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Abstract
It is known that correlation-immune (CI) Boolean functions used in the framework of side
channel attacks need to have low Hamming weights. In this paper, we study minimum
Hamming weights of 3-CI Boolean functions, and prove that the Carlet-Chen conjecture is
equivalent to the famous Hadamard conjecture. Moreover, we propose a method to construct
low-weight n-variable CI functions through d-linearly independent sets, which can provide
numerous minimum-weight d-CI functions. Particularly, we obtain some new values of the
minimum Hamming weights of d-CI functions in n variables for n ≤ 13.
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1 Introduction

Side-channel analysis is a very powerful technique which target implementations of block
ciphers [12,13,16,17]. To resist side channel attacks, many possible countermeasures have
been proposed, and correlation-immune (CI) Boolean functions with low Hamming weights
can be used in the framework [6,14,15,20]. To reduce the cost overhead of countermeasures,
one needs to construct d-CI functions with the weight as small as possible, or maximizing d
for a given weight [2,6].

Very recently, Carlet and Chen proposed some constructions of low-weight CI functions,
and conjectured that the minimum Hamming weight of 3-CI functions in n variables is
8� n

4 � [5].
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In this paper, we study minimum Hamming weights of 3-CI Boolean functions, and
prove that the Carlet-Chen conjecture is equivalent to the famous Hadamard conjecture.
Moreover, we propose a method to construct low-weight n-variable CI functions through
d-linearly independent sets, which can provide numerous minimum-weight d-CI functions.
Particularly, we obtain some new values of theminimumHammingweights of d-CI functions
in n variables for n ≤ 13.

The paper is organized as follows. In Sect. 2, the necessary background is established. We
then study the relationship betweenHadamardmatrices andminimum-weight d-CI functions
in Sect. 3. In Sect. 4, we study the relationship between d-linearly independent sets and low-
weight d-CI functions. We end in Sect. 5 with conclusions.

2 Preliminaries

Let Fn
2 be the n-dimensional vector space over the finite field F2. We denote by Bn the set of

all n-variable Boolean functions, from F
n
2 into F2.

Any Boolean function f ∈ Bn can be represented by its truth table

[ f (0, 0, . . . , 0), f (1, 0, . . . , 0), f (0, 1, . . . , 0), f (1, 1, . . . , 0), . . . , f (1, 1, . . . , 1)].

Let a = (a1, . . . , an) ∈ F
n
2. The Hamming weight of a, denoted by wH (a), is the cardi-

nality of the set {1 ≤ i ≤ n|ai = 1}.
Let Supp( f ) = {x ∈ F

n
2 | f (x) = 1} be the support of a Boolean function f ∈ Bn , whose

cardinality |Supp( f )| is called the Hamming weight of f , and will be denoted by wH ( f ).
Clearly, f is determined by Supp( f ) uniquely. We say that f is balanced ifwH ( f ) = 2n−1.

Let f ∈ Bn . f is called correlation-immune of order d (in brief, d-CI) if and only if

∑

x∈Fn2
(−1) f (x)⊕v·x = 0,

for any v = (v1, . . . , vn) ∈ F
n
2 satisfying 1 ≤ wH (v) ≤ d , where v · x = v1x1 + · · · + vnxn

is the usual inner product [4,7,19,22].
Clearly, for 0 �= v ∈ F

n
2, we have

∑

x∈Fn2
(−1) f (x)⊕v·x =

∑

x∈Supp( f )
(−1)1⊕v·x +

∑

x/∈Supp( f )
(−1)v·x = −2

∑

x∈Supp( f )
(−1)v·x.

Therefore, f is d-CI if and only if

∑

x∈Supp( f )
(−1)v·x = 0,

for any v ∈ F
n
2 satisfying 1 ≤ wH (v) ≤ d .

A matrix H of order n is called a Hadamard matrix if HHT = nIn , where In is the n × n
identity matrix and HT is the transpose of H [10].
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3 Hadamardmatrices andminimumHamming weights of d-CI Boolean
functions

3.1 On theminimumweight of 3-CI Boolean functions

Using the same notation as that of [5], we denote the minimum Hamming weight of d-CI
nonzero Boolean functions in n variables as wn,d .

Lemma 3.1 (Proposition 2.6 of [5]) Let d be an even integer such that n ≥ d ≥ 2. Then
wn+1,d+1 = 2wn,d .

Theorem 3.2 Let n ≥ 3 be any integer. Then wn,3 ≥ 8� n
4 �.

Proof By Lemma 3.1, it is sufficient to prove that wn,2 ≥ 4� n+1
4 �, for n ≥ 2. Suppose

there is an n ≥ 2 such that m = wn,2 < 4� n+1
4 �. Then there exists a 2-CI f ∈ Bn with

the Hamming weight m. It is well known that deg( f ) ≤ n − 2 and m is a multiple of 4.
Therefore, m ≤ 4� n+1

4 � − 4 < n + 1. Let the support of f be {(ai1, ai2, . . . , ain)}, where
1 ≤ i ≤ m. Let M be the matrix

M =

⎡

⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
am1 am2 · · · amn

⎤

⎥⎥⎦ = [p1, . . . ,pn],

where p j = (a1 j , a2 j , . . . , amj )
T and 1 ≤ j ≤ n. Since f is 2-CI, we have wH (p j ) = m

2
and wH (p j1 ⊕ p j2) = m

2 , where 1 ≤ j ≤ n and 1 ≤ j1 < j2 ≤ n. Therefore,

pTi1pi2 =
{ m

2 i f i1 = i2,
m
4 otherwise.

We construct an m × (n + 1) matrix H as follows.

H =

⎡

⎢⎢⎣

1 (−1)a11 (−1)a12 · · · (−1)a1n

1 (−1)a21 (−1)a22 · · · (−1)a2n

· · · · · · · · · · · ·
1 (−1)am1 (−1)am2 · · · (−1)amn

⎤

⎥⎥⎦ .

Then

HT H = mI ,

where I is the identity (n + 1) × (n + 1) matrix. Therefore,

n + 1 = rank(HT H) ≤ rank(H) ≤ m < n + 1,

which is a contradiction, and the result follows. 	


By Theorem 3.2, if we can find a 2-CI n-variable Boolean function with the weight
4� n+1

4 �, then the values of wn,2 and wn+1,3 are both determined. We now give a method
to construct minimum-weight 2-CI n-variable functions through Hadamard matrices, for
infinitely many n’s.
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Construction 1 Let H be any 4k × 4k Hadamard matrix. By negating columns of H , we
can get a matrix whose first row is (1, 1, . . . , 1). We delete this row and denote the induced
(4k − 1) × 4k matrix as

H̃ =

⎡

⎢⎢⎣

(−1)a1,1 (−1)a1,2 · · · (−1)a1,4k

(−1)a2,1 (−1)a2,2 · · · (−1)a2,4k

· · · · · · · · ·
(−1)a4k−1,1 (−1)a4k−1,2 · · · (−1)a4k−1,4k

⎤

⎥⎥⎦ ,

where ai, j ∈ F2, 1 ≤ i ≤ 4k − 1 and 1 ≤ j ≤ 4k. Let q j = (a1, j , . . . , a4k−1, j ), where
1 ≤ j ≤ 4k. Then we construct a function f ∈ B4k−1 whose support is {q1,q2, . . . ,q4k}.

Proposition 3.3 Let H be any 4k × 4k Hadamard matrix, and f ∈ B4k−1 be the function
defined in Construction 1. Then f is a 2-CI Boolean function with the minimum Hamming
weight.

Proof Since H is a Hadamard matrix, the rows of the induced matrix H̃ = [(−1)ai, j ] in
Construction 1 aremutually orthogonal and they are all orthogonal to the vector (1, 1, . . . , 1).
Let pi = (ai,1, ai,2, . . . , ai,4k), where 1 ≤ i ≤ 4k − 1. Then wH (pi ) = 2k and wH (pi1 ⊕
pi2) = 2k, where 1 ≤ i ≤ 4k − 1 and 1 ≤ i1 < i2 ≤ 4k − 1. Therefore, f is 2-CI.
Since wH ( f ) = 4k = 4� 4k−1+1

4 �, by Theorem 3.2, f is a 2-CI Boolean function with the
minimum Hamming weight. 	


It is noted that we can construct a 3-CI n-variable Boolean function with the minimum
Hamming weight easily from a 2-CI (n − 1)-variable Boolean function with the minimum
Hamming weight.

Corollary 3.4 If there exists a Hadamard matrix H of order 4k, then w4k,3 = 8k.

In [2], Bhasin et al. presented an open problem: the minimal weight of a d-CI function in n
variables might not increase with n. By Corollary 3.4, we can give a negative answer to this
problem, since there are infinitely many Hadamard matrices.

3.2 Equivalence of the Hadamard and Carlet–Chen conjectures

Hadamard conjectured that there exists a Hadamard matrix of order 4k for every positive
integer k. After more than one hundred years, this conjecture still remains open.

Conjecture 3.5 (Hadamard Conjecture) A Hadamard matrix of order 4k exists for every
positive integer k.

There are many results on this conjecture (see e.g. [1,8,9,11,18,21]). The smallest order for
which no Hadamard matrix has been known is 668.

In [5], based on the numerical results, Carlet and Chen proposed the following conjecture.

Conjecture 3.6 (Carlet-Chen Conjecture) Let n ≥ 3 be any integer. Then wn,3 = 8� n
4 �.

We now prove that the above two conjectures are equivalent.

Theorem 3.7 The Carlet-Chen conjecture is equivalent to the Hadamard conjecture.
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Proof If the Carlet-Chen conjecture holds, then for any positive integer k, we have w4k,3 =
8k. Hence, w4k−1,2 = 4k. That is, there exists a 2-CI f ∈ B4k−1 with the Hamming weight
4k. Let the support of f be {(ai,1, ai,2, . . . , ai,4k−1)}, where 1 ≤ i ≤ 4k. We construct a
4k × 4k matrix H as follows.

H =

⎡

⎢⎢⎣

1 (−1)a1,1 (−1)a1,2 · · · (−1)a1,4k−1

1 (−1)a2,1 (−1)a2,2 · · · (−1)a2,4k−1

· · · · · · · · · · · ·
1 (−1)a4k,1 (−1)a4k,2 · · · (−1)a4k,4k−1

⎤

⎥⎥⎦ .

Then HT H = 4k I , where I is the identity 4k×4k matrix. That is, HT is a Hadamard matrix
of order 4k.

Now suppose the Hadamard conjecture is correct. Then for any positive integer k, there
exists aHadamardmatrix H of order 4k. By Proposition 3.3, the function defined inConstruc-
tion 1 is a 2-CI Boolean function with the Hamming weight 4k. Therefore, w4k−1,2 ≤ 4k.
By Lemma 3.1 and Theorem 3.2, we have w4k,3 = 8k. For 1 ≤ t ≤ 3, we have w4k+t,3 ≤
w4k+4,3 = 8(k + 1). Then by Theorem 3.2, 8(k + 1) ≥ w4k+t,3 ≥ 8� 4k+t

4 � = 8(k + 1), and
the result follows. 	


From the proof of Theorem 3.7, for any minimum-weight 2-CI function f ∈ B4k−1, there
always exists a Hadamard matrix of order 4k such that the function defined in Construction 1
is the same as f . In other words, our construction can provide all minimum-weight 2-CI
Boolean functions in 4k − 1 variables.

4 d-linearly independent sets and d-CI Boolean functions with low
Hamming weights

4.1 d-Linearly independent sets

We now introduce the notion, d-linearly independent set, which will be used in our construc-
tion of d-CI Boolean functions with low Hamming weights.

Definition 4.1 A subset of Fm
2 is said to be d-linearly independent if no vector in the set

can be written as a linear combination of any other d − 1 vectors in the set. That is, for
any different vectors α1, α2, . . . , αd of this set, there do not exist c1, . . . , cd ∈ F2 such that∑d

i=1 ciαi = 0.

Definition 4.2 A subset S of Fm
2 with k vectors is said to be a relative maximum d-linearly

independent set if S is not a subset of any d-linearly independent set of Fm
2 with k+1 vectors.

Clearly, any d-linearly independent set can be extended to a relative maximum d-linearly
independent set, and the rank of a relative maximum d-linearly independent set is m.

Definition 4.3 A subset of Fm
2 with k vectors is said to be an absolute maximum d-linearly

independent set if there is no d-linearly independent set of Fm
2 with k + 1 vectors. We denote

this maximum value k as vm,d .

It is easy to see that vm,2 = 2m − 1 and vm,d1 ≥ vm,d2 for d1 < d2. We now determine other
values of vm,d .

Proposition 4.4 The cardinality of an absolute maximum 3-linearly independent set of Fm
2 is

2m−1. That is, vm,3 = 2m−1.
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Proof Suppose there exists a 3-linearly independent set {p1,p2, . . . ,p2m−1+1} ⊂ F
m
2 . Then

we construct a set

T = {pi , 1 ≤ i ≤ 2m−1 + 1}
⋃

{p1 + p j , 2 ≤ j ≤ 2m−1 + 1}.
Clearly, the cardinality of the set T is 2m−1 + 1+ 2m−1 > 2m , which is contradictory to the
fact that T is a subset of Fm

2 . Therefore, vm,3 ≤ 2m−1. Clearly, the set

S = {p ∈ F
m
2 |wH (p) is odd}

is a 3-linearly independent set with 2m−1 vectors, and the result follows. 	

Proposition 4.5 Form ≥ 5andd ≥ 2m+2

3 , the cardinality of an absolutemaximumd-linearly
independent set of Fm

2 is m + 1. That is, vm,d = m + 1, for d ≥ 2m+2
3 .

Proof Let S = {p1,p2, . . . ,pt } ⊂ F
m
2 be any absolute maximum d-linearly independent

set. Take a basis of S, say {p1,p2, . . . ,pm}. Then any vector in S can be written as a linear
combination of the basis vectors. We have

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
p2
. . .

pm
pm+1

. . .

pt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1
cm+1,1 cm+1,2 . . . cm+1,m

. . . . . . . . . . . .

ct,1 ct,2 . . . ct,m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

p1
p2
. . .

pm

⎤

⎥⎥⎦ ,

where (ci,1, ci,2, . . . , ci,m) ∈ F
m
2 , for m + 1 ≤ i ≤ t . Therefore,

T = {(1, 0, . . . , 0), . . . , (0, 0, . . . , 1), (cm+1,1, . . . , cm+1,m), . . . , (ct,1, . . . , ct,m)}
is an absolutemaximum d-linearly independent set. Since d ≥ 2m+2

3 , there is no vectorq ∈ T
with 1 < wH (q) < 2m+2

3 . Moreover, there do not exist two different vectors q1,q2 ∈ T
such that wH (q1) ≥ 2m+2

3 and wH (q2) ≥ 2m+2
3 . Otherwise, q1 ⊕ q2 is of the Hamming

weight

≤ 2m − 4

3
= 2m + 2

3
− 2

and it can be written as a linear combination of other 2m+2
3 − 2 vectors in T . Therefore, the

cardinality of T is at most m + 1. Clearly, the set

S = {p ∈ F
m
2 |wH (p) = 1 or m}

is a d-linearly independent set with m + 1 vectors, and the result follows. 	

If m is small, it is quite easy to determine the values of vm,d . In Table 1, we list all the

values of vm,d , for m ≤ 9.

4.2 An algorithm for finding relative maximum d-linearly independent sets

Let S ⊂ F
m
2 be any relative maximum d-linearly independent set. Then S is of rank m,

and there is a linear transformation over Fm
2 which maps S onto a set T containing m unit

vectors. Clearly, T is also a relative maximum d-linearly independent set. Moreover, the
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Table 1 The values of vm,d d m

3 4 5 6 7 8 9

2 7 15 31 63 127 255 511

3 4 8 16 32 64 128 256

4 5 6 8 11 13 15

5 6 7 9 12 14

6 7 8 9 11

7 8 9 10

inverse transformation maps T onto S. Hence, without loss of generality, we only need to
study how to find relative maximum d-linearly independent sets from the set of unit vectors
U = {u1, . . . ,um}, where ui is the unit vector whose i-th coordinate is 1, for 1 ≤ i ≤ m.

Letu = (u1, u2, . . . , um) ∈ F
m
2 .We use |u| to denote the number u1+2u2+. . .+2m−1um ,

and provide an algorithm as follows.
An algorithm for finding relative maximum d-linearly independent sets:

1. Start with the set of unit vectors U = {u1, . . . ,um} and i = d .
2. Consider u ∈ F

m
2 satisfying wt(u) = i which are sorted by |u| in ascending size.

a. If u cannot be written as a linear combination of d − 1 vectors in U , update U to
U ∪ {u};

b. If |u| = 2m − 2m−i , update i to i + 1.
c. If i > m, goto step 3.

3. Output the set U .

In the algorithm, we sort u with the same weight by |u| in ascending size, and the last u
satisfying wt(u) = i is (0, . . . , 0, 1, . . . , 1) with |u| = 2m − 2m−i . The algorithm is simple
and even can be done by hand, which can be seen from the following example.

Example 1 Let m = 7 and d = 4. Then the set of unit vectors is

U ={(1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0),
(0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1)}.

Consider vectors of weight 4. We can find the following four vectors one by one:

(1, 1, 1, 1, 0, 0, 0), (1, 1, 0, 0, 1, 1, 0), (1, 0, 1, 0, 1, 0, 1), (0, 0, 0, 1, 1, 1, 1),

and U is updated to the set with eleven vectors. Clearly, any vector of weight greater than 4
can be written as a linear combination of three vectors in U . Therefore, a relative maximum
4-linearly independent set with 11 vectors has been found (it is in fact an absolute maximum
4-linearly independent set).

Remark 1 It seems that the above algorithm always generates an absolute maximum d-
linearly independent set, but we cannot prove it, which we leave as an open problem.
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4.3 Constructing d-CI Boolean functions with lowweights through relative
maximum d-linearly independent sets

We now give a method to construct low-weight d-CI n-variable functions through relative
maximum d-linearly independent sets (a similar method was used in Sect. V of [3]).

Construction 2 Let S = {u1, . . . ,uk} ⊂ F
m
2 be a relative maximum d-linearly independent

set. Let l j ∈ Bm be the linear function u j ·x, where x ∈ F
m
2 and “·” is the usual inner product.

The truth table of l j is denoted by the column vector p j = (a1, j , a2, j , . . . , a2m , j )
T . Let

M = [p1, . . . ,pk] =

⎡

⎢⎢⎣

a1,1 a1,2 · · · a1,k
a2,1 a2,2 · · · a2,k
· · · · · · · · · · · ·
a2m ,1 a2m ,2 · · · a2m ,k

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

q1
q2
· · ·
q2m

⎤

⎥⎥⎦ ,

where qi ∈ F
k
2 and 1 ≤ i ≤ 2m . Then we construct a function f ∈ Bk whose support is

{q1,q2, . . . ,q2m }.
We give an example to illustrate the construction.

Example 2 Takem = 10 andd = 6.Using the above algorithm,we cangenerate the following
relative maximum 6-linearly independent set by hand quite easily.

S ={(1, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 1, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (1, 1, 1, 1, 1, 1, 0, 0, 0, 0), (1, 1, 1, 0, 0, 0, 1, 1, 1, 0),

(1, 0, 0, 1, 1, 0, 1, 1, 0, 1)}.
In fact, S is an absolute maximum 6-linearly independent set. We have

l1 = x1, l2 = x2, l3 = x3, l4 = x4, l5 = x5, l6 = x6, l7 = x7, l8 = x8

l9 = x9, l10 = x10, l11 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6,

l12 = x1 ⊕ x2 ⊕ x3 ⊕ x7 ⊕ x8 ⊕ x9, l13 = x1 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ x8 ⊕ x10.

Then we can get the function f ∈ B13 by Construction 2 with the support

{(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1),
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1),

. . . , (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)}
It is easy to check that f is a 6-CIBoolean functionwith theHammingweight 1024.Therefore,
w13,6 ≤ 1024. Since w13,6 ≥ 1024 (the lower bound was obtained by the Delsarte LP
algorithm, see TABLE I of [5]), we have w13,6 = 1024. This is a previously unknown value,
thus a triple question mark ??? in Table II of [5] can be taken place by it.

Proposition 4.6 Let f ∈ Bk be the function defined in Construction 2. Then f is a d-CI
Boolean function with the Hamming weight 2m.

Proof Since S is a relative maximum d-linearly independent set, it is of rank m and
q1,q2, . . . ,q2m are different vectors. Therefore, f is a well-defined Boolean function with
the Hamming weight 2m . Clearly, f is d-CI if and only if
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Table 2 The values of wn,d n d

1 2 3 4 5 6 7 8

1 2

2 2 4

3 2 4 8

4 2 8 8 16

5 2 8 16 16 32

6 2 8 16 32 32 64

7 2 8 16 64 64 64 128

8 2 12 16 64 128 128 128 256

9 2 12 24 128 128 256 256 256

10 2 12 24 128 256 512 512 512

11 2 12 24 128 256 512 1024 1024

12 2 16 24 ≤256 256 ≤1024 1024 2048

13 2 16 32 ≤256 ≤512 1024 ≤2048 4096

∑

x∈Supp( f )
(−1)v·x = 0,

for any v = (v1, . . . , vk) ∈ F
k
2 satisfying 1 ≤ wH (v) ≤ d . That is,wH (v1p1⊕ . . .⊕vkpk) =

2m−1, for any v ∈ F
k
2 with 1 ≤ wH (v) ≤ d . Since S is d-linearly independent, for any v ∈ F

k
2

with 1 ≤ wH (v) ≤ d , we have v1u1 + . . . + vkuk �= 0. Therefore,

v1l1 ⊕ . . . ⊕ vklk = (v1u1 + . . . + vkuk) · x
is a balanced function, and the result follows. 	

Theorem 4.7 Let vm,d be the cardinality of the absolute maximum d-linearly independent
set of Fm

2 . Then

wvm,d ,d ≤ 2m .

Proof Let S = {u1, . . . ,uk} ⊂ F
m
2 be an absolutemaximum d-linearly independent set. Then

k = vm,d . By Construction 2, we can generate a function f ∈ Bvm,d . By Proposition 4.6, f
is a d-CI Boolean function with the Hamming weight 2m . Therefore,

wvm,d ,d ≤ 2m .

For n ≤ 13, there are 8 unknown values of wn,d (see Table II of [5]). By Theorem 4.7
and Table 1, we can determine the exact values for three of them. That is, w11,4 = 128,
w12,5 = 256 and w13,6 = 1024. For other unknown values, Theorem 4.7 provides an upper
bound. In Table 2, we list the values of wn,d for n ≤ 13. All values for n ≤ 10 can be
determined by the SMT tool [2], and those entries in italic are new values obtained by [2,5].
Those entries in bold are new values obtained by us.

The number of rows of an orthogonal array can be lower bounded by the Delsarte LP
bound, and the bounds were given in Table 1 of [2]. In Appendix 1, we deduce exact values
for some orthogonal arrays and give some results on the maximum number of orthogonal
vectors inFn

2. Based on the result ofAppendix 1 andTheorem4.7,we havew11,4 = 128. Then
in Appendix 1, we give an 11-variable 4-CI Boolean function with the minimum Hamming
weight. 	
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5 Conclusion

In this paper, we studied the relationships between Hadamard matrices, d-linearly indepen-
dent sets and correlation-immune Boolean functions with minimum Hamming weights. The
field is still open and there are many problems deserved to be studied. We hope that our work
would attract more researchers to be interested in this interesting topic.

Acknowledgements The author would like to thank the financial support from the National Natural Science
Foundation of China (Grant 61572189).

Appendix A: Some results on the maximum number of orthogonal vec-
tors in F

n
2

A group of vectors in Fn
2 are said to be d-orthogonal if anym vectors of them are orthogonal,

for 1 ≤ m ≤ d . We use OAn,d to denote the maximum number of d-orthogonal vectors in
F
n
2. Let p1,p2, . . . ,pm be d-orthogonal row vectors and M be the matrix [pT1 ,pT2 , . . . ,pTm].

Clearly, if we negate any columns or exchange any rows of M , then the columns of the
induced matrix are still d-orthogonal.

Let p1,p2, . . . ,pm be 4-orthogonal column vectors and M = [p1,p2, . . . ,pm]. Clearly,
by exchanging rows, the first four columns of M can be transformed to the following vectors
one by one:

q1 =
(
0 n

2
, 1 n

2

)T
,

q2 =
(
0 n

4
, 1 n

4
, 0 n

4
, 1 n

4

)T
,

q3 =
(
0 n

8
, 1 n

8
, 0 n

8
, 1 n

8
, 0 n

8
, 1 n

8
, 0 n

8
, 1 n

8

)T
,

q4 =
(
0 n

16
, 1 n

16
, 0 n

16
, 1 n

16
, 0 n

16
, 1 n

16
, 0 n

16
, 1 n

16
, 0 n

16
, 1 n

16
, 0 n

16
, 1 n

16
, 0 n

16
, 1 n

16
, 0 n

16
, 1 n

16

)T
,

where 0i = (0, . . . , 0) and 1i = (1, . . . , 1) ∈ F
i
2. Let q5 = [α1, . . . , α8]T , where α j ∈ F

n/8
2 .

Supposeq1, q2, q3, q4 and q5 are 4-orthogonal. Clearly,α1, . . . , α8 must be balanced vectors,
since q1, q2, q3 and q5 are 4-orthogonal. Let q4 = [β1, . . . , β8]T and xi be the Hamming
weight of αi ⊕ βi , where 1 ≤ i ≤ 8. Since q5 ⊕ q4 ⊕ c1q1 ⊕ c2q2 ⊕ c3q3 is balanced for
(c1, c2, c3) ∈ F

3
2 and wt(c1, c2, c3) ≤ 2, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = n
2

x1 + x2 + x3 + x4 − x5 − x6 − x7 − x8 = 0
x1 + x2 − x3 − x4 + x5 + x6 − x7 − x8 = 0
x1 − x2 + x3 − x4 + x5 − x6 + x7 − x8 = 0
x1 + x2 − x3 − x4 − x5 − x6 + x7 + x8 = 0
x1 − x2 + x3 − x4 − x5 + x6 − x7 + x8 = 0
x1 − x2 − x3 + x4 + x5 − x6 − x7 + x8 = 0.

Therefore,

(x1, x2, x3, x4, x5, x6, x7, x8) =
(
C,

n

8
− C,

n

8
− C,C,

n

8
− C,C,C,

n

8
− C

)
, (1)

where 0 ≤ C ≤ n
8 .
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Take n = 48. Then by exchanging rows or negating the column, q5 can be transformed
to (γ1, γ2, γ2, γ1, γ2, γ1, γ1, γ2), where (γ1, γ2) is

(0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0) or (0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1).

If (γ1, γ2) = (0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0), then there is no q6 = (θ1, . . . , θ8) such that
q1,q2, . . . ,q6 are 4-orthogonal. Otherwise, θ1, . . . , θ8 must be balanced vectors and

wt(θ1 ⊕ β1) + wt(θ2 ⊕ β2) + wt(θ1 ⊕ γ1) + wt(θ2 ⊕ γ2) = 6 + 6 = 2wt(θ1 ⊕ β1) + 6.

That is, wt(θ1 ⊕ β1) = 3, which is contradictory to the fact that θ1 and β1 are balanced
vectors.

Now consider the case (γ1, γ2) = (0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1). Supposeq1,q2, . . . ,q6
are 4-orthogonal. Then q6 can be transformed to (θ1, . . . , θ8), where

θ1, θ4, θ6, θ7 ∈ {(0, 0, 1, 1, 0, 1), (0, 1, 0, 0, 1, 1)}, θ2 = θ3 = θ5 = θ8 = (1, 1, 0, 0, 1, 0),

or

θ2, θ3, θ5, θ8 ∈ {(0, 0, 1, 1, 1, 0), (1, 0, 0, 0, 1, 1)}, θ1 = θ4 = θ6 = θ7 = (1, 0, 1, 0, 1, 0).

It is easy to verify that all these 32 vectors are not 4-orthogonalwithq1,q2, . . . ,q5. Therefore,
OA48,4 = 5, which seems to be a previously unknown value. Hence, the minimum number
of rows w of an orthogonal array OA(w, 7, 2, 4) is 64, which was known to be ≥ 48 (see
Table 1 of [2]).

Now consider n = 80. Suppose q1,q2, . . . ,q6 are 4-orthogonal. Then q5 can be trans-
formed to (α1, α2, α2, α1, α2, α1, α1, α2), where

α1 = (0, 0, 0, 1, 1, 0, 0, 1, 1, 1), α2 = (0, 0, 1, 1, 1, 0, 0, 0, 1, 1).

Moreover, q6 can be transformed to (θ1, . . . , θ8), where

θ1, θ4, θ6, θ7 ∈ {(0, 1, 1, 0, 1, 0, 0, 0, 1, 1), (0, 0, 1, 1, 1, 0, 1, 0, 0, 1)},
and

θ2, θ3, θ5, θ8 ∈ {(1, 1, 0, 0, 0, 0, 0, 1, 1, 1), (0, 1, 0, 0, 1, 0, 1, 1, 0, 1),
(0, 0, 0, 1, 1, 1, 1, 1, 0, 0)}.

It is easy to check by computer that only 8 such vectors are 4-orthogonal with q1,q2, . . . ,q5.
We then consider q7 for these 8 cases. Using the Eq. (1) for q7 ⊕ qi , wherer i = 4, 5, 6, it is
easy to verify by computer that there is no q7 4-orthogonal with q1,q2, . . . ,q6. Therefore,
OA80,4 = 6.

Now consider n = 96. We have the following facts:

(1) Suppose q1,q2, . . . ,q6 are 4-orthogonal. Then one of q5 and q6 can be transformed to
(α, α, α, α, α, α, α, α), where α = (0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1).

(2) If there exists a q7 which is 4-orthogonal with q1,q2, . . . ,q6, then the constant C in the
Eq. (1) for q7 ⊕ qi or q6 ⊕ qi is n

16 , wherer i = 4, 5.

So,we can takeq5 = (α, α, α, α, α, α, α, α) and there are 48 cases forq6. Suppose there exists
a q8 which is 4-orthogonal with q1,q2, . . . ,q7. Then only four cases for q6 are remained. For
these four cases, it is easy to verify by computer that the vectors can be extended to a group of
seven vectors 4-orthogonal with each other, but no q8 exists. Therefore, OA96,4 = 7, which
is a previously unknown value. Hence, the minimum number of rows w of an orthogonal
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Table 3 Maximum number of
4-orthogonal vectors in F

n
2

n 32 48 64 80 96 112

OAn,4 6 5 8 6 7 6

array OA(w, 9, 2, 4) is 128 (it cannot be 112 from the next paragraph), which was known to
be ≥ 96 [2].

Now consider n = 112. Suppose q1,q2, . . . ,q6 are 4-orthogonal. Then one of q5 and q6
can be transformed to (α1, α2, α2, α1, α2, α1, α1, α2), where

α1 = (0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1), α2 = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1).

So, we can take q5 to be this vector. Suppose q1,q2, . . . ,q7 are 4-orthogonal. Then q6 can
be reduced to eight cases, and it is easy to verify by computer that no q7 exists. Therefore,
OA112,4 = 6, which is a previously unknown value. Hence, the minimum number of rows
w of an orthogonal array OA(w, 12, 2, 4) is 128, which was known to be ≥ 112 [2].

We summarize the results in Table 3. It is noted that by Table 3 the minimum number of
rows w of an orthogonal array OA(w, n, 2, 4) can be determined, for n ≤ 13.

Appendix B: An 11-variable 4-CI Boolean function with the minimum
Hamming weight

Takem = 7 and S be the absolute maximum 4-linearly independent set with 11 vectors given
in Example 2. We have

l1 = x1, l2 = x2, l3 = x3, l4 = x4, l5 = x5, l6 = x6, l7 = x7,

l8 = x1 ⊕ x2 ⊕ x3 ⊕ x4, l9 = x1 ⊕ x2 ⊕ x5 ⊕ x6,

l10 = x1 ⊕ x3 ⊕ x5 ⊕ x7, l11 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7.

Then we can get the function f ∈ B11 by Construction 2 with the support

{(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1), (0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1),
(1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0), . . . , (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0), (1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1)}
It is easy to check that f is a 4-CI Boolean functionwith theHammingweight 128. Therefore,
w11,4 ≤ 128. From Table 3 of Appendix 1, we have w11,4 ≥ 128. Hence, w11,4 = 128. This
is a previously unknown value, thus a triple question mark ??? in Table II of [5] can be taken
place by it.
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