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Abstract
A permutation array A is a set of permutations on a finite set �, say of size n. Given distinct
permutations π, σ ∈ �, we let hd(π, σ ) = |{x ∈ � : π(x) �= σ(x)}|, called the Hamming
distance betweenπ and σ . Now let hd(A) =min{hd(π, σ ) : π, σ ∈ A}. For positive integers
n and d with d ≤ n we let M(n, d) be the maximum number of permutations in any array A
satisfying hd(A) ≥ d . There is an extensive literature on the function M(n, d), motivated in
part by suggested applications to error correcting codes for message transmission over power
lines. A basic fact is that if a permutation group G is sharply k-transitive on a set of size
n ≥ k, then M(n, n − k + 1) = |G|. Motivated by this we consider the permutation groups
AGL(1, q) and PGL(2, q) acting sharply 2-transitively onGF(q) and sharply 3-transitively
on GF(q) ∪ {∞} respectively. Applying a contraction operation to these groups, we obtain
the following new lower bounds for prime powers q satisfying q ≡ 1 (mod 3).

1. M(q − 1, q − 3) ≥ (q2 − 1)/2 for q odd, q ≥ 7,
2. M(q − 1, q − 3) ≥ (q − 1)(q + 2)/3 for q even, q ≥ 8,
3. M(q, q − 3) ≥ Kq2log(q) for some constant K > 0 if q is odd.

These results resolve a case left open in a previous paper (Bereg et al. in Des Codes Cryptogr
86(5):1095–1111, 2018),where itwas shown thatM(q−1, q−3) ≥ q2−q andM(q, q−3) ≥
q3 − q for all prime powers q such that q �≡ 1 (mod 3). We also obtain lower bounds for
M(n, d) for a finite number of exceptional pairs n, d , by applying this contraction operation
to the sharply 4 and 5-transitive Mathieu groups.
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1 Introduction

1.1 Notation and general background

We consider permutations on a set � of size n. Given two such permutations π and σ , we let
hd(π, σ ) = |{x ∈ � : π(x) �= σ(x)}|, so hd(π, σ ) is the number of elements of � at which
π and σ disagree. When hd(π, σ ) = d , we say that π and σ and are at Hamming distance
d , or that the Hamming distance between π and σ is d . A permutation array A is a set of
permutations on �. We say that hd(A) = d if d = min{hd(π, σ ) : π, σ ∈ A}. For positive
integers n and d with d ≤ n we let M(n, d) be the maximum number of permutations in any
permutation array A satisfying hd(A) ≥ d .

Consider a fixed ordering x1, x2, · · · , xn of the elements of �. The image string of the
permutation σ ∈ A is the string σ(x1)σ (x2) · · · σ(xn). Thus the permutation array A can
also be regarded as an |A| × n matrix whose rows are the image strings of the permutations
in A. When hd(A) = d , any two rows of A disagree in at least d positions and some pair of
rows disagrees in exactly d positions. In particular, if G is a permutation group acting on �,
then we obtain a |G| × n permutation array whose rows consist of the image strings of all
the elements of G. We refer to this array by G, and we use hd(G) to refer to the hamming
distance of this array.

The study of permutation arrays began (to our knowledge) with the papers [10,15], where
good bounds onM(n, d) (together with other results) were developed based on combinatorial
methods, motivated by the Gilbert–Varshamov bounds for binary codes. In recent years there
has been renewed interest in permutation arrays, motivated by suggested applications in
power line transmission [14,19,26,34], block ciphers [11], and in multilevel flash memories
[22,23].

We review here some of the known results and methods for estimating M(n, d).
Some elementary exact values and bounds onM(n, d) are the following (summarizedwith

short proofs in [9]); M(n, 2) = n!, M(n, 3) = n!
2 , M(n, n) = n, M(n, d) ≥ M(n − 1, d),

M(n, d) ≥ M(n, d+1),M(n, d) ≤ nM(n−1, d), andM(n, d) ≤ n!
(d−1)! .More sophisticated

bounds were developed in the above cited papers [10,15], with a recent improvement in [35].
The smallest interesting case for d is d = 4. Here some interesting and non-elementary
bounds for M(n, 4) were developed in [13], using linear programming, characters on the
symmetric group Sn , and Young diagrams. In [24] it is shown that if K > 0 is a constant
with n > e30/K

2
and s < n1−K , then M(n, n − s) ≥ θ(s!√log(n)). The lower bound is

achieved by a polynomial time randomized construction, using the Lovasz Local Lemma in
the analysis.

There are various construction methods for permutation arrays. First there is a connection
with mutually orthogonal latin squares (MOLS). Letting N (n) denote the maximum number
of MOLS of order n, it was shown in [8] that M(n, n − 1) ≥ nN (n). From this it follows
that if q is a prime power, then M(q, q − 1) = q(q − 1). Computational approaches for
bounding M(n, d) for small n and d , including clique search, and the use of automorphisms
are described in [9,21,29]. There are also constructions of permutation arrays that arise from
the use of permutation polynomials, also surveyed in [9], which we mention briefly below.

Additional constructionmethods are coset search [2] and partition and extension [3]. In the
first of these, one starts with a permutation group G on n letters with hd(G) = d , and which
is a subgroup of some group H (for example H = Sn). Now for disjoint permutation arrays
A, B on the same set of letters, let hd(A, B) = min{hd(σ, τ ) : σ ∈ A, τ ∈ B}. For x /∈ G
we observe that the coset xG of G in H is a permutation array with hd(xG) = hd(G).
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For cosets x1G, x2G, · · · , xkG of G, the Hamming distance of the permutation array
∪1≤i≤k xiG is the minimum of d and m, where m = min{hd(xiG, x jG) : 1 ≤ i < j ≤ k}.
The method of coset search is to iteratively find coset representatives xi so that m, while in
general less than d , is still reasonably large. The partition and extension method is a way of
obtaining constructive lower bounds M(n + 1, d + 1) from such bounds for M(n, d).

Moving closer to the subject of this paper, we consider a class of optimal constructions
which arise through sharply transitive groups.We say that a permutation array A on a set� of
size n is sharply k-transitive on� if given any two k-tuples x1, x2, · · · , xk and y1, y2, · · · , yk
of distinct elements of� there exists a unique g ∈ A such that g(xi ) = yi for all 1 ≤ i ≤ k. In
our applications A will be the set of image strings of a permutation group acting on �. From
the boundM(n, d) ≤ n!

(d−1)! we have for any positive integer k thatM(n, n−k+1) ≤ n!
(n−k)! .

Now if G is a sharply k-transitive group acting on �, then |G| = n!
(n−k)! . Also, in such a G

any two distinct elements g, h ofG can agree in at most k−1 positions, since otherwise gh−1

is a nonidentity element of G fixing at least k elements of �, contrary to sharp k-transitivity.
Thus hd(G) ≥ n − k + 1. So a sharply k-transitive group G implies the existence of an
optimal array (the set of image strings of elements of G) realizing M(n, n− k+1) = n!

(n−k)! .
The following theorem gives a strong converse to the above, including the generalization to
arbitrary arrays that may not be groups.

Theorem 1 [4]Let A be a permutation array on a set of n letters satisfying hd(A) ≥ n−k+1.
Then |A| = n!

(n−k)! = M(n, n − k + 1) ⇐⇒ A is sharply k-transitive on this set.

The sharply k-transitive groups (for k ≥ 2) are known, and these are as follows [6,12,28];

k = 2: the Affine General Linear Group AGL(1, q) acting on the finite field GF(q),
consisting of the transformations {x → ax + b : x, a �= 0, b ∈ GF(q)},
k = 3: the Projective Linear Group PGL(2, q) acting on GF(q) ∪ {∞}, consisting of
the transformations {x → ax+b

cx+d : x, a, b, c, d ∈ GF(q), ad − bc �= 0},
k = 4: the Mathieu group M11 acting on a set of size 11,
k = 5: the Mathieu group M12 acting on a set of size 12,
arbitrary k: the symmetric group Sk acting on a set of size k is sharply k and (k − 1)-
transitive, as well as the alternating group Ak acting on a set of size k is sharply (k −
2)-transitive ([28], Theorem 7.1.4).

In this paper we obtain new lower bounds on M(n, d) for n and d near a prime power.
Previous results of this kind are given in [9] where it is shown that for n = 2k with n �≡ 1
(mod 3) we haveM(n, n−3) ≥ (n+2)n(n−1) andM(n, n−4) ≥ 1

3n(n−1)(n2+3n+8). It
is also shown that for any prime power nwith n �≡ 2(mod 3)we haveM(n, n−2) ≥ n2. These
results are based on permutation polynomials. Similar such results appearing in [2], are based
on a contraction operation applied to permutation arrays defined in the next section. The latter
results yield M(n − 1, n − 3) ≥ n2 − n when n �≡ 1(mod 3), M(n − 2, n − 5) ≥ n(n − 1)
when n �≡ 2(mod 3) with n �≡ 0, 1(mod 5), and M(n, n − 3) ≥ n3 − n when n �≡ 1(mod 3).

Our goal is to obtain new lower bounds when q is prime power satisfying q ≡ 1
(mod 3); that is, to resolve the case left open in [2], namely, where the hamming distance
under contraction decreases by 3.We accomplish this by applying the contraction operation to
the permutation arrays AGL(1, q) and PGL(2, q) (acting on GF(q) and on GF(q) ∪ {∞}
respectively), obtaining the following constructive lower bounds, where q a prime power
satisfying q ≡ 1 (mod 3).

(1) for q ≥ 7, M(q − 1, q − 3) ≥ (q2 − 1)/2 for q odd and M(q − 1, q − 3) ≥
(q − 1)(q + 2)/3 for q even, and
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(2) M(q, q − 3) ≥ Kq2log(q) for some constant K > 0 if q is odd, and
(3) bounds for M(n, d) for a finite number of exceptional pairs n, d , obtained from the
Mathieu groups.

Wewill use standard graph theoretic notation. In particular for a graphG and S ⊆ V (G)we
let [S]G be the graph with vertex set S and edge set E([S]G) = {xy : x, y ∈ S, xy ∈ E(G)},
and we call it the graph induced by S. When G is understood by context, we abbreviate [S]G
by [S].

1.2 Contraction and the contraction graph

Consider a permutation array A acting on a set � = {x1, x2, · · · , xn} of size n, where the
elements of � are ordered by their subscripts. We distinguish some element, say xn , by
renaming it F . Thus the image string of any element σ ∈ A will be σ(x1)σ (x2) · · · σ(F),
and we say that σ(xi ) occurs in position or coordinate xi of the string. Now for any π ∈ A,
define the permutation π� on � by

π�(x) =

⎧
⎪⎨

⎪⎩

π(F) if x = π−1(F),

F if x = F,

π(x) otherwise.

Thus the image string of π� is obtained from the image string of π by interchanging the
symbols F and π(F) if π(F) �= F , while π� = π if and only if π(F) = F . In either case,
π� has F as its final symbol. We let π

�
− be the permutation on n − 1 symbols obtained

from π� by dropping the last symbol F from π�. As an example, if π = aFbcd , then
π� = adbcF , and π

�
− = adbc. We call the operation π → π

�
− contraction, and we call π�

−
the contraction of the permutationπ . Further, for any subset R ⊂ A, let R� = {π� : π ∈ R},
and R�

− = {π�
− : π ∈ R}. So R�

− is a permutation array on the symbol set � − {F} of size
n − 1, and is called the contraction of R.

We note some basic properties related to the contraction operation.

Lemma 2 Let G be a permutation group acting on the set � of size n, and let π, σ ∈ G.

(a) The only coordinates in either π or σ whose values are affected by the � operation
are π−1(F), σ−1(F), and F. Thus hd(π�, σ�) ≥ hd(π, σ ) − 3.
(b) Assume hd(π�, σ�) = hd(π, σ ) − 3. Then πσ−1 contains a 3-cycle in its disjoint
cycle factorization, and |G| is divisible by 3.
(c) Let S ⊆ G. Then |S�| = |S�

−| and hd(S�) = hd(S�
− ). If also hd(S) > 3, then

|S| = |S�|.
Proof Part (a) follows immediately from the definition of the � operation.

For (b), the assumption implies that there are positions xi , x j , F at which the image
strings of π and σ disagree and π� and σ� agree. So for some indices s, t we must have
π(xi ) = xs, π(x j ) = F, π(F) = xt , while σ(xi ) = F, σ (x j ) = xt , σ (F) = xs . Then πσ−1

(composing left to right) contains the 3-cycle (xi , F, x j ) in its disjoint cycle factorization.
Thus the subgroup ofG generated byπσ−1 has order divisible by 3, and hence |G| is divisible
by 3 by Lagrange’s theorem.

Consider (c). The first two equalities follow from the fact that all image strings in S� have
F as their last coordinate. To see |S| = |S�| when hd(S) > 3, suppose to the contrary that
π� = σ� for distinct π, σ ∈ S. As noted in the proof of part (a), π� and σ� can agree in at
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Fig. 1 Neighbors π, σ in CH ;
σ(π−1(F)) = π(F), and
π(σ−1(F)) = σ(F)

most three positions where π and σ disagreed. Thus π and σ already agreed in at least n− 3
positions. So hd(π, σ ) ≤ 3, a contradiction. ��

Consider a permutation array H on n symbols with hd(H)= d . The array H�
−

is on n−1 symbols and satisfes hd(H�
− )≥ d − 3 by Lemma 2a,c. For the arrays

H = AGL(1, q), PGL(2, q) and certain Mathieu groups, our goal is to find a subset I ⊂ H
with hd(I�

− ) ≥ d − 2; that is, a subset I whose contraction I�
− has Hamming distance

larger by 1 than the lower bound d − 3 for hd(H�
− ) given by Lemma 2a. The lower bound

M(n − 1, d − 2) ≥ |I�
− | follows. Now our underlying arrays H will satisfy hd(H) > 3, so

hd(I ) ≥ hd(H) > 3. Thus by Lemma 2cwe have hd(I�
− ) = hd(I�) and |I�

− | = |I�| = |I |.
So we get M(n − 1, d − 2) ≥ |I |, yielding the main results of this paper.

To find such a subset I of H , we employ a graph CH defined as follows.

Definition 3 Let H be a permutation arraywith hd(H) = d . Define the contraction graph for

H , denoted CH , by V (CH ) = H and E(CH ) = {πσ : π, σ ∈ H , hd(π�, σ�) = d − 3}.
For π ∈ CH , notice that if π(F) = F , then π is an isolated point in CH . This is

because then π� = π , so that for any other σ ∈ CH we have hd(π�, σ�) = hd(π, σ�) ≥
hd(π, σ ) − 2, implying no edge joining π and σ in CH . We thus have the following charac-
terization of edges in CH :

πσ ∈ E(CH ) ⇐⇒ {π(F) �= F, σ (F) �= F, σ (π−1(F)) = π(F), π(σ−1(F)) = σ(F)}.
(1)

This condition on edges is illustrated in Fig. 1.
Since hd(H�) ≥ d − 3 by Lemma 2a, it follows that any independent set I of vertices

in CH must satisfy hd(I�) ≥ d − 2. Now by using Lemma 2a, c (together with hd(H) > 3
for our arrays H ) we get M(n − 1, d − 2) ≥ |I | as explained in the preceding paragraph.
We are thus reduced to finding a large independent set in CH for each of the arrays H =
AGL(1, q), PGL(2, q), and Mathieu groups considered in this paper.

2 The contraction graph for AGL(1,q)

Let q be a prime power. Recall the Affine General Linear Group AGL(1, q) acting as a
permutation group on the finite field GF(q) of size q , as the set of transformations {x →
ax + b : a �= 0, x, b ∈ GF(q)} under the binary operation of composition. For any π ∈
AGL(1, q) the permutationπ� onGF(q) is defined as in the previous section, based on some
ordering x1, x2, · · · , xq of the elements ofGF(q), where F = xq is a distinguished element.
Clearly |AGL(1, q)| = q(q −1). By standard facts AGL(1, q) is sharply 2-transitive in this
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action, and it is straightforward to see that hd(AGL(1, q)) = q − 1 (see Lemma 4a for most
of that short proof).

Our goal in this section is to obtain a lower bound on M(q − 1, q − 3) for prime powers
q ≥ 7 satisfying q ≡ 1(mod 3). Our method will involve the contraction graph CAGL(1,q)

for AGL(1, q), which we henceforth abbreviate by CA(q).
By definition we then have V (CA(q)) = AGL(1, q), and E(CA(q)) = {πσ :

hd(π�, σ�) = q − 4}. Following the plan described in the previous section, we find an
independent set I inCA(q). Once we have such an I , then I�

− is a permutation array on q−1

symbols, and by Lemma 2c satisfies hd(I�
− ) = hd(I�) ≥ q − 3. This implies the lower

bound M(q − 1, q − 3) ≥ |I�
− | = |I�| = |I |, the last equality by Lemma 2c, since q ≥ 7

implies hd(I ) ≥ q − 1 > 3. The actual size of I will then yield our precise lower bound.
We are thus reduced to finding a large independent set I inCA(q), and from this we get the

bound M(q − 1, q − 3) ≥ |I |. We begin on that in the following Lemma, which establishes
relations in the finite field GF(q) that correspond to edges in the graph CA(q).

Lemma 4 Letπ and σ be vertices of the graphCA(q), q ≡ 1(mod 3), say with σ(x) = ax+r
and π(x) = bx + s.

(a) If a �= b, then hd(π, σ ) = q − 1.
(b) If π(F) = F, then π is an isolated point in CA(q). There are q−1 points π satisfying
π(F) = F.
(c) Suppose π and σ are neighbors in CA(q). Then

(c1) hd(π, σ ) = q − 1, and hd(π�, σ�) = hd(π, σ ) − 3, and
(c2) a

b and b
a are the distinct roots of the quadratic t2 + t + 1 = 0 over GF(q).

Proof For (a), just observe that π(x) = σ(x) has the unique solution x = s−r
a−b .

For the first claim in (b) suppose not, and let σ be a neighbor of π in CA(q). Then we
have hd(π�, σ�) = q − 4, implying also that hd(π, σ ) = q − 1 by Lemma 2a. Let i be
the coordinate of agreement between π and σ . Since π(F) = F , we have π� = π . Thus
hd(π, σ�) = q − 4. Now σ� can have at most two coordinates, apart from i , in which it
agrees with π , these being F and j = σ−1(F). So altogether π and σ� agree in at most the
3 coordinates i, j, F . So q − 4 = hd(π, σ�) ≥ q − 3, a contradiction.

Now consider the second claim in (b). Since π(F) = F , we have q − 1 choices for the
value π(i) for any fixed i ∈ GF(q), i �= F . Hence there are q − 1 choices for the ordered
pair (π(F), π(i)), each such choice determining π uniquely by the sharp 2-transitivity of
AGL(1, q) acting on GF(q). The claim follows.

For c1), by the definition of edges inCA(q)we have q−4 = hd(π�, σ�) ≥ hd(π, σ )−3
using Lemma 2a. Since hd(π, σ ) = q or q − 1, it follows that hd(π, σ ) = q − 1 and we
have equality throughout, as required.

Consider c2). By part c1) we have hd(π, σ ) = q−1 and hd(π�, σ�) = hd(π, σ )−3. So
there are distinctα, β ∈ GF(q), with neitherα norβ being F , such thatσ(F) = i ,σ(α) = F ,
and σ(β) = j , and π(F) = j , π(α) = i , and π(β) = F for distinct i, j ∈ GF(q). This
gives the following set of equations in GF(q).

⎧
⎪⎪⎨

⎪⎪⎩

σ(α) − σ(β) = F − j = a(α − β)

σ(α) − σ(F) = F − i = a(α − F)

π(α) − π(β) = i − F = b(α − β)

π(α) − π(F) = i − j = b(α − F).

(2)
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The second and third equations of (2) imply

a(α − F) = −b(α − β). (3)

Now starting with the first equation of (2) we obtain

a(α − β) = F − j

= (F − i) + (i − j)

= (a + b)(α − F) (by the second and fourth equations of (2)).

Multiplying Eq. (3) by a and the last equation by b, we obtain the equations
{
a2(α − F) = −ab(α − β)

ab(α − β) = b(a + b)(α − F).
(4)

Thus a2(α− F) = −b(a+b)(α− F), and on dividing by α− F (since α �= F) we obtain

a2 + b(a + b) = 0. (5)

Dividing Eq. (5) by a2 or by b2, we obtain that a/b and b/a are both roots of the equation
t2 + t + 1 = 0.

We show that a/b and b/a are distinct. Assuming otherwise, then a/b = 1 or −1. If q
is even then from 1 + t + t2 = 0 we get the contradiction 1 = 0 since the characteristic is
2. Now assume q is odd. If a/b = 1, then we get 1 + 1 + 1 = 0, forcing q ≡ 0(mod 3), a
contradiction. If a/b = −1, then we get 1 = 0, again a contradiction. ��

Let t1 and 1
t1
be the distinct roots of t2 + t + 1 = 0 in GF(q) for q ≡ 1 (mod 3) (by

Corollary 23a). Let π ∈ CA(q) with π(x) = ax + r , and let σ be a neighbor of π in CA(q).
Then by Lemma 4c2 we have σ(x) = at1x + s1 or σ(x) = a 1

t1
x + s2, so far with s1 and s2

undetermined. The next lemma shows that s1 and s2 are uniquely determined by π and t1.

Lemma 5 Let q be a prime power with q ≡ 1 (mod 3). Suppose π is not an isolated point
of CA(q), say with π(x) = ax + r . Let t1 be a root of t2 + t + 1 = 0 in GF(q). Then the
neighbors of π in CA(q) are σ1 and σ2, given by σ1(x) = at1x + (a − t1)F + r(1+ t1) and
σ2(x) = a 1

t1
x + (a − 1

t1
)F + r(1+ 1

t1
). In particular, each non-isolated point of CA(q) has

degree 2 in CA(q).

Proof Let N (π) be the set of neighbors of π in CA(q). First we verify that σ1, σ2 ∈ N (π),
giving details only for σ1 ∈ N (π) as the containment σ2 ∈ N (π) is proved similarly. To do
this, we show that all conditions of (1) are satisfied with σ1 playing the role of σ . Clearly
π(F) �= F since π is not isolated. To show σ1(F) �= F , assume not. Suppose first that
a �= 1. Then σ1(F) = F yields F = r

1−a . But now we get π(F) = ar
1−a + r = r

1−a = F , a
contradiction. Next suppose a = 1 so π(x) = x + r . Then σ1(F) = F together with a = 1
yields r(1 + t1) = 0. Combining this with t1 �= −1 yields r = 0. But then π(F) = F , a
contradiction.

So it remains to show that σ1(π
−1(F)) = π(F) and π(σ−1

1 (F)) = σ1(F). For the first
equality, solving ax + r = F we obtain π−1(F) = F−r

a . Thus σ1(π
−1(F)) = at1

( F−r
a

) +
(a − t1)F + r(1 + t1) = aF + r = π(F), as required. For the second equality, from the
formula for σ1 we obtain σ−1

1 (F) = 1
at1

(
F(1−a+ t1)−r(1+ t1)

)
. Plugging this into π and

simplifying, we obtain π(σ−1
1 (F)) = 1

t1

(
F(1−a+ t1)−r(1+ t1)

)+r . Working backwards

from the equality π(σ−1
1 (F)) = σ1(F) we must show that 1

t1

(
F(1− a + t1) − r(1+ t1)

) =
F

(
a−t1+at1

)+r t1.This is equivalent to F
(
1−a+t1

) = r(t21 +t1+1)+F(at1−t21 +at21 ) =
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F(at1 − t21 +at21 ). We are now reduced to showing 1−a+ t1 = at1 − t21 +at21 . This follows
from t21 + t1 + 1 = 0.

Now let σ ∈ N (π), and we show that σ = σ1 or σ2. By Lemma 4, we know that
σ(x) = at1x + s1 or σ(x) = a 1

t1
x + s2 for suitable s1, s2 ∈ GF(q). Suppose first that

σ(x) = at1x+s1. Applying the equality σ(π−1(F)) = π(F) together with π−1(F) = F−r
a ,

we get at1
( F−r

a

) + s1 = aF + r . so s1 = (a − t1)F + r(1 + t1). Thus σ = σ1. A very
similar argument shows that if σ(x) = a 1

t1
x + s2, then s2 = (a − 1

t1
)F + r(1+ 1

t1
), and thus

σ = σ2. So we have N (π) = {σ1, σ2}, completing the proof.

Consider the subgroup Q = {x + b : b ∈ GF(q)} of AGL(1, q). Clearly |Q| = q , and
for each h ∈ GF(q), h �= 0, Q has the coset hxQ = {hx + b : b ∈ GF(q)}, which we
abbreviate by Qh .

Theorem 6 Let q be a prime power with q ≡ 1 (mod 3). Then the connected components
of CA(q) are as follows.

(a) There are q − 1 isolated points, these being the points π satisfying π(F) = F.
(b) If q is odd, then each non-isolated point component is a cycle of length 6.
(c) If q is even, then each non-isolated point component is a cycle of length 3.

Proof For part (a), we show that π ∈ CA(q) is an isolated point if and only if π(F) = F .
Then (a) follows by Lemma 4b.

If π(F) = F , then immediately π is isolated in CA(q) by Lemma 4b. For the converse,
suppose to the contrary that π is isolated and that π(F) �= F . Let σ1 be given by σ1(x) =
at1x + (a − t1)F + r(1 + t1) as in Lemma 5. Then the proof of Lemma 5, starting from
the established claim π(F) �= F (this claim being an assumption here), shows that σ1 is a
neighbor of π in CA(q). This contradicts π being isolated.

Consider part (b). By Lemma 5 each nontrivial component of CA(q) is a cycle. Let π0 be
a point on such a cycleC , say with π0 ∈ Qa . Let t1 be a fixed root of t2+ t+1 = 0. Consider
a sequence of 4 vertices π0π1π2π3 on C with π jπ j+1 ∈ E(CA(q)) for 0 ≤ j ≤ 2. We may
suppose that π j ∈ Q

at j1
by Lemma 5 and straightforward induction (otherwise replace t1 by

1
t1
). Thusπ0, π1, π2 are distinct since they belong to distinct cosets of Q. Since t31 = 1, we see

also that π0 and π3 belong to the same coset Qa of Q. We now show that π0 �= π3. Writing
π1(x) = bx + c (so b = at1), we apply the first and third equations of (2) with π0 and π1

playing the roles of σ andπ respectively, to get t1 = b
a = −( i−F

j−F

) = −(
π0(F)−F
π1(F)−F

)
. Applying

this equation two more times we get 1 = t31 = −(
π0(F)−F
π3(F)−F

)
, so that

(
π0(F)−F
π3(F)−F

) = −1. Thus

π0(F) �= π3(F) , so π0 �= π3. Thus each cycle component has length at least 4.
Consider now a sequence of 7 vertices π0π1 · · · π6 on C with π jπ j+1 ∈ E(CA(q)) for

0 ≤ j ≤ 5. We claim the first 6 of these π0, π1, · · · , π5 must be distinct as follows. Clearly
any two vertices π j , π j+3 are distinct, 0 ≤ j ≤ 2, by the same argument that showed
π0 �= π3. But any two vertices πi , π j with i �≡ j(mod 3) are distinct, since t1 �= 1 and
t21 �= 1 imply that they belong to different cosets of Q, proving the claim. Finally note that

1 = t61 = (
π0(F)−F
π6(F)−F

)
, so that π0(F) = π6(F). Since also π0 and π6 also belong to the same

coset Qa of Q, it follows that π0 = π6. Thus the component C containing π0 is a cycle of
length 6, as required.

Now consider part (c). Consider as above the sequence of 4 vertices π0π1π2π3 in a
nontrivial component, with π jπ j+1 ∈ E(CA(q)) for 0 ≤ j ≤ 2. We get

(
π0(F)−F
π3(F)−F

) = −1 =
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1 since q is even. So since also π0 and π3 belong to the same coset Qa of Q, it follows that
π0 = π3. Thus the cycle containing π0 has length 3. ��

Corollary 7 Let q be a prime power with q ≡ 1 (mod 3) and q ≥ 7. Then

(a) if q is odd, then M(q − 1, q − 3) ≥ (q2 − 1)/2, and
(b) if q is even, then M(q − 1, q − 3) ≥ (q − 1)(q + 2)/3.

Proof For part (a) we form an independent set I in CA(q) by taking 3 independent points in
each cycle component of length 6, together with the set Y of isolated points. Then M(q −
1, q − 3) ≥ |Y | + 1

2 (|CA(q) − Y |) = q − 1 + 1
2

(
q(q − 1) − (q − 1)

) = (q2 − 1)/2 , as
required.

For part (b), we form an independent set I inCA(q) by taking one point from each length 3
cycle component, together with the set Y of isolated points. We then have M(q−1, q−3) ≥
|Y | + 1

3 (|CA(q) − Y |) = (q − 1)(q + 2)/3. ��

Thebest previously known lower bound forM(q−1, q−3), forq a primepowerwithq ≡ 1
(mod 3), of which we are aware is derived from a general lower bound for M(n, n − 2) for
arbitrary n based onMOLS. Recall the lower bound [8] from the Introduction M(n, n−1) ≥
nN (n) for any integer n, from which we obtain M(n, n − 2) ≥ M(n, n − 1) ≥ nN (n). It

is known [7] that for n sufficiently large we have N (n) ≥ n
1

14.8 , implying that for arbitrary

n we have M(n, n − 2) ≥ n1+ 1
14.8 . Therefore our result M(q − 1, q − 3) ≥ Kq2 (for some

constant K ) fromCorollary 7, for q as above, significantly improves on the previously known

M(q − 1, q − 3) ≥ (q − 1)1+ 1
14.8 .

We also mention other lower bounds for M(n, n − 2), though not for the n = q − 1 (with
q a prime power) of our result, and so not directly comparable to ours.

(1) M(n, n − 2) ≥ n2 for prime powers n �≡ 2(mod 3) using permutation polynomials [9]
as mentioned in the Introduction.

(2) M(n, n − 2) = |PGL(2, q)| = q3 − q for n = 1+ q , where q is a prime power, as an
immediate consequence of the sharp 3-transitivity of PGL(2, q) and Theorem 1.

(3) M(n, n−2) ≥ n3−n when n is a power of a prime and n �≡ 1(mod 3), using contraction
applied to PGL(2, n) [2].

3 The contraction graph for PGL(2,q)

Let q be a power of a prime. The permutation group PGL(2, q) is defined as the set of
one to one functions σ : GF(q) ∪ {∞} → GF(q) ∪ {∞}, under the binary operation of
composition, given by

{

σ(x) = ax + b

cx + d
: a, b, c, d ∈ GF(q), ad �= bc, x ∈ GF(q) ∪ {∞}

}

. (6)

Here σ(x) is computed by the rules:

1. if x ∈ GF(q) and x �= −(d/c), then σ(x) = ax+b
cx+d ,

2. if x ∈ GF(q) and x = −(d/c), then σ(x) = ∞,
3. if x = ∞, and c �= 0, then σ(x) = a/c, and
4. if x = ∞, and c = 0, then σ(x) = ∞.
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We regard PGL(2, q) as a permutation group acting on the setGF(q)∪{∞} of size q+1
via the one to one map x �→ σ(x). One can show that |PGL(2, q)| = (q+1)q(q−1), and it
is well known that PGL(2, q) is sharply 3-transitive in its action on GF(q) ∪ {∞} (see [30]
for a proof). It is straightforward to verify that hd(PGL(2, q)) = q − 1, and by Theorem 1
we have M(q + 1, q − 1) = |PGL(2, q)| = (q + 1)q(q − 1).

Take a fixed ordering of GF(q) ∪ {∞} with ∞ as final symbol, say x1, x2, · · · , xq ,∞
where the xi are the distinct elements of GF(q). Then any element π ∈ PGL(2, q) is
identified with the length q+1 string π(x1)π(x2)π(x3) · · · π(xq)π(∞), which again we call
the image string of π . For any such π ∈ PGL(2, q) the permutation π� on GF(q)∪{∞} is
defined as in the section introducing contraction, where F = ∞ is the distinguished element
of GF(q) ∪ {∞} in that definition. As an example, if π = a∞bcde, then π� = aebcd∞,
and π

�
− = aebcd . In the same way, for any subset R ⊂ PGL(2, q), the sets R�, and R�

− are
defined as in that section, with F = ∞. Since hd(PGL(2, q)) = q−1 = q+1−2, the image
strings of any two elements of PGL(2, q) agree in at most two positions. It follows from
Lemma 2a that for any π, σ ∈ PGL(2, q) we have hd(π�, σ�) ≥ hd(π, σ ) − 3 ≥ q − 4.
That is, π� and σ� can agree in at most 5 positions; up to 2 occurring from the original π

and σ , and up to 3 more occurring from the π� and σ� operation.
As noted earlier, lower bounds for M(q, q − 3) and M(q, q − 4) when q �≡ 1(mod 3)

based on permutation polynomials are known [9]. Thus in this section, we restrict ourselves
to the case q ≡ 1(mod 3), q an odd prime power, where such bounds are not known. For
technical reasons we take q ≥ 13.

The plan will be similar in some respects to the one we used in the previous section. That
is, for a certain set I ⊂ PGL(2, q)we will find a permutation array I�

− ⊂ PGL(2, q)
�
− on q

symbols with hd(I�
− ) ≥ q − 3, thus obtaining the lower bound on M(q, q − 3) ≥ |I�

− |. This
set I will be an independent set in the contraction graph CPGL(2,q) for PGL(2, q), which
we abbreviate by CP (q).

Since hd(PGL(2, q)) = q − 1, CP (q) is given by V (CP (q)) = PGL(2, q), and
E(CP (q)) = {πσ : hd(π�, σ�) = q − 4}. So edges πσ of CP (q) correspond to pairs
π, σ ∈ PGL(2, q) for which hd(π�, σ�) achieves its least possible value of q − 4, occur-
ring when π� and σ� agree in 5 positions, so consequently hd(π�, σ�) = hd(π, σ ) − 3.
Thus a set I ⊆ V (CP (q)) is independent in CP (q) if and only if it satisfies hd(I�) ≥ q −3.
By Lemma 2c, we get hd(I�

− ) = hd(I�) ≥ q − 3, while |I�
− | = |I�| = |I |, with the last

equality following from hd(I�) = q − 3 > 3 since q ≥ 13.
We are thus reduced to finding an independent set I in CP (q), from which M(q, q−3) ≥

|I | follows.
To do this, it will be useful to represent functions in PGL(2, q) in a form different than

the standard ax+b
cx+d form.

Definition 8 Fix a prime power q .

1. Let K , r , i ∈ GF(q) with r �= 0. Define the function f : GF(q) ∪ {∞} → GF(q) ∪
{∞} by f (x) = K + r

x−i for x /∈ {i,∞}, while f (∞) = K and f (i) = ∞.
2. Let P = {K + r

x−i : K , r , i ∈ GF(q), r �= 0} be the set of all functions defined in 1.
3. Let N ⊂ PGL(2, q) be given by N = {π ∈ PGL(2, q) : π(x) = ax+b

cx+d , c �= 0}.
We will now see that P is the same set of functions as N .

Lemma 9 Let the map α : N → P be defined as follows. For any π ∈ N with π(x) = ax+b
cx+d ,

let α(π) ∈ P be given by α(π)(x) = a
c +

bc−ad
c2

x+ d
c

. Then
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(a) π and α(π) are the same function on GF(q) ∪ {∞}.
(b) |P| = |N | = q2(q − 1).
(c) The map α is one to one and onto.

Proof For (a), straightforward manipulation shows that for x �= − d
c we have π(x) = a

c +
bc−ad
c2

x+ d
c

= α(π)(x). Also by definition α(π)(∞) = a
c = π(∞) and α(π)(− d

c ) = ∞ =
π(− d

c ). so π and α(π) are the same function.
Consider (b). Clearly |P| = q2(q − 1) since there are q − 1 choices for r , and q choices

for each of K and i , independent of each other. To show |N | = q2(q − 1), observe first that
for any π ∈ PGL(2, q) with π(x) = ax+b

cx+d we have c = 0 ⇔ π(∞) = ∞. The ⇒ direction
is immediate by definition. To see ⇐, assume c �= 0. Then π(∞) = a

c �= ∞, completing the
proof of the observation. Next we have π(∞) = ∞ ⇔ π(x) = Ax + B ∈ AGL(1, q) for
all x for suitable A �= 0, B ∈ GF(q), by definition of computing in PGL(2, q). Thus we
have |N | = |PGL(2, q)| − |AGL(2, q)| = (q + 1)q(q − 1) − q(q − 1) = q2(q − 1).

Part (c) is immediate from parts (a) and (b), since any two distinct elements of N are
distinct as functions. As an alternative (constructive) proof, let f (x) = K + r

x−i ∈ P be

given. Then for π(x) = Kx+r−i K
x−i ∈ N we have α(π) = f . Thus α is onto, and since

|P| = |N |, α is also one to one. ��

We now see how the above observations, together with results which come later, reduce
the study ofCP (q) to the set P of permutations. It was shown above that for π ∈ PGL(2, q),
we have π(∞) = ∞ ⇔ c = 0. By condition (1) (with ∞ = F) we see that π(∞) = ∞
implies that π is an isolated point in CP (q), and we will see later that for CP (q) the converse
is also true. So to study the structure of CP (q) apart from its isolated points, we are reduced
to studying its subgraph induced by the permutations in N . By the bijection α : N ↔ P ,
under which π ∈ N and α(π) ∈ P are the same permutation on GF(q) ∪ {∞}, we are then
reduced to studying P .

Lemma 10 Let π, σ ∈ P with π(x) = a + r
x−i , σ(x) = b + s

x− j with r , s �= 0. Then

hd(π�, σ�) = hd(π, σ ) − 3 ⇐⇒ (b − a)( j − i) = r and r = s .

Proof �⇒ : By assumption we have π(∞) = a and π(i) = ∞, together with σ( j) = ∞
and σ(∞) = b. By Lemma 2a the only coordinates of either π or σ whose values are
affected by the � operation are the 3 coordinates π−1(∞) = i, σ−1(∞) = j , and ∞. So the
assumption hd(π�, σ�) = hd(π, σ ) − 3 implies that σ(i) = a and π( j) = b. Thus we get
π( j) = a+ r

j−i = b, yielding (b−a)( j− i) = r as required. Now interchanging the roles of
π and σ in this argument, specifically, using σ(i) = b+ s

i− j = a, we get (a−b)(i − j) = s,
so also r = s.

⇐� : Again by assumption we have π(∞) = a, σ(∞) = b, π(i) = ∞, σ( j) = ∞,
and (b − a)( j − i) = r . To prove hd(π�, σ�) = hd(π, σ ) − 3, it remains only to show
that π( j) = b and σ(i) = a. For simplicity we let r = s = 1, since the argument does not
depend on r = s. Solving for b in (b − a)( j − i) = 1 we get b = 1

j−i + a = π( j). Solving

for a we get a = b − 1
j−i = b + 1

i− j = σ(i), as required. ��

Lemma 11 Let q = pm, where p is an odd prime, with q ≡ 1(mod 3), q ≥ 13. Let
π, σ ∈ P, say with π(x) = a + r

x−i , σ(x) = b + s
x− j , with r , s �= 0. Then hd(π�, σ�) =

hd(π, σ ) − 3 ⇐⇒ πσ ∈ E(CP (q)).
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Proof ⇐�: By definition of edges in CP (q) and Lemma 2a we have q−4 = hd(π�, σ�) ≥
hd(π, σ ) − 3. Now since q − 1 ≤ hd(π, σ ) ≤ q + 1, equality is forced together with
hd(π, σ ) = q − 1. This yields hd(π�, σ�) = hd(π, σ ) − 3.
�⇒ : By the assumption hd(π�, σ�) = hd(π, σ )−3 and hd(π, σ ) ≥ q−1 we are reduced
to showing that hd(π, σ ) = q − 1; that is, that π and σ already agree in two coordinates.

By assumption and Lemma 10 we have r = s, so write π(x) = a + r
x−i and σ(x) =

b+ r
x− j , for a, b, i, j, k ∈ GF(q)with r �= 0. Note also i �= j , since otherwise by Lemma 10

we get r = 0, a contradiction.
We now derive a quadratic equation over GF(q) whose distinct roots are the coordinates

of agreement between π and σ . Since hd(π�, σ�) = hd(π, σ ) − 3, by Lemma 10 we have
(b − a)( j − i) = r . Thus b = r

j−i + a. Now we set π(x) = σ(x) to find the possible
coordinates x at which π and σ agree, understanding that x can be neither i nor j since π and
σ can have no agreements in any of the coordinates i = π−1(∞), j = σ−1(∞), or ∞ by
Lemma 2a. Substituting r

j−i + a for b and simplifying we obtain 1
x−i − 1

x− j = 1
j−i . Hence

i− j
(x−i)(x− j) = 1

j−i , andwe get the quadratic x
2−(i+ j)x+i j+(i− j)2 = 0.ByCorollary 23b

there are two distinct roots to this equation, giving the two coordinates of agreement forπ and
σ as follows; x1 = 1

2 [i(1+√−3)+ j(1−√−3)], and x2 = 1
2 [i(1−√−3)+ j(1+√−3)].

Hence by our reduction at the beginning of the proof it follows that πσ ∈ E(CP (q)), as
required. ��

The preceding two Lemmas yield the following.

Corollary 12 Let q = pm, where p is an odd prime, with q ≡ 1(mod 3), q ≥ 13.

(a) Let π, σ ∈ P, say with π(x) = a + r
x−i , σ(x) = b + s

x− j , r , s �= 0. Then πσ ∈
E(CP (q)) ⇐⇒ r = s and (b − a)( j − i) = r .
(b) π ∈ PGL(2, q) is an isolated point in CP (q) ⇐⇒ π(∞) = ∞.

Proof Part (a) follows immediately from Lemmas 10 and 11.
For part (b), suppose first that π(∞) = ∞. Then immediately π is isolated in CP (q) by

the equivalence (1) (with ∞ = F) applicable to any contraction graph.
Conversely, suppose to the contrary that π is isolated in CP (q) and π(∞) = x �= ∞. Let

i = π−1(∞), and let j be any coordinate with j /∈ {i,∞}, and let π( j) = y. Then by sharp
3-transitivity of PGL(2, q) we can find an element σ ∈ PGL(2, q) satisfying σ( j) = ∞,
σ(i) = x , and σ(∞) = y. Then we get hd(σ�, π�) = hd(σ, π) − 3. So by Lemma 11 we
have πσ ∈ E(CP (q)), contradicting π being isolated. ��

The next two theorems, which use the preceding Corollary, tell us more about CP (q).
For S ⊂ CP (q), recall that [S] is the subgraph of CP (q) induced by S. When r is fixed by
context, we denote a vertex π ∈ CP (q), π ∈ P , with π(x) = a + r

x−i , by the abbreviation
(i, a).

Consider the partition of P given by P = ∪r �=0Pr , where for r ∈ GF(q) with r �= 0,
Pr = {a + r

x−i : a, i ∈ GF(q)}, so |Pr | = q2. Further consider the partition of Pr given by
Pr = ∪i∈GF(q)Bi (r), where Bi (r) = {a + r

x−i : a ∈ GF(q)}.
Theorem 13 Let q = pm, where p is an odd prime, with q ≡ 1(mod 3), q ≥ 13. Then the
following hold in the graph CP (q).

(a) For any r �= s, r , s �= 0, we have [Pr ] ∼= [Ps].
(b) For any r �= 0 and i �= j , [Bi (r)∪ Bj (r)] is a perfect matching, which matches Bi (r)
to B j (r).
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(c) For any r �= 0, the subgraph [Pr ] is regular of degree q − 1.
(d) Let v ∈ CP (q) be a non isolated point, and N (v) the set of neighbors of v in CP (q).
Then [N (v)] is a disjoint union of cycles.

Proof For (a), consider for any r ∈ GF(q), r �= 0, the map ϕ : P1 → Pr given by
ϕ(a+ 1

x−i ) = a+ r
x−ri . Let v,w ∈ P1, say with v(x) = a+ 1

x−i andw(x) = b+ 1
x− j . Then

vw ∈ E([P1]) ⇔ (b − a)( j − i) = 1 ⇔ (b − a)(r j − ri) = r ⇔ ϕ(v)ϕ(w) ∈ E([Pr ]) .
Thus ϕ is a graph isomorphism, and since r was arbitrary, it follows that for any s �= 0 we
have [Pr ] ∼= [P1] ∼= [Ps].

Consider (b). Fix r , and consider any two points (i, a) and ( j, b) of Pr . By Corollary 12
we have (i, a)( j, b) ∈ E(CP (q)) if and only if i �= j and (b− a)( j − i) = r in GF(q). Let
Hi j = [Bi (r) ∪ Bj (r)] for i �= j . Note there can be no edge in Hi j of the form (i, a)(i, b)
since (b − a)(i − i) = 0 �= r , and similarly no edge of the form ( j, a)( j, b). Now given
(i, a) ∈ Bi (r), a point ( j, b) ∈ Bj (r) is a neighbor of (i, a) if and only if (b− a)( j − i) = r
by Corollary 12.

Thus for this fixed i and j we can uniquely determine b by the equation b = r( j−i)−1+a,
showing that ( j, b) is the only neighbor of (i, a) in Bj (r). A symmetric argument shows
that each point in Bj (r) has a unique neighbor in Bi (r). Thus E(Hi j ) is a perfect matching,
which matches Bi (r) to Bj (r).

For (c), let v ∈ CP (q), say with v ∈ Bi (r) ⊂ Pr for some r �= 0. By Corollary 12,
any neighbor of v in CP (q) must also lie in Pr . By part (b), the neighbors of v are in
one to one correspondence with the sets Bj (r), j �= i , j ∈ GF(q). Thus v has exactly
|GF(q)| − 1 = q − 1 neighbors in CP (q).

For (d), take v ∈ CP (q), and by the isomorphism of subgraphs [Pr ] from part (a), we can
take v = (i, a) ∈ P1. By Corollary 12 we have N (v) ⊂ P1. It suffices to show that [N (v)]
is regular of degree 2. Let ( j, b) ∈ N (v), so j �= i by part (b). Now any neighbor (k, c)
of ( j, b) in N (v) must lie in N ((i, a)) ∩ N (( j, b)). So to show that ( j, b) has degree 2 in
[N (v)], it suffices to show that (k, c) ∈ P1 satisfies (k, c) ∈ N ((i, a)) ∩ N (( j, b)) if and
only if k is a root in GF(q) of a quadratic equation over GF(q) having two distinct roots in
GF(q).

Suppose first that (k, c) ∈ N ((i, a)) ∩ N (( j, b)). By Corollary 12 we must have the
equations

(c − a)(k − i) = 1, (b − c)( j − k) = 1, (b − a)( j − i) = 1.

Using the second and third equations we get c = ( j − i)−1−( j −k)−1+a, and from the first
equation c = (k−i)−1+a. Setting these two expressions for c equalwe obtain (k−i)−1+( j−
k)−1 = ( j−i)−1. Some simplification leads to the quadratic k2−k(i+ j)+i j+( j−i)2 = 0
with coefficients over GF(q) and unknown k. By Corollary 23b from the Appendix, we see
that that there are two distinct solutions for k; namely k1 = 1

2 [i(1+ √−3) + j(1− √−3)],
and k2 = 1

2 [i(1 − √−3) + j(1 + √−3)].
Conversely suppose that k is one of the two distinct solutions of k2 − k(i + j)+ i j + ( j −

i)2 = 0. Then (k − i)( j − k) = −k2 + k(i + j) − i j = ( j − i)2, and using 1
(k−i)( j−k) =

( 1
j−i

)( 1
k−i + 1

j−k

)
, one can derive 1

k−i + 1
j−k = 1

j−i . Now set c = 1
k−i + a, so immediately

we get (c− a)(k − i) = 1. Since (i, a) and ( j, b) are neighbors we have (b− a)( j − i) = 1,
so b = 1

j−i + a. It follows that c = 1
k−i + a = 1

j−i − 1
j−k + a = b − 1

j−k . Hence we get
(b − c)( j − k) = 1. Thus the three equations (c − a)(k − i) = 1, (b − c)( j − k) = 1, and
(b − a)( j − i) = 1 hold, showing that (k, c) ∈ N ((i, a)) ∩ N (( j, b)) by Corollary 12.

Note that once k is determined (as one of the two distinct roots), then the point (k, c) is
uniquely determined by the perfect matching between Bk(1) and Bi (1) (or Bj (1)). Thus we
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obtain that an arbitrary point ( j, b) ∈ N (v) has exactly two neighbors in N (v), completing
(d). ��

To round out the structure of CP (q) we consider the connected components of CP (q).

Theorem 14 Let q = pm, where p is an odd prime, with q ≡ 1(mod 3), q ≥ 13. Then the
connected components of CP (q) are as follows.

(1) the isolated points - these are of the form π(x) = ax +b, a �= 0, and there are q(q −1)
of them,

(2) the q − 1 many connected components [Pr ] induced by the sets Pr .

Proof By Corollary 12b we have that π ∈ PGL(2, q) is an isolated point in CP (q) if and
only if π(∞) = ∞. This is equivalent to π(x) = ax + b, a �= 0 and there are q(q − 1) such
points, completing part 1).

The remaining permutations are all of the form π(x) = a + r
x−i for suitable a, r , i ∈

GF(q) with r �= 0 as shown earlier. Hence it suffices to analyze the connected component
structure of [∪r �=0Pr ]. By Corollary 12 and Theorem 13a, to prove part 2) it suffices to prove
that any one of the [Pr ], say [P1], is connected.

Recall the partition P1 = ∪i∈GF(q)Bi (1) defined above, and from now on we abbreviate
Bi (1) by Bi . Let g by a generator of the multiplicative cyclic subgroup of nonzero elements
in GF(q). Then we can write this partition as P1 = B0 ∪ (∪1≤k≤q−1Bgk ). We regard the sets
in this partition as “levels” of CP (q); where B0 is level 0 and Bgk is level k, 1 ≤ k ≤ q − 1.
See Fig. 2 for an illustration of P1 from this viewpoint, where in that figure we continue with
the notation (i, a) for a + 1

x−i . In particular, (gt , a) refers to a + 1
x−gt . By Theorem 13b

the subgraph of [P1] induced by any two levels has edge set which is a perfect matching, as
illustrated in Fig. 3.

First we observe that to show that [P1] is connected it suffices to show that any two vertices
in B0 are joined by a path in [P1]. For if that was true, then we can find a path in [P1] from
(0, 0) to any vertex w ∈ P1 (thus showing connectedness of [P1]) as follows. If w ∈ B0

we are done by assumption. So suppose w /∈ B0, say with w ∈ B(gk). Let v be the unique
neighbor in B0 of w under the perfect matching E([B0 ∪ B(gk)]). Let P be the path from
(0, 0) to v in [P1] which exists by assumption. Then P followed by the edge vw is a walk
joining (0, 0) to w, so P contains a path from (0, 0) to w.

By Theorem 13b there is a (unique) path in [P1] starting at (0, 0) and passing through
levels 1, 2, · · · , q−1 in succession. Let (0, 0)−(g, α1)−(g2, α2)−...−(gq−1, αq−1) be this
path, illustrated in bold lines in Fig. 4, for suitable αk ∈ GF(q). For k ≥ 1 let (0, βk) ∈ B0

be the unique neighbor in level 0 of the vertex (gk, αk) in level k. The edges (gk, αk)(0, βk)

are illustrated by the dotted lines in Fig. 4.
This path and the points (0, βk) are illustrated in Fig. 4. Our first step is to obtain the

values of αk and βk .

Claim 1 We have

(a) α1 = 1
g , α2 = 1

g−1 , and αk = gk−1+gk−3+gk−4+···+g+1
(g−1)gk−1 for k ≥ 3.

(b) β1 = 0, and βk = (g2−g+1)(1+g+g2+g3+···+gk−2)

gk (g−1)
for k ≥ 2.

Proof of Claim 1 We repeatedly use the fact, proved earlier, that if (r , a) and (s, b) are adjacent
vertices in the contraction graph CP (q), then (s − r)(b − a) = 1.

For part (a), since (0, 0) − (g, α1) is an edge in CP (q) we have (α1 − 0)(g − 0) = 1, so
α1 = 1

g .Since (g, α1)−(g2, α2) is an edgewe have (α2− 1
g )(g2−g) = 1, yieldingα2 = 1

g−1 ,
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Fig. 2 The graph P1, partitioned into levels B0 and Bgi , 1 ≤ i ≤ q − 1

Fig. 3 Perfect matching between any two levels of P1

and similarly (α3 − 1
g−1 )(g

3 − g2) = 1, yielding α3 = g2+1
(g−1)g2

. Now for k ≥ 3 we proceed

by induction, having proved the base case k = 3. Since (gk, αk) − (gk−1, αk−1) is an edge,
we have (αk − αk−1)(gk − gk−1) = 1. Solving for αk and applying the inductive hypothesis

to αk−1, we obtain αk = 1
gk−gk−1 + gk−2+gk−4+gk−5+···+g+1

(g−1)gk−2 , which after simplification yields
the claim.

For part (b), we have β1 = 0 since (0, 0) − (g, α1) is an edge by definition. Since
(g2, α2) − (0, β2) is an edge, we have ( 1

g−1 − β2)(g2 − 0) = 1, and solving for β2 and
simplifying we get the claim for k = 2. Consider now k ≥ 2. The existence of edge
(gk, αk) − (0, βk) gives (αk − βk)gk = 1, so βk = αk − 1

gk
. Using the formula for αk

from part (a), we have βk = gk−1+gk−3+gk−4+···+g+1
(g−1)gk−1 − 1

gk
= gk+gk−2+gk−3+···+g2+1

(g−1)gk
=

(g2−g+1)(1+g+g2+g3+···+gk−2)

gk (g−1)
. QED
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Fig. 4 The path (0, 0) − (g, α1) − (g2, α2) − · · · − (gq−1, αq−1) in P1, where (0, βi ) is the level 0 neighbor

of (gi , αi )

Claim 2 We have |{βk : 1 ≤ k ≤ q − 1}| = q − 1; that is, the βk , 1 ≤ k ≤ q − 1, are
pairwise distinct.

Proof of Claim 2 In applying Claim 1, we note first that g could have been chosen so as not to
be a root of x2 − x + 1 = 0 as follows. The number of roots in GF(q) to this quadratic is at
most 2. Now the number of generators in themultiplicative cyclic groupGF(q)−{0} of order
q − 1 is the euler totient function φ(q − 1), defined as the number of integers 1 ≤ s ≤ q − 1
which are relatively prime to q − 1. Since q is an odd prime power with q ≥ 13, we know
that φ(q − 1) > 2, so such a g exists.

We show that for any pair j, k with 1 ≤ j < k ≤ q − 1 we have βk �= β j .
Consider first the case j = 1. Sinceβ1 = 0,weneed to show thatβk �= 0 for 2 ≤ k ≤ q−1.

Supposing the contrary and applying Claim 1b we get (g2−g+1)(1+g+g2+g3+···+gk−2)

gk (g−1)
= 0.

Canceling the nonzero factor g2−g+1
gk (g−1)

(by the preceding paragraph) on the left side, we get

0 = (1 + g + g2 + g3 + · · · + gk−2) = gk−1−1
g−1 . This implies that gk−1 − 1 = 0, so g has

order k − 1. This is impossible since k − 1 ≤ q − 2 while g, being a generator of the cyclic
group GF(q) − {0}, must have order q − 1.

Sonowsuppose that j ≥ 2.Assuming the contrary thatβk = β j and applyingClaim1b,we
get after simplification that 1+g+g2+g3+· · ·+gk−2 = gk− j (1+g+g2+g3+· · ·+g j−2) =
gk− j + gk− j+1 + · · · + gk−2. Thus we have 0 = 1 + g + g2 + · · · + gk− j−1 = gk− j−1

g−1 . So

gk− j = 1, which is impossible since k − j ≤ q − 3, while g has order q − 1. QED

We introduce some notation in preparation for the rest of the argument. Let Z = {(0, βk) :
1 ≤ k ≤ q − 1} ⊂ B0. Since |B0| = q , by Claim 2 we have |B0 − Z | = 1, and we let
u be the unique vertex of B0 − Z . Further for any subset T of vertices in CP (q), we let
N (T ) = {v ∈ CP (q) : v /∈ T , vt ∈ E(CP (q)) for some t ∈ T } be the neighbor set of T in
CP (q). Recall also that [T ] denotes the subgraph of CP (q) induced by T .
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Claim 3 Let H = [Z ∪ N (Z)]CP (q), and H ′ = [{u} ∪ N (u)]CP (q).

(a) H ′ is connected.
(b) H is connected.
(c) V (H) ∩ V (H ′) = ∅
(d) We have the partition V (P1) = V (H) ∪ V (H ′).

Proof of Claim 3 For part (a), we apply Theorem 13b to deduce that H ′ has the spanning star
subgraph K1,q−1, where the center is u and the leaves, one in each level Bi , i �= 0, form
N (u). Thus H ′ is connected.

Consider part (b). Since β1 = 0 we have (0, 0) ∈ Z ⊂ V (H). Thus it suffices to show
that for any w ∈ V (H) there is a path in H joining (0, 0) to w.

Suppose first that w ∈ Z , so w = (0, βk) for some k. Observe that (gi , αi ) ∈ N (Z) for
all i by definition. So the path (0, 0) − (g, α1) − (g2, α2) − ... − (gk, αk) followed by the
edge (gk, αk) − (0, βk) is path in H joining (0, 0) to w.

Next suppose w ∈ N (Z), say with w adjacent to (0, βk) ∈ Z . Then the path (0, 0) −
(g, α1) − (g2, α2) − ... − (gk, αk) followed by the length 2 path (gk, αk) − (0, βk) − w is a
walk in H joining (0, 0) to w, and this walk contains the required path.

Next consider (c). Suppose not, and let z ∈ V (H) ∩ V (H ′), say with z ∈ B(gk), noting
that k ≥ 1 since each level, in particular B0, is an independent set in [P1]. Then z has two
distinct neighbors in B0; namely u and (0, β j ), for some 1 ≤ j ≤ q − 1. This contradicts
the fact that the edge set of [B(gk) ∪ B0] is a perfect matching between the levels B(gk) and
B0 by Theorem 13b. Thus V (H) ∩ V (H ′) = ∅.

Consider now (d). By part (c), it suffices to show that |V (P1)| = |V (H)| + |V (H)′|. By
Theorem 13b, it follows that |V (H)| = |Z |q = (q −1)q. For the same reason |V (H ′)| = q.

Therefore |V (P1)| = q2 = |V (H)| + |V (H)′| as required. QED

We can now complete the proof of the theorem by showing that P1 is connected. In
view of Claim 3, to do this we are reduced to showing that there is an edge vw ∈ E([P1])
with v ∈ H ′ and w ∈ H . Suppose no such edge exists. Since [P1] is (q − 1)-regular by
Theorem 13c, it follows that H ′ is a simple q−1 regular graph on q vertices. Thus H ′ = Kq .
Hence [N (u)] = Kq−1. But this is a contradiction for q ≥ 5 since by Theorem 13d the
neighborhood of any nonisolated point in CP (q) is regular of degree 2, while [N (u)] is
regular of degree q − 2 > 2 since we have assumed q ≥ 13. ��

We can now obtain our independent set in CP (q) as a consequence of our previous results
and the following theorem of Alon [1].

Theorem 15 [1] Let G = (V,E) be a graph on N vertices with average degree t ≥ 1 in which
for every vertex v ∈ V the induced subgraph on the set of all neighbors of v is r-colorable.
Then the maximum size α(G) of an independent set in G satisfies α(G) ≥ c

log(r+1)
N
t log(t),

for some absolute constant c.

Corollary 16 Let q be a power of an odd prime p, with q ≡ 1(mod 3).

(a) α(CP (q)) ≥ Kq2log(q) for some constant K > 0.
(b) M(q, q − 3) ≥ Kq2log(q) for some constant K > 0.

Proof We will be applying Alon’s result (Theorem 15) together with our results proved
earlier in this section. The latter results require q ≥ 13. We can drop this requirement in
these applications since the case q = 7 can be included in the conclusion of this corollary
by decreasing, if necessary, the absolute constant K appearing in its statement.
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Consider (a). By Corollary 12a there is no edge between any two subgraphs [Pr ] and
[Ps] for r �= s. Since there are q such subgraphs, and by Theorem 13a) they are pairwise
isomorphic, it suffices to show that α(P1) ≥ Kqlog(q) for some constant K .

We now apply Alon’s theorem to the subgraph [P1] ofCP (q). Now [P1] is (q−1)-regular
by Theorem 13c, and has q2 points. Since the neighborhood of every point is a disjoint union
of cycles by Theorem 13d, this neighborhood must be 3-colorable. It follows by Alon’s

theorem that [P1] contains an independent set of size c
log(4)

q2

q−1 log(q − 1) ∼ Kqlog(q), for
some constant K .

For (b), let I be an independent set in CP (q) of size Kq2log(q) for suitable constant K ,
guaranteed to exist by by part (a). Then by the reduction made in the discussion preceding
Lemma 10 we have M(q, q − 3) ≥ |I | ≥ Kq2log(q). ��

We mentioned at the end of Sect. 2 that M(n, n − 2) ≥ n2, where n is a prime power
satisfying n �≡ 2(mod 3) [9]. Thus M(n, n − 3) ≥ M(n, n − 2) ≥ n2 is also true for such
n, including in particular prime powers n satisfying n ≡ 1(mod 3) that are of interest in this
paper. This is the best previously known lower bound for M(n, n−3) applicable to the latter
such n. So our new lower bound M(n, n − 3) ≥ Kn2 log(n) for such n is an improvement
on previous results.

4 Special case lower bounds forM(n,d) via theMathieu groups

In this section we consider the Mathieu groups M11, M12, M22, M23, M24, discovered by E.
Mathieu in 1861 and 1873. These permutation groups are the earliest known examples of
sporadic simple groups. See [6,12,20], or [32] for a discussion of their construction. These
groups act on 11, 12, 22, 23, 24 letters respectively, with M11 being a 1 point stabilizer of
M12, while M23 and M22 are 1 and 2 point stabilizers of M24 respectively. We mention the
recent book [20] as a good reference on these groups.

In this section we apply the contraction operation to these permutation groups to obtain
new permutation arrays, with resulting lower bounds for M(n, d) for suitable n and d .

SinceM12 is sharply 5-transitivewe have byTheorem1 that hd(M12) = 8 andM(12, 8) =
|M12| = 95040. Similarly since M11 is sharply 4-transitive we have M(11, 8) = |M11| =
7920. For M24 we do not have sharp transitivity. But observe that for any permutation group
G acting on some set, and three elements π, σ, τ ∈ G, we have hd(π, σ ) = hd(πτ, στ) =
hd(τπ, τσ ). Thus hd(G) =min{hd(1, σ ) : σ ∈ G}. From the set of disjoint cycle structures
of elements of M24 (available at [18,31]) we find that the largest number of 1-cycles in the
disjoint cycle structure of any nonidentity element ofM24 is 8. Thus hd(M24) = 24−8 = 16,
and from the stabilizer relation also hd(M23) = hd(M22) = 16.We thus obtainM(24, 16) ≥
|M24| = 24, 423, 040, M(23, 16) ≥ |M23| = 10, 200, 960, and M(22, 16) ≥ |M22| =
443, 520.

We now apply the contraction operation to these groups. Considering the action of M12 on
the 12-letter set � = {x1, x2, · · · , x12}, we designate some element, say x12, of � as the dis-
tinguished element F in the definition of π�. Then define for each π ∈ M12 the permutation
π� on the set� exactly as in the introduction. Thus, using the natural ordering of elements of
� by subscript, the image string of any σ ∈ M12 can be written σ(x1)σ (x2) · · · σ(x11)σ (F).

As before, we let π
�
− be the permutation on 11 symbols obtained from π� by dropping

the final symbol F , and for any subset S ⊂ M12, we let S�
− = {π�

− : π ∈ S}, sometimes

writing this as (S)
�
−. ��
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Proposition 17 (a) hd((M12)
�
−) ≥ 6.

(b) M(11, 6) ≥ |M12| = 95040.
(c) M(10, 6) ≥ 8640.

Proof We start with (a). Suppose not. Since hd(M12) = 8, and for any α, β ∈ M12 we have
hd(α�, β�) ≥ hd(α, β)− 3 by Lemma 2a, the contrary assumption implies hd((M�

12)−) =
5. Thus there is a pair σ, τ ∈ M12 such that hd(σ, τ ) = 8 and hd(σ�, τ�) = 5; so
hd(σ�, τ�) = hd(σ, τ ) − 3. Thus by Lemma 2b we know that πσ−1 has a 3-cycle in
its disjoint cycle factorization so the order of πσ−1 is divisible by 3.

Since hd(σ, τ ) = 8 andπ andσ are permutations on 12 letters, it follows that there are four
positions, call them xi , 1 ≤ i ≤ 4, atwhichπ andσ agree.Thenπσ−1 belongs to the subgroup
H of M12 fixing these four positions; that is H = {α ∈ M12 : α(xi ) = xi , 1 ≤ i ≤ 4}.
This H , denoted M8, is known to be isomorphic to Q8, the quaternion group of order 8
([5], Sect. 3.2). We can also verify this directly by making use of GAP (Groups, Algorithms,
Programming), a system for computational discrete algebra. The following output employing
GAP shows that H ∼= Q8, the quaternion group of order 8 [17]

gap> G: = MathieuGroup(12);;
gap> H = Stabilizer(G,[1,2,3,4], OnTuples);;
‘‘Q_{8}’’

Now the order of πσ−1 is divisible by 3 as noted above. But 3 does not divide |Q8|, a
contradiction to Lagrange’s theorem.

Consider next (b). Using Lemma 2c and hd(M12) = 8 > 3, we have |M12| = |(M12)
�
−|.

Thus (M12)
�
− is a permutation array on 11 letters of size |M12| with hd((M12)

�
−) ≥ 6. Part

(b) follows.
For part (c), we recall from the introduction the elementary bound M(n−1, d) ≥ M(n,d)

n .

Using part (a), we then obtain M(10, 6) ≥ M(11,6)
11 ≥ 8640.

We remark that using the same method as in part (b) of the above proposition one can
show M(10, 6) ≥ |M11| = 7920. But this is obviously weaker than the bound we give in
part (c).

We now consider the contraction of M24 and resulting special case bounds for M(n, d).
Using similar notation as for M12 above, we let M24 act on the set of 24 letters � =
{x1, x2, · · · , x24}, and we designate x24 as the distinguished symbol F in the definition of
π� from the introduction. Now define π� for any π ∈ M24 as in the introduction, along with
accompanying definitions S� and S�

− for S ⊆ M24. ��

Proposition 18 (a) hd((M24)
�
−) ≥ 14.

(b) M(23, 14) ≥ |M24| = 244, 823, 040.
(c) M(22, 14) ≥ |M24|

23 = 10, 644, 480.

d) M(21, 14) ≥ |M24|
23.22 = 483, 840.

Proof For (a), suppose not. Since hd(M24) = 16, and for any α, β ∈ M24 we have
hd(α�, β�) ≥ hd(α, β)−3, it follows that hd((M24)

�
−) = 13. Thus there is pair σ, τ ∈ M24

such that hd(σ, τ ) = 16 and hd(σ�, τ�) = 13; so hd(σ�, τ�) = hd(σ, τ ) − 3. Hence by
Lemma 2b, τσ−1 has a 3-cycle in its disjoint cycle structure factorization.

Since hd(σ, τ ) = 16, and σ and τ are permutations on 24 letters, it follows that σ and
τ must agree on 8 positions. Thus τσ−1 belongs to the subgroup H of M24 fixing these
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8 positions. From the structure theory of M24, we know that if these 8 positions form an
“octad” (among the 24 positions), then H = M16 ∼= Z2 × Z2 × Z2 × Z2, the elementary
Abelian group of order 16 ([32] Theorem 3.21, and [33], pp. 197–208). Again, this can also
be verified directly using GAP from the following output [17].

gap> G: = MathieuGroup(24);;
gap> H: = Stabilizer(G, [1,2,3,4,5], OnTuples);;
gap> S = SylowSubgroup(H,2);;
gap> octad: = Filtered([1..24], x-> not x in
MovedPoints(S) ); [1,2,3,4,5,8,11,13]
gap> H: = Stabilizer(G, octad, OnTuples);;
gap> StructureDescription(H);
‘‘C_{2}\times C_{2}\times C_{2}\times C_{2}’’

If these 8 positions do not form an octad, then H is the identity ([32], Lemma 3.1). Now the
order of τσ−1 is divisible by 3, so 3 must divide |H |. By Lagrange’s theorem, this contradicts
that |H | has order either 16 or 1.

Consider next (b). Using Lemma 2c and hd(M24) = 16 > 3, we have |M24| = |(M24)
�
−|.

Thus (M24)
�
− is a permutation array on 23 letters of size |M24|, and by part (a) we have

hd((M24)
�
−) ≥ 14. Part (b) follows.

For part (c), we again use the bound M(n−1, d) ≥ M(n,d)
n . Using part (b), we then obtain

M(22, 14) ≥ M(23,14)
23 ≥ |M24|

23 = 10, 644, 480.

For (d), using M(n − 1, d) ≥ M(n,d)
n again we get M(21, 14) ≥ M(22,14)

22 ≥ |M24|
23.22 =

483, 840. ��

5 Concluding remarks

We mention some problems left open from our work.
1. Recall that if I is an independent set in CP (q), then M(q, q − 3) ≥ |I |. To find a

large such I , one can focus on any nontrivial connected component, say P1, of CP (q). If P1
contains an independent set of size k, then by the isomorphism of the connected components
Pi , 1 ≤ i ≤ q − 1, we get an independent set of size k(q − 1) + q(q − 1) = (q − 1)(k + q)

in CP (q), where q(q − 1) counts the number of isolated points in CP (q). Our lower bound
M(q, q − 3) ≥ Kq2log(q) implies, again by the isomorphism of components, that α(P1) ≥
Cqlog(q) (where α(G) is the maximum size of an independent set in a graph G), for some
constant C . We therefore ask whether an improvement on this lower bound for α(P1) can be
found.

Now V (P1) can be viewed as a rectangular array {(i, a) : i, a ∈ GF(q)} as in Fig. 2,
where we let i be the row index, and a the column index. By Corollary 12a an independent set
in P1 is just a subset S of this array with the property that for any two points (i, a), ( j, b) ∈ S
we have (b − a)( j − i) �= 1 in GF(q). Using the integer programming package GUROBI
[16] and a Greedy program that we constructed, we computed independent sets in P1 of size k
for various q . This k, together with the resulting lower bound (q −1)(k+q) for M(q, q −3)
are presented in Table 1. The primes q = 41, 47, 53, 59, 71, 83, 89, for example, are not
included in this table since q �≡ 1(mod 3), and hence M(q, q − 3) ≥ (q + 1)q(q − 1),
an improvement over the lower bound obtained using GUROBI. Other primes q , or powers
of a prime, are not included, as previously known lower bounds, for example, when q − 2
is also a prime, or prime power, are not included. That is, in those cases, PGL(2, q − 1)

123



New lower bounds for permutation arrays 2125

Table 1 Independent set of size k
in P1 obtained either by integer
linear programming or by a
greedy program

q k New Prev

37 191 8208 1369

43 191 9828 1849

49 226 13,200 2401

67 340 26,862 4489

79 415 38,532 6241

97 535 60,672 9409

121 2613 328,080 14,641

157 984 177,996 24,649

163 1031 193,428 26,569

211 1403 338,940 44,521

223 1496 381,618 49,729

277 1956 616,308 76,729

289 2045 672,192 83,521

307 2197 766,224 94,249

331 2396 899,910 109,561

337 2462 940,464 113,569

343 2501 972,648 117,649

ColumnNew shows the resulting lower bound (q−1)(k+q) forM(q, q−
3), when q ≡ 1(mod 3). Column Prev shows the previous lower bounds
for M(q, q − 3) from [9]

has (q − 1)3 − q + 1 elements, so M(q − 1, q − 3) ≥ (q − 1)3 − q + 1. That means that
M(q, q − 3) ≥ (q − 1)3 − q + 1 [10].

2.We also ask for good upper bounds on α(P1).

Appendix: Some applications of number theory

In this section we prove some facts from number theory that were used in this paper.
We start with some notation. For an odd prime p and integer r �≡ 0(mod p), define the

Legendre symbol ( rp ) to be 1 (resp. -1) if r is a quadratic residue (resp. nonresidue); that is a
square (resp. nonsquare) mod p. If r ≡ 0(mod p), then define ( rp ) = 0. We give some basic
facts about this symbol without proof in the Lemma and Theorem which follow, since such
proofs may be found in standard number theory books.

Lemma 19 For an odd prime p and integers r and s we have the following.

(a) (−1
p ) = 1 if p ≡ 1(mod 4), and (−1

p ) = −1 if p ≡ 3(mod 4).
(b) ( rsp ) = ( rp )( s

p ).

Theorem 20 (Gauss Quadratic Reciprocity Law) For odd primes p and q we have

( p

q

)( q

p

)
= (−1)

(
p−1
2

)(
q−1
2

)

.

Now let’s apply these facts to determining (−3
p ) for odd primes p.
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Theorem 21 Let p > 3 be an odd prime. Then

(a) If p ≡ 1(mod 6), then −3 is a quadratic residue mod p.
(b) If p ≡ 5(mod 6), then −3 is a quadratic nonresidue mod p.

Proof By the lemma above we have (−3
p ) = (−1

p )( 3p ), while by quadratic reciprocity we

have ( 3p ) = (
p
3 )(−1)

p−1
2 . Thus

(−3

p

)
= (−1)

p−1
2

(−1

p

)( p

3

)
.

The factors on the right depend on the residue classes of p mod 4 and mod 3. Since p is
odd with p > 3, we have p ≡ 1 or 3(mod 4), and also p ≡ 1 or 2(mod 3). Thus there are
four possible ordered pairs (α, β) where p ≡ α(mod 4) and p ≡ β(mod 3). We calculate
(−3

p ) by these four possibilities, giving details for two of them.

Case 1: α = 1 and β = 1; equivalently p ≡ 1(mod 12).

Now p ≡ 1(mod 3) says that ( p
3 ) = 1. Also p ≡ 1(mod 4) implies (−1)

p−1
2 = 1 and by

Lemma 19 also implies (−1
p ) = 1. So by the formula above we have (−3

p ) = 1, showing that
−3 is a quadratic residue when p ≡ 1(mod 12).

Case 2: α = 1 and β = 2; equivalently p ≡ 5(mod 12).

Now p ≡ 2(mod 3) says that (
p
3 ) = −1. Also p ≡ 1(mod 4) implies (−1)

p−1
2 = 1 and

also Lemma 19 implies (−1
p ) = 1. So by the formula above we have (−3

p ) = −1, showing
that −3 is a quadratic nonresidue when p ≡ 5(mod 12).

By similar calculations we find that (−3
p ) = 1 when α = 3 and β = 1 (equivalently

p ≡ 7(mod 12)), and (−3
p ) = −1 when α = 3 and β = 2 (equivalently p ≡ 11(mod 12)).

Putting together these cases, we see that−3 is a quadratic residuemod pwhen p ≡ 1(mod
6), while −3 is a quadratic nonresidue mod p when p ≡ 5(mod 6), as required. ��

Corollary 22 Consider the prime power q = pm, where p > 3 is an odd prime. If q ≡ 1(mod
3), then −3 is a square in the finite field GF(q).

Proof Since p > 3 is an odd prime we have either p ≡ 1(mod 6) or p ≡ 5(mod 6). If
p ≡ 1(mod 6), then −3 is already a square in the prime subfield GF(p) ⊆ GF(q) by
Theorem 21, so −3 is a square in GF(q), as required.

So suppose p ≡ 5(mod 6). Consider the quadratic extension GF(p)(
√−3) of GF(p)

obtained by adjoining to GF(p) a root of the irreducible (by Theorem 21) polynomial x2+3
over GF(p). Then GF(p)(

√−3) ∼= GF(p2), and −3 is a square in GF(p2).
Since q ≡ 1(mod 3), then since p ≡ 5(mod 6) we have p ≡ 2(mod 3), so it follows that

m must be even. We recall the basic fact from finite fields that GF(pr ) ⊆ GF(ps) if and
only if r |s. It follows that GF(p2) ⊆ GF(q). Thus since −3 is a square in GF(p2), then
−3 is a square in GF(q). ��

Corollary 23 Let q = pm be a prime power, q ≡ 1(mod 3).

(a)The equation x2 + x + 1 = 0 has two distinct solutions in GF(q). If x1 is such a root,
then 1

x1
is the other distinct root.

(b)For q odd and distinct i, j ∈ GF(q), the equation x2 − (i + j)x + i j + (i − j)2 = 0
has two distinct roots in GF(q).
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Proof Consider (a), and suppose first that p is odd. Since the characteristic of the field is
odd, we may find the solutions by the standard quadratic formula. We obtain the solutions
x = 1

2 [−1 + √−3 ], 1
2 [−1 − √−3 ], where we have used the existence of

√−3 in GF(q)

by Corollary 22. These solutions are distinct since p is odd.
Now suppose p = 2. Recall the trace function TrGF(q)/GF(2)(x) = ∑m−1

i=0 x2
i
, defined for

any x ∈ GF(q), which we abbreviate by Tr(x). It can be shown (see [27]) that the quadratic
equation ax2 + bx + c = 0, with a, b, c ∈ GF(2m), a �= 0, has two distinct solutions in
GF(2m) if and only if b �= 0 and Tr( ac

b2
) = 0. In our case we have a = b = c = 1, so

ac
b2

= 1. Since p = 2 and q ≡ 1(mod 3), m must be even. Thus there are an even number of
terms in the sum defining Tr(x), each of them equal to 1. So since the characteristic is 2, we
get Tr( ac

b2
) = 0 in our case. It follows that x2 + x + 1 = 0 has two distinct solutions when

p = 2, as required.
Observe that if x1 is a root of x2 + x +1 = 0, then by direct substitution so is 1

x1
. To show

that x1 and 1
x1

are distinct, assume not. Then x1 = 1 or−1. If q is even, then x21 + x1 +1 = 0
implies that 1 = 0 since the characteristic of the field is 2, a contradiction. Assume q is odd.
Then if x1 = 1 we get 1 + 1 + 1 = 0, implying q ≡ 0(mod 3), a contradiction. If x1 = −1,
then we get 1 = 0, contradiction. Thus x1 and and 1

x1
are distinct.

Next consider (b). Applying the quadratic formula in this field of odd characteristic,
we get the two solutions x = 1

2 [ i + j ± √
(i + j)2 − 4(i j + ( j − i)2) ] = 1

2 [ i + j ±
√−3(i2 + j2) + 6i j ] = 1

2 [ i+ j±√−3(i − j)2 ] = 1
2 [ i+ j±√−3(i− j) ].Now since−3

is a square inGF(q) for q ≡ 1(mod 3) by Corollary 22, it follows that the two solutions for x
can bewritten as x1 = 1

2 [i(1+
√−3)+ j(1−√−3)], and x2 = 1

2 [i(1−
√−3)+ j(1+√−3)].

Also these two solutions are distinct since i �= j and q is odd. ��
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