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Abstract
Nowadays, group communications are getting more and more popular. In order to secure
the communication, all participating users need to share a common group key in advance.
The paper proposes a secure and efficient group key distribution protocol based on Shamir’s
secret sharing scheme. In the protocol, (1) each user only needs to send registration message
in privacy, while all the other messages can be transported in public. Meanwhile, (2) the
scheme supports authentication for group keys without any assumption of hard mathematics
problem. Moreover, (3) the protocol introduces the notion of on-line/off-line into group key
distribution and thus the speeds of group key response and recovery are greatly improved.
Analyses show that our scheme is resistant to passive attack, impersonation attack and reply
attack.

Keywords Group key distribution · Group key authentication · Secret sharing · Lagrange
interpolation polynomial · On-line/off-line

Mathematics Subject Classification 94A60 · 94A62

1 Introduction

With the rapid development of network, communication patterns are not limited to 1-to-1
or 1-to-m (i.e. sever/clients). Group communications with m-to-m pattern become more and
more popular. Before a secure group communication, all participating users are required to
share a group key. Group key establishment protocols have been studied in many literatures.
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According to whether a trusted key generation center (KGC) exists or not, these protocols
are classified into two classes: group key agreement (or exchange) protocols and group key
distribution (or transfer) protocols.

In group key agreement protocols, there is not a KGC trusted by all users. Initially, the
group key agreement protocol [3] based on Diffie–Hellman algorithm [6] was proposed
by Ingemarsson et al. in 1982. The protocol requires all n participants to communicates
synchronously and needs n − 1 rounds of interaction to establish a group key. Steiner et al.
[28] extends basic Diffie–Hellman key exchange to a n-party Diffie–Hellman key exchange.
In 2004, Kim et al. [16] proposed a fault-tolerant protocol named Tree-based Group Diffie–
Hellman. Protocols [4,14,36] are also based on Diffie–Hellman algorithm. Moreover, there
are some group key agreement protocols based on othermethods. For example, Chen et al. [5]
proposed a key agreement protocol based on bilinear pairing to improve the key establishment
efficiency. Irshad et al. [15] proposed the protocol based on Chebyshev chaotic map without
a registration center. Because there is no KGC and all the users are equal in these protocols,
more communication cost is required during key establishment.

Distinct from group key agreement protocols, there exists a KGC trusted by all users in
group key distribution protocols [11,17,24,31]. The group key is generated and distributed by
the KGC, so that group key establishment can be accomplished more efficiently. However,
it is difficult to distribute a group key for the following reasons:

1. Since a group key is transferred to multiple users, it is easier to be intercepted during
distribution.

2. Group users may change from time to time. When a user leaves or joins a group, the
group key needs to be updated such that users out of the group have no information about
the new group key.

3. Even if a group does not change for a long time, a session key still needs to be updated
after a period of time. Otherwise, it could be cracked by adversaries.

As a group-oriented cryptographic tool, secret sharing has the potential to address the
above problems. Therefore, based on Shamir’s (t, n) threshold secret sharing (SS) scheme,
we propose an on-line/off-line group key distribution protocol.

(t, n) threshold SSwas first proposed by Shamir [26] andBlakley [2] separately in 1979. In
a (t, n) SS scheme, a secret is divided into n shares and each share is allocated to a shareholder
secretly such that any t or more than t shareholders can reconstruct the secret while less than
t shareholders cannot obtain the secret. Shamir’s (t, n) threshold SS and Blakley’s (t, n)

threshold SS are based on polynomial interpolation and hyperplane geometry respectively,
while Mignotte [22] and Asmuth [1] et al.’s schemes are both based on Chinese Remainder
Theorem. All these schemes are not based on any hard mathematical problems.

There are some literatures using (t, n) threshold SS to design group key distribution
protocols [8,21,29,35]. Guo et al. [9] proposed a group key distribution protocol based on
Asmuth-Bloom’s (t, n) threshold SS. Harn and Lin proposed an authenticated group key
transfer protocol [12] based on Shamir’s (t, n) threshold SS. However, the protocol is not
information theoretically secure since it empolys large integer factorization problem to thwart
Insider attack. Liu et al. [20] tried to improve the security of Harn–Lin’s protocol by utilizing
two hash functions, but their protocol is also based on large integer factorization problem.

In these protocols [12,20,25], one-way hash functions are used to support group key
authentication. The KGC announces the hash value of group key in advance, so that users
can verify whether the group key is correctly distributed by the KGC. In our proposed
protocol, hash function is not only used for authentication but also utilized to compute an
offset to protect the group key.
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In the above distribution protocols, the KGC starts to compute and distribute group key
after it has received all users’ requests. However, in the scenes where quick response is
required, more efficient distribution protocol is needed. Therefore, we introduce on-line/off-
line method to speed the response of group key distribution protocol for the first time.

The concept of on-line/off-line was first proposed by Even et al. [7] to design an efficient
digital signature scheme. The idea is that the signature generating procedure is divided into
two phases. Part of signature can be computed during off-line phase (before the signed
message is given), so that on-line phase (after the signed message is received) works very
fast. Subsequently, Tanaka [30], Liu [19] and some others [10,13,18,27,34], extended the
notion to design some other schemes. In our group key distribution protocol, the period
before group key requests are sent to the KGC is the off-line phase. KGC can carry out most
calculation of group key generation during this phase.WhenKGC receives group key request
messages from users, the protocol goes into on-line phase. Then, KGC generates group key
and distributes it to users. In this way, KGC has a rapid response in on-line phase.

According to the above, we summarize the characteristics of our on-line/off-line group
key distribution protocol as below.

– Each user just needs to share a coordinate with the KGC in privacy during registration.
And then, all messages can be transported publicly.

– All users share a common group key, and they can verify whether or not the key is sent
from KGC.

– When some users drop out of a group, they will not get any information about new group
keys.

– The process of group key distribution is divided into on-line and off-line phases. KGC
carries out most computation during off-line phase, so that it distributes the key to users
rapidly in on-line phase.

– Our protocol is resistant to passive attack, impersonation attack, and reply attack. More-
over, it is not based on any hard mathematics problems.

The rest of the paper is organized as follows: In next section,we present some preliminaries
about Shamir’s (t, n) threshold SS and Harn–Lin’s protocol. The entities and attack models
are given in Sect. 3. In Sect. 4, we propose our group key distribution protocol in detail.
Correctness analysis and security analysis are given in Sects. 5 and 6 respectively. In Sect. 7,
we compare our protocol to related ones. Section 8 presents some experimental data and
Sect. 9 concludes the paper.

2 Preliminaries

2.1 Shamir’s (t, n) threshold SS

Shamir’s (t, n) threshold SS is based on polynomial interpolation. It consists of the following
two steps:

Share generation At first, the dealer D randomly chooses a polynomial f (x) of degree
t −1: f (x) = a0 +a1x +· · ·+at−1xt−1 mod p. The constant term a0 is regarded as the
secret s, i.e., s = f (0) = a0. All the coefficients a0, a1, . . . , at−1 are in the finite field
GF(p), where p is a prime number. The dealer D selects n abscissas X = 1, 2, . . . , n to
generate a share set δ = {si | f (xi ), i ∈ X }. Then, the dealer D distributes each share si
to the corresponding shareholder Ui secretly while makes all the abscissas xi known to
the public.
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Secret reconstructionWhen m (m ≥ t) legal shareholders attempt to recover the secret
s, they pool shares together privately. As a result, each shareholder get a share set δm =
{si | f (xi ), i ∈ Xm} associated to the abscissas set Xm = {1, 2, . . . ,m}. Then, the secret
s can be computed as

s = f (0) =
∑

i∈Xm

si
∏

j∈Xm , j �=i

−x j
xi − x j

mod p

where si
∏

j∈XIm , j �=i

−x j
xi−x j

is a Lagrange component.

Remark 2.1 In Shamir’s (t, n) threshold SS, if a shareholder gets any t or more than t shares,
it can compute the secret s easily by Lagrange Interpolation Polynomial. However, any less
than t shareholders cannot obtain any information about the secret. Likewise, less than t − 1
Lagrange components also cannot recover generation polynomial f (x) or the secret s. It plays
an important role in our proposed protocol. Due to the problem without any computational
assumption, Shamir’s (t, n) threshold SS is an information theoretically secure scheme.

2.2 Harn–Lin’s protocol

In this protocol, theKGCfirst picks a RSA-number n, where n = p∗q . Both p and q are large
safe primes. Then, KGC shares a coordinate (xi , yi ) with each user Ui during registration,
where i = 1, 2, . . . ,m. The group key generation and distribution process is described as
follow:

Step 1 The initiator sends a key initiation message to KGC.
Step 2 KGC broadcasts a response message to all users.
Step 3 Each user sends a random challenge Ri to KGC, where Ri ∈ Zn .
Step 4 KGC randomly selects a group key k and constructs an m-th degree polynomial
f (x) to pass through (m + 1) coordinates, (0, k) and (xi , yi ⊕ Ri ), for i = 1, 2, . . . ,m.
KGC computes m additional coordinates Pi on f (x) and authentication information
auth = h(k,U1, . . . ,Um, R1, . . . , Rm), where h(.) is a public one-way hash function.
KGC distributes {auth, P1, . . . , Pm} to all users publicly .
Step 5 Each user Ui can recover the group key k by one private coordinate (xi , yi )
and m public coordinates Pi , for i = 1, 2, . . . ,m. Then, it computes auth =
h(k,U1, . . . ,Um, R1, . . . , Rm) to check whether or not the key is sent from KGC.

Remark 2.2 In Harn–Lin’s protocol, KGC should choose a larger parameter n as the module
of polynomials to replace the module p in Shamir’s (t, n) threshold SS, where n is a RSA-
number. In this way, the coordinate (xi , yi ) ofUi can be reused many times and kept private.
Harn and Lin use the big integer factorization problem to thwart Insider attack skillfully.
Because this protocol is based on not only Shamir’s (t, n) threshold SS but also hard math
problem, it is not information theoretically secure. Readers can read the original paper [21]
to acquire more detailed information about the problem. However, all computations have to
be over Zn , and KGC cannot carry out any calculations of group key before it receives all
users’ random challenges. Consequently, Harn–Lin’s protocol is inefficient.

123



A secure and efficient on-line/off-line group key distribution protocol 1605

3 Entities and attackmodels

In our group key distribution protocol, entities are classified into three types: (1) KGC, (2)
User and (3) adversary. Furthermore, there are three attackmodels for adversaries: (1) passive
attack, (2) impersonation attack, and (3) reply attack.

3.1 Entities

3.1.1 KGC

KGC is the entity trusted by all users and it is in charge of distributing group keys to the users.
Firstly, it attests to users’ identities and confers with each legal user on a private coordinate
secretly. In fact, the process is similar to the shares generation in a (t, n) threshold SS scheme.
Then, before users initiate a group key request, KGC goes into off-line phase to carry out
part of computations about group key generation. Next, when KGC receives a group key
initialization message, it goes into on-line phase to complete key generation. Finally, it sends
group key distribution messages to users quickly.

3.1.2 User

A user is an entity who shares a private coordinate with KGC during registration. Afterwards,
users are expected to maintain their own coordinates secure all the time, because the coor-
dinates will be reused time and again. When users need a group key, each of them submits
a request to KGC. After a user receives its corresponding distribution message, it recovers a
session key and verifies whether or not the key is transferred from KGC.

3.1.3 Adversary

An adversary is an entity who wants to attack the protocol. Suppose that all users form a set
U . The adversaries are classified as Outsiders and Insiders according to whether or not they
are in U .

(1) Insider: If a user not only wants to obtain the group key, but also attempts to derive
coordinates kept by other users in U , it is named Insider.

(2) Outsider: If any others not in U want to attack the protocol, they are called Outsiders.
Outsiders always aim at capturing group key of U , or preventing users in U from obtaining
a valid group key.

3.2 Attackmodels

3.2.1 Passive attack

Passive attack means that adversaries break confidentiality of a protocol by capturing mes-
sages among legal members. In our protocol, all messages during distribution phase are
transported publicly, so that adversaries are able to easily capture the messages.
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3.2.2 Impersonation attack

Impersonation attack refers to the fact that an entity pretends to be another to attack a protocol.
In our protocol, it means that an Outsider sends group key request to KGC in the name of a
legal user, or an adversary pretends to be KGC to distribute group key.

3.2.3 Reply attack

Reply attack is that an entity resends outdated messages to others. In our protocol, it is
subdivided into two types:

(1) An Outsider resends an outdated group key request to KGC.
(2) An adversary redistributes an outdated group key to users.

4 Our proposed protocol

In this section, we show our group key distribution protocol in detail. It consists of three
phases: (1) Preparatory phase, (2) Distribution phase, (3) Group key recovery and authenti-
cation.

4.1 Symbol definition

Before describing the protocol, we first define some notations as listed in Table 1.

4.2 Preparatory phase

4.2.1 Initialization of KGC

The KGC selects a one-way hash function h(.) and a random prime p. Then, it makes them
publicly known.

4.2.2 Users registration

As described above, each user should register with KGC before it joins in the group. In this
process, each userUi is required to share a private coordinate (xi , yi ) with KGC, where both
xi and yi are in the finite field GF(p). KGC should guarantee each xi �= 0 and xi �= x j for
i �= j . Each user just needs to register only once. Then, it makes its identity Ui public while
keeps its coordinate (xi , yi ) private (Fig. 1).

4.3 Distribution phase

4.3.1 Off-line phase

Step 1 Suppose that there are total m legal users who have registered with KGC. They
form a user group U = {U1,U2, . . . ,Um} and their private coordinates constitute a set
Ω={(x1, y1), (x2, y2), . . . , (xm, ym)}.
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Table 1 Notations Symbol Descriptions

m Number of legal users

h(.) Hash function

k Group key selected by KGC

f (x) Group key generation function

Ui The i th user

U Group of legal users U = {U1,U2, . . . ,Um }
σ Group communication identifier

I Group key initialization message

Rσ Response message

Mσ,i Request message of Ui

(xi , yi ) Private and permanent coordinate of user Ui

(x∗
i , y∗

i ) Public coordinate selected by user Ui

gi (x) Linear function constructed by (xi , yi ) and (x∗
i , y∗

i )

g−1
i (y) Inverse of gi (x)

(x ′
i , y

′
i ) Ephemeral coordinate select by KGC for user Ui

x1, . . . , xm Public abscissas included in Rσ

d ′
i Original group key distribution information

di Protected group key distribution information

Ki Distribution message for Ui

Δi Lagrange component of Ui

ki Session key computed by Ui

Step 2 KGC randomly generates a polynomial f (x) = a0 +a1x +· · ·+amxm of degree
m and chooses a0 as the group key k, i.e., k = f (0) = a0.
Step 3 KGC picks 2m different coordinates on f (x) to form other two sets
Ω1={(x ′

1, y
′
1), (x

′
2, y

′
2), . . . , (x

′
m, y′

m)} and Ω2={(x1, y1), (x2, y2), . . . , (xm, ym)} such
that Ω ∩ Ω1 = Ω ∩ Ω2=∅.
Step 4 KGC uses each x ′

i (i = 1, 2, . . . ,m) in Ω1 and all elements in Ω2 to compute
original group key distribution information such as

d ′
i =

∑m

t=1
yt

−x ′
i

xt − x ′
i

m∏

j=1, j �=t

−x j

xt − x j
mod p

Step 5 KGC computes an offset h(x ′
i , y

′
i ) to generate a value di = d ′

i + h(x ′
i , y

′
i ) mod p

as protected group key distribution information.

4.3.2 On-line phase

Step 1 The initiator sends a group key initialization message I to KGC.
Step 2 When KGC receives the initialization message, it goes into on-line phase and
broadcasts a message Rσ = {σ, x1, x2, . . . , xm} as response, where σ is a group commu-
nication identifier selected by KGC.

123



1608 K. Meng et al.

Fig. 1 Sketch of users registration

Step 3 Each userUi randomly picks a coordinate (x∗
i , y∗

i ), where x∗
i �= xi . Then it sends

to KGC a request message Mσ,i including the group communication identifier σ , its
identity Ui and the selected coordinate (x∗

i , y∗
i ), such as

Mσ,i = {σ,Ui , (x
∗
i , y∗

i )}
Step 4 For each user Ui , KGC keeps a private coordinate (xi , yi ), and receives (x∗

i , y∗
i )

in message Mσ,i . It uses the two coordinates to construct a linear function

gi (x) = yi
x − x∗

i

xi − x∗
i

+ y∗
i
x − xi
x∗
i − xi

mod p

Step 5KGC uses (x ′
i , y

′
i ) inΩ1 to compute two values gi (x ′

i ) and g
−1
i (y′

i ), where g
−1
i (y)

is the inverse of gi (x).
Step 6 KGC generates and sends distribution message Ki = {Ui , gi (x ′

i ), g
−1
i (y′

i ), di ,
h(k, σ )} to the corresponding userUi , where h(k, σ ) is authentication information about
the group key.
Step 7 KGC completes the group key distribution and goes into off-line phase again to
wait for next group key request.

4.4 Group key recovery and authentication

Step 1 Each user Ui also constructs gi (x) and g−1
i (y) by (xi , yi ) and (x∗

i , y∗
i ). After Ui

receives message Ki from KGC, it recovers x ′
i = g−1

i (gi (x ′
i )) and y′

i = gi (g
−1
i (y′

i )).
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Fig. 2 Diagrammatic sketch of distribution phase, group key recovery and authentication

123



1610 K. Meng et al.

Step 2 Each user Ui uses the coordinate (x ′
i , y

′
i ), m public abscissas x1, x2, . . . , xm in

message Rσ , to compute a Lagrange component, such as

Δi = y′
i

m∏

j=1

−x j

x ′
i − x j

mod p

Step 3 The group key can be computed as

ki = di + Δi − h(x ′
i , y

′
i ) mod p

Step 4 Each user Ui also uses the same one-way hash function to compute a value

hi = h(ki , σ )

If hi = h{k, σ } holds, it means that the group key is the correct key sent from KGC, i.e.
ki = k. Then, Ui is allowed to use the certified key k to communicate with others in U .
Otherwise, users should initiate a new group key require to ensure their communication
security (Fig. 2).

5 Correctness analysis

In this section, we give two theorems to prove the correctness of our proposed protocol: (1)
all users in U can obtain a common group key; (2) the group key can be validated by the
authentication information h{k, σ }.
Theorem 5.1 All the legal users can compute a common group key k, i.e. k = di + Δi −
h(x ′

i , y
′
i ) mod p = d j + Δ j − h(x ′

j , y
′
j ) mod p, where i �= j .

Proof Like secret reconstruction in Shamir’s (t, n) threshold SS, each user Ui requires at
least m + 1 Lagrange components to recover the group key, due to the generation function
f (x)with degreem. However, KGCuses onlym coordinates (x1, y1), (x2, y2), . . . , (xm, ym)

and the abscissa x ′
i to compute d ′

i , which is the sum of m Lagrange components, and it sends
the value di = d ′

i + h(x ′
i , y

′
i ) mod p toUi . Therefore, the userUi need just compute its own

Lagrange component Δi and the offset h(x ′
i , y

′
i ) to recover the group key k. That is

di + Δi − h(x ′
i , y

′
i ) mod p

= d ′
i + h(x ′

i , y
′
i ) + Δi − h(x ′

i , y
′
i ) mod p

= d ′
i+Δi mod p

= y′
i

m∏

j=1

−x j

x ′
i − x j

+
∑m

t=1
yt

−x ′
i

xt − x ′
i

m∏

j=1, j �=t

−x j

xt − x j
mod p

= k


�
Theorem 5.2 Each user Ui is assured that its calculated group key is sent from KGC, if
hi = h(k, σ ) holds.

Proof During distribution phase, only KGC knows the group key k. Thus, the valid authen-
tication information of k can be computed by none but KGC. After distribution phase, each
user Ui computes a key ki . It also uses the hash function h(.) with ki and σ to compute
hi = h(ki , σ ). Obviously, if and only if hi = h(k, σ ) (without regard for hash collision), its
calculated key ki is equal to k which is selected by KGC. 
�
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6 Security analysis

Detailed security analyses are presented in this section. We first give a lemma as the security
foundation. Then, five theorems are presented to prove that our protocol is resistant to passive
attack, impersonal attack and reply attack.

Note that all the calculations are over finite field GF(p), thus an event is deemed to be
impossible if the probability of its occurrence is equal to or less than 1/p.

Lemma 6.1 Suppose that there are t public coordinates (x1, y1), (x2, y2), . . . , (xt , yt ), (each
xi �= 0), on a generation function g(x) with degree t − 1, such as g(x) = a0 +a1x +a2x2 +
· · · + at xt mod p, where all the parameters are in the finite field GF(p). The probability of
reconstructing generation function g(x) by the t known coordinates is only 1/p.

Proof Obviously, there are t + 1 unknown parameters a0, a1, . . . , at for the function g(x)
with degree t . Now, assume that the constant term a0 is a known quantity. It means we get
an extra coordinate (x0, y0), where x0 = 0 and y0 = a0. In this way, we can use Lagrange
Interpolation Polynomial to construct a function, such as

G(x) =
∑t

i=0
yi

t∏

j=i, j �=i

x − x j
xi − x j

mod p

Due to a0 ∈ Zp , there are totally p candidates for the value of a0. Therefore, different
p functions can be computed corresponding to the different p possible values of a0, but
only one function is the correct generation function f (x). In other words, the probability of
reconstructing t-th generation function g(x) by t coordinates is only 1/p. 
�

6.1 Resistance to passive attack

Model of passive attackDuring distribution phase, all themessages are transported publicly.
Thus, adversaries can easily capture response message Rσ , request messages Mσ,i , and
distribution messages Ki .

Theorem 6.1 Outsiders cannot obtain the group key and no adversary can derive the private
coordinates of legal users by passive attack.

Proof As for an Outsider, if it wants to obtain the group key, there are two methods:

(1) The Outsider attempts to recover the generation function f (x). In order to reconstruct
f (x) of degree m, an Outsider needs at least m + 1 coordinates on f (x) or m + 1 valid
Lagrange components. However, no complete coordinate on f (x) is included in these
public messages. KGC broadcasts only m protected sums of Lagrange components.
Hence, the generation function f (x) cannot be recovered.
(2) The Outsider tries to obtain a valid Lagrange component Δi and the corresponding
offset h(x ′

i , y
′
i ) to compute k = di + Δi − h(x ′

i , y
′
i ) mod p just like a legal user Ui . If

so, it must know the exact coordinate (x ′
i , y

′
i ), because of the following two reasons:

I: In equation Δi = y′
i

m∏
j=1

−x j

x ′
i−x j

mod p, x1, x2, . . . , xm are public while x ′
i and y′

i

are unknown. So, the Outsider needs to know x ′
i and y′

i to compute Δi .
II: Because of unidirectional characteristic of one-way hash function, the Outsider
must know the values of x ′

i and y′
i to compute the offset h(x ′

i , y
′
i ).
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However, KGC only releases gi (x ′
i ) and g−1

i (y′
i ) included in Ki . The Outsider still needs

the function gi (x) and g−1
i (y) to compute (x ′

i , y
′
i ). During on-line phase, the Outsider can

capture only one coordinate (x∗
i , y∗

i ) on gi (x) from Mσ,i . On the basis of Lemma 6.1., the
probability of reconstructing the linear polynomial gi (x) from only one coordinate is 1/p.

If an Outsider wants to obtain a private coordinate (xi , yi ), the probability is much less
than 1/p. Because even if an Outsider gets one function gi (x), it still does not know which
coordinate on gi (x) is (xi , yi ). It must capture at least two functions gi (x)s from different
group key distribution processes, and the intersection of these function images is (xi , yi ).
But actually, the probability of an Outsider obtaining any one function gi (x) is only 1/p, not
to mention more functions.

As for an Insider, on the one hand, it is a legal user in U , so that it is able to compute
the group key easily from its corresponding distribution message. On the other hand, it still
wants to obtain some private coordinates (xi , yi ) of other users. For this purpose, an Insider
also needs to know (x ′

i , y
′
i ) as foundation. There are two methods that might work for an

Insider:

I: If the Insider attempts to recover the function gi (x) by only one coordinate (x∗
i , y∗

i ) like
an Outsider, the probability has been given above and it is much less than 1/p.

II: The Insider uses group key k to compute τi = (k − di ) mod p and get an equation

τi = Δi − h(x ′
i , y

′
i ) mod p

τi = y′
i

m∏

j=1

−x j

x ′
i − x j

− h(x ′
i , y

′
i ) mod p

In this equation, only x ′
i and y′

i are unknown. However, h(x ′
i , y

′
i ) is a one-way hash value. It

is impossible to compute exact (x ′
i , y

′
i ) from the equation. Otherwise, it runs counter to the

unidirectional characteristic of h(.).
As a result, an Outsider could capture neither the group key nor any valid coordinates by

passive attack. For an Insider, it can only obtain the group key but no other users’ coordinates
can be derived. 
�

6.2 Resistance to impersonation attack

Model of impersonation attack 1AnOutsider can pretend to be a legal userUi . And then, it
also sends a request message Mσ,i = {σ,Ui , (x∗

i , y∗
i )} to KGC and receives a corresponding

distribution message Ki = {gi (x ′
i ), g

−1
i (y′

i ), di , h(k, σ )}.

Theorem 6.2 Outsiders can neither obtain the group key nor prevent other legal users from
obtaining the group key by impersonation attack 1.

Proof In order to compute the group key according to Ki , the Outsider must reconstruct the

function gi (x) = yi
x−x∗

i
xi−x∗

i
+ y∗

i
x−xi
x∗
i −xi

mod p to recover the coordinate (x ′
i , y

′
i ). Although the

Outsider can select (x∗
i , y∗

i ) by itself, it still does not know the exact coordinate (xi , yi ). On
account of Lemma 6.1., the Outsider cannot reconstruct the function gi (x). Therefore, it is
not able to obtain the group key by impersonation attack 1.

Meanwhile, for a legal user Uj , it can still recover the coordinate (x ′
j , y

′
j ) to compute

the group key as usual. That is to say, legal users are not influenced by the Outsider’s mock
request message. 
�
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Model of impersonation attack 2 An adversary imitates KGC to distribute group key.
It first picks an m-th polynomial f (x). After the initiator sends a group key initialization
message, it broadcasts a response message Rσ = {σ, x1, x2, . . . , xm}. Then after users send
request messages, it sends distribution message Ki to Ui .

Theorem 6.3 Any adversary cannot distribute a fake group key to the users by impersonation
attack 2.

Proof Although the adversary can also select f (x) and compute distribution information di
likeKGCdoes in off-line phase, it still cannot generate the function gi (x) to compute accurate
values of gi (x ′

i ) and g
−1
i (y′

i ) inKi because it does not know (xi , yi ) ofUi . If the adversary uses
false values f gi (x ′

i ) and f g−1
i (y′

i ) to construct Ki = {Ui , f gi (x ′
i ), f g−1

i (y′
i ), di , h(k, σ )},

users will compute a different group key from the constant term in f (x) picked by the adver-
sary. Then, the user will be aware of receiving a fake group keywhen it uses the authentication
information in Ki to check its calculated key. In brief, an adversary is completely powerless
to distribute a fake group key by impersonation attack 2. 
�

6.3 Resistance to reply attack

Model of reply attack 1 Suppose that an Outsider obtains an outdated group key ok and
a request message oMoσ,i = {oσ,Ui , (ox∗

i , oy∗
i )}. When the group requests a new key, the

Outsider uses new group communication identifier σ to revise the outdated request message
as Mσ,i = {σ,Ui , (ox∗

i , oy∗
i )}. Then, it sends Mσ,i to KGC.

Theorem 6.4 An Outsider cannot obtain an outdated group key by reply attack 1.

Proof As described in Sect. 4, each group key is selected by KGC during the off-line phase.
In other words, the process of key generation is completely independent of users’ request
messages. Even if all users utilize old coordinates (ox∗

i , oy∗
i ) to send request messages, they

still obtains a new group key k foreign to previous key ok. Therefore, an Outsider cannot
obtain any information about the new group key by reply attack 1. 
�
Model of reply attack 2 Suppose that an adversary obtains an outdated group key ok. Define
an outdated request message as oMoσ,i = {oσ,Ui , (ox∗

i , oy∗
i )} and outdated distribution

message as oKi = {Ui , ogi (ox ′
i ), og

−1
i (oy′

i ), odi , h(ok, oσ)}. When users utilize new coor-
dinate (x∗

i , y∗
i ) to request a new group key, the adversary resends the outdated response and

distribution messages to them.

Theorem 6.5 An adversary cannot distribute an outdated group key to users by reply attack
2.

Proof In order to let legal user recover group key, KGC is required to construct g(x) to
transport (x ′

i , y
′
i ), where g(x) is generated by private coordinate (xi , yi ) and public coordinate

(x∗
i , y∗

i ). The private coordinate (xi , yi ) kept byUi is fixed while (x∗
i , y∗

i ) is always changed
for different request messagesMσ,i . As described attack inModel of reply attack 2, if (xi , yi ),
(x∗

i , y∗
i ) and (ox∗

i , oy∗
i ) are not in a straight line, the outdated function og(x) is different

from new function g(x). As a result, the user Ui is not able use g(x) to recover the previous
coordinate (ox ′

i , oy
′
i ) from Ki = {Ui , ogi (ox ′

i ), og
−1
i (oy′

i ), odi , h(ok, σ )}, so that it cannot
obtain the outdated group key. In brief, an adversary cannot distribute an outdated group key
to users by reply attack 2. 
�
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Corollary 6.1 If a legal user drops out of the group, it will not get any information about the
new group key.

Proof If a user drops out of the group but still wants to obtain new group keys, the KGC
will not compute and send its corresponding distribution messages. So, it is deemed as an
Outsider. In virtue of Theorems 6.1–6.5, an Outsider can not obtain any information of group
keys distributed by KGC. Therefore, the corollary holds. 
�

7 Properties

In this section, we compare our proposed protocol with Harn–Lin’s protocol [12] and Liu et
al.’s protocol [20], because all the three protocols are group key distribution (transfer) proto-
cols based on Shamir’s (t, n) threshold SS. The nine aspects are considered in comparisons:
(1) hard problems, (2) security, (3) on-line/off-line mechanism, (4) computation complexity
for KGC, (5) computation complexity for a user, (6) communication overhead, (7) storage
complexity, (8) response speed of the group key request and (9) calculation speed of group
key recovery and authentication.

7.1 Hard problem

In all the three protocols, each user is just required to register at the KGC only once, and then
it should keep the private coordinate (xi , yi ) as a long-term secret. For keeping the private
coordinate unknown to the others, both Harn–Lin’s and Liu et al.’s protocols are based on
integer factorization problem. But in our protocol, the KGC distributes sums of Lagrange
components protected by hash values instead of coordinates on the generation function f (x),
so that no hard problems are needed in our protocol.

7.2 Security

On account of cask principles, the security of a protocol depends on the weakest point.
Because Shamir’s SS is unconditional secure, the security of Harn–Lin’s and Liu et al.’s
protocols is based on large integer factorization problem, while our protocol depends on
one-way hash function.

All the three protocols are resistant to passive attack and impersonation attack. Liu et al.’s
protocol and our protocol can also resist reply attack. However, in the light of Nam et al.’s
paper [23], Harn–Lin’s protocol is vulnerable to reply attack. For detailed attack method,
reader can refer to the original paper.

7.3 On-line/off-linemechanism

In both Harn–Lin’s and Liu et al.’s protocols, the KGC has to wait users to send group
key request messages. Only when KGC receives all messages, it starts to pick group key k,
construct generation function f (x), select coordinates on f (x) and compute authentication
value. In other words, KGC cannot do anything before it receives request messages from
users. Instead, the KGC in our protocol is able to carry out most computations in off-line
phase (before users send request messages). As a result, KGC has a very short response time
in on-line phase (after users send request messages).
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Table 2 Comparisons table

Protocol Harn–Lin’s protocol Liu et al.’s protocol Our protocol

Hash function 1 2 1

Hard problem Yes Yes No

Resistance to passive attack Yes Yes Yes

Resistance to impersonation attack Yes Yes Yes

Resistance to reply attack No Yes Yes

On-line/off-line No No Yes

The above comparisons are shown in the Table 2.

7.4 Computation complexity for KGC

In Harn–Lin’s protocol, KGC performs about m exclusive - OR operations, (m − 1)(m + 1)
additive operations,m2+(m−1)2 multiplicative operations and 1 hash operation to generate
group key distribution messages, where m is the total number of legal users. Liu et al.’s
protocol needs m more hash operations than Harn–Lin’s protocol. Hence, the computational
complexity is O(m2) of the two protocols. In our proposed protocol, the KGC performs
m(m+3) additive operations,m(m+1)multiplicative operations andm+1 hash operations in
off-line phase. Thus, the computational complexity is also O(m2). However, the computation
is over Zp in our protocol while it is over Zn in the other protocols, where n is much greater
than p. Moreover, because KGC carries out most computation in off-line phase, it just needs
2m +3 additive operations, 2m +2 multiplicative operations and 1 hash operation in on-line
and the computational complexity is just O(m).

7.5 Computation complexity for a user

After a user receives group key distribution message from the KGC, it starts to recover
and verify the group key. In Harn–Lin’s protocol, a user needs 1 exclusive - OR operation,
aboutm2 additive operations,m2 multiplicative operations, and 1 hash operation. Liu et al.’s
protocol needs 1 more hash operation than Harn–Lin’s protocol. Hence, the computational
complexity are O(m2) for the two protocols. In our protocol, a user just needsm+10 additive
operations,m+10multiplicative operations and 2 hash operations. Hence, the computational
complexity is O(m).

7.6 Communication overhead

In both Harn–Lin and Liu et al. protocols, users send to KGC about 2m numbers and KGC
transports 3m numbers to users. Thus, the communication overhead is 5m numbers and each
number is in Zn . In our protocol, users send to KGC about 3m numbers and KGC transports
6m numbers to users. Hence, the communication overhead is 9m numbers and each number
is in Zp . However, KGC in our protocol has to sends each group key distribution message
to the corresponding user one by one. KGC in the other protocols can broadcast distribution
messages to all users.

123



1616 K. Meng et al.

7.7 Storage complexity

In both Harn–Lin and Liu et al. protocols, KGC just needs to store m private coordinates of
users. In other words, it keeps 2m numbers which are in Zn . But in our protocol, KGC has to
keep 6m numbers includingm private coordinates (xi , yi ),m ephemeral coordinates (x ′

i , y
′
i ),

m abscissas xi and m protected group key distribution values di . Moreover, each user need
2 numbers to store its private coordinate in all the three protocols.

7.8 Response speed of group key request

In Harn–Lin’s protocol, before KGC receives users’ request messages, it cannot carry out
any computation. After that, the computation complexity for KGC is O(m2). Liu et al.’s
protocol needs m more hash operations than Harn–Lin’s protocol. Hence, the computational
complexity is also O(m2). But in our proposed protocol, KGC carries out most computation
in off-line phase and the computational complexity for KGC is just O(m) in of-line phase.
Therefore, the response speed of group key request is faster than it in the other protocols.

7.9 Speed of group key recovery and authentication by users

After a user receives group key distribution message from the KGC, it starts to recover
and verify the group key. In both Harn–Lin’s and Liu et al.’s protocols, the computational
complexity for a user is O(m2) while it is just O(m). Therefore, the speed of group key
recovery and authentication by users in our protocol is also faster than it in the other protocols.

8 Experiment

In this section, we verify the theories in 7.5 and 7.6 through experiments. Because
the computational complexity of Liu et al’s protocol approximately equals Harn–Lin’s,
we just compare our protocol with Harn–Lin’s. We chose a RSA-number with 1024
bits as the modulus in Harn–Lin’s protocol, where n = 13506641086599522334
9603216278805969938881475605667027524485143851526510604859533833940287150
5719094417982072821644715513736804197039641917430464965892742562393410208
6438320211037295872576235850964311056407350150818751067659462920556368552
9475213500852879416377328533906109750544334999811150056977236890927563.
And SHA-256 is used in both protocols as the hash function. Because the hash value of SHA-
256 is 256 bits, we choose a 260 bits number as the modulus for our protocol, where p =
15476004057485807498789328096422564586042495822915 8557649746514950004990
83147583.

From the perspective of cryptography, the computational complexity of factoring n is

about e
√

ln(n) ln(ln n) ≈ e70. Although SHA-1 and MD5 have been proved insecurity by Wang
et al. [32,33], there is still no more effective method than birthday attack to break SHA-
256 currently. The computational complexity of breaking SHA-256 by birthday attack is
2128, which is greater than e70. Therefore, our protocol is more secure than the other in this
experiment.

Remark 8.1 In our protocol, the hash value should be in Zp for security reason. Otherwise, it
increases the possibility of hash function collision when different hash values modulo p. For
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Table 3 Simulation environment
and conditions CPU Core i7-3630QM 2.40GHz

RAM 8G DDR3 1333MHz

Operation system Windows 10 enterprise 64-bit

Programming language Python

Programming software Pycharm

Table 4 Response time of group
key request (s)

User number Protocol

Harn–Lin’s protocol Our protocol

50 4.571370 0.104552

100 20.673966 0.134091

150 52.657993 0.259405

200 103.841224 0.328321

250 211.968105 0.420336

300 419.852612 0.633199

350 634.937633 0.805593

400 935.913335 1.047877

450 1219.035164 1.196793

500 1593.049735 1.295323

Table 5 Time of key recovery
and authentication (s)

User number Protocol

Harn–Lin’s protocol Our protocol

50 3.947241 0.019082

100 18.507578 0.037025

150 40.831115 0.054113

200 67.566742 0.091200

250 110.791448 0.128122

300 202.860842 0.160992

350 229.557842 0.210194

400 312.193951 0.245661

450 483.446120 0.285706

500 616.605906 0.315709

efficiency reason, the smaller modulus p is, the faster KGC and users calculate. Therefore,
the modulus p should be set as a number which is a bit greater than the hash value.

Table 3 shows the simulation environment and conditions of the experiment.

Analysis 1 From Tables 4 and 5, it can be seen that, for the same user number, both response
time of group key request and time of key recovery and authentication in Harn–Lin’s protocol
are far longer than those in our protocol. There are two reasons:

1: The computational complexity of Harn–Lin’s protocol is O(m2) while our protocol is
O(m) in on-line phase .
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Fig. 3 Time of Harn–Lin’s protocol

Fig. 4 Time of our protocol

2: More importantly, the computation of Harn–Lin’s protocol is over Zn , where n is 1024
bits. But it of our protocol is over Zp , where p is 260 bits.

Analysis 2Figures 3 and4 show that,with the rise of user number, the speedof time increase in
Harn–Lin’s protocol is faster than our protocol. Thismeans that the computational complexity
of Harn–Lin’s protocol is higher than our protocol.

Moreover, in order to show the high-efficiency of our protocol, we use massive users to
collect more data about time of group key request and key recovery in our protocol. The
results are shown in Fig. 5.

9 Conclusion

In this paper, we propose a secure on-line/off-line group key distribution protocol. In the
proposed protocol, only users’ registration messages need to be transported in privacy, while
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Fig. 5 Time of our protocol with massive users

all the other messages can be transported in public. In terms of safety, the protocol is resistant
to passive attack, impersonation attack and reply attack. And it supports authentication func-
tion. More importantly, KGC can carry out most computations of group key generation in
off-line phase. Consequently, the response speed of group key request and calculation speed
of group key recovery and authentication can be greatly improved.

Acknowledgements Thiswork is supposedbyNationalNatural ScienceFoundation ofChina under 61572454,
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