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Abstract
In this paper we construct several infinite families of partial difference sets of both the Latin
and negative Latin square type. Among these constructions is a new family having parameters
(32t , r(3t +1),−n+r2+3r , r2+r), where r = 3t−1+1 (new for t ≥ 4). For the cases where
r = 3t−1 − 1 and 3t−1, the constructions generalize previous results to a larger collection of
abelian groups.

Keywords Partial difference set · Strongly regular graph · Two-weight code

Mathematics Subject Classification 05E30 · 05B10

1 Introduction

A partial difference set is a subset of a group which has a Cayley graph that is strongly regular
and in the case of elementary abelian groups can be used to construct a projective two-weight
code. We will construct several infinite families of partial difference sets, including one
having new parameters. As a result, we obtain infinite families of strongly regular graphs
as well as projective two-weight codes. In the case of strongly regular graphs, we will have
some examples with new parameters.

Let G be a finite group of order v and let D be a subset of order k. Suppose further that
the differences d1d2−1 for d1, d2 ∈ D, d1 �= d2 represent each of the nonidentity elements
in D exactly λ times and each of the nonidentity elements of G − D exactly μ times. Then
we call D a (v, k, λ, μ)-partial difference set (PDS) in G. Though over twenty years old, the
survey article of Ma still provides the best overview for these sets [13]. A partial difference
set having parameters (n2, r(n − 1), n + r2 − 3r , r2 − r) is called a Latin square type PDS.
Similarly, a partial difference set having parameters (n2, r(n + 1),−n + r2 + 3r , r2 + r)
is called a negative Latin square type PDS. Originally, most constructions of both of these
types of PDSs were in elementary abelian groups. Latin square type partial difference set
constructions appear to be much more common than their negative Latin counterpart.
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A graph � with v vertices is said to be (v, k, λ, μ)-strongly regular (SRG) if each vertex
has degree k and furthermore that two adjacent vertices have precisely λ common neighbors
while two nonadjacent vertices haveμ common neighbors. Brouwer [2], Van Lint andWilson
[20], and Godsil [10] provide an excellent background for these objects. Brouwer maintains
a useful online table for SRGs [1]. Recently, Cohen and Pasechnik have used Sagemath to
implement many of the graphs from Brouwer’s database [4]. It is known that the Cayley
graph of a partial difference set is strongly regular, and more specifically if the parameters
of the PDS are (v, k, λ, μ) then the corresponding graph will have the same parameters.

In Sect. 2 of this paperwewill form a relatively simple decomposition of a group into Latin
square type partial difference sets and show how this can be used to construct negative Latin
square type partial difference sets. In Sect. 3 we demonstrate that many abelian 3-groups have
the necessary decomposition required for the constructions in the previous section, improving
both on Sect. 2 as well as previouswork [14].We concludewith some final thoughts including
possible avenues for further research.

Often PDSs are studied within the context of the group ring Z[G]. For a subset D in G
we can write D = ∑

d∈D d and D(−1) = ∑
d∈D d−1. While this may be abuse of notation to

have D represent two different but related objects, it is widely accepted and it should be clear
from context whether D will represent the partial difference set D or the element

∑
d∈D d

in the group ring Z[G].
Another very powerful tool for simplifying calculations with partial difference sets is

character theory. A character on an abelian group G is a homomorphism from the group
to the set of complex numbers having modulus 1 under the operation of multiplication.
The principal character sends all group elements to 1. The following theorem will be used
extensively in subsequent sections of this work. See [18] for a proof of similar results.

Theorem 1 Let δ ∈ {0, 1}. The subset D (with 1 /∈ D) of the abelian group G is a (n2, r(n+
(−1)δ), (−1)δ+1n + r2 + 3(−1)δr , r2 + (−1)δr)-PDS iff χ0(D) = r(n + (−1)δ) for the
principal characterχ0 andχ(D) = (−1)δr or (−1)δ(r−n) for every nonprincipal character
χ . When δ = 0, D is of the negative Latin square type and when δ = 1, D is of the Latin
square type.

2 Main constructions of partial difference sets

In a previous paper [14], constructions of bothLatin square type andnegativeLatin square type
partial difference sets in 3-groupswere given. If one could find the appropriate decomposition
of a group G into Latin square type partial difference sets and another group G ′ into negative
Latin square type partial difference sets, then a product theorem could be applied that would
produce negative Latin square type partial difference sets in the product group. This paper
will use a similar approach always using the following collection of partial difference sets in
G ′ = Z

2
3 =< x, y > for the negative Latin square type portion of the product:

S1 = {x, x2, y, y2}, S2 = {xy, x2y2, xy2, x2y}.
For the other group G with identity 0G , we require that |G| = 32t . G must also have a

partition into the following sets:

{0G}, H1
∗, H2

∗, D0, D1, D2,

where H1 and H2 are subgroups of order 3t , and the Di are Latin square type partial difference
sets having ri (3t − 1) elements, where r0 = 3t−1 − 1 and r1 = r2 = 3t−1. Notice that
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A new family of partial difference sets in 3-groups 1641

this partition can be constructed by using partial difference sets of the well known partial
congruence type (PCP) in the elementary abelian case, Z2t

3 . A PCP construction in a group G
of order n2 consists of a union of trivially intersecting subgroups of order n with the identity
removed. In general, the nonidentity elements ofZ2t

3 can be partitioned into 3t +1 subgroups
of order 3t . We let D0 be a union of 3t−1 − 1 of these subgroups (removing the identity),
while D1 and D2 will be a union of 3t−1 of the subgroups chosen so that the three PDSs are
mutually disjoint. Then H1 and H2 are the remaining subgroups that have not been selected.
For example, in Z2

3 we have the following:

H1
∗ = {x, x2}, H2

∗ = {y, y2}, D0 = {}, D1 = {xy, x2y2}, D2 = {xy2, x2y}.
Before we state and prove our main result, we apply Theorem 1 to our specific partition.

Lemma 2 Suppose the group G with identity 0G has |G| = 32t . Suppose further that G
has a partition into the following sets: {0G}, H1

∗, H2
∗, D0, D1, D2, where H1 and H2 are

subgroups of order3t , and the Di are Latin square type partial difference sets having ri (3t−1)
elements, where r0 = 3t−1 − 1 and r1 = r2 = 3t−1. Then for any nonprincipal character
χ on G, the character sums for H1

∗ and H2
∗ will be in {−1, 3t − 1}, the character sum for

D0 will be in {−3t−1 + 1, 3t − 3t−1 + 1}, and the character sums for D1 and D2 will be
in {−3t−1, 3t − 3t−1}. Moreover, exactly one of the sets in {H1, H2, D0, D1, D2} will have
positive character sum.

Proof The possible character sums for the sets is an immediate consequence of Theorem 1.
For any nonprincipal character χ on G we have:

χ(H1
∗) = −1 + δ13

t , χ(H2
∗) = −1 + δ23

t , χ(D0
∗) = −3t−1 + 1 + δ33

t ,

χ(D1
∗) = −3t−1 + δ43

t , χ(D2
∗) = −3t−1 + δ53

t ,

where δi ∈ {0, 1} for 1 ≤ i ≤ 5. We also have −1 = χ(G∗) = χ(H1
∗ ∪ H2

∗ ∪ D0 ∪ D1 ∪
D2) = χ(H1

∗)+χ(H2
∗)+χ(D0

∗)+χ(D1
∗)+χ(D2

∗). It follows that δ1+δ2+δ3+δ4+δ5 =
1 and therefore there will be exactly one set in {H1, H2, D0, D1, D2}with a positive character
sum. 	


Now we are ready to state the main theorem. It includes construction of three different
families of negative Latin square type partial difference sets, but we will only prove one of
three since the other proofs are quite similar.

Theorem 3 (Main Theorem) Suppose G is a group with identity 0G and that |G| = 32t .
Suppose that G has a partition into the following sets: {0G}, H1

∗, H2
∗, D0, D1, D2, where

H1 and H2 are subgroups of order 3t and the Di are Latin square type partial difference
sets having ri (3t − 1) elements, where r0 = 3t−1 − 1 and r1 = r2 = 3t−1. Then the
group G × Z

2
3 contains negative Latin square type partial difference set with parameters

(32t+2, r(3t+1 + 1),−3t+1 + r2 + 3r , r2 + r) where r = 3t − 1, 3t , 3t + 1 respectively as
follows:

1. Da = (D2 ∪ H2
∗) × (0, 0)) ∪ ((D0 ∪ H1

∗) × S1) ∪ (D1 × S2);
2. Db = (D1 × (0, 0)) ∪ ((D2 ∪ H2) × S1) ∪ ((D0 ∪ H1

∗) × S2);
3. New family: Dc = (D0 × (0, 0)) ∪ ((D1 ∪ H1) × S1) ∪ ((D2 ∪ H2) × S2).

Proof Dc = (D0 × (0, 0))∪ ((D1 ∪ H1)× S1)∪ ((D2 ∪ H2)× S2). We will show that the set
Dc is a partial difference set with parameters (32t+2, r(3t+1 + 1),−3t+1 + r2 + 3r , r2 + r)
for r = 3t + 1.
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1642 J. Polhill

First observe that |Dc| = |D0| + 4(|D1| + |H1|) + 4(|D2| + |H2|) = (3t−1 − 1)(3t −
1) + 8(3t−1(3t − 1) + 3t ) = (3t + 1)(3t+1 + 1).

Let φ be a nonprincipal character on G × Z
2
3, so that φ = χ ⊗ ψ where χ is a character

on G and ψ is a character on Z
2
3. By Theorem 1, we will need to show that φ(Dc) = r or

r − n where n = 3t+1.
Case 1: χ is principal, so that ψ is nonprincipal. Then we have φ(Dc) = |D0| + (|D1| +

|H1|)(ψ(S1))+(|D2|+|H2|)(ψ(S2)) = |D0|−|D1|−|H1| = −3t−3t+1 = (3t+1)−3t+1 =
r − n.

Case 2:ψ is principal, so thatχ is nonprincipal. Exactly one of the sets H1
∗, H2

∗, D0, D1,

D2, χ will have positive character sum. If χ(D0) > 0 we have the following φ(Dc) =
1(χ(D0)) + 4(χ(H1) + χ(D1)) + 4(χ(H2) + χ(D2)) = (3t − 3t−1 + 1) + 4(−3t−1) +
4(−3t−1) = (3t + 1) − 3t+1 = r − n. Now suppose that χ(D1) > 0. Then we have:
φ(Dc) = 1(χ(D0)) + 4(χ(H1) + χ(D1)) + 4(χ(H2) + χ(D2)) = (−3t−1 + 1) + 4(3t −
3t−1) + 4(−3t−1) = (3t + 1) = r . The other subcases are nearly identical to this last case.

Case 3: Bothχ andψ are nonprincipal. Note that {ψ(S1), ψ(S2)} = {−2, 1}, and the cases
are similar so suppose that ψ(S1) = −2. If χ(D0) > 0, we will have: φ(Dc) = 1(χ(D0)) +
−2(χ(H1)+χ(D1))+ (1)(χ(H2)+χ(D2)) = (3t −3t−1+1)+−2(−3t−1)+1(−3t−1) =
(3t + 1) = r . If χ(D1) > 0 or χ(H1) > 0, we have: φ(Dc) = 1(χ(D0)) + −2(χ(H1) +
χ(D1))+(1)(χ(H2)+χ(D2)) = (−3t−1+1)+−2(3t−3t−1)+1(−3t−1) = (3t+1)−3t+1 =
r − n. If χ(D2) > 0 or χ(H2) > 0, we have: φ(Dc) = 1(χ(D0)) + −2(χ(H1) + χ(D1)) +
(1)(χ(H2) + χ(D2)) = (−3t−1 + 1) + −2(−3t−1) + 1(3t − 3t−1) = (3t + 1) = r . 	


While Dc is an infinite family with new parameters, the remaining two parameter sets have
similar constructions in [14]. We now have constructed negative Latin square type partial
difference sets in groups of the form G × Z

2
3, where the order of |G| = 32t provided that G

has a partition as above. We conclude this section with a recursive theorem that will be useful
when we introduce groups other than elementary abelian to this construction in Sect. 3.

Theorem 4 Suppose G and G ′ are groups with identities 0G and 0G ′ respectively with
|G| = 32t and |G ′| = 32s . Suppose that G has a partition into the following sets:
{0G}, H1

∗, H2
∗, D0, D1, D2, where H1 and H2 are subgroups of order 3t , and the Di

are Latin square type partial difference sets having xi (3t − 1) elements, where x0 =
3t−1 − 1 and x1 = x2 = 3t−1. Suppose that G ′ has the same type of partition:
{0G ′ }, H ′

1
∗
, H ′

2
∗
, D′

0, D
′
1, D

′
2, where H ′

1 and H ′
2 are subgroups of order 3

s , and the D′
i are

Latin square type partial difference sets having yi (3s − 1) elements, where y0 = 3s−1 − 1
and y1 = y2 = 3s−1. Then the product group G × G ′ has a partition into the following
sets: {0G×G ′ }, K1

∗, K2
∗, P0, P1, P2, where K1 and K2 are subgroups of order 3t+s , and

the Di are Latin square type partial difference sets having zi (3t+s − 1) elements, where
z0 = 3t+s−1 − 1 and z1 = z2 = 3t+s−1.

Proof The two subgroups in the partition are given by K1 = (H1H ′
1) and K2 = (H2H ′

2).
The two larger PDSs are given by:

P1 = ((D0 ∪ H1 ∪ H2) × D′
2) ∪ (D1 × (H ′

1 ∪ H ′
2 ∪ D′

0)) ∪ (D2 × D′
1),

P2 = ((D0 ∪ H1 ∪ H2) × D′
1) ∪ (D1 × D′

2)) ∪ (D2 × (H ′
1 ∪ H ′

2 ∪ D′
0))),

Then the remaining PDS is:

P0 = (G × G ′) − (K1 ∪ K2 ∪ P1 ∪ P2)

= ({0G} × D′
0) ∪ ((D0) × (H ′

1 ∪ H ′
2 ∪ D′

0)) ∪ (D1 × D′
1)
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A new family of partial difference sets in 3-groups 1643

∪(D2 × D′
2) ∪ (H1

∗ × (H ′
2
∗ ∪ D′

0)) ∪ (H2
∗ × (H ′

1
∗ ∪ D′

0).

The fact that K1 and K2 are subgroups is obvious, and it will follow that P0 is a partial
difference set provided that both P1 and P2 are both PDSs since they are Latin square type
PDSs of the appropriate size. In the context of SRGs and association schemes, Van Dam
proved that the union of Latin square PDSs [19] gives that K1

∗ ∪ K2
∗ ∪ P1 ∪ P2 is a Latin

square type partial difference set since it is the fusion of Latin square type partial difference
sets, and then P0 is simply the complement of this union.

To see that P1 and P2 are (32s+2t , r(3s+t − 1), 3s+t + r2 − 3r , r2 − r)-PDSs for r =
3s+t−1, we observe that (D0 ∪ H1

∗ ∪ H2
∗), D1, and D2 are Latin square type PDSs in

G with cardinality (3t−1 + 1)(3t − 1), 3t−1(3t − 1), and 3t−1(3t − 1) respectively while
(D′

0 ∪ H ′
1
∗ ∪ H ′

2
∗
), D′

1, and D′
2 are Latin square type PDSs in G ′ with cardinality (3s−1 +

1)(3s −1), 3s−1(3s −1), and 3s−1(3s −1). These are the necessary criteria to apply Theorem
2.2 of [14] and it follows that P1 and P2 are both partial difference sets in G × G ′. 	


We summarize our results as follows.

Corollary 5 There exist negative Latin square type partial difference sets with parameters
(32t , r(3t + 1),−3t + r2 + 3r , r2 + r) for every positive integer t ≥ 2 and for r = 3t −
1, 3t , 3t + 1.

Proof Either by using a PCP-type construction or by repeatedly applying Theorem 4 to Z
2
3

and the initial partition H1
∗ = {x, x2}, H2

∗ = {y, y2}, D0 = {}, D1 = {xy, x2y2}, D2 =
{xy2, x2y}, we can construct in the group G = Z3

2s the necessary partition : {0G},
H ′
1
∗
, H ′

2
∗
, D′

0, D
′
1, D

′
2 to use with Theorem 3. 	


Wehave three infinite families of partial difference sets, and it immediately follows that the
Cayley graphs of these sets correspond to strongly regular graphs with the same parameters,
namely (32t , r(3t + 1),−3t + r2 + 3r , r2 + r) for every positive integer t ≥ 2 and for
r = 3t − 1, 3t , 3t + 1. In Brouwer’s table [1], one finds that previous constructions have
been given for t = 2 where the degrees is k = 20, 30, and 40 and also for t = 3, where
the degrees are k = 234, 252, and 280. The cases k = 234, 252 can be constructed using
quadratic forms [13] or by the methods of [14] and are known to be part of an infinite family.
De Resmini constructed the graph with k = 280 in [6]. This paper gives the first construction
to include this parameter set in an infinite family. Note the graph with degree k = 40 has the
well known Paley parameters.

3 PDSs for groups with exponent 3n, any n ≥ 1

In Sect. 2, we constructed 3 infinite families of partial difference sets with parameters
(32+2n, r(3n+1 + 1),−3n+1 + r2 + 3r , r2 + r) and r = 3n − 1, 3n, 3n + 1. So far, all con-
structions have been in the groupZ3

2+2n . In this section, we show that the new family having
r = 3n + 1 will include many abelian 3-groups and not just exponent 3. For the other two
parameter sets, [14] gave constructions in all groups of the formZ

2t1
3 ×Z

2t2
9 ×Z

2t4
81 ×· · ·×Z

2t2s
32s

(t1 > 0, tk ≥ 0 for k > 1). In this section, we improve on this result by removing the stipu-
lation that the component groups beyond Z

2t1
3 necessarily have exponent an even power of

3. For example, the previous paper did not include Z2
3 × Z

2
27 and this paper shows that this

group contains PDSs with these parameters.
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Lemma 6 The nonidentity elements of the group Z
2
9 can be partitioned into 2 subgroups

H1 and H2 of order 9 and 3 Latin square type partial difference sets D0, D1, D2 so that
|D0| = 16 and |D1| = |D2| = 24 as needed for Theorem 4.

Proof Let Z2
9 =< a, b >. The appropriate partition can be found using the methods of [5]

or [12]. We give it explicitly: D1 = (< a > ∪ < ab > ∪ < ab2 > ∪ < b >) ∩ (G − 3G),
D2 = (< ab3 > ∪ < ab4 > ∪ < ab5 > ∪ < a3b >) ∩ (G − 3G), H1 =< ab6 >, H2 =<

ab7 >, and D0 = G∗ − D1 − D2 − H∗
1 − H∗

2 . 	

Theorem 7 For all positive integers r there exists a partition of the nonidentity elements in the
group G = Z

2
3r into 2 subgroups H1 and H2 of order 3r and three Latin square type partial

difference sets D0, D1, D2 so that |D0| = (3r−1−1)(3r−1)and |D1| = |D2| = 3r−1(3r−1).

Proof We have now seen that both Z
2
3 and Z

2
9 have this partition. We now use induction on

r .
Suppose that the group Z

2
3(r−2) contains the partition into two subgroups K1 and K2 of

order 3r−2 and the PDSs P0, P1, and P2. Let � : Z2
3r−1 → Z

2
3r−2 be the natural projection

map given by �(x) = 3x . Note that 3Z2
3r

∼= Z
2
3r−1 and 9Z

2
3r

∼= Z
2
3r−2 so we can identify the

sets Pi and K j in 9G.
Let Z2

3r =< a, b >. Define the two partial difference sets D1 and D2 as:

D1 = �−1(P1) ∪ [(G − 3G) ∩
((< a > ∪ < ab > ∪ · · · ∪ < ab3

r−1−1 > ∪ < b > ∪ < a3b > ∪ · · · ∪ < a3(p
r−2−1)b)]

D2 = �−1(P2) ∪ [(G − 3G) ∩
(< ab3

r−1
> ∪ < ab3

r−1+1 > ∪ · · · ∪ < ab2(3
r−1)−1 > ∪ < a3p

r−2
b > ∪ · · · ∪ < a3(2p

r−2−1)b)]
Let Hi < Z

2
3r be a subgroup of order 3r such that �(3Hi ) = Ki for i = 1, 2. We also

choose the Hi so that they are each disjoint from the Dj . It follows that D1, D2, H∗
1 , and

H∗
2 are mutually disjoint. Define D0 = Z

2
3r − H1 − H∗

2 − D1 − D2. We will prove that
D1 is a partial difference set with the appropriate parameters. The proof of D2 is identical,
and the fact that D0 will be a partial difference set with the appropriate parameters follows
immediately.

Let χ be a character on G. If χ is principal, χ(D1) = |D1|. D1 contains exactly 1
3 of

the elements of G − 3G, and also |�−1(P1)| = 9|P1| since |ker(�)| = 9. So χ(D1) =
1
3 (3

2r − 32r−2) + 9(|P1|) = 1
3 (3

2r − 32r−2) + 9(3r−3(3r−2 − 1) = 3r−1(3r ) − 32r−3 +
32r−3 − 3r−1 = 3r−1(3r − 1).

If χ has order 3, then χ(�−1(P1)) = 9|P1| = 32r−3 − 3r−1. Meanwhile χ will be
principal on exactly one of< a >,< ab >,< ab2 >, and< b > and order 3 on the other 3.
It follows that χ(< a >)+χ(< ab >)+χ(< ab2 >)+χ(< b >) = 3r −3r−1−3(3r−1) =
−3r−1.Then we have: χ[(G − 3G) ∩ ((< a > ∪ < ab > ∪ · · · ∪ < ab3

r−1−1 > ∪ < b >

∪ < a3b > ∪ · · · ∪ < a3(3
r−2−1)b)] = 3r−2(−3r−1) = −32r−3 since there are 3r−2 4-tuples

of subgroups that will have the same character values as < a >,< ab >,< ab2 >, and
< b >. Putting it all together gives gives χ(D1) = 32r−3 − 3r−1 − 32r−3 = −3r−1.

If χ has order 3k, 1 < k < r , then χ[(G − 3G) ∩ ((< a > ∪ < ab > ∪ · · · ∪ <

ab3
r−1−1 > ∪ < b > ∪ < a3b > ∪ · · · ∪ < a3(3

r−2−1)b)] = 0. This results from
the fact that for every < x > in the collection on which χ is principal will be exactly 2
subgroups in the collection on which χ will be order 3. These triples yield a character sum of
3r−3r−1−2(3r−1) = 0.χ has order greater than 3 on all other subgroups and yields character
sum 0 on these. So χ(D1) = χ(�−1(P1)) = 9χ(P1) = 9(δ3r−2 − 3r−3) = δ3r − 3r−1,
where δ = 0, 1.
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A new family of partial difference sets in 3-groups 1645

If χ has order 3r , χ(�−1(P1)) = 0 since χ is no longer trivial on the kernel of �. Then
χ(D1) = χ[(G − 3G) ∩ ((< a > ∪ < ab > ∪ · · · ∪ < ab3

r−1−1 > ∪ < b > ∪ < a3b >

∪ · · · ∪ < a3(3
r−2−1)b)] = δ3r −3r−1 where again δ = 0, 1. In this case, there is exactly one

subgroup in the entire collection on which χ will be order 3 (so δ = 0) or principal (δ = 1).
This completes the proof. 	


As an example let G = Z
2
27 =< a, b > we use:

S1 = ((< a > ∪ < ab > ∪ · · · ∪ < ab8 > ∪ < b > ∪ < a3b > ∪ < a6b >) ∩ (G − 3G))

∪((< a3 > ∪ < a3b9 > ∪ < a3b18 >) ∩ (3G − 9G)

S2 = ((< ab9 > ∪ < ab10 > ∪ · · · ∪ < ab17 > ∪ < a9b > ∪ < a12b > ∪ < a15b >) ∩ (G − 3G))

∪((< b3 > ∪ < a9b3 > ∪ < a18b3 >) ∩ (3G − 9G)

H1 = < ab19 >, H2 =< ab20 >,

D0 = G∗ − D1 − D2 − H1 − H2.

4 Final remarks and remaining questions

We have constructed a new family of negative Latin square type partial difference sets. It
would appear that, while less easily constructed than their Latin square type partial difference
set counterparts, negative Latin square type partial difference sets are not so uncommon in
p-groups. On the other hand, partial difference sets with parameters not of Latin or negative
Latin square type do seem rather rare as do constructions of PDSs of any kind in groups
not having order the power of a prime. De Winter and his co-authors have several recent
nonexistence results along these lines [7–9]. They have proved nonexistence for each of the
open cases in Ma’s table [13] for PDSs having cardinality k ≤ 100. We conclude by posing
a few possible directions for future work.

1. In this paper, constructions of infinite families of partial difference sets/strongly regular
graphs that generalize the examples with v = 729 and with k = 224, 252, and 280.
Brouwer’s table [1] indicates that the case of k = 140 is still completely undetermined,
while some other negative Latin square type parameters have constructions. Constructing
the graph with k = 140 would be quite interesting, but it would also be of interest to find
new families that include some of the other cases for negative Latin square type PDSs.
We note that k = 364 has the well known Paley parameters, a family with many known
examples such as in [5,15,16].

2. Partial difference sets also can be used to construct projective 2-weight codes. It might
be possible to use results similar to those in this paper to find interesting codes. Equally
plausible is the possibility at finding some interesting results by looking at some of
the known projective two-weight codes to get new families of partial difference sets.
For example, Gulliver constructs the SRGs with k = 168, 196 in [11] using a coding
approach.

3. This paper and [14] give constructions of negative Latin square type partial difference
sets in both 2-groups and 3-groups. In the case of 3-groups, the constructions depend on
the partition of Z2

3 into the identity and two (9, 4, 1, 2)-PDSs. In the case of 2-groups,
the constructions depend on the fact that both Z4

2 and Z
2
4 have partitions into the identity

and three (16, 5, 0, 2)-PDSs. For primes p larger than 3, a few examples of negative
Latin square type partial difference sets were constructed in [3]. However, the group Z2

p
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does not have a partition into the identity and p − 1 negative Latin square type partial
difference sets so the methods in this paper do not immediately apply. It is possible with
some adjustments new constructions could be found for larger primes.

4. Find new Latin or negative Latin square type partial difference sets in non p-groups, or
find new PDSs that are of neither the Latin nor negative Latin square type. Both of these
appear rather rare, although examples have been found in [15] and [16]. The results from
[17] also could possibly be used to find new examples.

5. The constructions in this paper, [14,15,17], and [16] have all been made through partial
difference sets. The constructions and proofs could be put into the context of strongly
regular graphs. It is possible that there could be new resulting graphs to be constructed in
this manner since the existence of a strongly regular graph does not automatically imply
the existence of a corresponding partial difference set.
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