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Abstract
In this paper, we provide the degree distribution of irreducible factors of the composed
polynomial f (L(x)) over Fq , where f (x) ∈ Fq [x] is irreducible and L(x) ∈ Fq [x] is a
linearized polynomial. We further provide some applications of our main result, including
lower bounds for the number of irreducible factors of f (L(x)), constructions of high degree
irreducible polynomials and the explicit factorization of f (xq − x) under certain conditions
on f (x).
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1 Introduction

The factorization of polynomials as well as constructions of irreducible polynomials over
finite fields play important roles in modern communications. Applications include algebraic
coding theory [1], cryptography [8] and computational number theory. Many methods on the
construction of irreducible polynomials [7] and the factorization of reducible polynomials
[2] consider compositions of the form f (g(x)), where f is an irreducible polynomial. For a
generic polynomial g ∈ Fq [x], there is no efficient method to determine the factorization of
the composition f (g(x)) or even just obtain the degrees of its irreducible factors. In general
[5], the factorization of f (g(x)) is strongly related to the factorization of g(x)−α ∈ Fqn [x],
whereα ∈ Fqn is any root of f (x). If g(x)has some additional field structure, the factorization
of g(x)−α ∈ Fqn [x] and therefore f (g(x)) ∈ Fq [x]may be treatable. For instance, if g = xd

is a monomial, g has a multiplicative structure: if gcd(d, q) = 1 and α0 is a root of xd − α,
the roots of xd − α are γα0, where γ varies through the roots of xd − 1. Butler [3] obtained
the following result:
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1658 L. Reis

Theorem 1 Let f ∈ Fq [x] be an irreducible polynomial of degree n such that any of its
roots has multiplicative order e. Let m be a positive integer such that gcd(m, q) = 1 and
m = m1m2, where gcd(m1, e) = 1 and each prime factor of m2 divides e. Then

(i) each root of f (xm) has multiplicative order of the form Mm2e, where M |m1;
(ii) if M |m1, then f (xm) has exactly nm2ϕ(M)

ordMm2eq
irreducible factors of degree ordMm2eq with

roots of multiplicative order Mm2e, where ϕ is the Euler Phi Function and ordba is the
order of a modulo b.

Recently [2], the authors propose an efficient method to obtain the factorization of f (xm)

under some special conditions on m and f (x). Another interesting class of polynomials is
the linearized polynomials L = ∑m

i=0 ai x
qi ∈ Fq [x]. These polynomials induce Fq -linear

maps in any finite extension of Fq . Using the additive structure of linearized polynomials,
Long andVaughan [10] obtain an implicit description of the degree distribution of irreducible
factors of f (L(x)) in the case that L is linearized. However, the degrees of the irreducible
factors are not explicitly given and the number of irreducible factors of each degree depends
on the kernels of linear maps in extensions of Fq ; perhaps, this is due to the methods in
Linear Algebra employed. The aim of this paper is to provide a far more explicit version
of such result, in the sense that all the quantities depend only on elementary functions. Our
approach relies on the Fq -order of elements in finite fields, that corresponds to an additive
analogue of the multiplicative order. In this correspondence, polynomial analogues of many
number theoretic functions arise. In particular, our description yields a linearized analogue of
Theorem 1. Amore detailed account in ourmain result provides a lower bound for the number
N of irreducible factors of f (L(x)) over Fq and, in particular, we obtain a characterization of
the irreducible polynomials of the form f (L(x)): the irreducible polynomials arise exactly
when N = 1. We explore special cases when N = 2 and, in particular, we obtain a method to
produce high degree irreducible polynomials from primitive polynomials. We further present
an efficient method to obtain the explicit factorization of f (L(x)) ∈ Fq [x] in the case that
L = xq − x and f is an irreducible polynomial of degree n and trace zero, where n is
relatively prime with q .

2 Preliminaries

In this section, we provide a background material that is used along the way. Throughout this
paper, we fixFq the finite field with q elements, where q is a power of a prime p.We start with
some basic notations: Fq is the algebraic closure of Fq and ord(α):=min{d > 0 | αd = 1} is
the multiplicative order of α ∈ F

∗
q . For α ∈ Fq ,mα(x) ∈ Fq [x] is the minimal polynomial of

α over Fq and deg(α):= deg(mα) is the degree of α over Fq . It is known that, if d = deg(α),

then Fqd is the smallest extension of Fq that contains α and mα(x) = ∏d−1
i=0 (x − αqi ): the

elements αqi are the conjugates of α. In the following theorem, we summarize some basic
facts on the multiplicative order of elements in finite fields.

Theorem 2 Let α ∈ F
∗
q be an element of multiplicative order ord(α) = e. The following

hold:

(i) deg(α) = ordeq;
(ii) if β = αs , then ord(β) = e

gcd(e,s) .

In addition, for any positive integer E relatively prime with q, there exist ϕ(E) elements
α ∈ F

∗
q such that ord(α) = E.
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Factorization of a class of composed polynomials 1659

The previous theorem can be proved using the definition of cyclotomic polynomials over
finite fields and Theorem 2.47 of [9].

2.1 Linearized polynomials and the Fq-order

For a polynomial g ∈ Fq [x] with g(x) = ∑m−1
i=0 ai xi , the polynomial

Lg(x):=
m−1∑

i=0

ai x
qi ,

is the q-associate of g. Of course, Lg is always a linearized polynomial; conversely, any
linearized polynomial L ∈ Fq [x] is the q-associate of some polynomial in Fq [x]. In the
following lemma, we show that the q-associates have interesting arithmetic properties.

Lemma 1 Let g, h ∈ Fq [x]. The following hold:

(i) Lg(x) + Lh(x) = Lg+h(x);
(ii) Lg(Lh(x)) = Lgh(x).

Proof For the proof of this result, see Section 3.4 of [9]. ��
For an element α ∈ Fq , we set Iα = {g ∈ Fq [x] | Lg(α) = 0}. From Lemma 1, Iα is an ideal

of Fq [x] and, if α ∈ Fqd , Lxd−1(α) = αqd − α = 0, hence xd − 1 ∈ Iα . In particular, Iα
is a nontrivial ideal of Fq [x] and so Iα is generated by a polynomial mα,q(x), which we can
suppose to be monic. Therefore, for any α ∈ Fq and any g ∈ Fq [x], we have that Lg(α) = 0
if and only if g is divisible by mα,q(x).

Definition 1 For an element α ∈ Fq , the polynomial mα,q(x) is the Fq -order of α over Fq .

For instance, the element 0 has Fq -order m0,q(x) = 1 and any element c ∈ F
∗
q has Fq -

order mc,q(x) = x − 1. In general, for α ∈ Fqd , mα,q(x) divides xd − 1; in particular,
gcd(mα,q(x), x) = 1. It is straightforward to check that the Fq -order of an element α coin-

cides with the Fq -order of any of its conjugates αqi . The Fq -order of an element is the
additive analogue of the multiplicative order in finite fields: in this analogy, Theorem 2 can
be translated to Fq -order with a suitable change of some arithmetic functions.

Definition 2 Let f , g ∈ Fq [x].
(i) The norm of f is N ( f ) = qd , where d = deg( f ).
(ii) The Euler Phi function for polynomials over Fq is

Φq( f ) =
∣
∣
∣
∣

(
Fq [x]
〈 f 〉

)∗∣∣
∣
∣ ,

where 〈 f 〉 is the ideal generated by f in Fq [x].
(iii) if gcd( f , g) = 1, O( f , g):=min{k > 0 | f k ≡ 1 (mod g)} is the order of f modulo g.

The function Φq is multiplicative (Chinese Remainder Theorem) and

Φq(g
s) = q(s−1)d(qd − 1) = N (g)s−1(N (g) − 1),

if g is an irreducible polynomial of degree d and s is a positive integer: compare Φq(gs)
with ϕ(rs) = rs−1(r − 1) if r is a prime number. For more details on the function Φq , see
Section 3.4 of [9]. It is straightforward to check thatO( f , g) divides Φq(g). In duality to the
multiplicative order in finite fields, we have the following additive version of Theorem 2.
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1660 L. Reis

Theorem 3 Let α ∈ Fq be an element of Fq -order mα,q(x) = h. The following hold:

(i) deg(α) = O(x, h);
(ii) if β = Lg(α), then β has Fq -order mβ,q(x) = h

gcd(h,g) .

In addition, for any polynomial H relatively primewith x, there existΦq(H) elementsα ∈ Fq

such that mα,q(x) = H.

Proof (i) Observe that deg(α) is the least positive integer k such that α ∈ Fqk . Also, for any
positive integer d , we have that α ∈ Fqd if and only if

Lxd−1(α) = αqd − α = 0,

that is, mα,q(x) = h divides xd − 1. Now, the result follows from definition of O(x, h).
(ii) This item follows by direct calculations.

For the proof of the last statement, see Theorem 11 of [11]. ��
It is well known that, for any positive integer n,

∑
d|n ϕ(d) = n. As follows, we also have

the polynomial version of this result.

Lemma 2 For any polynomial g ∈ Fq [x] of degree d, the following holds:
∑

h|g
Φq(h) = qd = N (g), (1)

where h is monic and polynomial division is over Fq .

Proof We observe that if g = xsg0 with s ≥ 1 and gcd(g0, x) = 1, then

∑

h|g
Φq(h) =

s∑

i=0

∑

h|g0
Φq(hx

i )

=
∑

h|g0
Φq(h)

(

1 +
s∑

i=1

qi−1(q − 1)

)

= qs
∑

h|g0
Φq(h),

where qs = N (xs). In particular, it is sufficient to prove Eq. (1) for the case gcd(g, x) = 1: in
this case, the formal derivative of Lg(x) is a nonzero constant and so the equation Lg(x) = 0
has exactly deg(Lg) = qd distinct solutions inFq . It is straightforward to see that, forα ∈ Fq ,
Lg(α) = 0 if and only if mα,q(x) divides g and the result follows from Theorem 3. ��

3 The additive analogue of Theorem 1

So far we have provided a duality between the multiplicative order and the Fq -order in
finite fields. At this point, it is clear what are the objects in this additive-multiplicative
correspondence. We summarize them as follows.
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Factorization of a class of composed polynomials 1661

Z ↔ Fq [x]
q ↔ x

|n| = n ↔ N ( f ) = qdeg( f )

ord(α) ↔ mα,q (x)

ϕ(n) ↔ Φq ( f )

ordba ↔ O( f , g)

primes ↔ monic irreducible polynomials

monomials ↔ linearized polynomials

Motivated by this correspondence, we present the linearized version of Theorem 1.

Theorem 4 Let f ∈ Fq [x] be an irreducible polynomial of degree n such that any of its roots
has Fq -order h. Let g ∈ Fq [x] be a monic polynomial such that gcd(g(x), x) = 1 and write
g = g1g2, where gcd(g1, h) = 1 and each irreducible factor of g2 divides h. If Lg denotes
the q-associate of g and deg(g2) = m, then

(i) each root of f (Lg(x)) has Fq -order of the form Gg2h, where G divides g1;
(ii) if G divides g1, f (Lg(x)) has exactly

nN (g2)Φq(G)

O(x,Gg2h)
= nqmΦq(G)

O(x,Gg2h)
,

irreducible factors of degree O(x,Gg2h) with roots of Fq -order Gg2h.

Remark 1 The condition gcd(g, x) = 1 in Theorem 4 is not restrictive: if g = xsg0 with
gcd(x, g0) = 1, then

f (Lg(x)) = f (Lg0(x))
qs ,

and Theorem 4 can be applied for the composition f (Lg0(x)).

Remark 2 It is worth mentioning that some particular cases of Theorem 4 were previously
considered, where it is obtained an explicit description on the degree distributions. For
instance, see Theorem 3.63 of [9] and Theorem 3.2 of [4].

Example 1 Weconsider q = 2, f = x2+x+1 and g = x4+x2+x+1 = (x+1)(x3+x2+1).
In this case, the roots of f have Fq -order equals h = x2 + 1 and then, in the notation of
Theorem 4, g = g1g2, where g1 = x3+ x2 +1 and g2 = x +1. In addition, n = deg( f ) = 2
and m = deg(g2) = 1, O(x, g2h) = O(x, (x + 1)3) = 4 and O(x, g1g2h) = O(x, (x3 +
x2 + 1)(x + 1)3) = 28. Also, Φq(1) = 1, and Φq(g1) = 7. According to Theorem 4, the
polynomial

f (Lg(x)) = f (x16 + x4 + x2 + x) = x32 + x16 + x8 + x + 1,

has exactly 2·21
4 = 1 irreducible factor of degree 4 (with roots of Fq -order (x + 1)3) and

2·21·7
28 = 1 irreducible factor of degree 28 (with roots of Fq -order (x3 + x2 + 1)(x + 1)3). If

we compute the factorization of f (Lg(x)) over F2 we obtain

x32 + x16 + x8 + x + 1 = F1(x) × F2(x),

where F1(x) = x4 + x + 1 and F2(x) = x28 + x25 + x24 + x22 + x20 + x19 + x18 + x17 +
x13 + x12 + x10 + x8 + x7 + x6 + x5 + x4 + 1.
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1662 L. Reis

Before we proceed in the proof of Theorem 4, we need some technical lemmas.

Lemma 3 For any α, β ∈ Fq with α �= β and any polynomial h ∈ Fq [x] not divisible by x,
the following hold:

(i) the polynomials Lh(x) − α and Lh(x) − β are relatively prime;
(ii) the polynomial Lh(x) − α has only simple roots in Fq .

Proof (i) This item is straightforward.
(ii) Since h is not divisible by x , the formal derivative of the polynomial Lh(x) − α is a

nonzero constant and so Lh(x) − α cannot have repeated roots. ��
Lemma 4 Let α ∈ Fq be an element with Fq -order h(x) = mα,q(x) and let g ∈ Fq [x] be
any polynomial not divisible by x. If there exists a polynomial H not divisible by x and an
element β ∈ Fq such that β has Fq -order H = mβ,q and Lg(β) = α, then h divides H and

the number of such elements β is at most
Φq (H)

Φq (h)
.

Proof From Theorem 3, if Lg(β) = α, then h = mα,q = mβ,q
gcd(g,mβ,q )

and so h divides

mβ,q = H . Therefore, we have the natural group inclusionG1 ⊆ G2, whereG1 =
(
Fq [x]
〈h〉

)∗

and G2 =
(
Fq [x]
〈H〉

)∗
. In particular, if M = Φq(h) = |G1| and A1, . . . , AM ∈ Fq [x] are the

polynomials such that gcd(Ai , h) = 1 and deg(Ai ) < deg(h), then there exist polynomials
B1, . . . , BM ∈ Fq [x] such that Bi ≡ Ai (mod h), gcd(Bi , H) = 1 and deg(Bi ) < deg(H).

Let Sh ⊂ Fq be the set of elements with Fq -order h. In particular, α ∈ Sh ; we claim
that Sh = C , where C = {L Ai (α) | 1 ≤ i ≤ M}. For this, we observe that, since
deg(Ai ) < deg(h), the differences Ai − A j with i �= j are not divisible by h and so
0 �= L Ai−A j (α) = L Ai (α) − L A j (α). In particular, C has |M | = Φq(h) = |Sh | distinct
elements. Since gcd(Ai , h) = 1, it follows from Theorem 3 that the Fq -order of any L Ai (α)

equals h, hence C ⊆ Sh and so C = Sh . In addition, if γ ∈ Fq is any element of Fq -order
H = mγ,q and Lg(γ ) = α, from Theorem 3, γi :=LBi (γ ) has Fq -order H

gcd(Bi ,H)
= H and

satisfies

Lg(γi ) = Lg(LBi (γ )) = LBi (α) = L Ai (α).

In particular, for any θ ∈ Sh , the number of elements β ∈ Fq with Fq -order equals H that
satisfies Lg(β) = θ is the same. From Theorem 3, there existΦq(H) elements with Fq -order
equals H and, since Sh has Φq(h) elements, the result follows. ��

3.1 Proof of Theorem 4

Proof Following the notation of Theorem 4, let α ∈ Fqn be any root of f , hence

f (x) =
n−1∏

i=0

(
x − αqi ).

Let β be any root of f (Lg(x)). In particular, Lg(β) is a root of f and, without loss of
generality, suppose that Lg(β) = α.

(i) Set H = mβ,q , the Fq -order of β. From Lemma 4,mα,q(x) = h divides H . Additionally,
since Lgh(β) = Lh(Lg(β)) = Lh(α) = 0, H divides gh. In particular, there exist
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Factorization of a class of composed polynomials 1663

divisors h1 of g1 and h2 of g2 such that H = hh1h2. Because Lg(β) = α, from
Theorem 3, it follows that

h = H

gcd(H , g)
= hh1h2

gcd(hh1h2, g)
,

and so h1h2 = gcd(hh1h2, g). Since h1h2 divides g1g2 = g, we have that

gcd(hh1h2, g) = h1h2 · gcd
(

h,
g

h1h2

)

.

Therefore, gcd(h,
g

h1h2
) = 1, i.e., gcd(h,

g1
h1

· g2
h2

) = 1. Recall that g1 and h are relatively
prime and every irreducible divisor of g2 divides h: from the previous equality, we
conclude that g2

h2
= 1, i.e., h2 = g2. In particular, H = Gg2h, where G = h1 is a divisor

of g1.
(ii) For each divisor G of g1, let n(G, f ) be the number of elements γ ∈ Fq such that γ has

Fq -order Gg2h and is a root of f (Lg(x)). Since

f (Lg(x)) =
n−1∏

i=0

(
Lg(x) − αqi ),

from Lemma 3, f (Lg(x)) has only simple roots. In particular, from the previous item, it
follows that

∑

G|g1
n(G, f ) = deg( f (Lg(x))) = nqdeg(g).

In addition, we observe that any root γ of f (Lg(x)) satisfies Lg(γ ) = αqi for some

0 ≤ i ≤ n − 1 and the Fq -order of αqi equals mα,q = h. Therefore, from Lemma 4,

it follows that n(G, f ) ≤ n · Φq (Gg2h)

Φq (h)
; since every prime divisor of g2 divides h and

gcd(G, h) = 1, we have that

Φq(Gg2h) = Φq(G)Φq(g2h) = Φq(G)N (g2)Φq(h),

hence n(G, f ) ≤ n · N (g2)Φq(G). From Eq. (1), we have that
∑

G|g1 Φq(G) equals
N (g1) and then

nqdeg(g) =
∑

G|g1
n(G, f ) ≤

∑

G|g1
n · N (g2)Φq(G) = n · N (g2)

∑

G|g1
Φq(G)

= n · N (g2)N (g1) = n · N (g) = nqdeg(g).

Therefore, we necessarily have equality n(G, f ) = n · N (g2)Φq(G). In particular, we
have shown that, for each divisor G of g1, there exist n · N (g2)Φq(G) roots of f (Lg(x))
with Fq -order equals Gg2h. In addition, from the previous item, this describes all the
roots of f (Lg(x)). From item (i) of Theorem 3, an element β ∈ Fq with Fq -order Gg2h
has degree deg(β) = O(x,Gg2h): in this case, the n · N (g2)Φq(G) roots of f (Lg(x))
with Fq -order Gg2h are divided in

n · N (g2)Φq(G)

O(x,Gg2h)
= nqdeg(g2)Φq(G)

O(x,Gg2h)
= nqmΦq(G)

O(x,Gg2h)

sets, according to their minimal polynomial over Fq . In conclusion, for each divisor G of

g1, f (Lg(x)) has
nqmΦq (G)

O(x,Gg2h)
irreducible factors of degreeO(x,Gg2h) and this describes

the factorization of f (Lg(x)) over Fq . ��
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1664 L. Reis

4 Applications of Theorem 4

In this section, we provide some consequences of Theorem 4. We observe that, under the
conditions of Theorem 4, the number N I ( f , g) of irreducible factors of f (Lg(x)) satisfies

N I ( f , g) =
∑

G|g1

nqmΦq(G)

O(x,Gg2h)
. (2)

In particular, it is interesting to find estimates for the numbers O(x, F), where F is a poly-
nomial not divisible by x . We start with the following definition.

Definition 3 For a polynomial F ∈ Fq [x], ν(F) is the greatest nonnegative integer d with
the property that there exists an irreducible polynomial h ∈ Fq [x] such that hd divides F .
Also, rad(F) denotes the squarefree part of F , i.e., rad(F) equals the product of the distinct
irreducible divisors of F .

Since finite fields are perfect fields, ν(F) is the maximal multiplicity of a root of F over Fq .
Moreover, it is clear that F divides rad(F)ν(F). The following lemma provides some basic
facts on the numbers O(x, F).

Lemma 5 Let F,G ∈ Fq [x] be polynomials not divisible by x. The following hold:

(i) if gcd(F,G) = 1, then

O(x, FG) = lcm(O(x, F),O(x,G)) ≤ O(x, F) · O(x,G).

In particular, if F is squarefree, O(x, F) is not divisible by p.
(ii) O(x, F) = O(x, rad(F)) · pr , where r = �logp ν(F)�.
(iii) If rad(F) divides G, then

O(x, FG) = O(x,G) · pu, (3)

where u = �logp(ν(FG))� − �logp(ν(G))� satisfies

u ≤ �logp(ν(F)/ν(G) + 1)� ≤
⌈

ν(F)

ν(G)

⌉

, ν(G) ≥ 1.

Proof (i) The equalityO(x, FG) = lcm(O(x, F),O(x,G)) follows by direct calculations.
If F is squarefree and factors as F = F1 · · · Fj , where each Fi is irreducible and of
degree di ,O(x, F) is the least commonmultiple of the numbersO(x, Fi ), for 1 ≤ i ≤ j .
Recall thatO(x, Fi ) divides Φq(Fi ) = qdi −1, which is not divisible by p. In particular,
O(x, F) is not divisible by p.

(ii) Let s = O(x, rad(F)) and S = O(x, F). In particular, rad(F) divides xs − 1 and, since
rad(F) is squarefree, from the previous item, it follows that s is not divisible by p. For
r = �logp ν(F)�, we have pr ≥ ν(F), hence (xs − 1)p

r = xsp
r − 1 is divisible by

rad(F)ν(F). Recall that F divides rad(F)ν(F), hence F divides xsp
r − 1 and so S divides

spr . Clearly, S is divisible by s and then S = spe for some nonnegative integer e ≤ r .
Since s is not divisible by p, the polynomial xs−1 has no repeated irreducible factors and
so ν(xsp

e − 1) = pe. However, F divides xsp
e − 1, and then pe = ν(xsp

e − 1) ≥ ν(F).
Therefore, e ≥ �logp ν(F)� = r and, since e ≤ r , we necessarily have e = r .

(iii) Since rad(F) divides G, rad(G) = rad(FG) and so Eq. (3) follows from the previous
item. We observe that ν(FG) ≤ ν(F)+ν(G) for any polynomials F and G. In addition,
�y0 − y� ≥ �y0� − �y� for any real numbers y0 > y > 0, and then for ν(G) ≥ 1,

u = �logp(ν(FG))� − �logp(ν(G))� ≤ �logp(ν(F)/ν(G) + 1)�.
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Factorization of a class of composed polynomials 1665

To finish the proof, we observe that loga(y + 1) ≤ y for any real numbers y ≥ 1 and
a ≥ 2.

��

As follows, we obtain a lower bound on the number N I ( f , g) of irreducible factors of
f (Lg(x)) over Fq : in particular, a characterization of the irreducible polynomials of the form
f (Lg(x)) is given.

Theorem 5 Let f (x) ∈ Fq [x] be an irreducible polynomial of degree n such that any of
its roots has Fq -order h. Let g ∈ Fq [x] be a (non constant) monic polynomial such that
gcd(g, x) = 1 and write g = g1g2, where gcd(g1, h) = 1 and each irreducible factor of
g2 divides h. If Lg denotes the q-associate of g and deg(g2) = m, the number N I ( f , g) of
irreducible factors of f (Lg(x)) over Fq satisfies the following:

N I ( f , g) ≥ qmW (g1)

pu
≥ W (g1)

(
q

p

)m

, (4)

where u = �logp(ν(g2h))� − �logp(ν(h))� and W (g1) is the number of distinct monic
divisors of g1 over Fq . In particular, f (Lg(x)) is irreducible over Fq if only if q = p and
the triple (p, h, g) satisfies one of the following conditions:

1. p is any prime and g = H is a polynomial of degree one that divides h but does not
divide xn−1

h ;
2. p = 2, g(x) = x2 + 1, h is squarefree and is divisible by x + 1.

Proof Let α be any root of f , hence deg(α) = n and h = mα,q(x). From item (i) of
Theorem 3, n = O(x, h). From item (i) of Lemma 5, for each divisor G of g1, we have
O(x,Gg2h) ≤ O(x,G) · O(x, g2h). We have the trivial bound O(x,G) ≤ Φq(G). Since
rad(g2) divides h, from item (iii) of Lemma 5, we have that

O(x, g2h) = O(x, h) · pu = npu .

Taking these estimates into Eq. (2), we obtain the following inequality:

N I ( f , g) =
∑

G|g1

nqmΦq(G)

O(x,Gg2h)
≥

∑

G|g1

nqmΦq(G)

npuΦq(G)
= qm

pu
∑

G|g1
1 = qmW (g1)

pu
.

In addition, item (iii) of Lemma 5 shows that u ≤ � ν(g2)
ν(h)

� ≤ ν(g2) ≤ deg(g2) = m and so
pu ≤ pm . This proves Inequality (4).

If f (Lg(x)) is irreducible, then N I ( f , g) = 1: since N I ( f , g) is at least W (g1)(q/p)m

(which is a positive integer), if f (Lg(x)) is irreducible, thenW (g1)(q/p)m = 1 and so q = p
and W (g1) = 1, i.e., g1 = 1 and g2 = g. In particular, h is a non constant polynomial and
so ν(h) ≥ 1. We have another restrictive condition: qm = pu . Since q = p, it follows that
u = m. Since ν(h) ≥ 1, from item (iii) of Lemma 5 we have that u ≤ �logp(ν(g2)/ν(h) +
1)� < logp(ν(g2)/ν(h) + 1) + 1, hence

m − 1 = u − 1 < logp(ν(g2)/ν(h) + 1) ≤ logp(m + 1). (5)

It follows by induction on a and b that ab−1 ≥ b + 1 if a, b ≥ 2 are positive integers such
that a ≥ 3 or b ≥ 3. In particular, Inequality (5) is false unless m = 1 and p is any prime
number or m = 2 and p = 2. We divide into cases.
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1. If m = 1 and p is any prime number, since g2 = g, it follows that g equals a polynomial
H of degree one that divides h: taking account in Eq. (2) we have N I ( f , g) = np

O(x,hH)
.

In particular, f (Lg(x)) is irreducible if and only ifO(x, hH) = np. Of course,O(x, hH)

is divisible by O(x, h) = n and so O(x, hH) = np if and only if O(x, hH) �= n: since,
h divides xn − 1 and H is irreducible, we have thatO(x, hH) �= n if and only if H does
not divide xn−1

h .
2. If m = 2 and p = 2, Inequality (5) yields

1 < log2(ν(g)/ν(h) + 1) ≤ log2 3,

hence 1 < ν(g)/ν(h) ≤ 2. Since ν(g) ≤ deg(g) = deg(g2) = 2 and ν(h) ≥ 1, it follows
that ν(g) = 2 = deg(g) and ν(h) = 1 and so g is the square of an irreducible polynomial
of degree one and h is squarefree. Since gcd(g, x) = 1 and x, x + 1 are the only degree
one irreducible polynomials over Fq = F2, it follows that g = (x +1)2 = x2 +1: taking
account in Eq. (2) we obtain

N I ( f , g) = 4n

O(x, h(x + 1)2)
.

In particular, f (Lg(x)) is irreducible if and only if O(x, h(x + 1)2) = 4n. Let i be the
greatest power of x+1 that divides h; since h is squarefree, i ≤ 1 and ν(h(x+1)2) = 2+i .
If h0 = lcm(x + 1, h), then rad(h(x + 1)2) = h0 and O(x, h0) = n. From item (ii) of
Lemma5, it follows thatO(x, h(x+1)2) = O(x, h0)·2r = n2r , where r = �logp(2+i)�.
Therefore, f (Lg(x)) is irreducible if and only if n2r = O(x, h(x+1)2) = 4n, i.e., r = 2.
The latter is equivalent to i = 1, i.e., h is divisible by x + 1. ��

Remark 3 If we take q = p a prime and g(x) = x − 1, condition 1 in Theorem 5 can be
translated as follows: if f ∈ Fp[x] is a monic irreducible polynomial of degree n such that
any of its roots has Fp-order h, then f (x p − x) ∈ Fp[x] is irreducible if and only if x − 1
divides h but does not divide xn−1

h . Since x − 1 divides xn − 1, the latter occurs if and only

if h does not divide H = xn−1
x−1 . If α is any root of f , the Fq -order of α is h and so h does

not divide H = xn−1
x−1 if and only if LH (α) �= 0: we see that LH (α) = ∑n−1

i=0 α pi = an−1,
where an−1 is the coefficient of xn−1 in f (x), commonly called the trace of f (x).

Based on the previous remark, the following corollary is straightforward.

Corollary 1 If f (x) ∈ Fp[x] is an irreducible polynomial, then f (x p − x) is irreducible if
and only if the coefficient an−1 of xn−1 in f (x) is not zero.

Remark 4 If we take q = p = 2 and g(x) = x2 + 1, following the ideas in Remark 3,
condition 2 in Theorem 5 can be translated as follows: if f (x) ∈ F2[x] is an irreducible
polynomial of degree n such that any of its roots has F2-order h, then f (x4 + x) ∈ F2[x]
is irreducible if and only if h is squarefree and the coefficient an−1 of xn−1 in f (x) is not
zero. From items (i) and (ii) of Lemma 5, h is squarefree if and only if O(x, h) = n is not
divisible by p = 2, i.e., n is odd.

Based on the previous remark, we obtain the following corollary.

Corollary 2 If f (x) ∈ F2[x] is an irreducible polynomial of degree n, then f (x4+x) ∈ F2[x]
is irreducible if and only if the coefficient an−1 of xn−1 in f (x) is not zero and n is odd.
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Remark 5 It is worth mentioning that the irreducible polynomials f (L(x)) ∈ Fq [x] with L a

p-linearized polynomial (i.e., L(x) = ∑m
i=0 ai x

pi ∈ Fq [x]) were previously characterized
in Theorem 6 of [6]. In particular, this result covers Corollaries 1 and 2.

We observe that the irreducible polynomials of the form f (Lg(x)) arising fromTheorem 5
are such that every irreducible factor of g divides the Fq -order h of the roots of f . In the
following theorem, we consider the opposite situation.

Theorem 6 Let f (x) ∈ Fq [x] be an irreducible polynomial of degree n such that any of its
roots has Fq -order h. Let g ∈ Fq [x] be a monic irreducible polynomial of degree d ≥ 1
such that gcd(g, x) = gcd(g, h) = 1 and write e = O(x, g). Then f (Lg(x)) factors as one

irreducible polynomial of degree n and n(qd−1)
lcm(n,e) irreducible polynomials of degree lcm(n, e).

In particular, f (Lg(x)) factors into irreducible polynomials of the same degree if and only
if g divides xn − 1 and, in this case, the degree of each irreducible factor is n.

Proof From item (i) of Theorem 3,O(x, h) = n. We observe thatΦq(g) = qd −1 and, since
gcd(g, h) = 1, item (i) of Lemma 5 yields

O(x, gh) = lcm(O(x, g),O(x, h)) = lcm(n, e).

Now, the degree distribution of irreducible factors of f (Lg(x)) follows from Theorem 4.
Since the degrees of the irreducible factors of f (Lg(x)) are n and lcm(n, e), the polynomial
f (Lg(x)) factors into irreducible polynomials of the same degree k if and only if k = n and
lcm(n, e) = n, i.e., e divides n. The latter is equivalent to g divides xn − 1. ��
Remark 6 When a polynomial F is known to factor as irreducible polynomials of the same
degree over a finite field, we have an efficient probabilistic method that provides the complete
factorization of F : in the algorithm proposed in [14], if F has degreeM , the expected number
of operations in Fq to obtain the factorization of F over Fq is O(M1.688 + M1+o(1) log q).

Corollary 3 If f (x) = ∑n
i=0 a

i
x ∈ Fq [x] is an irreducible polynomial of degree n such that

an−1 = 0 and n is not divisible by the characteristic p of Fq , then f (xq − x) factors as q
irreducible polynomials of degree n.

Proof Let α be any root of f and let h be the Fq -order of α, hence f (x) = ∏n−1
i=0 (x − αqi )

and so LH (α) = ∑n−1
i=0 αqi = an−1 = 0. In particular, H is divisible by h. Since n is not

divisible by p, xn − 1 = H(x) · (x − 1) has only simple roots, hence gcd(H , x − 1) = 1
and then gcd(h, x − 1) = 1. Now, the result follows from Theorem 6 with g = x − 1. ��

If g(x) �= x is an irreducible polynomial of degree d and α ∈ Fqd is any root of g,
we observe that O(x, g) = ord(α): in fact, the polynomial g divides xs − 1 if and only if
αs = 1. We have the bound O(x, g) ≤ Φq(g) = qd − 1 and equality holds if and only if
ord(α) = qd − 1, i.e., α is a generator of F∗

qd
. In this case, α is a primitive element of Fqd

and g is commonly called a primitive polynomial. From Theorem 6, we have the following
corollary.

Corollary 4 Let f (x) ∈ Fq [x] be an irreducible polynomial of degree n and let g(x) �=
x, x − 1 be an irreducible polynomial of degree d such that any of its roots has order
e = O(x, g) and gcd(n, e) = 1. The following hold:

(i) the polynomial f (Lg(x)) factors as one irreducible polynomial of degree n and (qd−1)
e

irreducible factors of degree ne;
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(ii) if g is a primitive polynomial, then f (Lg(x)) factors as one irreducible polynomial of
degree n and one irreducible polynomial of degree n(qd − 1).

Proof Since g(x) �= x − 1 and gcd(n, e) = 1, one can see that g does not divide h. In
particular, we are in the conditions of Theorem 6 and, since lcm(n, e) = ne, item (i) follows
from Theorem 6. Item (ii) follows directly from item (i) with e = qd − 1. ��

4.1 Construction of high degree irreducible polynomials

Observe that item (ii) of Corollary 4 suggests the construction of irreducible polynomials
of high degree from primitive polynomials: for instance, if f is an irreducible polynomial
of degree n and g is a primitive polynomial of degree d such that gcd(n, qd − 1) = 1 with
qd −1 > 1, then g(x) �= x−1. In particular, f (Lg(x)) factors as one irreducible polynomial
G1 of degree n and one irreducible polynomial G2 of degree n(qd − 1) > n. We have

G1 = gcd( f (Lg(x)), xq
n − x) and so G2 = f (Lg(x))

G1
is an irreducible polynomial of degree

n(qd − 1).

Remark 7 Similar ideas in the construction of irreducible polynomials of degree n(qd − 1)
were previously employed in [7], but with a different approach.

In the case q = 2, the following proposition shows that we can iterate this construction.

Proposition 1 Let f ∈ F2[x] be an irreducible polynomial of degree n, let {d1, . . . , dk} be
a set of pairwise relatively prime positive integers such that di ≥ 2 and gcd(n, 2di − 1) = 1
for any i . In addition, let g1, . . . , gk be primitive polynomials such that deg(gi ) = di . Set
f1 = f , n1 = n and for 1 ≤ j ≤ k, let

n j+1 = n(2d1 − 1) · · · (2d j − 1) and f j+1(x) = f j (Lg j (x))

gcd( f j (Lg j (x)), x
2n j + x)

.

For each 1 ≤ j ≤ k + 1, f j (x) is an irreducible polynomial of degree n j .

Proof We observe that, from hypothesis, the numbers di are pairwise relatively prime and
so gcd(2di − 1, 2d j − 1) = 2gcd(di ,d j ) − 1 = 1 for any 1 ≤ i < j ≤ k, i.e., the numbers
2di − 1 are pairwise relatively prime. The fact that f j is irreducible follows after applying
the argument previously given for the pair ( f , g) = ( f j , g j ). ��

We can apply Proposition 1 to a wide variety of sets {d1, . . . , dk}. For instance, one may
pick {d1, . . . , dk} as a set of distinct primes and n a power of two.

Example 2 Consider f1(x) = x4 + x +1 ∈ F2[x] an irreducible polynomial of degree n = 4
and let g1(x) = x2 + x + 1 and g2(x) = x3 + x + 1 be primitive polynomials. We obtain
f2(x) = x12 + x9 + x8 + x6 + x3 + x2 + 1 and f3(x) = x84 + x81 + x80 + x76 + x73 +
x72 + x70 + x69 + x67 + x65 + x60 + x57 + x56 + x54 + x51 + x50 + x45 + x44 + x42 +
x39 + x38 + x36 + x30 + x27 + x26 + x16 + x15 + x14 + x13 + x10 + x8 + x7 + x6 + x5 + 1.

5 The explicit factorization of f (xq − x)

FromCorollary 3, we known that if f is an irreducible polynomial of degree n and trace zero,
where n is not divisible by the characteristic p of Fq , then f (xq − x) factors as q irreducible
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polynomials of degree n. In this section, we provide an efficient method to obtain the explicit
factorization of f (xq − x) under these conditions. We first observe that if g(x) is an n degree
irreducible factor of f (xq − x), then for any a ∈ Fq , g(x + a) is an irreducible polynomial
of degree n and divides f ((x + a)q − (x + a)) = f (xq − x). One may wonder if g(x + a)

is distinct from g(x). From Theorem 2.5 of [12], the following lemma is straightforward.

Lemma 6 Let g ∈ Fq [x] be a polynomial of degree at least n and suppose that a ∈ F
∗
q is

such that g(x + a) = g(x). Then n is divisible by p.

From the previous lemma, we obtain the following result.

Corollary 5 Let f ∈ Fq [x] be a monic irreducible polynomial of degree n such that n is
not divisible by p and suppose that f (xq − x) factors as q monic irreducible polynomials
of degree n over Fq . If g(x) is one of these irreducible factors, then f (xq − x) factors as∏

a∈Fq g(x + a).

Proof From the previous observations, for any a ∈ Fq , g(x + a) is a monic irreducible
polynomial of degree n that divides f (xq−x). Since there are exactly q polynomials g(x+a)

with a ∈ Fq and they are all monic, it is sufficient to prove that they are all different. For
this, if g(x + a) = g(x + b) with a �= b elements of Fq , then g0(x + a0) = g0(x), where
g0(x) = g(x + b) is a polynomial of degree n and a0 = a − b �= 0. From Lemma 6, n is
divisible by p, contradicting our hypothesis. ��

In particular, we have shown that the knowledge of just one irreducible factor g(x) of
f (xq − x) is sufficient to obtain the complete factorization of such a polynomial: the irre-
ducible factors are g(x + a) with a ∈ Fq . In the following theorem, we show how to obtain
one of these irreducible factors and hence obtain the explicit factorization of f (xq − x).

Theorem 7 Let f (x) = xn + ∑n−1
i= ai xi ∈ Fq [x] be an irreducible polynomial of degree n

such that an−1 = 0 and n is not divisible by the characteristic p of Fq . Let α be any root of
f . For

β = −1

n

n−1∑

i=1

iαqn−1−i = −1

n
(αqn−2 + 2αqn−3 + · · · + (n − 2)αq + (n − 1)α),

the following hold:

(i) β is a root of f (xq − x) and, in particular, the minimal polynomial g(x) of β has degree
n and satisfies g(x) = ∏n−1

i=0 (x − βqi );
(ii) g(x) is an irreducible factor of f (xq − x) and

f (xq − x) =
∏

a∈Fq
g(x + a),

is the complete factorization of f (xq − x) over Fq .

Proof Under our hypothesis, Corollary 3 ensures that f (xq − x) factors as q irreducible
polynomials of degree n. In particular, we are under the conditions of Corollary 5 and so it
suffices to prove that β is a root of f (xq − x). We observe that

βq − β = −1

n

n−1∑

i=1

(
iαqn−i − iαqn−1−i ) = −1

n

(
αqn−1 + . . . + αq − (n − 1)α

)

= −1

n

(
αqn−1 + · · · + αq + α

) + α = an−1 + α = α,
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since 0 = an−1 = ∑n−1
i=0 αqi . In particular, βq − β is a root of f (x) and so β is a root of

f (xq − x). ��
Remark 8 Using an algorithm of Shoup (see [13], Theorem 3.4), the minimal polynomial
of β can be obtained with O(n1.688) operations in Fq . Since f (xq − x) has degree qn
and factors as polynomials of the same degree, one may compare our method with the
probabilistic approach of von zur Gathen and Shoup [14], which gives the same factorization
with O((qn)1.688 + (qn)1+o(1) log q) operations in Fq (see Remark 6). In this comparison,
our method is fairly better when q is small, and is far more efficient if q is large.

Example 3 Let f (x) = x4 + x − 1 ∈ F5[x] be an irreducible polynomial. In the notation of
Theorem 7, n = 4 and p = 5: we obtain g(x) = x4 − x2 − x − 2 and so

f (x5 − x) = (x5 − x)4 + (x5 − x) − 1 =
4∏

i=0

[(x + i)4 − (x + i)2 − (x + i) − 2],

or

x20 + x16 + x12 + x8 + x5 + x4 − x − 1 = (x4 − x2 − x − 2) × (x4 + x3 + 2x − 1)

× (x4 + 2x3 − 2x2 + x + 2)

× (x4 − 2x3 − 2x2 + 2x − 2)

× (x4 − x3 + x + 2).

In the case that f has degree 2 or has degree 3 and q is even, the minimal polynomial of β

in Theorem 7 can be explicitly computed from the coefficients of f and, in particular, we
obtain the factorization of special classes of polynomials over finite fields.

Corollary 6 Let q be a power of a prime p. The following hold.

(i) if p �= 2 and a ∈ F
∗
q is a nonsquare, f (x) = x2 − a is irreducible and

f (xq − x) = x2q − 2xq+1 + x2 − a =
∏

c∈Fq

(
x2 + 2cx + c2 − a

4

)
.

(ii) if p = 2 and f (x) = x3 + ax + b is irreducible over Fq , then

f (xq − x) = f (xq + x) = x3q + x2q+1 + xq+2 + axq + x3 + ax + b

=
∏

c∈Fq
f (x + c)

=
∏

c∈Fq
(x3 + cx2 + (c2 + a)x + c3 + ac + b).

Proof We observe that, from the hypothesis in items (i) and (ii), we are under the conditions
of Theorem 7 and so only the computation of the polynomial g(x) is needed.

(i) In this case, we have p odd and n = 2. Let α be a root of f (x) = x2 − a, hence α2 = a.
From Theorem 7, we obtain β = −α/2, g(x) = x2 − a/4 and the result follows.

(ii) In this case, n = 3 is such that n is not divisible by p. Letα be a root of f (x) = x3+ax+b.
From Theorem 7, we obtain β = αq + 2α = αq , g(x) = f (x) and the result follows.

��
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