)) ∈ Ki

for all i . If j �= μ(i), then i �= μ( j) by Lemma 7(i). This implies θi (x)θμ( j)(x) = 0 in the
ring A by Lemma 1(i). Therefore,

a(x)μ(b(x)) =
r∑

i, j=1

θi (x)ξi · μ(θ j (x)η j ) =
r∑

i, j=1

θi (x)ξi · μ(θ j (x))μ j (η j )

=
r∑

i, j=1

θi (x)ξi · θμ( j)(x)μ j (η j ) =
r∑

i=1

θi (x)ξi · θi (x)μμ(i)(ημ(i)).

Hence a(x)μ(b(x)) =∑r
i=1 θi (x)(ξi · μ−1

i (ημ(i))) by Lemma 1(i). ��
Now, we give the dual code of each cyclic code over Z4 of length 2n.

Theorem 2 Let C be a cyclic code over Z4 of length 2n with canonical form decomposition
C = ⊕r

i=1 θi (x)Ci , where Ci is an ideal of Ki . Then the dual code of C is given by C⊥ =⊕r
j=1 θ j (x)Dj , where, for j = μ(i), D j is an ideal of K j given by the following table.

Case Ci (mod fi (x
2)) Dμ(i) (mod fμ(i)(x

2))

1. 〈0〉 〈1〉
2. 〈1〉 〈0〉
3. 〈2〉 〈2〉
4. 〈2 f i (x)〉 〈 fμ(i)(x), 2〉
5. 〈 fi (x), 2〉 〈2 f μ(i)(x)〉
6. 〈 fi (x) + 2h(x)〉 〈 fμ(i)(x) + 2xmi

(
wi (x

−1) + h(x−1)
)
〉

where h(x) ∈ Ti .
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Proof Let D = ⊕r
i=1 θμ(i)(x)Dμ(i) = ∑r

j=1 θ j (x)Dj (mod x2n − 1), where Dμ(i) =
μi (Ann(Ci )) and Ann(Ci ) is given by Theorem 1 for all i = 1, . . . , r . Then D is a cyclic
code over Z4 of length 2n by Theorem 1, and satisfies

C · μ(D) =
r∑

i=1

θi (x)
(
Ci · μ−1

i (Dμ(i))
)

=
r∑

i=1

θi (x) (Ci · Ann(Ci )) = {0}

by Lemma 8. From this and by Lemma 6, we deduce that D ⊆ C⊥. On the other hand, by
Theorem 1 we have |Ci ||Ann(Ci )| = 24mi for all i = 1, . . . , r . This implies

|C||D| =
(

r∏

i=1

|Ci |
)(

r∏

i=1

|Dμ(i)|
)

=
r∏

i=1

(|Ci ||Ann(Ci )|) = 24
∑r

i=1 mi = |Z4|2n

by Theorem 1 and
∑r

i=1 mi = n. Then, from the theory of linear codes over Z4, we deduce
that C⊥ = D.

Finally, we give the precise expression of Dμ(i) = μi (Ann(Ci )), 1 ≤ i ≤ r . Obviously,
we only need to consider Cases 4–6 in the table of Theorem 1.

By x2n = 1 in Ki , we see that x ∈ K×
i , for all i = 1, 2, ..., r . By Lemma 7(iii), we have

f̃i (x) = δi fμ(i)(x) where δi ∈ {1,−1}. Then, by the definition of μi , we have

μi ( fi (x)) = fi (x
−1) = x−mi (xmi fi (x

−1)) = x−mi ( f̃i (x)) = δi x
−mi fμ(i)(x).

Case 4: As x is an invertible element of Kμ(i), we have

Dμ(i) = μi (〈 fi (x), 2〉) = 〈μi ( fi (x), μi (2)〉 = 〈δi x−mi fμ(i)(x), 2〉 = 〈 fμ(i)(x), 2〉.
Case 5: By 2 f i (x) = 2 fi (x) in Ki , we have

Dμ(i) = μi (〈2 f i (x)〉) = 〈2μi ( fi (x))〉 = 〈2δi x−mi fμ(i)(x)〉 = 〈2 f μ(i)(x)〉.
Case 6: By 2δ−1

i = 2, we have that

Dμ(i) = μi (〈 fi (x) + 2(wi (x) + h(x))〉) = 〈μi ( fi (x) + 2(wi (x) + h(x)))〉
= 〈δi x−mi fμ(i)(x) + 2(wi (x

−1) + h(x−1))〉
= 〈 fμ(i)(x) + 2xmi (wi (x

−1) + h(x−1))〉 (mod fμ(i)(x
2))

in the ring Kμ(i). ��

5 Self-dual cyclic codes over Z4 of length 2n

In this section, we list all distinct self-dual cyclic codes over Z4 of length 2n explicitly.
We assume f1(x) = x − 1. Let i be a positive integer with 2 ≤ i ≤ λ. Since n is odd, by

Lemma 7(ii) and (iii) we know that f i (x) is a self-reciprocal and irreducible polynomial in

F2[x]. It is well known that the degree of mi must be even and x−1 ≡ x2
mi
2

(mod f i (x)).

This implies that x2
mi
2 +1 ≡ 1 (mod f i (x)).

Lemma 9 Let 2 ≤ i ≤ λ and write mi = 2di where di is a positive integer. Let Γ i =
F2[x]/〈 f i (x)〉 as in Sect. 3 and set

Fi = {ξ ∈ Γ i | ξ2
di = ξ}.

Then we have the following conclusions.
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(i) We have that Γ i is a finite field of cardinality 2mi = (2di )2 and x−1 = x2
mi
2 in Γ i .

(ii) The field Fi is a subfield of Γ i of cardinality 2di = 2
mi
2 .

(iii) (cf. [26, Corollary 7.17]) Let TrΓ i /Fi
be the trace function from Γ i onto Fi defined by

TrΓ i /Fi
(ξ) = ξ + ξ2

di
, ξ ∈ Γ i .

Then, for any α ∈ Fi , the number of elements ξ ∈ Γ i such that TrΓ i /Fi
(ξ) = α is 2

mi
2 ,

i.e., |Tr−1
Γ i /Fi

(α)| = 2
mi
2 .

(iv) Let wi (x) be given by Lemma 5. Then xmi wi (x−1) = wi (x) in F2[x], and hence

x
mi
2 wi (x−1) ∈ Fi .

(v) The set of solutions in Ti = {∑mi−1
j=0 a j x j | a j ∈ {0, 1}, j = 0, 1, 2, . . ., mi − 1} for

the following congruence:

h(x) ≡ xmi
(
wi (x

−1) + h(x−1)
)

(mod 〈 f i (x), 2〉) (8)

is given by

Wi =
{
x

mi
2 ξ(x) (mod f i (x)) | TrΓ i /Fi

(ξ(x)) = x
mi
2 wi (x

−1), ξ(x) ∈ Γ i

}
,

i.e., Wi = x
mi
2 Tr−1

Γ i /Fi
(x

mi
2 wi (x−1)), and hence |Wi | = 2

mi
2 .

Proof Statements (i) and (ii) follow from the classical theory of finite fields (cf. [26, Chap.
6]).

(iv) Using the notation in Sects. 2 and 3, we view Ti as the same as Γ i . As fi (x) is

self-reciprocal and wi (x) ≡ fi (x)2− fi (x2)
2 fi (x)

mod 〈 f i (x), 2〉, since fi (x−1) = δi x−mi fi (x)

and δi ≡ 1 (mod 2) we have that wi (x−1) = x−mi wi (x). This implies that

xmi wi (x
−1) = wi (x) in F2[x].

From this and by (i), we deduce that

(x
mi
2 wi (x

−1))2
di = x−mi

2 wi (x) = x
mi
2 wi (x

−1) in Γ i .

We conclude that x
mi
2 wi (x−1) ∈ Fi .

(v) As x ∈ Γ
×
i , we can multiply both sides of Eq. (8) by x−mi

2 . Then Eq. (8) is equivalent
to

x−mi
2 h(x) + x

mi
2 h(x−1) = x

mi
2 wi (x

−1) in Γ i .

Set ξ(x) = x−mi
2 h(x) ∈ Γ i . Then by (i) we have ξ(x)2

di = (x−mi
2 h(x))2

di = x
mi
2 h(x−1).

Hence Eq. (8) is equivalent to

ξ(x) + ξ(x)2
di = x

mi
2 wi (x

−1), i.e.,TrΓ i /Fi
(ξ(x)) = x

mi
2 wi (x

−1) ∈ Fi , (9)

and h(x) = x
mi
2 ξ(x) (mod f i (x)). Therefore,Wi is the set of all solutions in Ti for Eq. (8),

and |Wi | = |Tr−1
Γ i /Fi

(x
mi
2 wi (x−1))| = 2

mi
2 by (iii). ��

Finally, by Proposition 2, Lemma 9, and Theorems 2 and 1 , we can list all distinct self-dual
cyclic codes over Z4 of length 2n.
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Theorem 3 Using the notation in Theorem 2, Lemma 7(i i) and Lemma 9, let C be a cyclic
code over Z4 of length 2n with canonical form decomposition C =⊕r

i=1 θi (x)Ci , where Ci

is an ideal of Ki . Then C is self-dual if and only if, for each integer i , 1 ≤ i ≤ r , Ci satisfies
one of the following conditions:

(i) C1 = 〈2〉.
(ii) If 2 ≤ i ≤ λ, Ci is given by one of the following 1 + 2

mi
2 cases:

Ci = 〈2〉, and Ci = 〈 fi (x) + 2h(x)〉 where h(x) ∈ Wi arbitrary.
(iii) If i = λ + j where 1 ≤ j ≤ ε, (Ci ,Ci+ε) is given by the following table.

Ci (mod fi (x
2)) Ci+ε (mod fi+ε(x

2))

〈0〉 〈1〉
〈1〉 〈0〉
〈2〉 〈2〉
〈2 f i (x)〉 〈 fi+ε(x), 2〉
〈 fi (x), 2〉 〈2 f i+ε(x)〉
〈 fi (x) + 2h(x)〉 (h(x) ∈ Ti ) 〈 fi+ε(x) + 2xmi (wi (x

−1) + h(x−1))〉

Therefore, the number of self-dual cyclic codes over Z4 of length 2n is

∏

2≤i≤λ

(1 + 2
mi
2 ) ·

ε∏

j=1

(5 + 2mλ+ j ).

Proof By Theorems 2 and 1, we see that C is self-dual if and only if the ideal Ci of Ki

satisfies Ci = Di for all i = 1, . . . , r , where Di is listed in the table of Theorem 2. The
latter is equivalent to the statement that Ci satisfies one of the following conditions for all
i = 1, . . . , r .

(i) Let i = 1. Then μ(1) = 1, f1(x) = x − 1 and mi = 1. By Lemma 5, we have

w1(x) = 1, since w1(x) ≡ f1(x)2− f1(x2)
2 f1(x)

≡ (x−1)2−(x2−1)
2(x−1) ≡ 1 (mod 〈 f 1(x), 2〉). Then

from T1 = {0, 1} and x ≡ 1 (mod f 1(x)), we deduce that C1 = 〈2〉 is the only ideal
of K1 that satisfies C1 = D1 = Dμ(1).

(ii) Let 2 ≤ i ≤ λ. Thenμ(i) = i . In this case, by Theorem 2, we see thatCi = Di = Dμ(i)

if and only if Ci is given by one of the following two subcases:
Ci = 〈2〉;
Ci = 〈 fi (x)+2h(x)〉, where h(x) ∈ Ti satisfies Eq. (8), i.e., h(x) ∈ Wi byLemma 9(v).

(iii) Let i = λ + j where 1 ≤ j ≤ ε. Then μ(i) = i + ε and μ(i + ε) = i . Hence Ci = Di

if and only if Ci+ε = Cμ(i) = Dμ(i), where Dμ(i) is given by the table in Theorem 2.

By Lemma 9(v) and Theorem 1, we see that the number of self-dual cyclic codes over Z4

of length 2n is
∏

2≤i≤λ(1 + 2
mi
2 ) ·∏ε

j=1(5 + 2mλ+ j ). ��
Finally,we consider how to calculate the number of self-dual cyclic codes overZ4 of length

2n from the odd positive integer n directly. Let J1, J2, . . . , Jr be all the distinct 2-cyclotomic
cosets modulo n corresponding to the factorization xn − 1 = f 1(x) f 2(x) . . . f r (x). Then
we have r = λ + 2ε and

• J1 = {0}, the set Ji satisfies Ji = −Ji (mod n) and |Ji | = mi for all i = 2, . . . , λ;
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• Jλ+ j+ε = −Jλ+ j (mod n) and |Jλ+ j | = |Jλ+ j+ε | = mλ+ j , for all j = 1, . . . , ε.

Therefore, the number of self-dual cyclic codes over Z4 of length 2n can be calculated
by the formula in Theorem 3 and the 2-cyclotomic cosets modulo n directly. As an example,
we list the number N of self-dual cyclic codes over Z4 of length 2n, where n is odd and
6 ≤ 2n ≤ 98, in the following table.

2n N 2n N

6 3 = 1 + 2 54 13851 = (1 + 2)(1 + 23)(1 + 29)
10 5 = 1 + 22 58 16385 = 1 + 214

14 13 = 5 + 23 62 50653 = (5 + 25)3

18 27 = (1 + 2)(1 + 23) 66 107811 = (1 + 2)(1 + 25)3

22 33 = 1 + 25 70 266565 = (1 + 22)(5 + 23)(5 + 212)
26 65 = 1 + 26 74 262145 = 1 + 218

30 315 = (1 + 2)(1 + 22)(5 + 24) 78 799695 = (1 + 2)(1 + 26)(5 + 212)
34 289 = (1 + 24)2 82 1050625 = (1 + 210)2

38 513 = 1 + 29 86 2146689 = (1 + 27)3

42 2691 = (1 + 2)(5 + 23)(5 + 26) 90 11626335
46 2053 = 5 + 211 94 8388613 = 5 + 223

50 5125 = (1 + 22)(1 + 210) 98 27263041 = (5 + 23)(5 + 221)

where 11626335 = (1 + 2)(1 + 22)(1 + 23)(5 + 24)(5 + 212).
Let C be a self-dual Z4-code. The Gray image ψ(C) may or may not be self-dual, and

the binary code ψ(C) is called formally self-dual (see p. 43 in Wan [25]). See [11] for a
classification of those which are self-dual, for small lengths. Recall that a code is formally
self-dual if the code and its dual code have the same weight enumerator.

Proposition 3 Let C be a cyclic self-dual code over Z4. If ψ(C) is linear, then ψ(C) is a
formally self-dual quasicyclic code of index 2.

Proof It is proven in [11] that the image is formally-self dual when the preimage is linear
and the fact that it is quasicyclic follows from Proposition 1. ��

It is possible for a quaternary cyclic self-dual code to produce a binary self-dual quasicyclic
code, for example the code generated by 2I2n generates such a code.

6 Self-dual cyclic codes over Z4 of length 30, 6 and 10

In this section, we consider cyclic codes over Z4 of length 30, 6 and 10, respectively.

n = 15

We have that y15 − 1 = f1(y) f2(y) f3(y) f4(y) f5(y), where

f1(y) = y − 1, f2(y) = y2 + y + 1, f3(y) = y4 + y3 + y2 + y + 1,
f4(y) = y4 + 2y2 + 3y + 1 and f5(y) = y4 + 3y3 + 2y2 + 1 = f̃4(y).

Using the notation of Lemma 7 and Sect. 2, we have r = 5, λ = 3, ε = 1, δ4 = 1, m1 = 1,
m2 = 2 and m3 = m4 = m5 = 4. Hence, there are

∏5
i=1(5 + 2mi ) = (5 + 2) · (5 + 22) ·
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(5 + 24)3 = 583443 distinct cyclic codes over Z4 of length 30 (cf. [3, Corollary 1] or [13,
Theorem 2.6]).

For each i = 1, 2, 3, 4, 5, let Fi (y) = x15−1
fi (y)

and find polynomials ui (y), vi (y) ∈ Z4[y]
satisfying ui (y)Fi (y) + vi (y) fi (y) = 1. Then set εi (y) = ui (y)Fi (y) (mod y15 − 1) and
θi (x) = εi (x2) ∈ Z4[x]/〈x30 − 1〉. Precisely, we have

θ1(x) = 3 x28 + 3 x26 + 3 x24 + 3 x22 + 3 x20 + 3 x18 + 3 x16 + 3 x14 + 3 x12

+ 3 x10 + 3 x8 + 3 x6 + 3 x4 + 3 x2 + 3,
θ2(x) = x28 + x26 + 2 x24 + x22 + x20 + 2 x18 + x16 + x14 + 2 x12 + x10 + x8

+ 2 x6 + x4 + x2 + 2,
θ3(x) = x28 + x26 + x24 + x22 + x18 + x16 + x14 + x12 + x8 + x6 + x4 + x2,
θ4(x) = x24 + 2 x20 + x18 + 3 x16 + x12 + 2 x10 + 3 x8 + x6 + 3 x4 + 3 x2,
θ5(x) = 3 x28 + 3 x26 + x24 + 3 x22 + 2 x20 + x18 + 3 x14 + x12 + 2 x10 + x6.

Using the notation in Sect. 2, we have

K1 = Z4[x]
〈 f1(x2)〉 = Z4[x]

〈x2 − 1〉 , T1 = {0, 1};

K2 = Z4[x]
〈 f2(x2)〉 and T2 = {t0 + t1x | t0, t1 ∈ {0, 1}};

Ki = Z4[x]
〈 fi (x2)〉 and Ti = {t0 + t1x + t2x

2 + t3x
3 | t0, t1, t2, t3 ∈ {0, 1}}, for i = 3, 4, 5.

By Lemma 5, we have

– w2(x) = x , since

w2(x) ≡ f2(x)2 − f2(x2)

2 f2(x)
≡ (x2 + x + 1)2 − (x4 + x2 + 1)

2(x2 + x + 1)

≡ x (mod 〈 f 2(x), 2〉).
Using the notation in Lemma 9(v), we have x

m2
2 w2(x−1) = 1, Γ 2 = F2[x]/〈 f 2(x)〉 =

{0, 1, x, 1 + x}, F2 = F2 and Tr−1
Γ 2/F2

(1) = {x, 1 + x}. Hence,

W2 = x
m2
2 Tr−1

Γ 2/F2
(x

m2
2 w2(x

−1)) = x · {x, 1 + x} = {1, 1 + x}.

– w3(x) = x + x3, since

w3(x) ≡ f3(x)2 − f3(x2)

2 f3(x)

≡ (x4 + x3 + x2 + x + 1)2 − (x8 + x6 + x4 + x2 + 1)

2(x4 + x3 + x2 + x + 1)

≡ x + x3 (mod 〈 f 3(x), 2〉).
Using the notation in Lemma 9(v), we have that

x
m3
2 w3(x−1) = x2 · (x−1 + x−3) = x + x−1 = x + x4,

Γ 3 = F2[x]/〈 f 3(x)〉 = {a0 +a1x +a2x2 +a3x3 | a0, a1, a2, a3 ∈ F2} (mod x4 + x3 +
x2 + x + 1),
F3 = {ξ ∈ Γ 3 | ξ4 = ξ} = {0, 1, x + x4, x2 + x3},
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Tr−1
Γ 3/F3

(x + x4) = {x, 1 + x, x4, 1 + x4} and

W3 = x
m3
2 Tr−1

Γ 3/F3
(x

m3
2 w3(x

−1)) = {x, x + x2, x2 + x3, x3}.

– w4(x) = x , since

w4(x) ≡ f4(x)2 − f4(x2)

2 f4(x)
≡ (x4 + 2x2 + 3x + 1)2 − (x8 + 2x4 + 3x2 + 1)

2(x4 + 2x2 + 3x + 1)

≡ x (mod 〈 f 4(x), 2〉).
By Theorem 3, all the 315 distinct self-dual codes over Z4 of length 30 are listed by

C = θ1(x)C1 ⊕ θ2(x)C2 ⊕ θ3(x)C3 ⊕ θ4(x)C4 ⊕ θ5(x)C5,

where Ci is an ideal of Ki , 1 ≤ i ≤ 5, given by the following:

(1) C1 = 〈2〉;
(2) C2 = 〈2〉, C2 = 〈 f2(x) + 2h(x)〉 where h(x) ∈ W2 arbitrary;
(3) C3 = 〈2〉, C3 = 〈 f3(x) + 2h(x)〉 where h(x) ∈ W3 arbitrary;
(4) (C4,C5) is given by the following table.

C4 (mod f4(x
2)) C5 (mod f5(x

2)) C4 (mod f4(x
2)) C5 (mod f5(x

2))

〈0〉 〈1〉 〈2 f 4(x)〉 〈 f5(x), 2〉
〈1〉 〈0〉 〈 f4(x), 2〉 〈2 f 5(x)〉
〈2〉 〈2〉 〈 f4(x) + 2h(x)〉 〈 f5(x) + 2ĥ(x)〉

where h(x) = a + bx + cx2 + dx3 with a, b, c, d ∈ {0, 1}, and
ĥ(x) = a + dx + cx2 + (1 + a + b)x3

≡ x4(w4(x
−1) + h(x−1)) (mod 〈 f 5(x), 2〉).

A generator matrix for each of the 315 self-dual codes over Z4 of length 30 is provided
in the Appendix of this paper.

Recently, in [24, Tables 1, 2, 3] , some good cyclic codes over Z4 were obtained from
(1+2u)-constacyclic codes over the ringZ4[u]/〈u2−1〉, and these codes have either the same
parameters as the ones in [9] or they have better parameters. In [7], 36 new and good self-
dual 2-quasi-twisted linear codes over Z4, with basic parameters (28, 228, dL = 8, dE = 12)
and of type 47214 and basic parameters (28, 228, dL = 6, dE = 12) and of type 46216,
which are Gray images of self-dual negacyclic codes over the ring Z4[v]

〈v2+2v〉 of length 14,
were obtained, where dH , dL and dE is the minimum Hamming distance, Lee distance and
Euclidean distance of a Z4-code, respectively. Recently, in [18], binary extremal singly even
self-dual [60, 30, 12]-codes and [60, 30, 10]-codes were constructed by a classification of
four-circulant singly even self-dual [60, 30, d]-codes for d = 10 and 12.

Among the above 315 self-dual codes over Z4 of length 30, we have the following 24
self-dual cyclic Z4-codes which do not exist in [7], [20] and [24]:
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(1) 16 codes with basic parameters (30, |C | = 230, dH = 6, dL = 12) of type 41422

determined by

C1 = 〈2〉, C2 = 〈 f2(x) + 2h(x)〉 where h(x) ∈ W2,

C3 = 〈 f3(x) + 2h(x)〉 where h(x) ∈ W3,

(C4,C5) = (〈0〉, 〈1〉) or (C4,C5) = (〈1〉, 〈0〉).
From the above 16 codes and by the Gray map ψ from Z4 onto F

2
2, defined by 0 �→ 00,

1 �→ 01, 2 �→ 11 and 3 �→ 10, we obtain 16 formally self-dual and 2-quasicyclic binary
codes with basic parameters [60, 30, 12].

(2) 8 codes with basic parameters (30, |C | = 230, dH = 5, dL = 10) of type 41226 deter-
mined by

C1 = 〈2〉, C2 = 〈2〉, C3 = 〈 f3(x) + 2h(x)〉 where h(x) ∈ W3,

(C4,C5) = (〈0〉, 〈1〉) or (C4,C5) = (〈1〉, 〈0〉).
From the above 8 codes and by the Gray map ψ from Z4 onto F

2
2, we obtain 8 formally

self-dual and 2-quasicyclic binary codes with parameters [60, 30, 10].

n = 6, 10

On [13, p. 152], the authors concluded that “there is only one trivial self-dual cyclic code
over Z4 of length 6 and 10, respectively.” In fact, there are 3 self-dual cyclic codes over Z4

of length 6 and there are 5 self-dual cyclic codes over Z4 of length 10.

(1) All the 3 distinct self-dual cyclic codes over Z4 of length 6 are given by:

C = θ1(x)C1 ⊕ θ2(x)C2,

where

θ1(x) = 3x4 + 3x2 + 3,C1 = 〈2〉, and

θ2(x) = x4 + x2 + 2;C2 = 〈2〉, 〈(x2 + x + 1) + 2〉, 〈(x2 + x + 1) + 2(1 + x)〉.
Hence, the 2 nontrivial self-dual cyclic codes over Z4 of length 6 are generated by the
following matrices, respectively:

⎛

⎜
⎜
⎝

2 0 2 0 2 0
0 2 0 2 0 2
3 2 1 1 0 1
1 3 2 1 1 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

2 0 2 0 2 0
0 2 0 2 0 2
3 2 1 3 0 3
3 3 2 1 3 0

⎞

⎟
⎟
⎠ .

These 2 linear codes over Z4 are of type 4222.
(2) All the 5 distinct self-dual cyclic codes over Z4 of length 10 are given by:

C = θ1(x)C1 ⊕ θ2(x)C2,

where

θ1(x) = x8 + x6 + x4 + x2 + 1;C1 = 〈2〉.
θ2(x) = 3x8 + 3x6 + 3x4 + 3x2;C2 = 〈2〉, 〈(x4 + x3 + x2 + x + 1) + 2x〉,

〈(x4 + x3 + x2 + x + 1) + 2(x + x2)〉, 〈(x4 + x3 + x2 + x + 1)

+2(x2 + x3)〉, 〈(x4 + x3 + x2 + x + 1) + 2x3〉.
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Hence the 4 nontrivial self-dual cyclic codes over Z4 of length 6 are generated by the
following matrices, respectively:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 2 0 2 0 2 0 2 0
0 2 0 2 0 2 0 2 0 2
2 3 2 1 2 0 1 0 1 0
0 2 3 2 1 2 0 1 0 1
1 0 2 3 2 1 2 0 1 0
0 1 0 2 3 2 1 2 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 2 0 2 0 2 0 2 0
0 2 0 2 0 2 0 2 0 2
0 3 2 1 0 0 3 0 3 0
0 0 3 2 1 0 0 3 0 3
3 0 0 3 2 1 0 0 3 0
0 3 0 0 3 2 1 0 0 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 2 0 2 0 2 0 2 0
0 2 0 2 0 2 0 2 0 2
0 1 2 3 0 0 3 0 3 0
0 0 1 2 3 0 0 3 0 3
3 0 0 1 2 3 0 0 3 0
0 3 0 0 1 2 3 0 0 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 2 0 2 0 2 0 2 0
0 2 0 2 0 2 0 2 0 2
2 1 2 3 2 0 1 0 1 0
0 2 1 2 3 2 0 1 0 1
1 0 2 1 2 3 2 0 1 0
0 1 0 2 1 2 3 2 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

These 4 linear codes over Z4 are of type 4422.

7 An isomorphism and lifts of cyclic codes

In this section, we study an isomorphism on the family of cyclic codes and lifts of
cyclic codes. Recall that a negacyclic code C satisfies (c0, c1, . . . , cN−1) ∈ C implies
(−cN−1, c0, c1, . . . , cN−2) ∈ C. If N is odd, then the map Ψ (c(x)) = c(−x) sends cyclic
codes to negacyclic codes. Therefore a description of cyclic codes necessarily gives a descrip-
tion of all negacyclic codes. Moreover, the rank and kernel of the negacyclic code are also
determined from the rank and kernel of the cyclic code, see [12] for a complete description.
When N is even, this is not the case.

Theorem 4 The map Ψ : Z4[x]/〈x2n − 1〉 → Z4[x]/〈x2n − 1〉 sends cyclic codes to cyclic
codes.

Proof We note that (−x)2n − 1 = x2n − 1. Take (c0, c1, . . . , c2n−1) ∈ Ψ (C). This
implies that (c0,−c1, c2,−c3 . . . , −c2n−1) ∈ C. Since C is cyclic, we have that v =
(−c2n−1, c0,−c1, . . . , c2n−2) ∈ C, so −v = (c2n−1,−c0, c1, . . . ,−c2n−2) ∈ C. It follows
then that (c2n−1, c0, c1, . . . , c2n−2) ∈ Ψ (C). Therefore Ψ (C) is cyclic. ��

It is possible for the map to fix codes, for example the cyclic code generated by 2I2n is
fixed by Ψ .

Theorem 5 If C is a self-dual cyclic code over Z4 then Ψ (C) is a self-dual cyclic code.

Proof If (c0, c1, . . . , c2n−1), (d0, d1, . . . , d2n−1) ∈ C, then

[(c0, c1, . . . , c2n−1), (d0, d1, . . . , d2n−1)] =
2n−1∑

i=0

ci di = 0.

Then (c0,−c1, c2,−c3 . . . , c2n−1), (d0,−d1, d2,−d3, . . . , d2n−1) ∈ Ψ (C) and

[(c0,−c1, c2,−c3 . . . , c2n−1), (d0,−d1, d2,−d3, . . . , d2n−1)] =
2n−1∑

i=0

ci di = 0.
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Therefore the code Ψ (C) is self-orthogonal. Since the cardinality of Ψ (C) is

|Ψ (C)| = |C | = 4n,

the code is self-dual. ��

These results show that the map Ψ sends cyclic codes to cyclic codes and self-dual cyclic
codes to self-dual cyclic codes. We summarize this in the following corollary.

Corollary 1 If 〈c(x)〉 is a cyclic code over Z4 of length 2n, then 〈c(−x)〉 is a cyclic code of
length 2n. If 〈c(x)〉 is a self-dual cyclic code over Z4 of length 2n, then 〈c(−x)〉 is a self-dual
cyclic code of length 2n.

In [14], codes over local Frobenius rings of order 16 were studied. Cyclic codes over
these rings were studied in [10] and [15]. Of these rings, seven are extensions of Z4. Namely,
Z4[z]/〈z2 − 2〉, Z4[z]/〈z2 − 2z − 2〉 and Z4[z]/〈z3 − 2, 2z〉 are chain rings, and Z4[z]/〈z2〉,
Z4[z]/〈z2−2z〉,Z4[w, z]/〈w2, wz−2, z2, 2w, 2z〉 andZ4[w, z]/〈w2−2, 2z−2, z2, 2w, 2z〉
are non-chain local rings. All of these rings have Z4 as a subring. For each of these rings,
a Gray map ψR is defined from R to F

4
2. It is shown in [15] that the image of a cyclic code

over R under ψR is a quasicyclic code of index 4.
If C is a code over Z4, let LR(C) be the lift of the code C to R, i.e., LR(C) is the R-module

generated by C.

Lemma 10 Let R be a local Frobenius extension over Z4. If C is a cyclic code over Z4, then
LR(C) is a cyclic code over R.

Proof By definition of the lift, LR(C) is linear over R. If C is of length N , every v ∈ LR(C)

is of the form v = (v0, v1, . . . , vN−1) = ∑t
i=1 ri (ci,0, ci,1, . . . , ci,N−1), where ri ∈ R and

(ci,0, ci,1, . . . , ci,N−1) ∈ C, for all 1 ≤ i ≤ t .
Since C is cyclic, (ci,N−1, ci,0, ci,1, . . . , ci,N−2) ∈ C for each 1 ≤ i ≤ t , so

(vN−1, v0, v1, . . . , vN−2) = ∑t
i=1 ri (ci,N−1, ci,0, ci,1, . . . , ci,N−2) ∈ LR(C). Therefore,

the code LR(C) is a cyclic code. ��

Combining this lemma with the result from [15], we have the following result:

Theorem 6 Let R be a local Frobenius extension over Z4 and let C be a cyclic code over Z4.
Then ψR(LR(C)) is a binary quasicyclic code of index 4.

8 Conclusions

We have presented a new representation for every cyclic code over Z4 of length 2n, where n
is an odd positive integer. Using this representation, we have provided an efficient encoder
for each code and determined its type explicitly. We then gave a precise description for the
dual codes and the self-duality of cyclic codes overZ4 of length 2n. In particular, the number
of self-dual cyclic codes over Z4 of length 2n can be obtained from 2-cyclotomic cosets
modulo n directly, correcting mistakes in [3] and [13].

A natural extension of this work is to represent all distinct self-dual cyclic codes over Z4

of length 2kn precisely, for any integer k ≥ 2.
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Appendix: Generator matrices for all 315 self-dual cyclic codes over Z4
of length 30

We identify each polynomial a(x) =∑29
j=0 a j x j ∈ Z4[x]

〈x30−1〉 with the vector (a0, a1, . . . , a29)
∈ Z

30
4 . Then set

(i)

G1 =
(

2θ1(x)
2xθ1(x)

)

∈ M2×2n(Z4), k0,1 = 0 and k1,1 = 2.

(ii-1)

G2,1 =

⎛

⎜
⎜
⎝

2θ2(x)
2xθ2(x)
2x2θ2(x)
2x3θ2(x)

⎞

⎟
⎟
⎠ ∈ M4×2n(Z4), k0,2 = 0 and k1,2 = 4.

(ii-2)

G2,2 =
(

( f2(x) + 2h(x))θ2(x)
x( f2(x) + 2h(x))θ2(x)

)

∈ M2×2n(Z4), k0,2 = 2 and

k1,2 = 0, where h(x) ∈ W2 = {1, 1 + x}.
(iii-1)

G3,1 =

⎛

⎜
⎜
⎝

2θ3(x)
2xθ3(x)

. . .

2x7θ3(x)

⎞

⎟
⎟
⎠ ∈ M8×2n(Z4), k0,2 = 0 and k1,2 = 8.

(iii-2)

G3,2 =

⎛

⎜
⎜
⎝

( f3(x) + 2h(x))θ3(x)
x( f3(x) + 2h(x))θ3(x)
x2( f3(x) + 2h(x))θ3(x)
x3( f3(x) + 2h(x))θ3(x)

⎞

⎟
⎟
⎠ ∈ M4×2n(Z4), k0,3 = 4 and

k1,3 = 0, where h(x) ∈ W3 = {x, x + x2, x2 + x3, x3}.
(iv-1)

G4,1 = 0, k0,4 = k1,4 = 0;

G5,1 =

⎛

⎜
⎜
⎝

θ5(x)
xθ5(x)

. . .

x7θ5(x)

⎞

⎟
⎟
⎠ ∈ M8×2n(Z4), k0,5 = 8 and k1,5 = 0.
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(iv-2)

G4,2 =

⎛

⎜
⎜
⎝

θ4(x)
xθ4(x)

. . .

x7θ4(x)

⎞

⎟
⎟
⎠ ∈ M8×2n(Z4), k0,4 = 8 and k1,4 = 0;

G5,2 = 0, k0,5 = k1,5 = 0.

(iv-3)

G4,3 =

⎛

⎜
⎜
⎝

2θ4(x)
2xθ4(x)

. . .

2x7θ4(x)

⎞

⎟
⎟
⎠ ∈ M8×2n(Z4), k0,4 = 0 and k1,4 = 8;

G5,3 =

⎛

⎜
⎜
⎝

2θ5(x)
2xθ5(x)

. . .

2x7θ5(x)

⎞

⎟
⎟
⎠ ∈ M8×2n(Z4), k0,5 = 0 and k1,5 = 8.

(iv-4)

G4,4 =

⎛

⎜
⎜
⎝

2 f 4(x)θ4(x)
2x f 4(x)θ4(x)
2x2 f 4(x)θ4(x)
2x3 f 4(x)θ4(x)

⎞

⎟
⎟
⎠ ∈ M4×2n(Z4), k0,4 = 0 and k1,4 = 4;

G5,4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f5(x)θ5(x)
x f5(x)θ5(x)
x2 f5(x)θ5(x)
x3 f5(x)θ5(x)

2θ5(x)
2xθ5(x)
2x2θ5(x)
2x3θ5(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ M8×2n(Z4), k0,5 = 4 and k1,5 = 4.

(iv-5)

G4,5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f4(x)θ4(x)
x f4(x)θ4(x)
x2 f4(x)θ4(x)
x3 f4(x)θ4(x)

2θ4(x)
2xθ4(x)
2x2θ4(x)
2x3θ4(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ M8×2n(Z4), k0,4 = 4 and k1,4 = 4;

G5,5 =

⎛

⎜
⎜
⎝

2 f 5(x)θ5(x)
2x f 5(x)θ5(x)
2x2 f 5(x)θ5(x)
2x3 f 5(x)θ5(x)

⎞

⎟
⎟
⎠ ∈ M4×2n(Z4), k0,5 = 0 and k1,5 = 4.
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(iv-6) Let a, b, c, d ∈ {0, 1}.

G4,6 =

⎛

⎜
⎜
⎝

( f4(x) + 2(a + bx + cx2 + dx3)θ4(x)
x( f4(x) + 2(a + bx + cx2 + dx3)θ4(x)
x2( f4(x) + 2(a + bx + cx2 + dx3)θ4(x)
x3( f4(x) + 2(a + bx + cx2 + dx3)θ4(x)

⎞

⎟
⎟
⎠

∈ M4×2n(Z4), k0,4 = 4 and k1,4 = 0;

G5,6 =

⎛

⎜
⎜
⎝

( f5(x) + 2(a + dx + cx2 + (1 + a + b)x3)θ5(x)
x( f5(x) + 2(a + dx + cx2 + (1 + a + b)x3)θ5(x)
x2( f5(x) + 2(a + dx + cx2 + (1 + a + b)x3)θ5(x)
x3( f5(x) + 2(a + dx + cx2 + (1 + a + b)x3)θ5(x)

⎞

⎟
⎟
⎠

∈ M4×2n(Z4), k0,5 = 4 and k1,5 = 0,

Then, by Theorem 1, all of the 315 self-dual codes over Z4 of length 30 are generated by one
of the following 315 matrices:

G(i, j,l) =

⎛

⎜
⎜
⎜
⎜
⎝

G1

G2,i

G3, j

G4,l

G5,l

⎞

⎟
⎟
⎟
⎟
⎠

, 1 ≤ i, j ≤ 2, 1 ≤ l ≤ 6.

Precisely, the self-dual codes over Z4 of length 30 with generator matrix G(i, j,l) are of type
4k2,0+k3,0+k4,022+k2,1+k3,1+k4,1 .
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