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Abstract
The Z2s -additive codes are subgroups of Zn

2s , and can be seen as a generalization of linear
codes over Z2 and Z4. A Z2s -linear Hadamard code is a binary Hadamard code which is
the Gray map image of a Z2s -additive code. It is known that the dimension of the kernel
can be used to give a complete classification of the Z4-linear Hadamard codes. In this paper,
the kernel of Z2s -linear Hadamard codes of length 2t and its dimension are established for
s > 2. Moreover, we prove that this invariant only provides a complete classification for
some values of t and s. The exact amount of nonequivalent such codes are given up to t = 11
for any s ≥ 2, by using also the rank.

Keywords Kernel · Hadamard code · Z2s -linear code · Z2s -additive code · Gray map ·
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Mathematics Subject Classification 94B25 · 94B60

1 Introduction

Let Z2s be the ring of integers modulo 2s with s ≥ 1. The set of n-tuples over Z2s is denoted
by Zn

2s . In this paper, the elements of Zn
2s will also be called vectors over Z2s of length n. A
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binary code of length n is a nonempty subset of Zn
2, and it is linear if it is a subspace of Zn

2.
Similarly, a nonempty subset of Zn

2s is a Z2s -additive if it is a subgroup of Zn
2s . Note that,

when s = 1, a Z2s -additive code is a binary linear code and, when s = 2, it is a quaternary
linear code or a linear code over Z4.

Two binary codes, C1 and C2, are said to be equivalent if there is a vector a ∈ Z
n
2 and

a permutation of coordinates π such that C2 = {a + π(c) : c ∈ C1}. Two Z2s -additive
codes, C1 and C2, are said to be permutation equivalent if they differ only by a permutation of
coordinates, that is, if there is a permutation of coordinates π such that C2 = {π(c) : c ∈ C1}.

The Hamming weight of a binary vector u ∈ Z
n
2, denoted by wtH (u), is the number of

nonzero coordinates ofu. TheHamming distance of two binary vectorsu, v ∈ Z
n
2, denoted by

dH (u, v), is the number of coordinates inwhich they differ. Note that dH (u, v) = wtH (v−u).
The minimum distance of a binary code C is d(C) = min{dH (u, v) : u, v ∈ C,u �= v} The
Lee weight of an element i ∈ Z2s is wtL(i) = min{i, 2s − i} and the Lee weight of a vector
u = (u1, u2, . . . , un) ∈ Z

n
2s is wtL(u) = ∑n

j=1 wtL(u j ) ∈ Z2s . The Lee distance of two
vectors u, v ∈ Z

n
2s is dL(u, v) = wtL(v − u). The minimum distance of a Z2s -additive code

C is d(C) = min{dL(u, v) : u, v ∈ C,u �= v}.
In [12], aGraymap fromZ4 toZ2

2 is defined asφ(0) = (0, 0),φ(1) = (0, 1),φ(2) = (1, 1)
and φ(3) = (1, 0). There exist different generalizations of this Gray map, which go fromZ2s

to Z
2s−1

2 [4,7,8,14,17]. The one given in [7], by Carlet, is the map φ : Z2s → Z
2s−1

2 defined
as follows:

φ(u) = (us−1, . . . , us−1) + (u0, . . . , us−2)Y , (1)

where u ∈ Z2s , [u0, u1, . . . , us−1]2 is the binary expansion of u, that is u = ∑s−1
i=0 2

i ui
(ui ∈ {0, 1}), and Y is a matrix of size (s − 1) × 2s−1 which columns are the elements of
Z
s−1
2 . Note that (us−1, . . . , us−1) and (u0, . . . , us−2)Y are binary vectors of length 2s−1,

and that the rows of Y form a basis of a first order Reed-Muller code after adding the all-one
row. The generalization given in [17] can be defined in terms of the elements of a Hadamard
code [14]. In this paper, we will focus on Carlet’s Gray map φ, which is a particular case
of the last one satisfying that

∑
λiφ(2i ) = φ(

∑
λi2i ) as we will see later. Then, we define

Φ : Zn
2s → Z

n2s−1

2 as the component-wise Gray map φ.
Let C be a Z2s -additive code of length n. We say that its binary image C = Φ(C) is a

Z2s -linear code of length 2s−1n. Since C is a subgroup of Zn
2s , it is isomorphic to an abelian

structure Z
t1
2s × Z

t2
2s−1 × · · · × Z

ts−1
4 × Z

ts
2 , and we say that C, or equivalently C = Φ(C),

is of type (n; t1, . . . , ts). Note that |C| = 2st12(s−1)t2 · · · 2ts . Unlike linear codes over finite
fields, linear codes over rings do not have a basis, but there exists a generator matrix for these
codes. If C is a Z2s -additive code of type (n; t1, . . . , ts), then a generator matrix of C with
minimum number of rows has exactly t1 + · · · + ts rows.

Two structural properties of binary codes are the rank and the dimension of the kernel.
The rank of a binary code C is simply the dimension of the linear span, 〈C〉, of C . The
kernel of a binary code C is defined as K(C) = {x ∈ Z

n
2 : x + C = C} [2]. If the all-zero

vector belongs to C , then K(C) is a linear subcode of C . Note also that if C is linear, then
K (C) = C = 〈C〉. We denote the rank of a binary code C as rank(C) and the dimension
of the kernel as ker(C). These parameters can be used to distinguish between nonequivalent
binary codes, since equivalent ones have the same rank and dimension of the kernel.

A binary code of length n, 2n codewords and minimum distance n/2 is called a Hadamard
code. Hadamard codes can be constructed from Hadamard matrices [1,16]. Note that linear
Hadamard codes are in fact first orderReed-Muller codes, or equivalently, the dual of extended
Hamming codes [16, Ch.13 § 3]. The Z2s -additive codes that, under the Gray map Φ, give
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OnZ2s -linear Hadamard codes 419

a Hadamard code are called Z2s -additive Hadamard codes and the corresponding binary
images are called Z2s -linear Hadamard codes.

The Z4-linear Hadamard codes of length 2t can be classified by using either the rank or
the dimension of the kernel [13,18]. Specifically, it is known that for a Z4-linear Hadamard
code C of type (2t−1; t1, t2), ker(C) = t1 + t2 + 1 if t1 > 2, and ker(C) = 2t1 + t2 if t1 = 1
or 2, where t2 = t + 1− 2t1. For any integer t ≥ 3 and each t1 ∈ {1, . . . , �(t + 1)/2	}, there
is a unique (up to equivalence) Z4-linear Hadamard code of type (2t−1; t1, t + 1− 2t1), and
all these codes are pairwise nonequivalent, except for t1 = 1 and t1 = 2, where the codes
are equivalent to the linear Hadamard code [13]. Therefore, the number of nonequivalent
Z4-linear Hadamard codes of length 2t is � t−1

2 	 for all t ≥ 3, and it is 1 for t = 1 and t = 2.
Linear codes over Zps , which are a generalization of Z2s -additive codes, were studied

by Blake [3] and Shankar [19] in 1975 and 1979, respectively. Nevertheless, the study of
codes over rings increased significantly after the publication of some good properties of linear
codes overZ4 and the definition of the Graymap [12]. After that,Z2s -additive codes and their
images under the Gray map are deeply studied, for example, in [7], and later in [21] and [11].
In [14], Krotov studied Z2s -linear Hadamard codes and their dual codes by using different
generalizations of the Gray map. Recently, in [20], considering Carlet’s generalization of the
Gray map, two-weight Z2s -linear codes are studied. Note that Z2s -linear Hadamard codes
are in fact a particular case of these two-weight codes.

In this paper, in order to try to classify the Z2s -linear Hadamard codes of length 2t , for
any t ≥ 3 and s > 2, we establish the kernel and its dimension for these codes. Moreover,
we point out that this invariant does not always provide a complete classification, once we
fix t ≥ 3 and s > 2, unlike for s = 2. However, we give some new classification results
for t ≤ 11 and any s > 2. This correspondence is organized as follows. In Sect. 2, we
recall some results and we prove new ones related to the Carlet’s generalized Gray map. In
Sect. 3, we describe the construction of theZ2s -linear Hadamard codes of type (n; t1, . . . , ts)
when this Gray map is used. This result is already proved in [14] in a more general way,
but using other techniques. In Sect. 4, we establish for which types these codes are linear,
and we give the kernel and its dimensions whenever they are nonlinear. In Sect. 5, through
several examples, we show that, unlike for s = 2, the dimension of the kernel is not enough
to classify completely Z2s -linear Hadamard codes for some values of t and s. Moreover, we
give the exact amount of nonequivalent such codes up to t = 11 for any s ≥ 2, by using also
the rank. Finally, in Sect. 6, we give some conclusions and further research on this topic.

2 Generalized Graymap

In this section, we present some general results about the Carlet’s generalized Gray map,
which will be used to prove the main results related to Z2s -linear Hadamard codes and given
in next sections.

Let ei be the vector that has 1 in the i th position and 0 otherwise. Let u, v ∈ Z2s and
[u0, u1, . . . , us−1]2, [v0, v1, . . . , vs−1]2 be the binary expansions of u and v, respectively.
The operation “�” onZ2s is defined as u�v = ∑s−1

i=0 2
i uivi . Note that the binary expansion

of u � v is [u0v0, u1v1, . . . , us−1vs−1]2.
Proposition 1 [21] Let u, v ∈ Z2s . Then, φ(u) + φ(v) = φ(u + v − 2(u � v)).

Corollary 1 Let u ∈ Z2s and 0 ≤ p ≤ s − 1. Then, φ(u) + φ(2p) = φ(u + 2p − 2p+1u p),
where [u0, u1 . . . , us−1]2 is the binary expansion of u.
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420 C. Fernández-Córdoba et al.

Corollary 2 Let u ∈ Z2s . Then, φ(u) + φ(2s−1) = φ(u + 2s−1).

Lemma 1 Let u ∈ {2s−2, . . . , 2s−1 − 1} ∪ {3 · 2s−2, . . . , 2s − 1} ⊂ Z2s . Then, φ(u) +
φ(2s−2) = φ(u + 2s−2 + 2s−1).

Proof ByProposition 1,wehave thatφ(u)+φ(2s−2) = φ(u+2s−2−2(u�2s−2)). The binary
expansion of 2s−2 is [0, . . . , 0, 1, 0]2 and, if u ∈ {2s−2, . . . , 2s−1−1}∪{3·2s−2, . . . , 2s−1},
the binary expansion of u is [u0, u1, . . . , us−3, 1, us−1]2. Then, −2(u � 2s−2) = 2s−1 and
the statement follows. ��
Corollary 3 Let v ∈ {2s−2, 3 ·2s−2} andU = {2s−2, . . . , 2s−1−1}∪{3 ·2s−2, . . . , 2s −1} ⊂
Z2s . Then,

φ(u) + φ(v) =
{

φ(u + v + 2s−1) if u ∈ U
φ(u + v) if u ∈ Z2s \U .

Proof Straightforward from Corollary 1 and Lemma 1. ��
Lemma 2 Let λi ∈ Z2, i ∈ {0, . . . , s − 2}. Then, ∑s−2

i=0 λiφ(2i ) = φ(
∑s−2

i=0 λi2i ), where
2i ∈ Z2s .

Proof Let yi be the i th row of Y . By the definition of φ given by (1), we know that∑s−2
i=0 λiφ(2i ) = ∑s−2

i=0 λi ei+1Y = ∑s−2
i=0 λi yi+1 = λY , where λ = (λ0, . . . , λs−2).

Since [λ0, . . . , λs−2, 0]2 is the binary expansion of
∑s−2

i=0 λi2i , then we have that λY =
φ(

∑s−2
i=0 λi2i ). ��

Proposition 2 [7] Let u, v ∈ Z2s . Then, dH (φ(u), φ(v)) = wtH (φ(u − v)).

Lemma 3 Let u ∈ Z2s . Then, dH (φ(u), φ(2s−1)) + dH (φ(u), φ(0)) = 2s−1.

Proof By the properties of the distance,we have that dH (φ(u), φ(2s−1))+dH (φ(u), φ(0)) =
wtH (φ(2s−1) − φ(u)) + wtH (φ(u)). Then, since φ(2s−1) = 1, wtH (φ(2s−1) − φ(u)) =
2s−1 − wtH (φ(u)), and the result follows. ��
Corollary 4 Let u, v ∈ Z2s . Then, dH (φ(u), φ(v + 2s−1)) + dH (φ(u), φ(v)) = 2s−1.

Proof Straightforward from Corollary 1 and Lemma 3. ��

3 Construction of Z2s-linear Hadamard codes

The description of a generator matrix having minimum number of rows for a Z4-additive
Hadamard code, as long as recursive constructions of these matrices, are given in [13]. In
[14], these results are generalized for any s > 2. In this section, we give another proof of the
theorem that establishes that the constructed matrices generate Z2s -linear Hadamard codes,
in the case that Carlet’s Gray map is considered.

Let Ti = { j · 2i−1 : j ∈ {0, 1, . . . , 2s−i+1 − 1}} for all i ∈ {1, . . . , s}. Note that
T1 = {0, . . . , 2s − 1}. Let t1, t2,…,ts be nonnegative integers with t1 ≥ 1. Consider the
matrix At1,...,ts whose columns are exactly all the vectors of the form zT , z ∈ {1} × T t1−1

1 ×
T t2
2 × · · · × T ts

s .
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OnZ2s -linear Hadamard codes 421

Example 1 For s = 3, for example, we have the following matrices:

A1,0,1 =
(
1 1
0 4

)

, A1,1,0 =
(
1 1 1 1
0 2 4 6

)

, A2,0,0 =
(
1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7

)

,

A1,1,1 =
⎛

⎝
1 1 1 1 1 1 1 1
0 2 4 6 0 2 4 6
0 0 0 0 4 4 4 4

⎞

⎠ ,

A2,0,1 =
⎛

⎝
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4

⎞

⎠ ,

A2,1,0 =
⎛

⎝
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6

⎞

⎠ .

Let 0, 1, 2, . . . , 2s − 1 be the vectors having the elements 0, 1, 2, . . . , 2s − 1 from Z2s

repeated in each coordinate, respectively. The order of a vector u overZ2s , denoted by ord(u),
is the smallest positive integer m such that mu = 0.

Any matrix At1,...,ts can be obtained by applying the following iterative construction. We
start with A1,0,...,0 = (1). Then, if we have a matrix A = At1,...,ts , for any i ∈ {1, . . . , s}, we
may construct the matrix

Ai =
(

A A · · · A
0 · 2i−1 1 · 2i−1 · · · (2s−i+1 − 1) · 2i−1

)

. (2)

Finally, permuting the rows of Ai , we obtain a matrix At ′1,...,t ′s , where t ′j = t j for j �= i and

t ′i = ti + 1. Note that any permutation of columns of Ai gives also a matrix At ′1,...,t ′s .

Example 2 From the matrix A1,0,0 = (1), we obtain the matrix A2,0,0; and from A2,0,0 we
can construct A2,0,1, where A2,0,0 and A2,0,1 are the matrices given in Example 1. Note
that we can also generate another matrix A2,0,1 as follows: from A1,0,0 = (1) we obtain the
matrix A1,0,1 given in Example 1, and from A1,0,1 we can construct the matrix

A1 =
⎛

⎝
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

⎞

⎠ .

Then, after permuting the rows of A1, we have the matrix

A2,0,1 =
⎛

⎝
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4

⎞

⎠ ,

which is different to the matrix A2,0,1 of Example 1. These two matrices A2,0,1 generate
permutation equivalent codes.

Along this paper, we consider that the matrices At1,t2,...,ts are constructed recursively
starting from A1,0,...,0 in the following way. First, we add t1−1 rows of order 2s , up to obtain
At1,0,...,0; then t2 rows of order 2s−1 up to generate At1,t2,0,...,0; and so on, until we add ts
rows of order 2 to achieve At1,t2,...,ts .

LetHt1,...,ts be theZ2s -additive code generated by thematrix At1,...,ts , where t1, . . . , ts ≥ 0
with t1 ≥ 1. Let n = 2t−s+1, where t = (∑s

i=1(s − i + 1) · ti
) − 1. It is easy to see that

Ht1,...,ts is of length n and has |Ht1,...,ts | = 2sn = 2t+1 codewords. Note that this code is of
type (n; t1, t2, . . . , ts). Let Ht1,...,ts = Φ(Ht1,...,ts ) be the corresponding Z2s -linear code.
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422 C. Fernández-Córdoba et al.

Example 3 The code H1,0,...,0 is generated by A1,0,...,0 = (1), so H1,0,...,0 = Z2s . This code
has length n = 1, cardinality 2s and minimum distance 1. Thus, H1,0,...,0 = Φ(H1,0,...,0)

has length N = 2s−1, cardinality 2N = 2s and minimum (Hamming) distance N/2 = 2s−2,
so it is a binary Hadamard code. Actually, H1,0,...,0 = Φ(Z2s ) is the binary linear Hadamard
code of length 2s−1 [7], or equivalently, the first order Reed-Muller code of length 2s−1,
denoted by RM(1, s − 1) [16, Ch.13 § 3].

The result given by Theorem 1 is already proved in [14]. In that paper, it is shown that
each Z2s -linear Hadamard code is equivalent to Ht1,...,ts for some t1, . . . , ts ≥ 0 with t1 ≥ 1,
considering a generalized Gray map that includes the one given by Carlet. We present a new
proof of this theorem, in the case that Carlet’s Gray map is considered. This new proof does
not use neither the dual of the Z2s -additive codes nor another generalization of the Gray map
for these dual codes, unlike the proof given in [14].

Let G be a generator matrix of a Z2s -additive code C of length n. Then, (G · · ·G) is a
generator matrix of the r -fold replication code of C, (C, . . . , C) = {(c, . . . , c) : c ∈ C}, of
length r · n.
Theorem 1 [14] Let t1, . . . , ts be nonnegative integers with t1 ≥ 1. The Z2s -linear code
Ht1,...,ts of type (n; t1, t2, . . . , ts) is a binary Hadamard code of length 2t , with t =(∑s

i=1(s − i + 1) · ti
) − 1 and n = 2t−s+1.

Proof Weprove this theorem by induction on the integers ti , i ∈ {1, . . . , s}. First, by Example
3, the code H1,0,...,0 is a Hadamard code.

Let H = Ht1,...,ts be the Z2s -additive code of length n generated by the matrix A =
At1,...,ts . We assume that H = Φ(H) is a Hadamard code of length N = 2s−1n. Let i ∈
{1, . . . , s}. Define Ai as in (2) and let Hi be the Z2s -additive code generated by the matrix
Ai . We have that Hi is permutation equivalent to Ht ′1,...,t ′s , where t ′j = t j for j �= i and
t ′i = ti + 1. Now, we shall prove that Hi = Φ(Hi ) is a Hadamard code.

Note thatHi can be seen as the union of 2s−i+1 cosets of the 2s−i+1-fold replication code
of H, (H, . . . ,H), which are

(H, . . . ,H) + r · wi , (3)

for r ∈ {0, . . . 2s−i+1 − 1}, where wi = (0, 2i−1, 2 · 2i−1, . . . , (2s−i+1 − 1) · 2i−1).
The codeH of length n has cardinality 2sn. It is easy to see thatHi has length ni = 2s−i+1n

and cardinality 22s−i+1n. Therefore, the length of Hi = Φ(Hi ) is Ni = 2s−1ni and the
cardinality 2Ni . Now, we just have to prove that the minimum distance of Hi is Ni/2.

By Proposition 2, the minimum distance of Hi is equal to the minimum weight of Hi .
Thus, we just have to check that the minimum weight of any coset (3) is Ni/2. When r = 0,
we have that wtH (Φ((u, . . . ,u))) = 2s−i+1wtH (Φ(u)) = 2s−i+1N/2 = Ni/2. Otherwise,
when r �= 0, we consider

wtH (Φ((u, . . . ,u) + r · wi )) = dH (Φ((u, . . . ,u)),Φ(r · wi )). (4)

Note that, by construction, the coordinates of any nonnegative multiple of wi can be par-
titioned into two multisets V and V ′ such that |V | = |V ′| = 2s−i and there is a bijection
from V to V ′ mapping any element v ∈ V into an element v′ ∈ V ′ such that v′ − v = 2s−1.
Therefore, (4) can be written as

∑

v∈V
dH (Φ(u),Φ(v)) +

∑

v′∈V ′
dH (Φ(u),Φ(v′))
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OnZ2s -linear Hadamard codes 423

=
∑

v∈V
dH (Φ(u),Φ(v)) + dH (Φ(u),Φ(v + 2s−1))

= |V | · 2s−1n = 2s−i2s−1n = Ni/2, (5)

where (5) holds by Corollary 4. ��
Example 4 Let H2,0,0 be the Z8-additive code generated by A2,0,0 given in Example 1. The
Z8-linear code H2,0,0 = Φ(H2,0,0) has length N = 32, 2N = 64 codewords and minimum
(Hamming) distance N/2 = 16. Therefore, it is a binary Hadamard code.

4 Kernel of Z2s-linear Hadamard codes

The computation of the kernel and its dimension for Z4-linear Hadamard codes is given
in [13,18]. In this section, we generalize these results for Z2s -linear Hadamard codes with
s > 2. First, we establish when these codes are linear, and, in the case that they are nonlinear,
we construct the kernel and compute its dimension.

Proposition 3 The Z2s -linear Hadamard codes H1,0,...,0 and H1,0,...,0,1,0, with s > 2, are
linear.

Proof By Example 3, we know that H1,0...,0 is linear.
Now, we consider H = H1,0,...,0,1,0 and H = Φ(H). Recall that the code H is generated

by

A1,0,...,0,1,0 =
(
1 1 1 1
0 2s−2 2s−1 3 · 2s−2

)

.

Let βββ i = (2i , 2i , 2i , 2i ) for 0 ≤ i ≤ s − 1, βββs = (0, 2s−1, 0, 2s−1) and βββs+1 =
(0, 2s−2, 2s−1, 3 ·2s−2). LetC be the linear code generated by B = {Φ(βββ i ) : 0 ≤ i ≤ s+1}.
Now, we prove that C ⊆ H . Let c = ∑s+1

i=0 λiΦ(βββ i ) ∈ C , where λi ∈ Z2. By Corollary 2,
we only have to see that

c′ = λs+1Φ(βββs+1) +
s−2∑

i=0

λiΦ(βββ i ) ∈ H .

On the one hand, if λs+1 = 0, then we have that c′ ∈ H , since
∑s−2

i=0 λiΦ(βββ i ) =
Φ(

∑s−2
i=0 λiβββ i ) by Lemma 2. On the other hand, if λs+1 = 1, then we have that

c′ = Φ((0, 2s−2, 2s−1, 3 · 2s−2)) + Φ((u, u, u, u)), where u = ∑s−2
i=0 λi2i . Let U =

{2s−2, . . . , 2s−1 − 1} ∪ {3 · 2s−2, . . . , 2s − 1} ⊂ Z2s . Then, by Corollary 3, c′ =
Φ((0, 2s−2, 2s−1, 3 · 2s−2) + (u, u, u, u) + (0, 2s−1, 0, 2s−1)) if u ∈ U , and c′ =
Φ((0, 2s−2, 2s−1, 3 · 2s−2) + (u, u, u, u)) if u ∈ Z2s \U . In both cases, c′ ∈ H .

Since |C | = |H | = 2s+2, then C = H , and thus H is linear. ��
Let u = (u1, . . . , un) ∈ Z

n
2s and [ui,0, ui,1, . . . , ui,s−1]2 be the binary expansion of ui ,

i ∈ {1, . . . , n}. Let p be an integer such that p ∈ {0, . . . , s − 1}. Then, we denote by u(p)

the binary vector having in the i th coordinate the pth element of the binary expansion of ui ,
that is, u(p) = (u1,p, . . . , un,p).

Lemma 4 If v = 2b(0, 1, . . . , 2a − 1) ∈ Z
n
2s , with n = 2a, a ≥ 1 and a + b ≤ s, then

wtH (v(p)) = 2a−1 for all p ∈ {b, . . . , a + b − 1}.
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Proof The 2a coordinates of v contain exactly the 2a elements of Z2s which have a binary
expansion of the form [0, . . . , 0, vb, vb+1, . . . , va+b−1, 0, . . . , 0]2 with vp ∈ {0, 1}, for all
p ∈ {b, . . . , a + b − 1}. Note that we have 2a different elements of Z2s , represented by
exactly a binary coordinates. Hence, half of the coordinates of v satisfy that vp = 1 and the
other half that vp = 0. Therefore, wtH (v(p)) = 2a/2 = 2a−1 for all p ∈ {b, . . . , a + b− 1}.

��
As shown in [13], the codes H1,t2 and H2,t2 , t2 ≥ 0, are the only Z4-linear Hadamard

codes which are linear. In [11], it is proved that the codes H1,0,...,0,ts , ts ≥ 0, are linear. The
next result shows that, for s > 2 and ts ≥ 0, the codes H1,0,...,0,1,ts and H1,0,...,0,ts are linear,
and they are the only Z2s -linear Hadamard codes which are linear.

Theorem 2 The codes H1,0,...,0,1,ts and H1,0,...,0,ts , with s > 2 and ts ≥ 0, are the only
Z2s -linear Hadamard codes which are linear.

Proof First, we show that these codes are linear by induction on ts . By Proposition 3, the codes
H1,0,...,0 and H1,0,...,0,1,0 are linear. We assume that H = Φ(H), whereH = H1,0,...,0,ts−1,ts ,
ts−1 ∈ {0, 1} and ts ≥ 0, is linear. Now, we prove that Hs = H1,0,...,0,ts−1,ts+1 is linear. Since
H is a linear Hadamard code of length 2ts+2ts−1−1, it is the Reed-Muller code RM(1, ts +
2ts−1 − 1) [16, Ch.13 § 3]. By the iterative construction (2), we have that Hs = {Φ((h,h) +
(0, v)) : h ∈ H, v ∈ {0, 2s−1}}. By Corollary 2, Hs = {(Φ(h),Φ(h) + Φ(v)) : h ∈ H, v ∈
{0, 2s−1}} = {(h′,h′ + v′) : h′ ∈ H , v′ ∈ {0, 1}}, which corresponds to the Reed-Muller
code RM(1, ts + 2ts−1). Therefore, Hs is linear.

Now, we prove the nonlinearity of H = Φ(H), where H = H1,0,...,0,2,0. Let r =
(0, 2s−2, 2s−1, 3 · 2s−2). Recall that H has length 16 and is generated by

A1,0,...,0,2,0 =
⎛

⎝
1 1 1 1
r r r r
0 2s−2 2s−1 3 · 2s−2

⎞

⎠ .

By Corollaries 2 and 3, we haveΦ((r, r, r, r))+Φ((0, 2s−2, 2s−1, 3 ·2s−2)) = Φ(z), where
z = (r, r, r, r) + (0, 2s−2, 2s−1, 3 · 2s−2) + (0,u, 0,u) and u = (0, 2s−1, 0, 2s−1). Since
H is linear over Z2s , z ∈ H if and only if (0,u, 0,u) ∈ H. Since wtH (Φ((0,u, 0,u))) =
4 · 2s−1 = N/4, where N is the length of H , Φ((0,u, 0,u)) /∈ H , so Φ(z) /∈ H . Therefore,
H = H1,0,...,0,2,0 is nonlinear.

Let H = Φ(H), where H = Ht1,...,ts . For any i ∈ {1, . . . , s}, we define Hi = Φ(Hi ),
where Hi = Ht ′1,...,t ′s , t ′i = ti + 1 and t ′j = t j for j �= i .

Next, we consider H = Φ(H), where H = H1,0,...,0, and we prove that Hi is nonlinear
for any i ∈ {1, . . . , s − 2}. Note that the generator matrix of Hi has two rows: w1 = 1
and w2 = 2i−1(0, 1, . . . , 2s+1−i − 1). By Corollary 1, we know that Φ(w2) + Φ(2i−1) =
Φ(w2 + 2i−1 − 2iw(i−1)

2 ). Therefore, we just need to show that 2iw(i−1)
2 /∈ Hi . We have

that wtH (w(i−1)
2 ) = 2s−i by Lemma 4. Since 2i /∈ {0, 2s−1}, wtH (φ(2i )) = 2s−2. Then,

wtH (Φ(2iw(i−1)
2 )) = 2s−i · 2s−2 = 22s−2−i . Recall that the length of H is N = 2t ,

where t = 2s − i . Therefore, we have that wtH (Φ(2iw(i−1)
2 )) = 2t−2 = N/4, and then

Φ(2iw(i−1)
2 ) /∈ Hi .

Finally, in general, for H = Φ(H), where H = Ht1,...,ts , we prove that if H is nonlinear,
then Hi is nonlinear for any i ∈ {1, . . . , s}. Assume that Hi is linear. Then, by the iterative
construction (2), for anyu, v ∈ H, we have that (u, . . . ,u), (v, . . . , v) ∈ Hi .Moreover, since
Hi is linear, Φ((u, . . . ,u)) + Φ((v, . . . , v)) = Φ((a, . . . , a) + λ · 2i−1(0, 1, . . . , 2s−i+1 −
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1)) ∈ Hi , where a ∈ H and λ ∈ Z2s . Therefore, Φ(u) + Φ(v) = Φ(a) ∈ H , and we have
that H is linear and the result follows. ��

Let At1,...,ts be the generator matrix ofHt1,...,ts , considered along this paper, and let wi be
the i th row vector of At1,...,ts . By construction, w1 = 1 and ord(wi ) ≤ ord(w j ) if i > j . We
define σ ∈ {1, . . . , s} as the integer such that ord(w2) = 2s+1−σ . Note that σ = 1 if t1 > 1,
and σ = min{i : ti > 0, i ∈ {2, . . . , s}} if t1 = 1. In the case σ = s, the code is H1,0,...,0,ts ,
which is linear.

Example 5 Considering all nonnegative integer solutions with t1 ≥ 1 of the equation 5 =
3t1 + 2t2 + t3 − 1, we have that the Z8-linear Hadamard codes of length 2t = 32 are the
following: H1,0,3, H1,1,1 and H2,0,0. By Theorem 2, we have that H1,0,3 and H1,1,1 are
linear, so ker(H1,0,3) = ker(H1,1,1) = 6. By the same theorem, we also have that H2,0,0 is
nonlinear, so ker(H2,0,0) < 6.

Proposition 4 Let H = Ht1,...,ts be the Z2s -additive Hadamard code of type (n; t1, . . . , ts)
such that Φ(H) is nonlinear. Let Hb be the subcode of H which contains all the codewords
of order two. Let P = {2p}σ−2

p=0 if σ ≥ 2, and P = ∅ if σ = 1. Then,

〈

Φ(Hb),Φ(P),Φ

(
s−2∑

i=0

2i
)〉

⊆ K (Φ(H))

and ker(Φ(H)) ≥ σ + ∑s
i=1 ti .

Proof Let H = Φ(H) and τ = ∑s
i=1 ti . Let Q = {(ord(wq)/2)wq}τq=0. Since Hb contains

all the elements ofH of order two, we have that the set Φ(Q) is a basis for the binary linear
subcode Hb = Φ(Hb) of H . By Corollary 2, for all b ∈ Hb and u ∈ H, we have that
Φ(b) + Φ(u) = Φ(b + u) ∈ H and, therefore, Hb ⊆ K (H).

Assume σ ≥ 2. Now, we prove that Φ(2p) ∈ K (H) for all p ∈ {0, . . . , σ − 2}. Equiv-
alently, we show that Φ(2p) + Φ(u) ∈ H for all u ∈ H. If u ∈ H, then u = λ · 1 + u′,
where λ ∈ Z2s and ord(u′) ≤ ord(w2) = 2s+1−σ . Let u = (u1, . . . , un) ∈ Z

n
2s and

[ui,0, ui,1, . . . , ui,s−1]2 be the binary expansion of ui , i ∈ {1, . . . , n}. Let [λ0, λ1, . . . , λs−1]2
be the binary expansion of λ ∈ Z2s . By Corollary 1, we have that Φ(2p) + Φ(u) =
Φ(2p + u − 2p+1u(p)), where u(p) = (u1,p, . . . , un,p). Note that if v ∈ Z2s is of
order 2 j , then its binary expansion is of the form [0, . . . , 0, 1, vs− j+1, . . . , vs−1]2. Since
p ∈ {0, . . . , σ − 2} and ord(u′) ≤ 2s+1−σ , we have that u(p) = (λp, . . . , λp). Therefore,
2p+1u(p) = λp2p+1 ∈ H and Φ(2p) + Φ(u) = Φ(2p + u − λp2p+1) ∈ H .

Next, we show that Φ(
∑s−2

i=0 2
i) ∈ K (H). Let u = (u1, . . . , un) ∈ H and v =

(v1, . . . , vn) = ∑s−2
i=0 2

i . First, we prove that φ(vi ) + φ(ui ) = φ(vi + ui − 2ui ) for
all i ∈ {1, . . . , n}. Note that the binary expansion of vi and ui are [1, . . . , 1, 0]2 and
[ui,0, ui,1, . . . , ui,s−1]2, respectively. Then, it is easy to check that 2(vi � ui ) = 2ui .
Therefore, by Proposition 1, φ(vi ) + φ(ui ) = φ(vi + ui − 2ui ). Hence, Φ(v) + Φ(u) =
Φ(v + u − 2u) ∈ H for all u ∈ H.

Finally, we have to see that the elements of the set {Φ(Q),Φ(P),Φ(
∑s−2

i=0 2
i)} are linearly

independent. By construction, the generatormatrix At1,...,ts is a block upper triangular matrix,
so it is easy to see that the codewords in Φ(Q) are linearly independent of the ones in
{Φ(P),Φ(

∑s−2
i=0 2

i)}. Note that σ < s since H is nonlinear. Thus, by Lemma 2, it is easy
to see that the codewords in {Φ(P),Φ(

∑s−2
i=0 2

i)} are linearly independent. Therefore, we
have that the dimension of the linear span of this set is σ + τ , so ker(H) ≥ σ + τ . ��
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Lemma 5 Let v ∈ Z2s and λi ∈ Z2, i ∈ {0, . . . , s − 1}. Then, v � ∑s−1
i=0 λi2i = ∑s−1

i=0 v �
λi2i .

Proof Let v ∈ Z2s and [v0, v1, . . . , vs−1]2 its binary expansion. By definition, we have
that v � ∑s−1

i=0 λi2i = ∑s−1
i=0 viλi2i . Note that viλi2i = v � λi2i , so v � ∑s−1

i=0 λi2i =
∑s−1

i=0 v � λi2i . ��
Lemma 6 Let H = Ht1,...,ts be the Z2s -additive Hadamard code of type (n; t1, . . . , ts). Let
N = {∑s−2

i=σ−1 λi2i : λi ∈ Z2} \ {∑s−2
i=σ−1 2

i} if σ ≤ s − 1. Then, Φ(N )∩ K (Φ(H)) = {0}.

Proof Let H = Φ(H). Let u = ∑s−2
i=σ−1 λi2i ∈ N such that Φ(u) ∈ K (H). We want to

prove that u = 0.
By construction, the second row w2 of At1,...,ts is a 2t−2s+σ -fold replication of v =

2σ−1(0, 1, . . . , 2s+1−σ −1), and ord(w2) = 2s+1−σ . By Proposition 1, we have thatΦ(w2)+
Φ(u) = Φ(w2+u−2(w2�u)). SinceΦ(u) ∈ K (H), 2(w2�u) ∈ H. Note that, by Lemma
5, we have that 2(w2 � u) = 2

∑s−2
i=σ−1 w2 � λi2i = 2

∑s−2
i=σ−1 λiw

(i)
2 2i ∈ H.

Let τ = ∑s
i=1 ti . If τ = 2, then H has length 2s+1−σ and the only rows in At1,...,ts are 1

and w2 = v. If τ ≥ 3, for i ∈ {3, . . . , τ }, the i th row wi of At1,...,ts contains zeros in the first
2s+1−σ coordinates by construction. Since σ ≤ s − 1, τ ≥ 2, and hence any element of H
restricted to the first 2s+1−σ coordinates is of the formμ11+μ2v for someμ1, μ2 ∈ Z2s . We
have that 2

∑s−2
i=σ−1 λiw

(i)
2 2i restricted to the first 2s+1−σ coordinates is 2

∑s−2
i=σ−1 λiv(i)2i ,

so we have to find μ1, μ2 ∈ Z2s such that 2
∑s−2

i=σ−1 λiv(i)2i = μ11 + μ2v.
Since the first coordinate of v is 0, the first coordinate of v(i) is 0 for all i . Then, we have

that μ1 = 0, so 2
∑s−2

i=σ−1 λiv(i)2i = μ2v. Note that v = ∑s−1
i=0 v

(i)2i = ∑s−1
i=σ−1 v

(i)2i .

Therefore, 2
∑s−2

i=σ−1 λiv(i)2i = μ2
∑s−1

i=σ−1 v
(i)2i . Since u ∈ N , there exists j ∈ {σ −

1, . . . , s − 2} such that λ j = 0. Then, regrouping the terms, we obtain that

s−2∑

i=σ−1
i �= j

(μ2 − 2λi )v(i)2i + μ2v( j)2 j + μ2v(s−1)2s−1 = 0.

Note that {v(i)}s−1
i=σ−1 is a subset of a basis of the RM(1, t). Then, we have that (μ2−2λi )2i =

0, for i ∈ {σ − 1, · · · , s − 2} \ { j}, μ22 j = 0 and μ22s−1 = 0. As a result, μ2 = 0 and
λi = 0 for all i ∈ {σ − 1, · · · , s − 2}. Hence, u = ∑s−2

i=σ−1 λi2i = 0, and the result holds. ��
Lemma 7 Let H = Ht1,...,ts be the Z2s -additive Hadamard code of type (n; t1, . . . , ts).
Let wi be the i th row of At1,...,ts and τ = ∑s

i=1 ti . Let M = {v = ∑τ−ts
i=2 λiwi : λi ∈

Z2s , ord(v) > 2}, N = {∑s−2
i=σ−1 λi2i : λi ∈ Z2} \ {∑s−2

i=σ−1 2
i} if σ ≤ s − 1 and

M + N = {vM + vN : vM ∈ M ∪ {0}, vN ∈ N }. Then, Φ(M + N ) ∩ K (Φ(H)) = {0}.
Proof Let H = Φ(H), which has length N = 2t = n · 2s−1. By Lemma 6, we already know
that Φ(N ) ∩ K (H) = {0}. Now, we prove that Φ(M) ∩ K (H) = ∅.

Let v = ∑τ−ts
i=2 λiwi ∈ M. Since ord(v) > 2 and ord(wi ) ≤ 2s+1−σ , ord(v) = 2p for

some 2 ≤ p ≤ s + 1 − σ . By the iterative construction (2) of At1,...,ts , we know that all
the elements of Z2s of order equal to or less than 2p appear as a coordinate of v. Moreover,
exactly half of the coordinates of v are of order 2p . We consider two cases depending on the
value of p.

First, we consider that 2 < p ≤ s + 1 − σ . We have that Φ(v) + Φ(2s−p) = Φ(v +
2s−p − 2s−p+1v(s−p)) by Corollary 1. As before, it is enough to see that 2s−p+1v(s−p) /∈ H
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to prove that Φ(v) /∈ K (H). Since half of the coordinates of v are of order 2p and the
other half are of order less than 2p , we have that half of the coordinates of 2s−p+1v(s−p)

are equal to 2s−p+1 and the rest of coordinates are zero. Note that 2s−p+1 /∈ {0, 2s−1} since
p > 2. Therefore, since wtH (φ(2s−p+1)) = 2s−2, we have that wtH (Φ(2s−p+1v(s−p))) =
n/2 · 2s−2 = 2t−2 = N/4 and hence Φ(v) /∈ K (H).

Next, we consider that p = 2, that is, ord(v) = 4. Then, ord(λiwi ) = 4 or λi = 0 for all
i ∈ {2, . . . , τ − ts}. By Proposition 1, Φ(v) + Φ(2s−σ−1w2) = Φ(v + 2s−σ−1w2 − 2(v �
2s−σ−1w2)). Again, it is enough to see that 2(v�2s−σ−1w2) /∈ H to show thatΦ(v) /∈ K (H).
Note that 2s−σ−1w2 is a 2t−s−1-fold replication of b1 = (0, 2s−2, 2s−1, 3 · 2s−2). Now,
we consider the coordinates divided into groups of 4 consecutive coordinates, which will
be referred to as blocks. Note that every block of λiwi contains the same value in its 4
coordinates, for all i ∈ {3, . . . , τ − ts}.

If λ2 = 0, then every block of v also contains the same value in its 4 coordinates. Thus,
every block in 2(v�2s−σ−1w2) is of the form2(k�b1) for some k ∈ {0, 2s−2, 2s−1, 3·2s−2}.
We have that

2(k � b1) =
{

(0, 0, 0, 0) if k ∈ {0, 2s−1}
(0, 2s−1, 0, 2s−1) if k ∈ {2s−2, 3 · 2s−2}.

By construction, note that v contains the same number of blocks k for each k ∈
{0, 2s−2, 2s−1, 3 · 2s−2}. Then, it is easy to see that wtH (Φ(2(v � 2s−σ−1w2))) =
wtH (φ(2s−1)) · 4 · n/16 = 2s−1 · n/4 = 2t−2 = N/4, so Φ(v) /∈ K (H) in this case.

Otherwise, if λ2 �= 0, then every block of v is of the form bi + k, for some i ∈ {1, 2}
and k ∈ {0, 2s−2, 2s−1, 3 · 2s−2}, where b1 = (0, 2s−2, 2s−1, 3 · 2s−2) and b2 = (0, 3 ·
2s−2, 2s−1, 2s−2). Then, we have that

2((bi + k) � b1) =
{

(0, 0, 0, 0) if k ∈ {2s−2, 3 · 2s−2}
(0, 2s−1, 0, 2s−1) if k ∈ {0, 2s−1},

for i ∈ {1, 2}. Again, by construction, v contains the same number of blocks bi + k for each
k ∈ {0, 2s−2, 2s−1, 3 · 2s−2}. Therefore, as before, wtH (Φ(2(v � 2s−σ−1w2))) = N/4, and
Φ(v) /∈ K (H). We have just shown that Φ(M) ∩ K (H) = ∅.

Now, we prove that Φ(M + N ) ∩ K (H) = {0}. Let v = vM + vN ∈ M + N\{0},
where vM ∈ M and vN ∈ N . We just proved that Φ(v) /∈ K (H) if vM = 0 or vN = 0.
Therefore, we can assume that vM �= 0 and vN �= 0.

We know that vN = (v, . . . , v). Let [v0, v1, . . . , vs−1]2 be the binary expansion of v. Let
vN1 and vN2 be the elements of Z2s having binary expansion [0, . . . , 0, vs−p, . . . , vs−1]2
and [v0, . . . , vs−p−1, 0, . . . , 0]2, respectively. Then, vN = vN1 + vN2 , where vNi =
(vNi , . . . , vNi ) for i ∈ {1, 2}. Since ord(vM) = 2p with 2 ≤ p ≤ s + 1 − σ , the binary
expansion of each one of its coordinates is of the form [0, . . . , 0, (vM)s−p, . . . , (vM)s−1]2.
Note that we also have that ord(vN1) ≤ ord(vM) by construction.

On the one hand, we consider 2 < p ≤ s + 1 − σ . It is easy to see that 2(vN2 �
2s−p) = 0. Therefore, wtH (Φ(2(v � 2s−p))) = wtH (Φ(2((vM + vN1) � 2s−p))). Since
ord(vN1) ≤ ord(vM), it is easy to see that there exists a permutation of coordinates π such
thatπ(vM+vN1) = vM. Thus,wtH (Φ(2((vM+vN1)�2s−p))) = wtH (Φ(2(vM�2s−p)))

and the result holds by using the same arguments as above.
On the other hand, we consider that p = 2. Note that ord(vM) = 4, and then

ord(vN1) = 4. It is easy to see that 2(vN2 � 2s−σ−1w2) = 0, hence we have that
wtH (Φ(2(v�2s−σ−1w2))) = wtH (Φ(2((vM+vN1)�2s−σ−1w2))). Recall that 2s−σ−1w2

is the 2t−s−1-fold replication of b1. Taking into account that vM = ∑τ−ts
i=2 λiwi , note that

the blocks of vM + vN1 are of the form k for some k ∈ {0, 2s−2, 2s−1, 3 · 2s−2} if λ2 = 0;
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or bi + k for some k ∈ {0, 2s−2, 2s−1, 3 · 2s−2} and i ∈ {1, 2} if λ2 �= 0. Therefore, the
proof is analogous to the above one to show thatΦ(v) /∈ K (H)with v ∈ M. Then, the result
holds. ��
Theorem 3 LetH = Ht1,...,ts be the Z2s -additive Hadamard code of type (n; t1, . . . , ts) such
that Φ(H) is nonlinear. Let Hb be the subcode of H which contains all the codewords of
order two. Let P = {2p}σ−2

p=0 if σ ≥ 2, and P = ∅ if σ = 1. Then,

〈

Φ(Hb),Φ(P),Φ

(
s−2∑

i=0

2i
)〉

= K (Φ(H))

and ker(Φ(H)) = σ + ∑s
i=1 ti .

Proof The result follows by Proposition 4 and Lemma 7. ��
Corollary 5 Let H = Ht1,...,ts be the Z2s -additive Hadamard code of type (n; t1, . . . , ts)
such that Φ(H) is nonlinear. Let wi be the i th row of At1,...,ts and τ = ∑s

i=1 ti . Let
Q = {(ord(wq)/2)wq}τq=0 and P = {2p}σ−2

p=0 if σ ≥ 2, and P = ∅ if σ = 1. Then,

{Φ(Q),Φ(P),Φ(
∑s−2

i=0 2
i)} is a basis of K (Φ(H)).

Example 6 Let H2,0,0 be theZ8-linearHadamard code considered in Example 4. ByTheorem
3, we have that ker(H2,0,0) = 3. Moreover, we can construct K (H2,0,0) from a basis, by
Corollary 5. First, we have that Q = {4, (0, 4, 0, 4, 0, 4, 0, 4)}. Since σ = 1, in this case, we
have that P = ∅. Thus,

K (H2,0,0) = 〈Φ(4),Φ((0, 4, 0, 4, 0, 4, 0, 4)),Φ(3)〉.

5 Classification of Z2s-linear Hadamard codes

The classification of the Z4-linear Hadamard codes of length 2t , for any t ≥ 3, using the
rank or the dimension of the kernel is shown in [13,18]. In this section, we show that the
dimension of the kernel can not be used to establish a complete classification of theZ2s -linear
Hadamard codes of length 2t , in general, for any t ≥ 3 and s > 2. However, we see that this
invariant allows us to show some partial results on the classification of these codes, through
some examples.

First of all, recall that, for any t ≥ 3, only the Z4-linear Hadamard codes H1,t2 and H2,t2

of length 2t are linear [13], so these are equivalent to the Reed-Muller code RM(1, t). By
Theorem 2, for any t ≥ 3 and s > 2, there are also at most twoZ2s -linear Hadamard codes of
length 2t , H1,0,...,0,1,ts and H1,0,...,0,ts , that are linear. Moreover, the following result implies
that we can focus on t ≥ 5 and 2 ≤ s ≤ t − 2 to try to classify the nonlinear ones.

Theorem 4 Let At,s be the number of nonequivalent Z2s -linear Hadamard codes of length
2t . Then,

At,s =
⎧
⎨

⎩

0 if t ≥ 3 and s ≥ t + 2
1 if t ≥ 3 and s ∈ {t − 1, t, t + 1}
1 if t = 4 and s = 2,

and the Z2s -linear Hadamard code is linear whenAt,s = 1. Moreover, if t ≥ 5 and 2 ≤ s ≤
t − 2, then At,s ≥ 2, and there is one which is linear and at least one which is nonlinear.

123



OnZ2s -linear Hadamard codes 429

Proof First, if t ≥ 3 and s ≥ t + 2, then the equation

t =
(

s∑

i=1

(s − i + 1) · ti
)

− 1, (6)

with t1 ≥ 1, does not have any nonnegative integer solution, so At,s = 0. If t ≥ 3 and
s = t + 1, then (6) has only one solution (t1, . . . , ts) = (1, 0, . . . , 0). If t ≥ 3 and s = t , (6)
has only the solution (1, 0, . . . , 0, 1). If t ≥ 3 and s = t − 1, (6) has exactly two solutions
(1, 0, . . . , 0, 2) and (1,0,…,0,1,0). Note that, when t = 3 and s = 2, both solutions are (1, 2)
and (2, 0). By Theorem 2, for all the above solutions, we obtain a linear code Ht1,...,ts .

Finally, if t ≥ 5 and 2 ≤ s ≤ t − 2, (6) always has the solutions (1, 0, . . . , 0, t − s + 1)
and (1, 0, . . . , 0, 1, t − s − 1), which give a linear code. However, for these cases, there is at
least another solution. On one hand, if s = 2, At,s = �(t − 1)/2	 ≥ 2 since t ≥ 5 [13]. On
the other hand, if s = 3, (2, 0, . . . , 0, t − 2s + 1) is a solution since t ≥ 2s − 1 when t ≥ 5;
and if s ≥ 4, (1, 0, . . . , 0, 1, 0, t − s − 2) is a solution. Therefore, for all the cases,At,s ≥ 2
by Theorem 2. ��

The following example shows that the dimension of the kernel can not be used, in general,
to classify completely all nonlinear Z2s -linear Hadamard codes of length 2t , once t ≥ 5 and
2 < s ≤ t − 2 are fixed.

Example 7 The Z8-linear Hadamard codes of length 2t = 256 (t = 8) are the following:
H1,0,6, H1,1,4, H1,2,2, H1,3,0, H2,0,3, H2,1,1 and H3,0,0. The first two are equivalent as
they are linear by Theorem 2. The remaining ones have kernels of dimension 7, 6, 6, 5 and 4,
respectively, by Theorem 3. Therefore, by using this invariant, we can say that all of them are
nonequivalent, with the exception of H1,3,0 and H2,0,3 which have the same dimension of
the kernel. For these two codes, by using the computer algebra system Magma [6], we have
computed that rank(H1,3,0) = 12 and rank(H2,0,3) = 11, so they are also nonequivalent.
Actually, all these nonlinear codes have ranks 10, 12, 11, 13 and 17, respectively, so we
can use the rank instead of the dimension of the kernel to classify completely the Z8-linear
Hadamard codes of length 256.

As shown in the next example, for some values of t ≥ 5 and 2 < s ≤ t − 2, it is indeed
possible to establish a complete classification by using just the dimension of the kernel, like
it happens for any t ≥ 5 and s = 2 [13].

Example 8 By Theorem 3, it is possible to check that for any 5 ≤ t ≤ 7 and 2 ≤ s ≤ t−2, all
nonlinear Z2s -linear Hadamard codes of length 2t have a different dimension of the kernel,
so this invariant allows us to classify them. For t = 8, t = 9, t = 10 and t = 11, it also
works, except when s ∈ {3}, s ∈ {3, 4}, s ∈ {3, 4, 5} and s ∈ {3, 4, 5, 6}, respectively. For
these given values of t and s, we can just obtain a partial classification by using the kernel.

By using Magma, we have also computed the rank of the nonlinear Z2s -linear Hadamard
codes of length 2t , for any 5 ≤ t ≤ 11 and 2 ≤ s ≤ t − 2. Tables 1 and 3 show the values
of (t1, . . . , ts) and the pair (r , k), where r is the rank and k the dimension of the kernel, for
all nonlinear Z2s -linear Hadamard codes of length 2t , for 5 ≤ t ≤ 11. Note that the results
given in Examples 7 and 8 can also be checked by looking at these tables. These tables also
show that all nonlinear Z2s -linear Hadamard codes of length 2t have different values of the
rank, once 5 ≤ t ≤ 11 and 2 ≤ s ≤ t −2 are fixed. Therefore, for these cases, as in Example
7, we have that the codes are pairwise nonequivalent, so we have a complete classification
by using the rank and we can establish the following result.
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Table 1 Rank and kernel for all nonlinear Z2s -linear Hadamard codes of length 2t

t = 5 t = 6 t = 7 t = 8

(t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k)

Z4 (3, 0) (7,4) (3, 1) (8,5) (3, 2) (9,6) (3, 3) (10,7)

(4, 0) (11,5) (4, 1) (12,6)

Z8 (2, 0, 0) (8,3) (1, 2, 0) (8,5) (1, 2, 1) (9,6) (1, 2, 2) (10,7)

(2, 0, 1) (9,4) (2, 0, 2) (10,5) (1, 3, 0) (12,6)

(2, 1, 0) (12,4) (2, 0, 3) (11,6)

(2, 1, 1) (13,5)

(3, 0, 0) (17,4)

Z16 (1, 1, 0, 0) (9,4) (1, 0, 2, 0) (9,6) (1, 0, 2, 1) (10,7)

(1, 1, 0, 1) (10,5) (1, 1, 0, 2) (11,6)

(2, 0, 0, 0) (14,3) (1, 1, 1, 0) (13,5)

(2, 0, 0, 1) (15,4)

Z32 (1, 0, 1, 0, 0) (10,5) (1, 0, 0, 2, 0) (10,7)

(1, 0, 1, 0, 1) (11,6)

(1, 1, 0, 0, 0) (15,4)

Z64 (1, 0, 0, 1, 0, 0) (11,6)

Table 2 Number At,s of
nonequivalent Z2s -linear
Hadamard codes of length 2t

t 3 4 5 6 7 8 9 10 11

Z4 1 1 2 2 3 3 4 4 5

Z8 1 1 2 3 4 6 7 9 11

Z16 1 1 1 2 4 5 8 10 14

Z32 0 1 1 1 2 4 6 9 12

Z64 0 0 1 1 1 2 4 6 10

Z128 0 0 0 1 1 1 2 4 6

Z256 0 0 0 0 1 1 1 2 4

Z512 0 0 0 0 0 1 1 1 2

Theorem 5 Let At,s be the number of nonequivalent Z2s -linear Hadamard codes of length
2t . Then, for any t ≥ 3 and 2 ≤ s ≤ t − 1,

At,s ≤
∣
∣
∣
∣
∣

{

(t1, . . . , ts) ∈ N
s : t =

(
s∑

i=1

(s − i + 1) · ti
)

− 1, t1 ≥ 1

}∣
∣
∣
∣
∣
− 1.

Moreover, for any 3 ≤ t ≤ 11 and 2 ≤ s ≤ t − 1, this bound is tight.

Proof Straightforward from Theorem 2, the proof of Theorem 4, and Tables 1 and 3. ��
By Theorems 4 and 5 (or Tables 1 and 3), we can obtain exactly the number of nonequiva-

lent Z2s -linear Hadamard codes of length 2t , for some values of t and s. Table 2 shows these
numbers, for 3 ≤ t ≤ 11 and 2 ≤ s ≤ 9. The cases where the dimension of the kernel is not
enough to classify these codes are shown in bold type. However, in all these cases, the rank
can be used to obtain the classification.
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Table 3 Rank and Kernel for all nonlinear Z2s -linear Hadamard codes of length 2t

t = 9 t = 10 t = 11

(t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k)

Z4 (3, 4) (11,8) (3, 5) (12,9) (3, 6) (13,10)

(4, 2) (13,7) (4, 3) (14,8) (4, 4) (15,9)

(5, 0) (16,6) (5, 1) (17,7) (5, 2) (18,8)

(6, 0) (22,7)

Z8 (1, 2, 3) (11,8) (1, 2, 4) (12,9) (1, 2, 5) (13,10)

(1, 3, 1) (13,7) (1, 3, 2) (14,8) (1, 3, 3) (15,9)

(2, 0, 4) (12,7) (1, 4, 0) (17,7) (1, 4, 1) (18,8)

(2, 1, 2) (14,6) (2, 0, 5) (13,8) (2, 0, 6) (14,9)

(2, 2, 0) (17,5) (2, 1, 3) (15,7) (2, 1, 4) (16,8)

(3, 0, 1) (18,5) (2, 2, 1) (18,6) (2, 2, 2) (19,7)

(3, 0, 2) (19,6) (2, 3, 0) (23,6)

(3, 1, 0) (24,5) (3, 0, 3) (20,7)

(3, 1, 1) (25,6)

(4, 0, 0) (32,5)

Z16 (1, 0, 2, 2) (11,8) (1, 0, 2, 3) (12,9) (1, 0, 2, 4) (13,10)

(1, 0, 3, 0) (13,7) (1, 0, 3, 1) (14,8) (1, 0, 3, 2) (15,9)

(1, 2, 0, 0) (18,5) (1, 1, 0, 4) (13,8) (1, 0, 4, 0) (18,8)

(1, 1, 0, 3) (12,7) (1, 1, 1, 2) (15,7) (1, 1, 0, 5) (14,9)

(1, 1, 1, 1) (14,6) (1, 1, 2, 0) (18,6) (1, 1, 1, 3) (16,8)

(2, 0, 0, 2) (16,5) (1, 2, 0, 1) (19,6) (1, 1, 2, 1) (19,7)

(2, 0, 1, 0) (20,4) (2, 0, 0, 3) (17,6) (1, 2, 0, 2) (20,7)

(2, 0, 1, 1) (21,5) (1, 2, 1, 0) (25,6)

(2, 1, 0, 0) (28,4) (2, 0, 0, 4) (18,7)

(2, 0, 1, 2) (22,6)

(2, 0, 2, 0) (27,5)

(2, 1, 0, 1) (29,5)

(3, 0, 0, 0) (44,4)

Z32 (1, 0, 0, 2, 1) (11,8) (1, 0, 0, 2, 2) (12,9) (1, 0, 0, 2, 3) (13,10)

(1, 0, 1, 0, 2) (12,7) (1, 0, 0, 3, 0) (14,8) (1, 0, 0, 3, 1) (15,9)

(1, 0, 1, 1, 0) (14,6) (1, 0, 1, 0, 3) (13,8) (1, 0, 1, 0, 4) (14,9)

(1, 1, 0, 0, 1) (16,5) (1, 0, 1, 1, 1) (15,7) (1, 0, 1, 1, 2) (16,8)

(2, 0, 0, 0, 0) (26,3) (1, 0, 2, 0, 0) (19,6) (1, 0, 1, 2, 0) (19,7)

(1, 1, 0, 0, 2) (17,6) (1, 0, 2, 0, 1) (20,7)

(1, 1, 0, 1, 0) (21,5) (1, 1, 0, 0, 3) (18,7)

(2, 0, 0, 0, 1) (27,4) (1, 1, 0, 1, 1) (22,6)

(1, 1, 1, 0, 0) (29,5)

(2, 0, 0, 0, 2) (28,5)

(2, 0, 0, 1, 0) (36,4)

Z64 (1, 0, 0, 0, 2, 0) (11,8) (1, 0, 0, 0, 2, 1) (12,9) (1, 0, 0, 0, 2, 2) (13,10)

(1, 0, 0, 1, 0, 1) (12,7) (1, 0, 0, 1, 0, 2) (13,8) (1, 0, 0, 0, 3, 0) (15,9)

(1, 0, 1, 0, 0, 0) (16,5) (1, 0, 0, 1, 1, 0) (15,7) (1, 0, 0, 1, 0, 3) (14,9)
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Table 3 continued

t = 9 t = 10 t = 11

(t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k) (t1, . . . , ts ) (r , k)

(1, 0, 1, 0, 0, 1) (17,6) (1, 0, 0, 1, 1, 1) (16,8)

(1, 1, 0, 0, 0, 0) (27,4) (1, 0, 0, 2, 0, 0) (20,7)

(1, 0, 1, 0, 0, 2) (18,7)

(1, 0, 1, 0, 1, 0) (22,6)

(1, 1, 0, 0, 0, 1) (28,5)

(2, 0, 0, 0, 0, 0) (48,3)

Z128 (1, 0, 0, 0, 1, 0, 0) (12,7) (1, 0, 0, 0, 0, 2, 0) (12,9) (1, 0, 0, 0, 0, 2, 1) (13,10)

(1, 0, 0, 0, 1, 0, 1) (13,8) (1, 0, 0, 0, 1, 0, 2) (14,9)

(1, 0, 0, 1, 0, 0, 0) (17,6) (1, 0, 0, 0, 1, 1, 0) (16,8)

(1, 0, 0, 1, 0, 0, 1) (18,7)

(1, 0, 1, 0, 0, 0, 0) (28,5)

Z256 (1, 0, 0, 0, 0, 1, 0, 0) (13,8) (1, 0, 0, 0, 0, 0, 2, 0) (13,10)

(1, 0, 0, 0, 0, 1, 0, 1) (14,9)

(1, 0, 0, 0, 1, 0, 0, 0) (18,7)

Z512 (1, 0, 0, 0, 0, 0, 1, 0, 0) (14,9)

The values of At,2 given in Table 2 where already proved in [13]. Specifically, in that
paper, it is shown that there are � t−1

2 	 nonequivalent Z4-linear Hadamard codes of length 2t

for all t ≥ 3. Next, we focus on establishing some relationships between the already known
Z2s -linear Hadamard codes with s = 2 and the ones with s > 2, once only the length 2t is
fixed. First, Example 9 shows that there are Z2s -linear Hadamard codes, with s > 2, which
are not equivalent to any Z4-linear Hadamard code. Then, Example 10 also shows that there
are Z4-linear Hadamard codes which are not equivalent to any Z2s -linear Hadamard codes
with s > 2.

Example 9 Let H2,0,0 be the Z8-linear Hadamard code of length 32 considered in Examples
4 and 6. Recall that ker(H2,0,0) = 3 by Theorem 3, and hence H2,0,0 is nonlinear. It is known
that there are three Z4-linear Hadamard codes of length 32, H1,4, H2,2 and H3,0. The first
two are linear, and the last one has ker(H3,0) = 4 by Theorem 3 or [13]. Hence, there is no
Z4-linear Hadamard code equivalent to the Z8-linear Hadamard code H2,0,0.

Example 10 By Table 1, for t = 5, there are only two nonlinear Z2s -linear Hadamard codes,
H3,0 and H2,0,0. In Example 9, we have seen that they are not equivalent, since they have
different dimension of the kernel. Other examples like this one can be found when t is
odd. For example, by Tables 1 and 3, for t = 7, t = 9 and t = 11, there are Z4-linear
Hadamard codes, H4,0, H5,0 and H6,0, respectively, which are not equivalent to any Z2s -
linear Hadamard codes with s > 2 of the same length, by using both invariants, the rank and
the dimension of the kernel.

It is also worth to mention that there are Hadamard codes, called Z2Z4-linear Hadamard
codes, which came from the image of a generalized Gray map of subgroups ofZα

2 ×Z
β
4 . Note

that if α = 0, they correspond to Z4-linear Hadamard codes. More information on Z2Z4-
linear codes in general can be found in [5]. The classification ofZ2Z4-linear Hadamard codes
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of length 2t with α �= 0 is given in [18], where it is shown that there are � t
2	 nonequivalent

of such codes, for all t ≥ 3; and either the rank or the dimension of the kernel can be used to
classify them, like for Z4-linear Hadamard codes. Recall that there are � t−1

2 	 nonequivalent
Z4-linear Hadamard codes of length 2t for all t ≥ 3 [13]. However, in [15], it is shown that
each Z2Z4-linear Hadamard code with α = 0, that is, each Z4-linear Hadamard code, is
equivalent to a Z2Z4-linear Hadamard code with α �= 0, so there are only � t

2	 nonequivalent
Z2Z4-linear Hadamard codes of length 2t .

The following example shows that there are Z2Z4-linear Hadamard codes (with α �= 0)
which are not equivalent to any Z2s -linear Hadamard codes with s ≥ 2.

Example 11 For t = 4, there is a Z2Z4-linear Hadamard code (with α �= 0) which is not
equivalent to any Z4-linear Hadamard code [15]. This code has parameters (r , k) = (6, 3)
[18], so it is not equivalent to any Z2s -linear Hadamard code with s ≥ 2, since all of them are
linear by Theorem 4. Other examples like this one can be found when t is even. For example,
for t = 6, 8 and 10, there is also a Z2Z4-linear Hadamard code (with α �= 0) which is not
equivalent to any Z4-linear Hadamard code [15]. They have parameters (10, 4), (15, 5) and
(21, 6) [18], respectively, so again they are not equivalent to any Z2s -linear Hadamard code
with s ≥ 2 of length 26, 28 and 210, respectively, by Tables 1 and 3.

Finally, we focus on establishing how many nonequivalent Z2s -linear Hadamard codes of
length 2t there are, once only the length 2t is fixed for some values of t . First, we give some
lower and upper bounds. From Tables 1 and 3, we can determine a lower bound (K) taking
into account just the dimension of the kernel. This lower bound can be improved (RK) if we
consider both invariants, the rank and the dimension of the kernel. Note that there are codes
having the same dimension of the kernel with different ranks (for t = 7, 8, 9, 10, 11), and
codes having the same rank with different dimensions of the kernel (for t = 9, 10, 11). These
results are summarized in Table 4, where we give these bounds for all 3 ≤ t ≤ 11.

An upper bound can be given easily by considering all nonequivalentZ2s -linear Hadamard
codes of length 2t , once t and s are fixed, as it is shown in the next theorem. These values
for all 3 ≤ t ≤ 11 are also shown in Table 4.

Theorem 6 Let At,s be the number of nonequivalent Z2s -linear Hadamard codes of length
2t . Let At be the number of nonequivalent Z2s -linear Hadamard codes of length 2t , for any
s ≥ 2. Then, At ≤ ∑t−2

s=2(At,s − 1) + 1.

Theorem 7 There are exactly 1,1,3, 3 and 6 nonequivalent Z2s -linear Hadamard codes of
length 2t for t equal to 3, 4, 5, 6 and 7, respectively.

Proof For t equal to 3, 4 and 5, the result is true, since the lower and upper bounds given in
Table 4 coincides. By using Magma, it is possible to check that, for t = 6, both Z2s -linear
Hadamard codes having the same parameters (r , k) = (8, 5) are equivalent; and the ones
having (r , k) = (9, 4) are also equivalent. Therefore, in this case, the upper bound goes from
5 to 3, and then coincides with the lower bound given in Table 4. Similarly, for t = 7, it is

Table 4 Bounds for the number
At of nonequivalent Z2s -linear
Hadamard codes of length 2t

t 3 4 5 6 7 8 9 10 11

Lower bound K 1 1 3 3 5 5 7 7 9

Lower bound RK 1 1 3 3 6 7 11 13 20

Upper bound 1 1 3 5 10 16 26 38 57
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also possible to check that the codes having the same parameters (r , k) are all equivalent, so
the upper bound became equal to the lower bound 6, and the result also holds. ��

6 Conclusions

The kernel ofZ2s -linearHadamard codes of length 2t has been studied for s > 2.We compute
the kernel of these codes and its dimension in order to classify them, like it is done for s = 2.
We first have considered that the parameters t and s are fixed. Examples 7 and 8 show that,
only for some values of t and s, we can use the dimension of the kernel to distinguish between
nonequivalent Z2s -linear Hadamard codes of length 2t . However, when this is not possible,
by using Magma, we also show that in these examples the rank is enough to classify them.
A further research on this topic would be to determine exactly for which values of t and s
the dimension of the kernel classify them, or to compute the rank of these codes in order to
prove that this invariant is enough to established their complete classification, for any t and
s.

We have also considered that only the length 2t is fixed. Examples 10 and 11 seem to point
out that for any t odd (t even), there is exactly one Z4-linear Hadamard code (Z2Z4-linear
Hadamard code with α �= 0) of length 2t which is not equivalent to any Z2s -linear Hadamard
code with s > 2; and the others Z4-linear Hadamard codes (Z2Z4-linear Hadamard codes
with α �= 0) of the same length are equivalent to a Z8-linear Hadamard code, although they
may also have other structures with s > 3. Another further research in this sense would be
to establish whether this is always true; and whether all Z2s -linear Hadamard codes of the
same length, having the same rank and dimension of the kernel, are equivalent.

Finally, we have established some bounds for the exact number of nonequivalent Z2s -
linear Hadamard codes of length 2t , when both t and s are fixed, and when just t is fixed;
denoted by At,s and At , respectively. For some values of t and s, we provide their exact
values, by using Magma. It would also be interesting to determine them for any possible t
and s, as a further research; as well as equivalent results by considering the generalized Gray
map used in [14].
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