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Abstract
The transition of visual secret sharing from a black & white secret image to a color image is
not straight-forward. There are several models of color superposition principle. In this paper
we present color visual cryptographic scheme realizing monotone access structure. We first
give a generic construction method to share a color image in same color model. In particular,
our construction achieves maximal contrast. We also give a direct and efficient construction
of visual secret sharing for (k, n)∗-access structure.

Keywords Color visual secret sharing · Cumulative array · Essential participant · Pixel
expansion · Contrast

Mathematics Subject Classification 15A03 · 94A60

1 Introduction

A visual cryptographic scheme (VCS) for a set of n participants P = {1, 2, . . . , n} is a
variant of secret sharing, that encodes a secret image SI into n shares which are distributed
by the dealer among n participants in the form of transparencies on which the shares are
photocopied. Such shares have the property that only “qualified” subsets of participants
can visually recover the secret image by carefully stacking the transparencies. A monotone
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(k, n)-threshold visual cryptographic scheme consists of two phases - sharing phase and
reconstruction phase. During the sharing phase the dealer encodes the secret image into n
pieces and gives each participant a piece. He does this encoding in such a manner that any
set of k or more participants can reconstruct the secret image by stacking their shares and
any set of k − 1 or less participants can not reconstruct the secret. During the reconstruction
phase if k or more participants come together and carefully stack their shares they will be
able to retrieve the secret image visually with some loss in contrast.

The first threshold black and white VCS was proposed by Naor and Shamir [23]. This
concept has been extended in [1–3,5,7–10,16,25] to general access structures. Recently
Arumugam et al. [6] considered a special type of access structure lying in between the
threshold access structure and general access structure. They called it (k, n)∗-access struc-
ture, to address the scenario where one participant is “essential” and he needs the help of any
k − 1 parties other than him, to recover the secret image. Some of the works that forwarded
this idea can be found in [14,15,17,25].

Color visual cryptography was first conceptualized by Verheul–Tilborg [27]. They first
showed how to share a colored secret image among participants and gave construction of
a color (n, n)-visual cryptographic scheme. The transition from sharing a black and white
image to sharing a colored image is not straight-forward. There are issues with the color
superposition principle. In B/W image superposition of two white pixels results in white
pixel whereas if at least one of the two is a black pixel, the resulting pixel is black. The
situation is not so simple for color images. Superposition of two different colors may give
rise to a third color. Therefore, conceptualizing the model of color superposition is absolutely
necessary. Broadly speaking, there are three major color models [13]: same color model, no
darkening model and general model. In the same color model, the superposition of pixels
with different colors is not allowed with the exception of the annihilator/masking “•” color.
Thus superposing two same colored pixels gives back that color while superposing a colored
pixel with “•” gives back “•”. However in this model the darkening problem is not addressed.
Superposition of two i colored pixels gives back one i colored pixel. The no-darkeningmodel
is similar to the samecolormodel in the sense that twodifferent colors cannot be superimposed
but differs in the fact that when two or more same colored pixels are superimposed then a
darker version of the color is reconstructed. Finally, in the general model no restrictions
on superpositions are put - the color superposition satisfies real world color superposition
principles. So the darkening problem is also considered.

The work of Cimato et al. [12] considered the construction of (k, n)-threshold color visual
secret sharing in the no-darkening model. Their construction was based on the basis matrices
of a (k−1, k−1)-threshold black &white visual cryptographic scheme. The pixel expansion

of the resulting c-color VCS is given by c

(
n

k

)
2k−2 and achieves “maximal contrast”. The

term maximal contrast loosely means that while trying to recover a pixel of some color no
other false colored pixel is reconstructed. They have also given a construction for c-color
(2, n)-VCS with pixel expansion c(n − 1). The general model of color superposition was
considered in an early work by Rijmen et al. [24]. The works [4,21] also considered the real
color superposition principles. Using results from the [4,21] one can generically construct
(2, n)-threshold color visual secret sharing schemes from black and white cryptographic
schemes. In the same color model there are various works e.g. [10,11,27,28]. All of these
works encode the color pixels in such a manner that the (implementation of) superpositions
of pixels satisfy the same color model. Verheul et al. [27] constructed c color (n, n)-threshold
scheme, (k, c−1)-threshold scheme and (k, c)-scheme when c is a prime power. This makes
the constructions quite restrictive in nature. Blundo et al. [10] gave constructions of c color
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Maximal contrast color visual secret sharing schemes 1701

(2, n)-schemes and (n, n)-schemes. Koga et al. [21] and Yang et al. [28] provided color
visual cryptographic schemes for (k, n)-threshold access structures.Moreover, the latter gave
a construction method for color VCS realizing general access structures. Several other color
visual cryptographic schemes [18,20,22,26] were proposed that have extra features. Iwamoto
[19] introduced a “weaker notion of security” and formulated integer linear programming to
color VCS. For more literature and in-depth survey one can refer to [13].

Our contribution: We first provide a generic construction method to realize a color visual
secret sharing scheme over anymonotone access structure in the same-colormodel.Moreover
our scheme achieves maximal contrast. Next we give a direct construction method (in Sect.
3.2) for an important class of access structures viz. (k, n)∗-access structure based on color
(k−1, n−1)-scheme.We also study the relationship between the parameters of the schemes.
Lastly we conclude the paper with some experimental results.

2 Prerequisites

We state some basic definitions and concepts that will be needed throughout this paper.

2.1 The color model

We will follow the Verheul–Tilborg [27] model of color visual cryptography (CVCS). The
model can be perceived as the Same Color model (SC model) of color visual cryptography.
In this model, a colored image is an array of pixels each of which may have one of the c
different colors 0, 1, . . . , c − 1.

The infrastructure of the color superposition principle is the following:
Each secret pixel is divided into m subpixels of color 0, 1, . . . , c − 1. If some subpixels are
placed one top of the other and held to light then a light of color i filters through the stacked
subpixels if and only if all the subpixels are color i . Otherwise, no light i.e. black color filters
through the stacking. The color “black” is denoted by • and always is distinguishable from
the c colors.
The “generalized OR”(GOR) denoted by ∨, of the elements 0, 1, . . . , c − 1 is defined as
follows: i ∨ i = i and i ∨ • = • for all i = 0, 1, . . . , c− 1 and i ∨ j = • for all i �= j where
i, j = 0, 1, . . . , c − 1.
For any n-dimensional vector V with entries from the set {0, 1, . . . , c − 1}, we will denote
with zi (V ), the number of coordinates in V equal to i where i = 0, 1, . . . , c−1. For example,
if V = (0, 1, 1, 2, 2, 2) with entries from the set {0, 1, 2}, then z0(V ) = 1, z1(V ) = 2 and
z2(V ) = 3.

2.2 Color visual cryptographic scheme

A (k, n) threshold access structure consists of some “qualified sets” and some “forbidden
sets”. Any subset containing k or more participants is a qualified set and rest are forbidden
sets. We are now in a position to define an unconditionally secure (k, n)-threshold visual
cryptographic scheme with c colors. We will denote such a scheme by (k, n)c-CVCS where
small letter c denotes the number of true colors.
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Definition 1 Let P = {1, 2, . . . , n} be a set of participants. A c-colored (k, n)-threshold
visual cryptographic scheme on P is a scheme that satisfies following two conditions:

1. Any subset of k participants can recover the secret image.
2. Any subset of participants with size strictly less than k does not have any information

about the secret image.

A (k, n)c-CVCS scheme can be implemented by means of c many basis matrices
S0, S1, . . . , Sc−1 where Sb corresponds to the color b ∈ {0, 1, . . . , c − 1}. Entries of the
matrices come from the set {0, 1, . . . , c − 1}. During share generation phase the dealer
chooses the matrix Sb, if the secret pixel is b ∈ {0, 1, . . . , c − 1} and then applies a random
column permutation on the matrix Sb and gives the participant Pi the i-th row of the resulting
matrix as the participant’s share for all i . When the dealer wants to share a c-colored image
then for each constituent pixel he repeatedly performs the above process till all the pixels are
shared. We now formally define what basis matrices are.

Definition 2 (Adopted from [10,28]) A (k, n)c-CVCS with pixel expansion m is realized
using c many n × m matrices S0, S1, . . . , Sc−1 called basis matrices, if there exist two
non-negative numbers h, l with l < h such that the following two conditions hold:

1. (Contrast condition) If X = {i1, i2, . . . , ik} ⊆ P i.e., if X is a qualified set, then for
any b ∈ {0, 1, . . . , c − 1} the component-wise “GOR” of the rows of Sb indexed by X
denoted by SbX , satisfies zb(S

b
X ) ≥ h; whereas, for b′ �= b it results in zb′(SbX ) ≤ l.

2. (Security condition) If Y = {i1, i2, . . . , is} ⊂ P with s < k then the c many s × m
restricted matrices S0[Y ], S1[Y ], . . . , Sc−1[Y ] obtained by restricting S0, S1, . . ., Sc−1

respectively to rows indexed by i1, i2, . . . , is are identical up to column permutations.

The above definition can be extended from (k, n) threshold access structure to any
arbitrary access structure on a set of participants. An access structure on a set of parties
P = {1, 2, . . . , n} can be described by the collection of all qualified sets Q and forbidden
sets F . The collection of minimal qualified sets is defined as Qmin = {B ⊆ P : ∀C �

B, C ∈ F}. On the other hand, the collection of maximal forbidden sets is defined as
Fmax = {F ⊆ P : ∀i /∈ F, F ∪ {i} ∈ Q}. We consider monotone access structure in which
if a set B is qualified then so is every set that contains B and if F is a forbidden set then so
is every subset of it. Hence if we specify Qmin and Fmax , the access structure is uniquely
specified. We now define basis matrices for color VCS realizing a general access structure
(Q,F) with c many colors.

Definition 3 (Adapted from [28]) A (Q,F)c-CVCS with pixel expansionm is realized using
cmany n×m matrices S0, S1, . . . , Sc−1 called basis matrices, if there exist two non-negative
numbers h, l with l < h such that the following two conditions hold:

1. (Contrast condition) If X ∈ Q i.e., if X is a qualified set, then for any b ∈ {0, 1, . . . , c−1}
the component-wise “GOR” of the rows of Sb indexed by X , satisfies zb(SbX ) ≥ h;
whereas, for b′ �= b it results in zb′(SbX ) ≤ l.

2. (Security condition) If Y ∈ F then the c many s × m restricted matrices S0[Y ], S1[Y ],
. . . , Sc−1[Y ] obtained by restricting S0, S1, . . ., Sc−1 respectively to rows indexed by
the participants of Y , are identical up to column permutations.

In [10] the contrast of a color VCS is defined as α = h−l
h+l (keeping parity with [27])

and the loss of contrast is measured by h−l
m(h+l) . However, in [11] the contrast of a CVCS is
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Maximal contrast color visual secret sharing schemes 1703

defined to be the value h−l
m keeping parity with the well-known definition of contrast given

in [23]. Paper [10] defines a scheme to be maximal contrast CVC if the value l = 0. That is,
a scheme is of maximal contrast if while trying to reconstruct a color i ∈ {0, 1, . . . , c − 1}
no other colored pixel j(�= i) is reconstructed. We summarize in the following definition.

Definition 4 (Adopted from [10]) Keeping the same notations as Definition 3, the contrast of
a color CVCS is defined to be α = h−l

h+l . A scheme is said to have maximal contrast if l = 0.

3 Main results

Wefirst construct color visual cryptographic schemes for anymonotone general access struc-
ture. As a building block we assume the existence of (n, n)c-CVCS [10,12,19,21,28].

3.1 Color VCS for general access structures

We present a construction technique to realize color visual cryptographic schemes for any
monotone general access structure. Moreover our construction method achieves maximal
contrast. Let P = {1, 2, . . . , n} be a set of n participants and (Qmin,Fmax ) be a given access
structure. Let Qmin = {B1, B2, . . . , Br } and Fmax = {F1, F2, . . . , Ft }. We will keep these
notations fixed for the rest of this section.

We take the help of construction of (n, n)c-CVCS and use the cumulative array of the
given access structure.

First we recall the idea of cumulative array (see [7]) forQmin . The cumulative array (CA)
is an n× t Boolean matrix such thatCA(i, j) = 1 if and only if i /∈ Fj where n is the number
of participants, i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , t}.

Example 1 The cumulative array for the access structure on a set of six participants with
Qmin = {1234, 1235, 1236} is given by,

Parties F1 = {123} F2 = {12456} F3 = {13456} F4 = {23456}
1 0 0 0 1
2 0 0 1 0
3 0 1 0 0
4 1 0 0 0
5 1 0 0 0
6 1 0 0 0

where {123} means the set {1, 2, 3}, {12456} means the set {1, 2, 4, 5, 6} etc.

Let us consider our access structure (Qmin,Fmax ) on a set of n parties P where Fmax =
{F1, F2, . . . , Ft }.
Let S0(t,t), S

1
(t,t), . . . , S

c−1
(t,t) respectively denote the basis matrices obtained for the c colors

corresponding to a (t, t)-threshold access structure. Constructions of such basis matrices can
be found in [10,12,19,21,28]. Each of basis matrices has size t × m, where the t rows are
indexed by the maximal forbidden sets {F1, F2, . . . , Ft } with respect to which the CA is
constructed. Here m denotes the pixel expansion of the (t, t)c-CVCS.
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Let us write

S0(t,t) =

⎡
⎢⎢⎣

.. R01 ..

.. R02 ..

.. .. ..

.. R0t ..

⎤
⎥⎥⎦, S1(t,t) =

⎡
⎢⎢⎣

.. R11 ..

.. R12 ..

.. .. ..

.. R1t ..

⎤
⎥⎥⎦, . . . . . . . . . . . . , Sc−1

(t,t) =

⎡
⎢⎢⎣

.. Rc−1
1 ..

.. Rc−1
2 ..

.. .. ..

.. Rc−1
t ..

⎤
⎥⎥⎦,

where ·Rα
i · denotes the i th row of Sα

(t,t) for all colors α = 0, 1, . . . , c − 1 and for all
i = 1, 2, . . . , t .

Now construct the following n × m matrices S0, S1, . . . , Sc−1 as indicated:
Let i ∈ {1, 2, . . . , n} i.e. i be a participant and also assume i does not belong to the maximal
forbidden sets Fj1 , Fj2 , . . . , Fjs .

For the color α ∈ {0, 1, . . . , c − 1}, construct
i-th row of Sα = GOR of those rows in Sα

(t,t) for which i /∈ Fj

= Rα
j1

∨ Rα
j2

∨ · · · ∨ Rα
js
.

Collecting all the facts described above we now have the following theorem.

Theorem 1 The matrices S0, S1, . . . , Sc−1 constructed in the above manner realize a color
visual cryptographic scheme on the monotone access structure (Qmin,Fmax ).

Proof First we prove the security condition (see Definition 3). If F is a forbidden set then it is
contained in some maximal forbidden set. Since we are considering monotone access struc-
tures therefore without loss of generality, let us assume that F itself is a maximal forbidden
set. Let F = Fi for some 1 ≤ i ≤ t . We observe that for any color α ∈ {0, 1, . . . , c − 1} the
accumulated shares of the participants in Fi lacks the i-th row Rα

i of the basis matrix Sα
(t,t).

So the security condition now follows from the security condition of (t, t)c-CVCS.
To prove the contrast condition (see Definition3) let us suppose B be a minimal qualified

set. Consider the portion of cumulative array CA[B] restricted to the rows indexed by the
parties in B. It is easy to see that every column of the restricted arrayCA[B] contains at least
one 1, otherwise if there is a column (say, j-th one) in CA[B] such that all the entries are 0
then B ⊆ Fj which is not possible. Therefore the GOR of the shares corresponding to any
color α of the parties in B is actually equal to the GOR of all the rows of Sα

(t,t). Hence the
contrast condition follows from the contrast condition of (t, t)c-CVCS. �
Note 1 The (t, t)c-color schemes [10,27,28] existing in the same colormodel have maximal
contrast. Thus our color visual secret sharing scheme also achieves maximal contrast in the
same color model.

Corollary 1 If the (t, t)c-CVCS has pixel expansion m then the pixel expansion of the CVCS
for the general access structure also has pixel expansion m. Moreover, the parameters h, l
of the general CVCS are equal to the parameters of the underlying (t, t)c-CVCS.

Example 2 Let us consider the access structure given in Example 1. Let us consider three
colors 0, 1, 2. Since there are fourmaximal forbidden sets, we first consider a (4, 4)3-CVCS.
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The basis matrices for (4, 4)3-CVCS are given by [10]:

S0(4,4) =

⎡
⎢⎢⎣
011122221001212001020
011212212000012120102
012112122120000001122
021111222121200120000

⎤
⎥⎥⎦ , S1(4,4) =

⎡
⎢⎢⎣
100022220111111020202
100202202110202111102
102002022021102110211
120000222020211021111

⎤
⎥⎥⎦ ,

S2(4,4) =

⎡
⎢⎢⎣
200011110222222010101
200101101220101222201
201001011012201220122
210000111010122012222

⎤
⎥⎥⎦ .

Thus the basis matrices for the access structureQmin = {1234, 1235, 1236} are given by:

S0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

021111222121200120000
012112122120000001122
011212212000012120102
011122221001212001020
011122221001212001020
011122221001212001020

⎤
⎥⎥⎥⎥⎥⎥⎦

,

S1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

120000222020211021111
102002022021102110211
100202202110202111102
100022220111111020202
100022220111111020202
100022220111111020202

⎤
⎥⎥⎥⎥⎥⎥⎦

,

S2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

210000111010122012222
201001011012201220122
200101101220101222201
200011110222222010101
200011110222222010101
200011110222222010101

⎤
⎥⎥⎥⎥⎥⎥⎦

.

3.2 Color VCS on (k, n)∗-access structure

In the previous section we dealt with general access structure. In this section, we deal with a
special kind of access structure, known as (k, n)∗-access structure. We put forward a direct
construction method for realizing such (k, n)∗-color VCS in the same color model.
To define the access structure, let P = {1, 2, . . . , n} be a set of participants. Suppose the
party 1 is the leader and the secret image cannot be retrieved in his absence. We call party
1 an essential party. However he cannot retrieve the secret image alone. He needs the help
of at least k − 1 regular parties from the rest of n − 1 parties in order to reconstruct the
secret image. The resulting access structure is called a (k, n)∗-access structure which is
slightly more general than a threshold access structure but not as general as general access
structure. In this section we build color visual cryptographic schemes realizing (k, n)∗-access
structure. Thoughwe can build it using the generic construction given in Sect. 3.1, we provide
a simpler and direct construction method. Our construction is based on the basis matrices
of a (k − 1, n − 1)c-CVCS. Moreover we show that this construction technique gives better
results than the generic method. We will denote a c-color visual cryptographic scheme on a
(k, n)∗-access structure by (k, n)∗c -CVCS.
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A (k, n)∗-access structure can be described by the collection of all minimal qualified sets
Q∗

min = {B ⊆ P : 1 ∈ B and |B| = k}. It is easy to see that the collection of all maximal
forbidden sets is F∗

max = {F ⊆ P : F = {2, . . . , n} or 1 ∈ F and |F | = k − 1}. Let us
begin with an example of (2, 5)∗4-CVCS.

Example 3 The collection of minimal qualified sets for the (2, 5)∗4-access structure on P =
{1, 2, 3, 4, 5} is given byQ∗

min = {12, 13, 14, 15}. The following matrices S0, S1, S2, S3 are
basis matrices of a (2, 5)∗4-CVCS.

S0 =

⎡
⎢⎢⎢⎢⎣

0231
0123
0123
0123
0123

⎤
⎥⎥⎥⎥⎦ , S1 =

⎡
⎢⎢⎢⎢⎣

2131
0123
0123
0123
0123

⎤
⎥⎥⎥⎥⎦ , S2 =

⎡
⎢⎢⎢⎢⎣

1321
0123
0123
0123
0123

⎤
⎥⎥⎥⎥⎦ & S3 =

⎡
⎢⎢⎢⎢⎣

2013
0123
0123
0123
0123

⎤
⎥⎥⎥⎥⎦ .

Clearly S0[F], S1[F], S2[F], S3[F] are equal upto a columnpermutation for all forbidden set
F . Also zb(SbX ) ≥ 1 and zb′(SbX ) = 0 for all qualified sets X , for all colors b, b′ ∈ {0, 1, 2, 3}
with b �= b′. In other words, we have a (2, 5)∗4-CVCS with h = 1, l = 0.

For n ≥ k ≥ 2 we now propose a construction method for (k, n)∗c -CVCS from a (k −
1, n − 1)c-CVCS.

Let us consider a c color visual secret sharing scheme for the (k − 1, n − 1)-threshold
access structure on P ′ with pixel expansion m. Let T 0, T 1, . . . , T c−1 be the corresponding
basis matrices whose sizes are (n − 1) × m each. Choose c permutations σ0, σ1, . . . , σc−1

such that

1. σi is a permutation on the set {0, 1, . . . , c − 1} for all i = 0, 1, . . . , c − 1.
2. For every 0 ≤ i ≤ c− 1, σi (i) = i and σi ( j) �= j for every 0 ≤ j ≤ c− 1 where i �= j .

Let σ b(i) denote an 1 × m row vector each of its entries being equal to σb(i).
We now define cmany n×cm matrices S0, S1, . . . , Sc−1 by the following concatenation:

Sb =
[

σ b(0) σ b(1) ... σ b(b) ... σ b(c−1)
T 0 T 1 ... T b ... T c−1

]
, where 0 ≤ b ≤ c − 1 and “||” stands

for the concatenation of two matrices.
We claim that the matrices S0, S1, . . . , Sc−1 are the basis matrices for the (k, n)∗-access

structure with pixel expansion cm. First we give an example to understand the construction.

Example 4 Let us consider a (3, 4)∗-access structure on a set of 4 participants {1, 2, 3, 4}.
Thus the minimal qualified sets are {123, 124, 134}. Suppose we want to construct a (3, 4)∗5-
CVCS with 5 colors {0, 1, 2, 3, 4}. So first we consider the basis matrices of (2, 3)5-CVCS.

T 0 =
⎡
⎣ 01234
02341
03412

⎤
⎦ , T 1 =

⎡
⎣ 10234
12340
13402

⎤
⎦ , T 2 =

⎡
⎣ 21034
20341
23410

⎤
⎦ , T 3 =

⎡
⎣ 31204
32041
30412

⎤
⎦

& T 4 =
⎡
⎣ 41230
42301
43012

⎤
⎦ .

In order to construct the basis matrix S0 for (3, 4)∗-access structure we first choose a
permutation σ0 such that σ0(0) = 0 and σ0( j) �= j for any j ∈ {1, 2, 3, 4}. Such a permu-
tation is σ0(0) = 0, σ0(1) = 2, σ0(2) = 3, σ0(3) = 4 and σ0(4) = 1. So according to the
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construction method

S0 =

⎡
⎢⎢⎣
00000 22222 33333 44444 11111
01234 10234 21034 31204 41230
02341 12340 20341 32041 42301
03412 13402 23410 30412 43012

⎤
⎥⎥⎦ .

Similarly the other basis matrices can be constructed as

S1 =

⎡
⎢⎢⎣
22222 11111 33333 44444 00000
01234 10234 21034 31204 41230
02341 12340 20341 32041 42301
03412 13402 23410 30412 43012

⎤
⎥⎥⎦ ,

S2 =

⎡
⎢⎢⎣
11111 00000 22222 44444 33333
01234 10234 21034 31204 41230
02341 12340 20341 32041 42301
03412 13402 23410 30412 43012

⎤
⎥⎥⎦ ,

S3 =

⎡
⎢⎢⎣
11111 00000 44444 33333 22222
01234 10234 21034 31204 41230
02341 12340 20341 32041 42301
03412 13402 23410 30412 43012

⎤
⎥⎥⎦

and

S4 =

⎡
⎢⎢⎣
11111 00000 33333 22222 44444
01234 10234 21034 31204 41230
02341 12340 20341 32041 42301
03412 13402 23410 30412 43012

⎤
⎥⎥⎦ .

We now prove the following.

Theorem 2 Let us consider (Q,F), a (k − 1, n − 1)-threshold access structure on
P ′ = {2, 3, . . . , n}. Let (Q∗,F∗) be the corresponding (k, n)∗-access structure on P =
{1, 2, . . . , n}. Given a (k − 1, n − 1)c-CVCS with pixel expansion m, there exists a (k, n)∗c -
CVCS with pixel expansion cm.

Proof First we prove the security condition i.e. if F is a maximal forbidden set then
S0[F], S1[F], . . . , Sc−1[F] are equal upto column permutations. In a (k, n)∗-access struc-
ture there are two types of maximal forbidden sets. In the first type, 1 ∈ F but |F | = k − 1
i.e. F contains the essential participant but k − 2 regular parties. In the second type, there is
only one maximal forbidden set F namely, the set {2, 3, . . . , n}.

If F = {2, 3, . . . , n} then S0[F], S1[F], . . . , Sc−1[F] all are equal (up to column permu-
tations) to the concatenation T 0||T 1|| · · · ||T c−1.

Let F be of the first type. Without loss of generality, let F = {1, 2, . . . , k − 1}, i.e. F
contains the essential party 1 and k − 2 regular parties. We show that Sα[F] and Sβ [F] are
equal up to column permutations for any two distinct colors α, β ∈ {0, 1, . . . , c − 1}. From
the construction, it is easy to see that for every block

[
σα(i)
T i

]
in Sα there is exactly one block[

σβ(j)
T j

]
in Sβ such that σα(i) = σβ(j) = [λ, λ, . . . , λ]1×m = λ for some 0 ≤ λ ≤ c − 1.

Since T i and T j are basis matrices of a (k−1, n−1)c-CVCS onP ′ = {2, 3, . . . , n} therefore
T i [{2, 3, . . . , k − 1}] and T j [{2, 3, . . . , k − 1}] are equal upto column permutation. Thus,
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the blocks

[
λ

T i

]
and

[
λ

T j

]
when restricted to F = {1, 2, . . . , k−1} are equal up to column

permutation. Varying over all the blocks it follows that Sα[F] and Sβ [F] are equal upto
column permutations. Hence, the security follows.

In order to prove the contrast condition let us consider a minimal qualified set B. Again,
without loss of generality, let B = {1, 2, . . . , k}. Let us consider any color b ∈ {0, 1, . . . , c−
1}. We will show that there exists two non-negative integers l, h with h > l such that:

1. zb(SbB) ≥ h and
2. zb′(SbB) ≤ l for all b′ �= b.

That is, while recovering color b, the GOR of the shares corresponding to the participants
in B, the number of subpixels corresponding to the true color b must be strictly greater the
number of subpixels of any falsely recovered color.

Observe that, there is a block

[
σ b(b)
T b

]
occurring in Sb. Now σ b(b) = [b, b, . . . , b]1×m .

Hence if the underlying (k − 1, n − 1)c-CVCS has parameters h′, l ′ then zb(SbB) ≥ h′. For

any other block

[
σ b(i)
T i

]
since σb(i) �= i therefore at most l ′ many σb(i) colored subpixels

can be recovered. Varying over all i’s with i �= b it is not hard to see σb(i) varies over all
colors not equal to b. We can therefore conclude that zb′(SbB) ≤ l ′ for all b′ �= b. Hence if
we set h = h′ and l = l ′ then we have the contrast condition.
This concludes the proof of the theorem. �
Note 2 We observe that if the underlying (k − 1, n − 1)c-CVCS has maximal contrast then
the construction of (k, n)∗c -CVCS also has maximal contrast.

Corollary 2 There exists (2, n)∗c -CVCS with pixel expansion c which is independent of the
number of participants n. Moreover, the scheme has maximal contrast (see Example 3).

Corollary 3 Let m, h, l be the parameters of an optimal (k−1, n−1)c-CVCS. Let m∗, h∗, l∗
be the parameters of an optimal (k, n)∗c -CVCS. Then m∗ ≤ cm, h∗ = h and l∗ ≤ l.

4 Comparison and experimental results

We now show that our scheme provides better pixel expansion than the existing schemes. To
the best of our knowledge, there is only one paper [28] that gives color visual cryptographic
schemes for general access structures. The authors in [28] first considered the basis matrices
of visual cryptographic schemes for black & white images and then transformed them into
the basis matrices of the color visual cryptographic schemes. For (t, t)c-CVCS their pixel
expansion turns out to bemYL

(t,t) = c.2t−1. For any general access structure (Qmin,Fmax )with

|Fmax | = t their construction method gives a pixel expansion ofmYL
Gen = c2t−1. Blundo et al.

[10] gave direct constructions for only (2, t)c-CVCS and (t, t)c-CVCS. Their (t, t)c-CVCS
has the following pixel expansion:

mBBS
(t,t)c

=
{

(c − 1)2t−1 − c + 2 for odd t ≥ 3
c(c − 1)2t−2 − c for even t ≥ 4.

Our generic construction method (Theorem 1) constructs c-color visual cryptographic
schemes for any monotone access structure (Qmin,Fmax ) having |Fmax | = t with the help
of any (t, t)c-CVCS (e.g. [10] or [28]).
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Table 1 Pixel Expansions for (k, n)∗-access structures with 3 colors

Acc. Str . mY L
Gen mY L

our (Thm1) mBBS
our (Thm1) m∗

our (Thm 2)

(2, 4)∗ 6 6 − 3

(3, 4)∗ 24 24 21 24

(2, 5)∗ 6 6 − 3

(3, 5)∗ 48 48 31 33

(4, 5)∗ 192 192 127 54

(2, 6)∗ 6 6 − 3

(3, 6)∗ 96 96 93 45

(4, 6)∗ 3.210 3.210 211 − 1 72

(5, 6)∗ 3.210 3.210 211 − 1 135

If we take the underlying (t, t)c-CVCS of [28] then using Theorem 1 we have the pixel
expansion of a c-color VCS on (Qmin,Fmax ) as mYL

our = c.2t−1 which is exactly equal to
mYL

Gen .
On the other hand, if we use (t, t)c-CVCS of [10] then the pixel expansion becomes

mBBS
our =

{
(c − 1)2t−1 − c + 2 for odd t ≥ 3
c(c − 1)2t−2 − c for even t ≥ 4.

Now for meaningful color visual secret sharing schemes on access structures t ≥ 1 and
c ≥ 3. It is now easy to see that mBBS

our ≤ mYL
Gen when t is odd. When t is even then we

can shift between [10] and [28] for choosing (t, t)c-CVCS to achieve better or equal pixel
expansion.

The construction given in Theorem 2 significantly improves the pixel expansion over the
generic techniques. In Table 1we give some comparisons of the pixel expansions for different
(k, n)∗-access structures across different construction methods when there are 3 colors. The
notations mYL

Gen denotes the pixel expansion corresponding to Construction 2 of [28], mYL
our

denotes pixel expansion corresponding to Corollary 1 of this paper and Construction 1 of
[28],mBBS

our denotes pixel expansion corresponding to Corollary 1 of this paper and Theorems
6.8& 6.9 of [10]. Lastly,m∗

our denotes the pixel expansion corresponding to Theorem 2while
using pixel expansions from Table 1 of [28].

Figure 1 shows three shares Share 1, Share 2, Share 3 for a (2, 3)∗3-CVCS using Corol-
lary 2 where the secret image consists of three colors Red, Green and Blue. To maintain the
aspect ratio we have introduced an all • column to each of the basis matrices. Superposi-
tion of shares corresponding to a minimal qualified sets {1, 2} and {1, 3} retrieve the secret
image. But {2, 3} being a forbidden set, superposition of the corresponding shares reveals no
information whatsoever.

5 Conclusion

In this work first we have presented information theoretic color visual cryptographic scheme
realizing general access structure and our construction achieves maximal contrast. Then
we have given a direct construction of color visual cryptographic scheme to realize a very
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Secret Image

Share 1 Share 2 Share 3

Share 1+Share 2 Share 1+Share 3 Share 2+Share 3

Fig. 1 Implementation of (2, 3)∗-CVCS with 3 colors (Color figure online)

important class of access structure known as (k, n)∗-access structure. Last, we show that our
construction methods outperform the existing methods in terms of pixel expansion.
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