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Abstract
This paper focuses on constructions for optimal 2-D (n × m, 3, 2, 1)-optical orthogonal
codes with m ≡ 0 (mod 4). An upper bound on the size of such codes is established. It relies
heavily on the size of optimal equi-difference 1-D (m, 3, 2, 1)-optical orthogonal codes,
which is closely related to optimal equi-difference conflict avoiding codes with weight 3.
The exact number of codewords of an optimal 2-D (n × m, 3, 2, 1)-optical orthogonal code
is determined for n = 1, 2, m ≡ 0 (mod 4), and n ≡ 0 (mod 3), m ≡ 8 (mod 16) or
m ≡ 32 (mod 64) or m ≡ 4, 20 (mod 48).

Keywords Optical orthogonal code · Two-dimensional · Optimal · Conflict avoiding code ·
Equi-difference

Mathematics Subject Classification 05B40 · 94C30

1 Introduction

Let n, m, k, λa and λc be positive integers. A two-dimensional (n × m, k, λa, λc) optical
orthogonal code (briefly 2-D (n×m, k, λa, λc)-OOC),C , is a family of n×m (0, 1)-matrices
(called codewords) of Hamming weight k satisfying the following two properties:
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(1) the autocorrelation property: for each matrix A = (ai j )n×m ∈ C and each integer r ,
r �≡ 0 (mod m),

n−1∑

i=0

m−1∑

j=0

ai j ai, j+r ≤ λa;

(2) the cross-correlation property: for eachmatrixA = (ai j )n×m ∈ C ,B = (bi j )n×m ∈ C
with A �= B, and each integer r ,

n−1∑

i=0

m−1∑

j=0

ai j bi, j+r ≤ λc.

where the arithmetic j + r is reduced modulo m. When n = 1, a two-dimensional (1 ×
m, k, λa, λc) optical orthogonal code is said to be a one-dimensional (m, k, λa, λc)-optical
orthogonal code, denoted by a 1-D (m, k, λa, λc)-OOC.

Optical orthogonal codes arewidely used as spreading codes in optical fiber networks. 1-D
OOC was first investigated systematically by Chung et al. [14]. 1-D OOCs have a drawback
which requires a large chip rate. To overcome it, 2-D OOCs were proposed in [43], which
spreads in both time and wavelength so that the chip rate requirement can be substantially
reduced.

The number of codewords of a 2-D OOC is called its size. For fixed n, m, k, λa and λc,
the largest size among all 2-D (n × m, k, λa, λc)-OOCs is denoted by Φ(n × m, k, λa, λc).
A 2-D (n × m, k, λa, λc)-OOC with Φ(n × m, k, λa, λc) codewords is said to be optimal.
Naturally, a 1-D (m, k, λa, λc)-OOC is said to be optimal if it contains Φ(1 × m, k, λa, λc)
codewords.

When λa = λc = λ, various 2-D OOCs or 1-D OOCs were constructed based on alge-
braic and combinatorial methods (see [1–7,10–13,15,16,20,21,23,24,31,34,35,38,39,44] and
the references therein). Instead, very little has been done on optimal OOCs with λa �= λc.
Yang and Fuja [42] showed that the auto- and cross-correlation properties are used for syn-
chronization and user identification, respectively, and in some circumstances only with good
cross-correlation one can deal with both synchronization and user identification. This moti-
vates the study of OOCs with better cross-correlation than auto-correlation. See [8,9,33,36]
for examples, in which the cases of n = 1, k ∈ {4, 5}, λa = 2 and λc = 1 are considered.

When λa = k and λc = 1, a 1-D (m, k, k, 1)-OOC is also called a conflict-avoiding code,
denoted by a CAC(m, k), which can be viewed as a 1-D (m, k, 1)-OOCwithout the constraint
of the auto-correlation property. A CAC finds its application on a multiple-access collision
channel without feedback (cf. [22,26]).

When m is even, optimal CAC(m, 3)s have been discussed thoroughly in [18,25,27,30].
We summarize the results for later use.

Theorem 1 [18,25,27,30] Let m ≡ 0 (mod 2). The size of an optimal CAC(m, 3) (i.e., an
optimal 1-D (m, 3, 3, 1)-OOC) is

Φ(1 × m, 3, 3, 1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(m − 2)/4, m ≡ 2 (mod 4),
�(7m + 16)/32�, m ≡ 0 (mod 24) and m �= 48,
�(7m + 4)/32�, m ≡ 4, 20 (mod 24),
�7m/32�, m ≡ 8, 16 (mod 24) and m �= 64,
�(7m + 20)/32�, m ≡ 12 (mod 24),

with the exception of Φ(1 × 48, 3, 3, 1) = 10 and Φ(1 × 64, 3, 3, 1) = 13.
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However, there are few results on optimal 2-D (n × m, k, 2, 1)-OOCs when n �= 1 in the
literature. The only known results for k = 3 is from [17,40], which determined the size of an
optimal 2-D (n × m, 3, 2, 1)-OOCs with m ≡ 2 (mod 4). This paper continues the work in
[17], and we are concerned about optimal 2-D (n × m, 3, 2, 1)-OOCs with m ≡ 0 (mod 4).

In Sect. 2, an equivalent description of 2-D (n × m, k, λa, 1)-OOCs is given by using
set-theoretic notation. Section 3 is devoted to presenting an upper bound on the size of an
optimal 2-D (n × m, 3, 2, 1)-OOC with m ≡ 0 (mod 4). We will see that the upper bound
relies heavily on the size of an optimal equi-difference 1-D (m, 3, 2, 1)-OOC (see Lemma 2).
Sowe focus our attention on constructions for such kind of 1-DOOCs in Sect. 4. Interestingly,
equi-difference 1-D (m, 3, 2, 1)-OOCs are closely related to equi-differenceCAC(m, 3)s (see
Sect. 4.2). The latter have been investigated independently in [19,28,29,32,41]. This paper
helps to find another motivation to study equi-difference CAC(m, 3)s.

In Sect. 5, direct and recursive constructions for optimal 2-D (n × m, 3, 2, 1)-OOCs are
given. We shall point out why it seems to be difficult to find effective recursive constructions
for optimal 2-D (n × m, 3, 2, 1)-OOCs (see Remark 3).

Throughout this paper, assume that In = {0, 1, . . . , n − 1} and denote by Zm the additive
group of integers modulo m. For a ∈ Zm \ {0}, the multiplicative order of a, denoted by
ordm(a), is the smallest positive integer l such that al ≡ 1 (mod m). As the main result of
this paper, we are to prove the following theorem.

Theorem 2 For the specified n and m, the size of an optimal 2-D (n × m, 3, 2, 1)-OOC is

Φ(n × m, 3, 2, 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�7m/32�, n = 1,m ≡ 0 (mod 8) and m �= 64;
�(7m + 4)/32�, n = 1 and m ≡ 4 (mod 8);
13, (n,m) = (1, 64);
3m/4, n = 2,m ≡ 0 (mod 4) and m > 4;
2, (n,m) = (2, 4);
n(8nm + 3m − 8)/48, n ≡ 0 (mod 3), n �= 6, 9, and

m ≡ 8 (mod 16);
n(32nm + 11m − 32)/192, n ≡ 0 (mod 3), n �= 6, 9, and

m ≡ 32 (mod 64);
6, (n,m) = (3, 4);
n(8nm + 3m + 4)/48, n ≡ 0 (mod 3), n �= 6, 9,m > 4,

m ≡ 4, 20 (mod 48), and m/4 ∈ S,

where S is the set of positive integers such that for any s ∈ S, it holds that s ≡ 1, 5 (mod 12),
and every prime divisor p of s satisfies p ≡ 5 (mod 8), or p ≡ 1 (mod 8) and 4|ordp(2).

2 Preliminaries

A convenient way of viewing optical orthogonal codes is from a set-theoretic perspective.
Let C be a 2-D (n × m, k, λa, λc)-OOC. For each n × m (0, 1)-matrix M ∈ C , whose

rows are indexed by In and columns are indexed by Zm . Construct a k-subset BM of In × Zm

such that (i, j) ∈ BM if and only if M’s (i, j) cell equals 1. Then {BM : M ∈ C } is a
set-theoretic representation of the 2-D (n × m, k, λa, λc)-OOC. Conversely, let B be a set
of k-subsets of In × Zm . B constitutes a 2-D (n × m, k, λa, λc)-OOC if the following two
conditions are satisfied:

(1′) the autocorrelation property: |B ∩ (B + s)| ≤ λa for any B ∈ B and any integer s,
s �≡ 0 (mod m);
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(2′) the cross-correlation property: |A ∩ (B + s)| ≤ λc for any A, B ∈ B with A �= B
and any integer s,

where B + s = {(i, x + s) (mod (−,m)) : (i, x) ∈ B}.
It is not convenient to check the autocorrelation and cross-correlation property of a setB

of k-subsets of In × Zm via Conditions (1′) and (2′). However, when λc = 1, one can use
the pure and mixed difference method to describe a 2-D (n × m, k, λa, 1)-OOC.

For (i, x), (i, y) ∈ In × Zm with x �= y, the difference x − y (mod m) is called a pure
(i, i)-difference. For (i, x), ( j, y) ∈ In × Zm with i �= j , the difference x − y (mod m) is
called a mixed (i, j)-difference. Let B be a k-subset of In × Zm . Given i, j ∈ In , define a
multi-set

Δi j (B) = {x − y (mod m) : (i, x), ( j, y) ∈ B, (i, x) �= ( j, y)}.
When i = j , Δi i (B) is the multi-set of all pure (i, i)-differences of B. When i �= j , Δi j (B)

is the multi-set of all mixed (i, j)-differences of B. Note that Δi j (B) is empty if i or j does
not occur as the first component of the elements of B.

Let B be a set of k-subsets of In × Zm and B ∈ B. Let λ(B) denote the maximum
multiplicity of elements in the multi-set

⋃
i∈In Δi i (B). Then B constitutes a 2-D (n ×

m, k, λa, 1)-OOC if the following two conditions are satisfied:

(1′′) the autocorrelation property: λ(B) ≤ λa for any B ∈ B;
(2′′) the cross-correlation property: Δi j (A) ∩ Δi j (B) = ∅ for any A, B ∈ B with A �= B

and any i, j ∈ In (i may be equal to j).

The interested reader is referred to [24] for details on the equivalence of (1′) and (1′′).
In the remainder of this paper, we always use the set-theoretic language to describe 2-D

OOCs.

3 Upper bound on the size of 2-D (n × m, 3, 2, 1)-OOCs

In a 2-D (n ×m, 3, 2, 1)-OOC, each codeword is of the form {(i1, x), (i2, y), (i3, z)}, where
i1, i2, i3 ∈ In and x, y, z ∈ Zm . All codewords can be divided into the following three types:

• Type 1: i1 = i2 = i3;
• Type 2: i1 = i2 �= i3;
• Type 3: i1, i2, i3 are pairwise distinct.

Let α, β, γ denote the numbers of codewords of Type 1, 2, 3 in a 2-D (n ×m, 3, 2, 1)-OOC,
respectively.

For Type 1, the codewords can be classified further according to the second coordinates.
Take any codeword {(i1, x), (i1, y), (i1, z)} of Type 1 and consider its derived set X =
{x, y, z} of the second coordinates. Denote byΔX the set of underlying elements in themulti-
set {b−a (mod m) : a, b ∈ X , a �= b}. Define the orbit of X under Zm by Orb(X) = {{ j + i
(mod m) : j ∈ X} : i ∈ Zm}. By Lemma 2.2 in [33], we have

|ΔX | =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2, X ∈ Orb({0,m/3, 2m/3}),
3, X ∈ Orb({0,m/4,m/2}),
4, X ∈ Orb({0, a, 2a}) except for the cases of |ΔX | = 2, 3,
5, X ∈ Orb({0, a,m/2}) except for the case of |ΔX | = 3,
6, X ∈ Orb({0, a, b}) except for the cases of |ΔX | = 2, 3, 4, 5.
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If |ΔX | = 2, then X ∈ Orb({0,m/3, 2m/3}), which implies that m/3 occurs three times
as a pure (i1, i1)-difference. It contradicts with the autocorrelation parameter λa = 2. Thus
|ΔX | = 3, 4, 5 or 6. Let α3, α4, α5, α6 denote the numbers of codewords of Type 1 in a
2-D (n ×m, 3, 2, 1)-OOC such that each derived set X of these codewords satisfies |ΔX | =
3, 4, 5, 6, respectively. Then α3 + α4 + α5 + α6 = α.

For Type 2, take any codeword {(i1, x), (i1, y), (i2, z)}with i1 �= i2 and consider its partial
derived set Y = {x, y} of the second coordinates. Let β1 denote the number of codewords of
Type 2 in a 2-D (n×m, 3, 2, 1)-OOC such that each partial derived set Y of these codewords
satisfies y − x ≡ m/2 (mod m). Denote by β2 the number of the remaining codewords of
Type 2 in the 2-D OOC. Then β1 + β2 = β.

3.1 General upper bound

We need a new concept. A 1-D (m, 3, 2, 1)-OOC is said to be equi-difference if each of
its codewords is of the form X = {0, a, 2a} for some a �= 0, i.e., |ΔX | = 3 or 4. Let
Ψ e(m, 3, 2, 1) denote the largest size of codes among all equi-difference 1-D (m, 3, 2, 1)-
OOCs for givenm. An equi-difference 1-D (m, 3, 2, 1)-OOC is said to be optimal if it contains
Ψ e(m, 3, 2, 1) codewords.

Lemma 1 (1) α3 + α4 ≤ nΨ e(m, 3, 2, 1).
(2) α3 + α5 + β1 ≤ n.

Proof (1) Examine codewords of the form {(i, 0), (i, a), (i, 2a)} with X = {0, a, 2a} and
|ΔX | = 3, 4. The number of such kind of codewords is not more than Ψ e(m, 3, 2, 1) for
each i ∈ In . So α3 + α4 ≤ nΨ e(m, 3, 2, 1).

(2) For each i ∈ In , there is at most one codeword that admitsm/2 as a pure (i, i)-difference.
So α3 + α5 + β1 ≤ n.

Lemma 2 Φ(n × m, 3, 2, 1) ≤
{ �n(nm + 2Ψ e(m, 3, 2, 1))/6�, if m ≡ 0 (mod 2),

�n(nm + 2Ψ e(m, 3, 2, 1) − 1)/6�, if m ≡ 1 (mod 2).

Proof In a 2-D (n × m, 3, 2, 1)-OOC, given i ∈ In , there are at most m − 1 different pure
(i, i)-differences; and given i, j ∈ In with i �= j , there are at most m different mixed (i, j)-
differences. Thus the total numbers of different pure differences and mixed differences in a
2-D (n×m, 3, 2, 1)-OOC are at most n(m−1) and n(n−1)m, respectively. Pure differences
are from Type 1 and a part of Type 2, while mixed differences are from Type 3 and the other
part of Type 2. So we have

3α3 + 4α4 + 5α5 + 6α6 + β1 + 2β2 ≤ n(m − 1), (1)

4β + 6γ ≤ n(n − 1)m. (2)

By Lemma 1(2),

α3 + α5 + β1 ≤ n. (3)

Note that α3 +α4 +α5 +α6 = α and β1 +β2 = β. By (1)+(2)+(3), we have 6(α +β +γ )−
2(α3 +α4) ≤ n2m. By Lemma 1(1), α3 +α4 ≤ nΨ e(m, 3, 2, 1). It follows that α +β +γ ≤
(n2m+2nΨ e(m, 3, 2, 1))/6. Therefore,Φ(n×m, 3, 2, 1) ≤ �n(nm+2Ψ e(m, 3, 2, 1))/6�.

Furthermore, when m is odd, α3 = α5 = β1 = 0. So α4 + α6 = α and β2 = β. Then by
(1)+(2), we have 6(α + β + γ ) − 2α4 ≤ n2m − n. By Lemma 1(1), α4 ≤ nΨ e(m, 3, 2, 1).
Thus Φ(n × m, 3, 2, 1) ≤ �n(nm + 2Ψ e(m, 3, 2, 1) − 1)/6� for any odd integer m. ��
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Remark 1 Examining the proof of Lemma 2, we have that if

Φ(n × m, 3, 2, 1) =
{
n(nm + 2Ψ e(m, 3, 2, 1))/6, if m ≡ 0 (mod 2),
n(nm + 2Ψ e(m, 3, 2, 1) − 1)/6, if m ≡ 1 (mod 2),

then α3 + α4 = nΨ e(m, 3, 2, 1) from Lemma 1(1), which means that in such cases, any
optimal 2-D (n × m, 3, 2, 1)-OOC must contain n optimal equi-difference 1-D (m, 3, 2, 1)-
OOCs as subcodes.

Lemma 3 Φ(3 × 4, 3, 2, 1) ≤ 6.

Proof An optimal equi-difference 1-D (4, 3, 2, 1)-OOC defined on Z4 contains only one
codeword {0, 1, 2}, so Ψ e(4, 3, 2, 1) = 1. Then by Lemma 2, Φ(3×4, 3, 2, 1) ≤ 7. Assume
that Φ(3×4, 3, 2, 1) = 7. By Remark 1, α3 +α4 = 3. Since α4 = α5 = α6 = 0 for any 2-D
(3×4, 3, 2, 1)-OOC,we haveα3 = 3. By Formula (1), 3α3+4α4+5α5+6α6+β1+2β2 ≤ 9,
so β = 0, which yields γ = 4. Write the 4 codewords of Type 3 as {(0, 0), (1, ai ), (2, bi )},
i = 1, 2, 3, 4. Clearly,

⋃4
i=1{ai } = ⋃4

i=1{bi } = ⋃4
i=1{bi − ai (mod 4)} = Z4. Thus∑4

i=1(bi − ai ) = ∑4
i=1 bi − ∑4

i=1 ai = 0 and
∑4

i=1(bi − ai ) ≡ 0 + 1 + 2 + 3 (mod 4), a
contradiction. ��

3.2 Improved upper bound for n = 2

Lemma 4 Φ(2 × m, 3, 2, 1) ≤
{ �3m/4�, if m ≡ 0 (mod 2),

�(3m − 2)/4�, if m ≡ 1 (mod 2).

Proof Formulas (1)–(3) in Lemma 2 still hold when n = 2. Note that γ = 0 when n = 2.
We rewrite these formulas as follows

3α3 + 4α4 + 5α5 + 6α6 + β1 + 2β2 ≤ 2(m − 1), (4)

2β ≤ m, (5)

α3 + α5 + β1 ≤ 2. (6)

By (4)+(5)+(6), we have 4(α + β) + 2(α5 + α6) ≤ 3m. Due to α5, α6 ≥ 0, we have
α + β ≤ 3m/4. Hence, Φ(2 × m, 3, 2, 1) ≤ �3m/4�.

Furthermore, when m is odd, α3 = α5 = β1 = 0. Then by (4)+(5), we have 4(α + β) +
2α6 ≤ 3m − 2. Thus Φ(n × m, 3, 2, 1) ≤ �(3m − 2)/4� for any odd integer m. ��
Lemma 5 Φ(2 × 4, 3, 2, 1) ≤ 2.

Proof By Lemma 4, Φ(2 × 4, 3, 2, 1) ≤ 3. Assume that Φ(2 × 4, 3, 2, 1) = 3. Since
α4 = α5 = α6 = 0 for any 2-D (2×4, 3, 2, 1)-OOC, we rewrite Formulas (4)–(6) as follows

3α3 + β1 + 2β2 ≤ 6, (7)

β ≤ 2, (8)

α3 + β1 ≤ 2. (9)

Φ(2 × 4, 3, 2, 1) = 3 yields α + β = 3, so α = α3 ≥ 1 by (8). It follows from (7)+(8)+(9)
that 4α + 3β = α + 3(α + β) ≤ 10, which leads to α ≤ 1. This and the preceding argument
on α implies α = 1. So β = 2. Then β1 ≤ 1 by (9) and β2 ≥ 1 by β = 2. It follows that β1 =
β2 = 1 by (7). W.l.o.g., let the codeword such that α3 = 1 be {(0, 0), (0, 1), (0, 2)}, and the
codewords such that β1 = 1 and β2 = 1 are {(1, 0), (1, 2), (0, x)} and {(1, 0), (1, 1), (0, y)},
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respectively, for some x, y ∈ Z4. Examining the mixed (0, 1)-differences, we obtain {x, x −
2, y, y − 1} ≡ {0, 1, 2, 3} (mod 4). It is readily checked that such x and y do not exist, a
contradiction. ��
Remark 2 Amore intuitive proof of Lemma 5 can be given here. One can show that there are
nomore than 2 codewords in a 2-D (2×4, 3, 2, 1)-OOC directly without using themachinery
that leads to (7), (8) and (9). Suppose we have three codewords in a 2 × 4 array. Denote by
α the number of codewords which uses only one single channel (i.e., codewords of Type I).
Consider all possibilities of α. If α = 3, then by pigeon-hole principle, there are at least two
codewords whose optical pulses are in the same channel, and so λc = 3. If α = 2, then the
two codewords using only one single channel must occupy two different frequency channels.
It follows that the third codeword must have two 1’s in one of the channels, and this gives
λc = 2. If α = 1 and {(0, 0), (0, 1), (0, 2)} is one of the codewords, then each of the other
two codewords must have one 1’s in channel 0 and two 1’s in channel 1. There always exists
a cyclic shift such that the two other codewords have Hamming cross-correlation at least
2. If α = 0, then by pigeon-hole principle again, we have two codewords with one 1’s in
channel 0 and two 1’s in channel 1, or two codewords with one 1’s in channel 1 and two 1’s
in channel 0. There always exists a cyclic shift such that the two codewords have Hamming
cross-correlation at least 2. This completes the proof of Lemma 5.

3.3 Improved upper bound for n = 1 andm ≡ 0 (mod 4)

To present an improved upper bound for Φ(1 × m, 3, 2, 1), we here review the linear pro-
gramming approach formulated by Jimbo et al. [25].

For any codeword X in a 1-D (m, 3, 2, 1)-OOC with m ≡ 0 (mod 4), since the elements
of Δ(X) are symmetric with respect to m/2, it suffices to consider the halved difference set

Δ2(X) = {i : i ∈ Δ(X), 1 ≤ i ≤ m/2}
instead of Δ(X).

Now partition the positive integers not exceeding m/2 into the following three subsets:

O = {i : i ≡ 1 (mod 2), 1 ≤ i ≤ m/2},
E = {i : i ≡ 2 (mod 4), 1 ≤ i ≤ m/2},
D = {i : i ≡ 0 (mod 4), 1 ≤ i ≤ m/2}.

The integers in O are odd, those in E are said to be singly even and those in D are said to
be doubly even. It follows that any codeword of a 1-D (m, 3, 2, 1)-OOC can be categorized
into the following two lemmas according to the halved difference set produced from it.

Lemma 6 [25] Let m ≡ 0 (mod 4). Any codeword X of the form {0, i, 2i} satisfying
Δ2(X) = {i, j}, where j = 2i if 1 ≤ i ≤ m/4, and j = m − 2i if m/4 < i < m/2
and i �= m/3, belongs to one of the following three types:

(i) i ∈ O and j ∈ E,
(ii) i ∈ E and j ∈ D,
(iii) i, j ∈ D.

Lemma 7 [25] Let m ≡ 0 (mod 4). Any codeword X satisfying Δ2(X) = {i, j, k} belongs
to one of the following four types:

(iv) two of i, j and k are in O and one is in E,
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(v) two of i, j and k are in O and one is in D,
(vi) two of i, j and k are in E and one is in D,
(vii) i, j, k ∈ D.

Take a 1-D (m, 3, 2, 1)-OOC C . Let Co, Ce and Cd denote the sets of codewords in C of
Types (i), (i i) and (i i i), respectively, and Noe, Nod , Ned and Nd denote the sets of codewords
in C of Types (iv), (v), (vi) and (vi i), respectively. Note that any codeword X ∈ C with
|ΔX | = 3 or 4 satisfies Lemma 6, while any codeword X with |ΔX | = 5 or 6 satisfies
Lemma 7. Then

|C | = |Co| + |Ce| + |Cd | + |Noe| + |Nod | + |Ned | + |Nd |.
Lemma 8

Φ(1 × m, 3, 2, 1) ≤
{ �7m/32�, if m ≡ 0 (mod 8),

�(7m + 4)/32�, if m ≡ 4 (mod 8).

Proof A 1-D (m, 3, 2, 1)-OOC with m ≡ 0 (mod 4) contributes at most m/4 different odd
differences that are not more than m/2, �m/8� different singly even differences that are not
more than m/2, and �m/8� different doubly even differences that are not more than m/2. It
follows that

|Co| + 2|Noe| + 2|Nod | ≤ m/4, (10)

|Co| + |Ce| + |Noe| + 2|Ned | ≤ �m/8�, (11)

|Ce| + 2|Cd | + |Nod | + |Ned | + 3|Nd | ≤ �m/8�. (12)

By (10)+3(11)+2(12), we have

4|C | + |Ce| + |Noe| + 4|Ned | + 2|Nd | ≤
{
7m/8, if m ≡ 0 (mod 8),
(7m + 4)/8, if m ≡ 4 (mod 8),

where |C | = |Co| + |Ce| + |Cd | + |Noe| + |Nod | + |Ned | + |Nd | is the total number of
codewords. Hence,

|C | ≤
{ �7m/32�, if m ≡ 0 (mod 8),

�(7m + 4)/32�, if m ≡ 4 (mod 8).

This completes the proof. ��

4 Equi-difference 1-D (m, 3, 2, 1)-OOCs

By Lemma 2, it is important to determine the exact value ofΨ e(m, 3, 2, 1). Clearly,Ψ e(m, 3,
2, 1) ≤ Φ(1 × m, 3, 2, 1). A better upper bound can be shown in the following lemma.

Lemma 9

Ψ e(m, 3, 2, 1) ≤
{ �(m − 1)/4�, if m �≡ 0 (mod 4);

�m/8� + Ψ e(m/4, 3, 2, 1), if m ≡ 0 (mod 4).

Proof Let C be an equi-difference 1-D (m, 3, 2, 1)-OOC. When m �≡ 0 (mod 4), for any
codeword X ∈ C , |ΔX | = 4, so Ψ e(m, 3, 2, 1) ≤ �(m − 1)/4�.

When m ≡ 0 (mod 4), recall that Co, Ce and Cd denote the sets of codewords in C of
Types (i), (i i) and (i i i) (see Lemma 6), respectively. Then |C | = |Co| + |Ce| + |Cd |. A
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1-D (m, 3, 2, 1)-OOC with m ≡ 0 (mod 4) contributes at most �m/8� different singly even
differences that are not exceeding m/2, which gives |Co| + |Ce| ≤ �m/8�. Observing that
|Cd | ≤ Ψ e(m/4, 3, 2, 1), we obtain |C | ≤ �m/8� + Ψ e(m/4, 3, 2, 1). ��

For an equi-difference 1-D (m, 3, 2, 1)-OOC,B, on Zm , define Δ(B) = ⋃
B∈B Δ(B) to

be a set of differences. The difference leave ofB is a set that consists of all nonzero elements
of Zm not covered by Δ(B). Let m ≡ 0 (mod g) and H be the subgroup of order g in Zm ,
i.e., H = {0,m/g, . . . , (g − 1)m/g}. If Δ(B) ⊆ Zm \ H , then B is said to be a g-regular
equi-difference 1-D (m, 3, 2, 1)-OOC.

Lemma 10 There is an optimal equi-difference 1-D (m, 3, 2, 1)-OOC with Ψ e(m, 3, 2, 1)
= (m − 2)/4 codewords for any m ≡ 2 (mod 4), whose difference leave is {m/2}.
Proof It is readily checked that {{0, i, 2i}, i = 1, 3, . . . ,m/2 − 2} forms a 2-regular equi-
difference 1-D (m, 3, 2, 1)-OOCwith (m−2)/4 codewords, whose difference leave is {m/2}.
By Lemma 9, it is optimal. ��

4.1 A recursive construction

Let A be a set of integers and w be an integer. Write w · A = {wa : a ∈ A}. The following
construction is straightforward by the definition of g-regular equi-difference 1-D OOCs.

Construction 3 Suppose that there exist

(1) a g-regular equi-difference 1-D (m, 3, 2, 1)-OOC with b1 codewords, whose differ-
ence leave is L1 (defined on Zm);

(2) an equi-difference 1-D (g, 3, 2, 1)-OOC with b2 codewords, whose difference leave
is L2 (defined on Zg).

Then there exists an equi-difference 1-D (m, 3, 2, 1)-OOC with b1 + b2 codewords, whose
difference leave is L1 ∪ ((m/g) · L2) (defined on Zm).

Assume that [a, b] denotes the set of integers n such that a ≤ n ≤ b, and [a, b]o denotes
the set of odd integers in [a, b].
Lemma 11 There exists a g-regular equi-difference 1-D (4g, 3, 2, 1)-OOC with �g/2� code-
words for any positive integer g, whose difference leave is [1, g − 1]o ∪ [3g + 1, 4g − 1]o ∪
(4 · [1, g − 1]).
Proof Let

C =
{ {{0, i, 2i} : i ∈ [g + 1, 2g − 1]o}, if g ≡ 0 (mod 2);

{{0, i, 2i} : i ∈ [g, 2g − 1]o}, if g ≡ 1 (mod 2).

Note that {0, 4g/3, 8g/3} /∈ C , i.e., i �= 4g/3 since i is odd. Then C forms a g-regular
equi-difference 1-D (4g, 3, 2, 1)-OOC with �g/2� codewords, whose difference leave is
[1, g − 1]o ∪ [3g + 1, 4g − 1]o ∪ (4 · [1, g − 1]). ��
Lemma 12 Let m ≡ 0 (mod 4). If there exists an optimal equi-difference 1-D (m/4, 3, 2,
1)-OOC with Ψ e(m/4, 3, 2, 1) codewords, whose difference leave is L, then there exists an
optimal equi-difference 1-D (m, 3, 2, 1)-OOC with �m/8� + Ψ e(m/4, 3, 2, 1) codewords,
whose difference leave is (4 · L) ∪ [1,m/4 − 1]o ∪ [3m/4 + 1,m − 1]o.
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Proof By Lemma 11, there exists an (m/4)-regular equi-difference 1-D (m, 3, 2, 1)-OOC
with �m/8� codewords for any m ≡ 0 (mod 4), whose difference leave is [1,m/4 − 1]o ∪
[3m/4 + 1,m − 1]o ∪ (4 · [1,m/4 − 1]). Then apply Construction 3 with an optimal equi-
difference 1-D (m/4, 3, 2, 1)-OOCwithΨ e(m/4, 3, 2, 1) codewords, whose difference leave
is L , to obtain an equi-difference 1-D (m, 3, 2, 1)-OOC with �m/8� + Ψ e(m/4, 3, 2, 1)
codewords, whose difference leave is (4 · L) ∪ [1,m/4 − 1]o ∪ [3m/4 + 1,m − 1]o. The
optimality is ensured by Lemma 9. ��
Theorem 4 There exists an optimal equi-difference 1-D (4sr , 3, 2, 1)-OOC with

Ψ e(4sr , 3, 2, 1) = (22s+1r + r − 6)/12

codewords for any s ≥ 0 and r ≡ 2 (mod 4), whose difference leave is

{22s−1r} ∪
(

s⋃

i=1

(4s−i · ([1, 4i−1r − 1]o ∪ [4i−13r + 1, 4i r − 1]o))
)

.

Proof We use induction on s. When s = 0, the conclusion follows from Lemma 10. Assume
that the conclusion holds for s = k − 1 (k ≥ 1), i.e., there exists an optimal equi-difference
1-D (4k−1r , 3, 2, 1)-OOC with (22(k−1)+1r + r − 6)/12 codewords. Then apply Lemma 12
to obtain an optimal equi-difference 1-D (4kr , 3, 2, 1)-OOCwith �4k−1r/2�+(22(k−1)+1r+
r − 6)/12 = (22k+1r + r − 6)/12 codewords. One can check the difference leave for any
given s by induction. ��

The difference leave of each optimal equi-difference 1-D (4sr , 3, 2, 1)-OOC constructed
in Theorem 4 contains 22s−1r , which is a half of 4sr . In Sect. 5.2 we shall present direct
constructions for optimal 2-D (3×m, 3, 2, 1)-OOCs which must contain three optimal equi-
difference 1-D (m, 3, 2, 1)-OOCs as subcodes. However, we hope the three equi-difference
1-D OOCs can use up the three half differences in their codewords. For this purpose, we
present the following theorem to show optimal equi-difference 1-D (4sr , 3, 2, 1)-OOCs
whose difference leave do not contain 22s−1r .

Theorem 5 There exists an optimal equi-difference 1-D (4sr , 3, 2, 1)-OOC with

Ψ e(4sr , 3, 2, 1) = (22s+1r + r − 6)/12

codewords for any s ≥ 1 and r ≡ 2 (mod 4), whose difference leave is

{22s−33r , 22s−35r} ∪
(

s⋃

i=1

(4s−i · ([1, 4i−1r − 1]o ∪ [4i−13r + 1, 4i r − 1]o))
)

.

Proof When s = 1, by the proof of Theorem 4, we can list all (3r − 2)/4 codewords of an
optimal equi-difference 1-D (4r , 3, 2, 1)-OOC as follows:

A = {{0, i, 2i} : i ∈ [r + 1, 2r − 1]o} ∪ (4 · {{0, i, 2i} : i = 1, 3, . . . , r/2 − 2}),
whose difference leave is {2r} ∪ [1, r − 1]o ∪ [3r + 1, 4r − 1]o. Let

B = (A \ {{0, 3r/2, 3r}}) ∪ {{0, r , 2r}}.
ThenB is an optimal equi-difference 1-D (4r , 3, 2, 1)-OOC,whose difference leave is {3r/2,
5r/2} ∪ [1, r − 1]o ∪ [3r + 1, 4r − 1]o. Start from B and use induction on s. Then we can
complete the proof by similar argument to that in Theorem 4. ��
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4.2 Constructions from conflict-avoiding codes

Recall that a 1-D (m, k, k, 1)-OOC is called a conflict-avoiding code, denoted by a
CAC(m, k).

A CAC(m, 3) is said to be equi-difference if each of its codewords is of the form X =
{0, a, 2a}, i.e., |ΔX | = 2, 3 or 4. Let Me(m, 3) denote the largest size of codes among all
equi-difference CAC(m, 3)s for givenm. An equi-difference CAC(m, 3) is said to be optimal
if it contains Me(m, 3) codewords.

Clearly, when m �≡ 0 (mod 3), an optimal equi-difference CAC(m, 3) is also an optimal
equi-difference 1-D (m, 3, 2, 1)-OOC. Thus many known constructions for optimal equi-
difference CAC(m, 3) in [19,28,29,32,41] can be applied to constructions for optimal equi-
difference 1-D (m, 3, 2, 1)-OOC.

An equi-difference CAC(m, 3)C is said to be tight if
⋃

X∈C ΔX = Zm \{0}. A tight equi-
difference CAC(m, 3) is optimal. Momihara [32] gave a necessary and sufficient condition
for the existence of a tight equi-difference CAC(m, 3). In Fu et al. [19], the condition is
restated in terms of multiplicative order of 2 modulo p for all prime factors p of m.

Lemma 13 [19,32] There exists a tight equi-difference CAC(m, 3) if and only if m = 4 or
m ≥ 3 andm = 3 f m0 for f ∈ {0, 1}, where any prime factor p of m0 satisfies p ≡ 1 (mod 4)
and 4|ordp(2) whenever p ≡ 1 (mod 8). Furthermore, a tight equi-difference CAC(m, 3)
contains 1 codeword for m = 4, (m − 1)/4 codewords for admissible m ≡ 1, 5 (mod 12),
and (m + 1)/4 codewords for admissible m ≡ 3 (mod 12).

We remark that the conditions on m0 in Lemma 13 are fairly complex and one has to
examine each prime factor of m0. For this reason, only a few explicit series of odd m are
known (see [28,41]).

Theorem 6 Let r ≡ 1, 5 (mod 12) satisfying that for any prime factor p of r , p ≡ 1 (mod 4)
and 4|ordp(2) whenever p ≡ 1 (mod 8). Then

(1) there is an optimal equi-difference 1-D (r , 3, 2, 1)-OOC with

Ψ e(r , 3, 2, 1) = (r − 1)/4

codewords, whose difference leave is empty;
(2) there is an optimal equi-difference 1-D (4sr , 3, 2, 1)-OOC with

Ψ e(4sr , 3, 2, 1) = (22s−1 − 2)r/3 + (3r + 1)/4

codewords for any s ≥ 1, whose difference leave is

s⋃

i=1

(4s−i · ([1, 4i−1r − 1]o ∪ [4i−13r + 1, 4i r − 1]o)).

Note that it is allowed that r = 1 in (2).

Proof Since r �≡ 0 (mod 3), (1) is straightforward by Lemmas 9 and 13. To prove (2), we
use induction on s. When s = 1, take an optimal equi-difference 1-D (r , 3, 2, 1)-OOC with
(r − 1)/4 codewords from (1), whose difference leave is empty. Then apply Lemma 12 to
obtain an optimal equi-difference 1-D (4r , 3, 2, 1)-OOC with (3r + 1)/4 codewords, whose
difference leave is [1, r − 1]o ∪ [3r + 1, 4r − 1]o. Assume that the conclusion holds for
s = k − 1 (k ≥ 2). Then apply Lemma 12 again to complete the proof. ��
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Theorem 7 Let r ≡ 3 (mod 12). If for any prime factor p of r/3, p ≡ 1 (mod 4) and
4|ordp(2) whenever p ≡ 1 (mod 8), then

(1) there is an optimal equi-difference 1-D (r , 3, 2, 1)-OOC with

Ψ e(r , 3, 2, 1) = (r − 3)/4

codewords, whose difference leave is {r/3, 2r/3};
(2) there is an optimal equi-difference 1-D (4sr , 3, 2, 1)-OOC with

Ψ e(4sr , 3, 2, 1) = (22s−1 − 2)r/3 + (3r − 1)/4

codewords for any s ≥ 1, whose difference leave is

{22sr/3, 22s+1r/3} ∪
(

s⋃

i=1

(4s−i · ([1, 4i−1r − 1]o ∪ [4i−13r + 1, 4i r − 1]o))
)

.

Note that it is allowed that r = 3.

Proof (1) By Lemma 13, a tight equi-difference CAC(r , 3) with (r +1)/4 codewords exists
for any r ≡ 3 (mod 12) satisfying the assumption. Since r is odd, such a tight CACmust
contain the codeword {0, r/3, 2r/3}. It follows that all codewords of the CAC except
for the codeword {0, r/3, 2r/3} constitute an equi-difference 1-D (r , 3, 2, 1)-OOC with
(r − 3)/4 codewords, which is optimal by Lemma 9.

(2) Weuse induction on s.When s = 1, take an optimal equi-difference 1-D (r , 3, 2, 1)-OOC
with (r − 3)/4 codewords from (1), whose difference leave is {r/3, 2r/3}. Then apply
Lemma 12 to obtain an optimal equi-difference 1-D (4r , 3, 2, 1)-OOC with (3r − 1)/4
codewords, whose difference leave is {4r/3, 8r/3} ∪ [1, r − 1]o ∪ [3r + 1, 4r − 1]o.
Assume that the conclusion holds for s = k − 1 (k ≥ 2). Then apply Lemma 12 again
to complete the proof. ��

Lemma 14 [29] Let p ≥ 5 be any prime. There exists an optimal equi-difference CAC(p, 3)
with

Me(p, 3) = p − 1

2ordp(2) (mod 2)ordp(2)
× �1

2
× ordp(2)

2(ordp(2)+1) (mod 2)
�

codewords.

Theorem 8 Let p ≥ 5 be any prime and Me(p, 3) be as in Lemma 14. Then

(1) there is an optimal equi-difference 1-D (p, 3, 2, 1)-OOC with

Ψ e(p, 3, 2, 1) = Me(p, 3)

codewords;
(2) there is an optimal equi-difference 1-D (4s p, 3, 2, 1)-OOC with

Ψ e(4s p, 3, 2, 1) = (22s−1 − 2)p/3 + (p + 1)/2 + Me(p, 3)

codewords for any s ≥ 1.

Proof Since p �≡ 0 (mod 3), (1) follows immediately from Lemma 14. To prove (2), one can
use induction on s and apply Lemma 12. ��
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5 Determination of8(n × m, 3, 2, 1)withm ≡ 0 (mod 4)

5.1 The cases of n = 1 and 2

Lemma 15 For any m ≡ 0 (mod 4),

Φ(1 × m, 3, 2, 1) =
{ �7m/32�, if m ≡ 0 (mod 8),

�(7m + 4)/32�, if m ≡ 4 (mod 8),

with the exception of Φ(1 × 64, 3, 2, 1) = 13.

Proof For m = 48, we give an explicit construction for a 1-D (48, 3, 2, 1)-OOC with 10
codewords as follows, which is defined on Z48. Lemma 8 ensures its optimality.

{0, 3, 6}, {0, 7, 14}, {0, 11, 22}, {0, 15, 30}, {0, 19, 38}, {0, 23, 46},
{0, 1, 17}, {0, 5, 9}, {0, 13, 21}, {0, 12, 24}.

For m ≡ 0 (mod 4) and m �= 48, let m = 4u and u �= 12. Write T = {0,m/3, 2m/3} when
m ≡ 0 (mod 3). Then an optimal 1-D (m, 3, 2, 1)-OOC with Φ(1 × m, 3, 2, 1) codewords
is constructed in the following table. Note that when m �≡ 0 (mod 3), an optimal 1-D
(m, 3, 3, 1)-OOC (or CAC(m, 3)) is also an optimal 1-D (m, 3, 2, 1)-OOC.

u Source

0 (mod 8) 0, 8 (mod 32) Construction 3.1 in [30]
16, 24 (mod 32), �= 16 Construction 3.2 in [30]
16 Theorem 1

4 (mod 8), �= 12 4, 20 (mod 24) Theorem 1
12 (mod 24), �= 12 Constructions 3.6, 3.7 in [30]; discard T

2 (mod 8) 2, 10 (mod 24) Theorem 1
18 (mod 24) Constructions 5.3, 5.4 in [30]; discard T

6 (mod 8) 22, 30 (mod 32) Construction 5.5 in [30]
6, 14 (mod 32) Construction 5.6 in [30]

1 (mod 8) Construction 3.1, 3.2 in [18]
3 (mod 8) 3 (mod 24) Construction 3.3 in [18]; discard T

11, 19 (mod 24) Theorem 1
5 (mod 8) 21 (mod 24) Construction 3.7, 3.8, 3.9 in [18]; discard T

5, 13 (mod 24) Theorem 1
7 (mod 8) Construction 3.10 in [18]

It should be noticed that, when u ≡ 0, 8 (mod 32), although Construction 3.1 in [30] was
only used for the cases of u ≡ 8, 32, 40, 64 (mod 96), it is readily checked that the same
codewords listed in Construction 3.1 in [30] can also produce our required optimal OOCs
for u ≡ 0, 72 (mod 96). The similar things happen when u ≡ 16, 24 (mod 32) and u ≡ 6
(mod 8).

We give other two examples to illustrate how to use the table. When u ≡ 3 (mod 24), in
Construction 3.3 of [18], an optimal CAC(m, 3)with (7m+12)/32 codewords is constructed,
where m = 4u and T = {0,m/3, 2m/3} is one of codewords. Then all codewords of the
CAC(m, 3) except for the codeword T constitute an optimal 1-D (m, 3, 2, 1)-OOC with
(7m − 20)/32 codewords.

When u ≡ 7 (mod 8), in Construction 3.10 of [18], an optimal CAC(m, 3) with (7m −
4)/32 codewords is constructed, where m = 4u and T = {0,m/3, 2m/3} is not a codeword.
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Thus this CAC(m, 3) is also an optimal 1-D (m, 3, 2, 1)-OOC with (7m−4)/32 codewords.
��
Lemma 16 Φ(2 ×m, 3, 2, 1) = 3m/4 for any m ≡ 0 (mod 4), with the exception of Φ(2 ×
4, 3, 2, 1) = 2.

Proof We construct the required codes on I2 × Zm . When m ≡ 0 (mod 8) and m ≥ 8, the
required 3m/4 codewords are

{(0, 0), (0, i), (0, 2i)}, i ∈ [3,m/4 − 1]o ∪ {m/2 − 1}, (i = 3 if m = 8);
{(1, 0), (1, i), (1, 2i)}, i ∈ [m/4 + 1,m/2 − 1]o;
{(0, 0), (0, 1 + 2i), (1,m/4 − 1 + i)}, i ∈ [m/8,m/4 − 2], (null if m = 8);
{(1, 0), (1, 1 + 2i), (0, 3m/4 + 2 + i)}, i ∈ [0,m/8 − 1];
{(0, 0), (0, 4 + 4i), (1, 3m/4 + 1 + 2i)}, i ∈ [0,m/8 − 1];
{(1, 0), (1, 4 + 4i), (0,m/4 + 4 + 2i)}, i ∈ [0,m/8 − 1];
{(0, 0), (0, 1), (1, 3m/4 − 1)}.
When m ≡ 4 (mod 8) and m ≥ 12, the required 3m/4 codewords are

{(0, 0), (0, i), (0, 2i)}, i ∈ [m/4 + 2,m/2 − 3]o, (null if m = 12);
{(1, 0), (1, i), (1, 2i)}, i ∈ [1,m/4]o;
{(0, 0), (0, 1 + 2i), (1,m/4 + i)}, i ∈ [0, (m − 4)/8] \ {1};
{(1, 0), (1, 1 + 2i), (0, 3m/4 + 1 + i)}, i ∈ [(m + 4)/8,m/4 − 1];
{(0, 0), (0, 4 + 4i), (1, 3m/4 + 1 + 2i)}, i ∈ [1, (m − 12)/8], (null if m = 12);
{(1, 0), (1, 4 + 4i), (0,m/4 + 2 + 2i)}, i ∈ [0, (m − 12)/8];
{(0, 0), (0,m/2 − 1), (1,m/4 − 2)}, {(0, 0), (0, 3), (1, 3m/4)},
{(0, 0), (0,m/2), (1, 3m/4 + 1)}, {(0, 0), (0, 2), (0, 4)}.

Whenm = 4, the required twocodewords are {(0, 0), (0, 1), (0, 2)} and {(1, 0), (1, 1), (1, 2)}.
Lemmas 4 and 5 ensure the optimality of these codes. ��

5.2 The case of n = 3

This section is devoted to constructing optimal 2-D (3 × m, 3, 2, 1)-OOCs. By Lemma 2,
Φ(3×m, 3, 2, 1) ≤ 3m/2+Ψ e(m, 3, 2, 1), and so byRemark 1, any optimal 2-D (3×m, 3, 2,
1)-OOC must contain 3 optimal equi-difference 1-D (m, 3, 2, 1)-OOCs as subcodes.

5.2.1 m ≡ 8 (mod 16)

Lemma 17 Φ(3 × 8, 3, 2, 1) = 13.

Proof The required OOC is constructed on I3 × Z8 as follows:

{(0, 0), (0, 2), (0, 4)}, {(1, 0), (1, 2), (1, 4)}, {(2, 0), (2, 2), (2, 4)};
{(0, 0), (0, 1), (1, 6)}, {(0, 0), (0, 3), (1, 7)}, {(1, 0), (1, 1), (2, 5)}, {(1, 0), (1, 3), (2, 3)},
{(0, 0), (2, 5), (2, 6)}, {(0, 0), (2, 4), (2, 7)};
{(0, 0), (1, 2), (2, 0)}, {(0, 0), (1, 3), (2, 2)}, {(0, 0), (1, 0), (2, 1)}, {(0, 0), (1, 1), (2, 3)}.
The optimality is ensured by Lemma 2 and Theorem 5. Note that each of the first three
codewords can be seen as an optimal equi-difference 1-D (8, 3, 2, 1)-OOC, which is defined
on {x} × Z8 for some x ∈ {0, 1, 2}. The middle six codewords used up all the remaining
pure differences which are not from the first three codewords. All mixed differences are also
used up. ��
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Remark 3 Lemma 17 helps us to understand the structure of codewords of optimal 2-D
(3 × m, 3, 2, 1)-OOCs with 3m/2 + Ψ e(m, 3, 2, 1) codewords (if it exists). On one hand,
such kind of OOCs must contain three optimal equi-difference 1-D (m, 3, 2, 1)-OOCs as
subcodes. On the other hand, all pure differences and mixed differences must be used up.
The two facts make it difficult to find effective recursive constructions, especially filling
constructions, for optimal 2-D (3 × m, 3, 2, 1)-OOCs.

In the following we present three infinite families of optimal 2-D (3 × m, 3, 2, 1)-OOCs
via direct constructions.

Lemma 18 Φ(3 × m, 3, 2, 1) = (27m − 8)/16 for any m ≡ 8 (mod 16).

Proof For m ≡ 8 (mod 16), by Lemma 2, Φ(3 × m, 3, 2, 1) ≤ 3m/2 + Ψ e(m, 3, 2, 1), and
by Theorem 4, Ψ e(m, 3, 2, 1) = (3m − 8)/16. So Φ(3 × m, 3, 2, 1) ≤ (27m − 8)/16.

When m ≡ 8 (mod 16) and m ≥ 24, the required (27m − 8)/16 codewords are divided
into two parts. The first part consists of (9m − 24)/16 codewords:

{(x, 0), (x, a), (x, 2a)}, x ∈ {0, 1, 2} and {0, a, 2a} ∈ B,

whereB is an optimal equi-difference 1-D (m, 3, 2, 1)-OOC with (3m − 8)/16 codewords,
whose difference leave is {3m/8, 5m/8}∪[1,m/4−1]o∪[3m/4+1,m−1]o (see Theorem 5
by taking s = 1 and r = m/4). The second part consists of 9m/8 + 1 codewords:

{(0, 0), (0, 1 + 2i), (1, 7m/8 + i)}, i ∈ [0,m/8 − 1];
{(1, 0), (1, 1 + 2i), (2,m/2 + 2 + i)}, i ∈ [0,m/8 − 1];
{(0, 0), (2, 7m/8 − 3 − i), (2, 7m/8 + i)}, i ∈ [0,m/8 − 2];
{(0, 0), (0, 3m/8), (1, 3m/4 − 1)}, {(1, 0), (1, 3m/8), (2, 3m/4)},
{(0, 0), (2,m − 1), (2, 0)}, {(0, 0), (2, 7m/8 − 2), (2,m/4 − 2)};
{(0, 0), (1, i), (2, 1 + 2i)}, i ∈ [0, 3m/8 − 2];
{(0, 0), (1, 3m/8 + i), (2, 2 + 2i)}, i ∈ [0, 3m/8 − 2] \ {m/8 − 2};
{(0, 0), (1,m/2 − 2), (2, 7m/8 − 1)}.

When m = 8, the conclusion follows from Lemma 17. ��

5.2.2 m ≡ 32 (mod 64)

Lemma 19 Φ(3 × m, 3, 2, 1) = (107m − 32)/64 for any m ≡ 32 (mod 64).

Proof Form ≡ 32 (mod 64), by Lemma 2, Φ(3×m, 3, 2, 1) ≤ 3m/2+Ψ e(m, 3, 2, 1), and
by Theorem 4, Ψ e(m, 3, 2, 1) = (11m − 32)/64. So Φ(3 × m, 3, 2, 1) ≤ (107m − 32)/64.

When m = 32, an optimal 2-D (3 × 32, 3, 2, 1)-OOC with 53 codewords is listed as
follows:

{(x, 0), (x, a), (x, 2a)}, x ∈ {0, 1, 2}and a ∈ {8, 9, 11, 13, 15};
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{(0, 0), (0, 12), (1, 25)}, {(0, 0), (0, 1), (1, 6)}, {(0, 0), (0, 3), (1, 7)},
{(0, 0), (0, 5), (1, 8)}, {(0, 0), (0, 7), (1, 9)}, {(0, 0), (0, 4), (1, 31)},
{(1, 0), (1, 1), (2, 14)}, {(1, 0), (1, 12), (2, 23)}, {(1, 0), (1, 3), (2, 20)},
{(1, 0), (1, 5), (2, 21)}, {(1, 0), (1, 7), (2, 22)}, {(1, 0), (1, 4), (2, 31)},
{(0, 0), (2, 9), (2, 21)}, {(0, 0), (2, 0), (2, 1)}, {(0, 0), (2, 7), (2, 10)},
{(0, 0), (2, 6), (2, 11)}, {(0, 0), (2, 5), (2, 12)}, {(0, 0), (2, 22), (2, 26)};
{(0, 0), (1, 0), (2, 8)}, {(0, 0), (1, 1), (2, 4)}, {(0, 0), (1, 10), (2, 28)},
{(0, 0), (1, 19), (2, 31)}, {(0, 0), (1, 21), (2, 30)}, {(0, 0), (1, 22), (2, 29)},
{(0, 0), (1, 12), (2, 14)}, {(0, 0), (1, 14), (2, 20)}, {(0, 0), (1, 15), (2, 19)},
{(0, 0), (1, 16), (2, 16)}, {(0, 0), (1, 17), (2, 18)}, {(0, 0), (1, 18), (2, 23)},
{(0, 0), (1, 11), (2, 3)}, {(0, 0), (1, 20), (2, 13)}, {(0, 0), (1, 23), (2, 17)},
{(0, 0), (1, 24), (2, 2)}, {(0, 0), (1, 26), (2, 24)}, {(0, 0), (1, 28), (2, 15)},
{(0, 0), (1, 29), (2, 25)}, {(0, 0), (1, 30), (2, 27)}.

Note that for any x ∈ {0, 1, 2}, {{(x, 0), (x, a), (x, 2a)} : a ∈ {8, 9, 11, 13, 15}} forms an
optimal equi-difference 1-D (32, 3, 2, 1)-OOC defined on {x}× Z32, whose difference leave
is {1, 3, 4, 5, 7, 12, 20, 25, 27, 28, 29, 31} (see Theorem 5 by taking s = 2 and r = 2).

Whenm ≡ 32 (mod 64) andm ≥ 96, the required (107m−32)/64 codewords are divided
into two parts. The first part consists of (33m − 96)/64 codewords:

{(x, 0), (x, a), (x, 2a)}, x ∈ {0, 1, 2} and {0, a, 2a} ∈ B,

whereB is an optimal equi-difference 1-D (m, 3, 2, 1)-OOCwith (11m−32)/64 codewords,
whose difference leave is {3m/8, 5m/8}∪[1,m/4−1]o∪[3m/4+1,m−1]o∪(4·([1,m/16−
1]o ∪ [3m/16+ 1,m/4− 1]o)) (see Theorem 5 by taking s = 2 and r = m/16). The second
part consists of 37m/32 + 1 codewords:

{(0, 0), (0, 1 + 2i), (1,m/8 + 2 + i)}, i ∈ [0,m/8 − 1];
{(0, 0), (0, 4 + 8i), (1, 7m/8 + 3 + 4i)}, i ∈ [0,m/32 − 1];
{(1, 0), (1, 3 + 2i), (2, 5m/8 + i)}, i ∈ [0,m/8 − 2];
{(1, 0), (1, 4 + 8i), (2, 7m/8 + 3 + 4i)}, i ∈ [0,m/32 − 1];
{(0, 0), (2,m/4 − 1 − i), (2,m/4 + 2 + i)}, i ∈ [0,m/8 − 2];
{(0, 0), (2, 3m/4 − 2 − 4i), (2, 3m/4 + 2 + 4i)}, i ∈ [0,m/32 − 1];
{(0, 0), (0, 3m/8), (1, 13m/16 − 1)}, {(1, 0), (1, 1), (2, 7m/16)},
{(1, 0), (1, 3m/8), (2, 3m/4 − 1)}, {(0, 0), (2,m/4 + 1), (2, 5m/8 + 1)},
{(0, 0), (2,m/16 − 2), (2,m/16 − 1)};
{(0, 0), (1, 3m/4 + 2i), (2, 3m/4 − 3 − 2i)}, i ∈ [0,m/16 − 1] \ {m/16 − 2};
{(0, 0), (1, 7m/8 + 2i), (2, 5m/8 + 4i)}, i ∈ [0,m/16 − 1];
{(0, 0), (1, 3m/4 + 1 + 4i), (2, 3m/4 − 1 + 2i)}, i ∈ [0,m/16 − 1] \ {(m − 32)/64};
{(0, 0), (1,m/4 + 2 + 2i), (2, 3m/8 + 1 + i)}, i ∈ [0,m/8 − 2];
{(0, 0), (1,m/4 + 3 + 2i), (2,m/2 + 1 + i)}, i ∈ [0,m/8 − 3] \ {3m/32 − 2};
{(0, 0), (1,m/2 + 4 + 2i), (2, 1 + i)}, i ∈ [0,m/8−3] \ {m/16−3,m/16−2};
{(0, 0), (1,m/2 + 1 + 2i), (2, 7m/8 − 1 + i)}, i ∈ [0,m/8 − 4];
{(0, 0), (1, 0), (2, 0)}, {(0, 0), (1, 1), (2,m/4)},
{(0, 0), (1,m/2 − 1), (2,m − 3)}, {(0, 0), (1,m/2), (2,m/8 − 1)},
{(0, 0), (1,m/2 + 2), (2,m/8)}, {(0, 0), (1, 3m/4 − 5), (2,m/2)},
{(0, 0), (1, 3m/4 − 3), (2,m − 2)}, {(0, 0), (1, 3m/4 − 1), (2,m − 1)},
{(0, 0), (1, 7m/8 − 4), (2,m − 4)}, {(0, 0), (1, 5m/8 − 2), (2, 25m/32 − 2)},
{(0, 0), (1, 5m/8), (2, 19m/32 − 1)}.
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5.2.3 m ≡ 4, 20 (mod 48)

Lemma 20 Φ(3 × 4, 3, 2, 1) = 6.

Proof The required OOC is constructed on I3 × Z4 as follows:

{(x, 0), (x, 1), (x, 2)}, {(0, 0), (1, a), (2, b)},
where x ∈ {0, 1, 2} and (a, b) ∈ {(0, 0), (1, 3), (3, 2)}. The optimality is ensured by Lemma
3. ��
Lemma 21 Let m > 4 and m ≡ 4, 20 (mod 48) satisfying that for any prime factor p of
m/4, p ≡ 1 (mod 4) and 4|ordp(2) whenever p ≡ 1 (mod 8). Then Φ(3 × m, 3, 2, 1) =
(27m + 4)/16.

Proof For anym given in the assumption, by Lemma 2,Φ(3×m, 3, 2, 1) ≤ 3m/2+Ψ e(m, 3,
2, 1), and by Theorem 6(2), Ψ e(m, 3, 2, 1) = (3m + 4)/16. So Φ(3×m, 3, 2, 1) ≤ (27m +
4)/16.

When m = 20, an optimal 2-D (3 × 20, 3, 2, 1)-OOC with 34 codewords is listed as
follows:

{(x, 0), (x, i), (x, 2i)}, x ∈ {0, 1, 2} and i ∈ {4, 5, 7, 9};
{(0, 0), (0, 1), (1, 18)}, {(0, 0), (0, 3), (1, 19)}, {(1, 0), (1, 1), (2, 18)},
{(1, 0), (1, 3), (2, 19)}, {(0, 0), (2, 17), (2, 18)}, {(0, 0), (2, 16), (2, 19)};
{(0, 0), (1, a), (2, b)},

where (a, b) ∈ {(0, 1), (1, 3), (2, 2), (3, 11), (4, 13), (5, 10), (6, 9), (7, 14), (8, 12),
(9, 15), (10, 0), (11, 4), (12, 7), (13, 5), (14, 8), (15, 6)}. Note that for any x ∈ {0, 1, 2},
{{(x, 0), (x, i), (x , 2i)} : i ∈ {4, 5, 7, 9}} forms an optimal equi-difference 1-D (20, 3, 2, 1)-
OOC defined on {x} × Z20, whose difference leave is {1, 3, 17, 19} (see Theorem 6(2) by
taking s = 1 and r = 5).

When m = 52, an optimal 2-D (3 × 52, 3, 2, 1)-OOC with 88 codewords is listed as
follows:

{(x, 0), (x, i), (x, 2i)}, x ∈ {0, 1, 2} and i ∈ {4, 12, 16, 13, 15, 17, 19, 21, 23, 25};
{(0, 0), (0, 1 + 2i), (1, 46 + i)}, i ∈ [0, 5];
{(1, 0), (1, 1 + 2i), (2, 46 + i)}, i ∈ [0, 5];
{(0, 0), (2, 45 − i), (2, 46 + i)}, i ∈ [0, 5];
{(0, 0), (1, a), (2, b)},
where (a, b) ∈ {(0, 12), (2, 6), (3, 8), (4, 14), (5, 5), (6, 7), (11, 13), (1, 16), (14, 22),
(16, 19), (18, 24), (7, 28), (12, 25), (13, 27), (22, 29), (8, 30), (9, 32), (10, 34), (20, 31),
(24, 33), (15, 35), (17, 36), (19, 37), (21, 38), (23, 39), (33, 15), (34, 18), (27, 0), (28, 2),
(29, 4), (30, 10), (32, 11), (25, 1), (31, 9), (26, 3), (35, 21), (36, 17), (37, 20), (38, 23),
(39, 26)}. Note that for any x ∈ {0, 1, 2}, {{(x, 0), (x, i), (x, 2i)} : i ∈ {4, 12, 16, 13, 15, 17,
19, 21, 23, 25}} forms an optimal equi-difference 1-D (52, 3, 2, 1)-OOCdefinedon {x}×Z52,
whose difference leave is [1, 11]o∪[41, 51]o (see Theorem 6(2) by taking s = 1 and r = 13).

When m ≡ 4, 20 (mod 48), m ≥ 68 and m satisfies the condition in the assumption,
the required (27m + 4)/16 codewords are divided into three parts. The first part consists of
(9m + 12)/16 codewords:

{(x, 0), (x, a), (x, 2a)}, x ∈ {0, 1, 2} and {0, a, 2a} ∈ B,
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whereB is an optimal equi-difference 1-D (m, 3, 2, 1)-OOC with (3m + 4)/16 codewords,
whose difference leave is [1,m/4 − 1]o ∪ [3m/4 + 1,m − 1]o (see Theorem 6(2) by taking
s = 1 and r = m/4). The second part consists of (3m + 108)/8 codewords:

{(0, 0), (0, 1 + 2i), (1, (7m + 4)/8 + i)}, i ∈ [0, (m − 20)/8];
{(1, 0), (1, 1 + 2i), (2,m/2 + i)}, i ∈ [0, (m − 12)/8];
{(0, 0), (2, (7m − 12)/8 − i), (2, (7m − 4)/8 + i)}, i ∈ [0, (m − 12)/8];
{(0, 0), (0,m/4 − 2), (1, (11m − 12)/16)}, {(0, 0), (1, (3m − 4)/8), (2, (m − 4)/16)},
{(0, 0), (1, (9m + 12)/16), (2,m/2 − 1)}, {(0, 0), (1, (3m + 4)/8), (2, (3m + 4)/16)},
{(0, 0), (1, 3m/4 + 1), (2, 2)}, {(0, 0), (1,m − 1), (2, 3m/4 − 3)},
{(0, 0), (1,m/4), (2,m − 1)}, {(0, 0), (1,m/4 − 1), (2,m/4 − 3)},
{(0, 0), (1, 3m/4), (2, 0)}, {(0, 0), (1, (3m + 12)/8), (2, (m + 12)/8)},
{(0, 0), (1, (5m − 4)/8), (2,m/4 − 1)}, {(0, 0), (1, (5m + 4)/8), (2,m/4 + 1)},
{(0, 0), (1, 3m/4 − 1), (2, (5m − 20)/8)}, {(0, 0), (1,m/2 + 1), (2, (3m + 4)/8)},
{(0, 0), (1,m/2), (2,m/2)}, {(0, 0), (1,m/2 − 1), (2,m/2 − 2)}.
The third part consists of (3m−56)/4 codewords. Let T = [0, (3m−36)/8]\{(m−20)/16,
(m − 28)/8, (m − 20)/8, (m − 12)/8, (3m − 28)/16,m/4− 3,m/4− 2, (5m − 52)/16}. If
m ≡ 4, 68 (mod 96) and m ≥ 68, then we take

{(0, 0), (1, i), (2, 1 + 2i)}, i ∈ [0, (3m − 12)/8] \ {(3m − 12)/32,m/4 − 1,m/4};
{(0, 0), (1, (3m − 12)/32), (2, 3m/4 − 1)}, {(0, 0), (1, (13m + 12)/32), (2,m/2 + 1)};
{(0, 0), (1, (3m + 20)/8 + i), (2, 4 + 2i)}, i ∈ T \ {(m − 68)/32}.
If m ≡ 20, 52 (mod 96) and m ≥ 116, then we take

{(0, 0), (1, i), (2, 1 + 2i)}, i ∈ [0, (3m − 12)/8] \ {(m − 20)/32,m/4 − 1,m/4};
{(0, 0), (1, (15m + 20)/32), (2,m/2 + 1)}, {(0, 0), (1, (m − 20)/32), (2, 3m/4 − 1)};
{(0, 0), (1, (3m + 20)/8 + i), (2, 4 + 2i)}, i ∈ T \ {(3m − 60)/32}.

5.3 A recursive construction fromm-cyclic group divisible designs

Let K be a set of positive integers. A group divisible design (GDD) K -GDD is a triple
(X ,G ,A ) satisfying that (1) G is a partition of a finite set X into subsets (called groups);
(2) A is a set of subsets of X (called blocks), each of cardinality from K , such that every
2-subset of X is either contained in exactly one block or in exactly one group, but not in both.
If G contains ui groups of size gi for 1 ≤ i ≤ r , then we call gu11 gu22 · · · gurr the type of the
GDD. If K = {k}, we write k-GDD instead of {k}-GDD.

An automorphism group of a GDD (X ,G ,A ) is a permutation group on X leaving G and
A invariant, respectively. Given an automorphism group of a GDD, all blocks of the GDD
can be partitioned into some orbits under this automorphism group. Choose any fixed block
from each orbit and call it a base block of the GDD.

Suppose (X ,G ,A ) is a K -GDDof type (v1m)u1(v2m)u2 · · · (vrm)ur . If its automorphism
group contains a permutation on X that is the product of

∑r
i=1 vi ui disjoint m-cycles fixing

each group of G and leaving A invariant, then this design is said to be m-cyclic.

Lemma 22 [37] An m-cyclic 3-GDD of type (vm)u exists if and only if (1) when u = 3, m is
odd, or m is even and v is even; (2) when u ≥ 4, (u − 1)vm ≡ 0 (mod 2), u(u − 1)vm ≡ 0
(mod 3), and v ≡ 0 (mod 2) if u ≡ 2, 3 (mod 4) and m ≡ 2 (mod 4).

The following construction is a variation of Construction 4.6 in [17].
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Construction 9 Suppose that there exist

(1) an m-cyclic k-GDD of type (v1m)u1(v2m)u2 · · · (vrm)ur with b base blocks;
(2) a 2-D (vi × m, k, λa, 1)-OOC with fi codewords for each 1 ≤ i ≤ r .

Then there exists a 2-D ((
∑r

i=1 vi ui ) × m, k, λa, 1)-OOC with b + ∑r
i=1 ui fi codewords.

Lemma 23 Let m ≡ 0 (mod 4). If there is an optimal 2-D (3×m, 3, 2, 1)-OOC with 3m/2+
Ψ e(m, 3, 2, 1) codewords, then there is an optimal 2-D (n × m, 3, 2, 1)-OOC with n(nm +
2Ψ e(m, 3, 2, 1))/6 codewords for any n ≡ 0 (mod 3) and n ≥ 12.

Proof ByLemma 22, there exists anm-cyclic 3-GDDof type (3m)n/3 for anym ≡ 0 (mod 4),
n ≡ 0 (mod 3) andn ≥ 12,which containsmn(n−3)/6base blocks. Then applyConstruction
9 with an optimal 2-D (3×m, 3, 2, 1)-OOCwith 3m/2+Ψ e(m, 3, 2, 1) codewords to obtain
a 2-D (n × m, 3, 2, 1)-OOC with n(nm + 2Ψ e(m, 3, 2, 1))/6 codewords, which is optimal
by Lemma 2. ��
Corollary 1

Φ(n × m, 3, 2, 1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n(8nm + 3m − 8)/48, n ≡ 0 (mod 3), n �= 6, 9, and
m ≡ 8 (mod 16);

n(32nm + 11m − 32)/192, n ≡ 0 (mod 3), n �= 6, 9, and
m ≡ 32 (mod 64);

n(8nm + 3m + 4)/48, n ≡ 0 (mod 3), n �= 6, 9, m > 4,
m ≡ 4, 20 (mod 48), and m/4 ∈ S,

where S is the set of positive integers such that for any s ∈ S, it holds that s ≡ 1, 5 (mod 12),
and every prime divisor p of s satisfies p ≡ 5 (mod 8), or p ≡ 1 (mod 8) and 4|ordp(2).
Proof By Lemmas 18, 19 and 21, there is an optimal 2-D (3×m, 3, 2, 1)-OOC with 3m/2+
Ψ e(m, 3, 2, 1) codewords, where

Ψ e(m, 3, 2, 1) =
⎧
⎨

⎩

(3m − 8)/16, m ≡ 8 (mod 16);
(11m − 32)/64, m ≡ 32 (mod 64);
(3m + 4)/16, m ≡ 4, 20 (mod 48),m > 4 and m/4 ∈ S.

Then apply Lemma 23 to obtain an optimal 2-D (n×m, 3, 2, 1)-OOCwith n(nm+2Ψ e(m, 3,
2, 1))/6 codewords. ��

Combining the results of Lemmas 15, 16, 20 and Corollary 1, one can complete the proof
of Theorem 2.

6 Concluding remarks

In Sect. 5.2, we present several direct constructions for optimal 2-D (3 × m, 3, 2, 1)-OOCs.
Start from these 2-D OOCs and then apply Construction 9 by using m-cyclic 3-GDDs to get
some optimal 2-D (n × m, 3, 2, 1)-OOC for any n ≡ 0 (mod 3) and n ≥ 12.

Actually to deal with the case of n ≡ 4 (mod 6), by similar arguments, we can have
the following lemma, in which all the input OOCs are required to attain the upper bound
in Lemma 2. The reader can check that the output OOC can also attain the upper bound in
Lemma 2.
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Lemma 24 Let m ≡ 0 (mod 4). Suppose that there exist

(1) an m-cyclic 3-GDD of type (6m)u(4m)1, which has 2mu(1 + 3u) base blocks;
(2) an optimal 2-D (6 × m, 3, 2, 1)-OOC with 6m + 2Ψ e(m, 3, 2, 1) codewords;
(3) an optimal 2-D (4 × m, 3, 2, 1)-OOC with �(8m + 4Ψ e(m, 3, 2, 1))/3� codewords.

Then there is an optimal 2-D ((6u+4)×m, 3, 2, 1)-OOCwith �(6u+4)((6u+4)m+2Ψ e(m,

3, 2, 1))/6� codewords.
By standard design theoretic techniques, it is readily checked that an m-cyclic 3-GDD of

type (6m)u(4m)1 exists for any m ≡ 0 (mod 4) and u ≥ 3. However, as we pointed out in
Remark 3, it seems to be difficult to find effective recursive constructions, especially filling
constructions, for optimal 2-D (4×m, 3, 2, 1)-OOCs and optimal 2-D (6×m, 3, 2, 1)-OOCs.
Even though by tedious computation and analysis, direct constructions should always work,
that could not be a good way. A better technique is desired for this problem.

On the other hand, by Lemma 2, we see that the size of an optimal 2-D (n × m, 3, 2, 1)-
OOC relies heavily on the size of an optimal equi-difference 1-D (m, 3, 2, 1)-OOC. The latter
is closely related to optimal equi-difference CAC(m, 3)s. This provides another motivation
to study equi-difference CAC(m, 3)s.
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