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Abstract
The maximum size of unrestricted binary three-error-correcting codes has been known up to
the length of the binaryGolay code, with two exceptions. Specifically, denoting themaximum
size of an unrestricted binary code of length n andminimumdistance d by A(n, d), it has been
known that 64 ≤ A(18, 8) ≤ 68 and 128 ≤ A(19, 8) ≤ 131. In the current computer-aided
study, it is shown that A(18, 8) = 64 and A(19, 8) = 128, so an optimal code is obtained
even after shortening the extended binary Golay code six times.
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1 Introduction

Shannon’s seminal paper [24], which appeared in 1948, was a starting point for research on
error-correcting and error-detecting codes. Quite soon thereafter, Golay [7] and Hamming
[8] presented the remarkable codes that are now so central in coding theory and bear the
names of their discoverers. In that very early work, the focus was on systematic codes, and
B(n, d) was defined in [8] as the maximum size of a systematic binary code with length n
and minimum distance d .

Somewhat later, Plotkin realized that also nonsystematic codes are relevant and defined
A(n, d) to be the maximum size of any binary code with length n and minimum distance
d . Plotkin’s first study on A(n, d) was published in his M.Sc. thesis [21] in 1952 and as
a journal paper eight (!) years later [22], one of the main results being an upper bound on
A(n, d) that we now know as the Plotkin bound. The function A(n, d) later became one of
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the most studied functions in combinatorial coding theory; the reader may consult [13] for
the basic theory of this function. All codes considered here are binary, and the term binary
will be used only occasionally for emphasis.

As A(n, d) = A(n + 1, d + 1) for odd d , it suffices to consider either the odd or the
even case. If a code is r -error-correcting, then the minimum distance is at least 2r + 1, so
it is natural to consider odd d in that context. On the other hand, in various computational
studies of codes, including the current work, the case of even d has certain advantages. When
considering even d , we may also assume that the codes be even, that is, that all codewords
have even weight. Namely, by first deleting one coordinate and then adding an even parity
bit, we can always get a desired even code.

A codewith length n, cardinalityM , andminimumdistance at least d is called an (n,M, d)
code. An (n, A(n, d), d) code is called optimal. For n ≤ 15, we currently know not only the
size of optimal codes, but we know all optimal codes up to symmetry; see [10, Sect. 7.1.4],
[12], and [20]. Computational techniques have played a central role in obtaining those results,
but we are now approaching the limits for such work. For n ≤ 28, there is only a handful
of open cases for which it is reasonable to think that the current generation of scientists
might experience the determination of A(n, d). Two such cases are 64 ≤ A(18, 8) ≤ 68 and
128 ≤ A(19, 8) ≤ 131, where the lower bounds follow from shortening the extended binary
Golay code six and five times, respectively, and the upper bounds have been proved in [19]
and [11], respectively. Here, those two cases will be settled computationally. Indeed, it turns
out that A(18, 8) = 64 and A(19, 8) = 128.

The paper is organized as follows. In Sect. 2 we survey the development of upper bounds
on A(n, 8) for 18 ≤ n ≤ 24. These upper bounds have gradually been lowered towards the
lower bounds A(n, 8) ≥ 2n−12 for n ≤ 24, which come from shortening the extended binary
Golay code. The main approach is discussed in Sect. 3, which is concluded with detailed
results. By far the most time-consuming part of the computations is that of classifying the
even (17, 33, 8) codes. The core result A(18, 8) = 64 follows from the fact that the even
(17,M, 8) codes with 33 ≤ M ≤ 36 cannot be lengthened to codes of size greater than 64.
The classification results are validated using double counting.

2 On subcodes of the binary Golay code

The extended binary Golay code [7] shows that A(24, 8) = 4096. By shortening a binary
code—removing one coordinate and taking one of the two subcodes induced by the value
in the removed coordinate—it follows that A(n − 1, d) ≥ A(n, d)/2, so A(n, 8) ≥ 2n−12

for n ≤ 24. The inverse operation of shortening is called lengthening (with some freedom to
define how the new codewords are chosen).

Johnson [9] carried out extensive calculations to obtain upper bounds on A(n, d) for
specific small values of n and d including those of interest here. Major progress was made by
Best et al. [2], who used Delsarte’s linear programming method [4] to get many new upper
bounds and even prove that A(21, 8) = 512, from which it follows that A(n, 8) ≤ 2n−12

for 21 ≤ n ≤ 24. (The paper [2] lacks some details, which was a challenge for later
studies [1]. Such details were later provided by Brouwer [3], a central inequality for proving
A(21, 8) = 512 being A16 + 12A18 + 21A20 ≤ 21.)

In [2] it is further shown that A(18, 8) ≤ 74, A(19, 8) ≤ 144, and A(20, 8) ≤ 279.
The first of these bounds was later improved by van Pul [26] to A(18, 8) ≤ 72, and the
other two were improved by Schrijver [23]—using novel techniques based on semidefinite
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programming—to A(19, 8) ≤ 142 and A(20, 8) ≤ 274. After developing the technique
based on semidefinite programming even further, Gijswijt, Mittelmann, and Schrijver [6]
were able to prove A(19, 8) ≤ 135 and even optimality of the quadruply shortened extended
binary Golay code, A(20, 8) = 256. The current author showed [18] that A(17, 8) = 36,
which implies A(18, 8) ≤ 72, and later [19] A(18, 8) ≤ 68. The result A(19, 8) ≤ 131
by Kim and Toan [11], based on semidefinite programming, completes this brief historical
survey of bounds on A(n, 8) for 18 ≤ n ≤ 24. (For smaller values of n, A(17, 8) was
mentioned above, and A(n, 8) for n ≤ 16 are easy cases.)

3 Classifying error-correcting codes

3.1 Background and preliminaries

The current work is a continuation of work carried out by the author in [18] and [19]; see
also [12]. The general approach in all these studies is essentially the same and the core task
is about classifying even (17,M, 8) codes for gradually smaller values of M .

The concept of symmetry is essential when discussing classification of combinatorial
objects. Two binary codes are equivalent if one can be obtained from the other by a permu-
tation of the coordinates followed by a transposition of the coordinate values in a subset of
the coordinates (the latter operation can also be viewed through addition of a binary vector).
Such a mapping from a code onto itself is an automorphism. The set of automorphisms of a
code C form a group under composition, the automorphism group of C , Aut(C). We denote
the group of all possible mappings by G; this group has order n!2n , where n is the length of
the codewords. In group-theoretic terms, classification is about finding a transversal of the
orbits of codes under the action of G. See [10] for the theory of classifying combinatorial
objects.

The even (17, 37, 8) codes were classified in [18]: there are none, so A(17, 8) ≤ 36, and
since A(17, 8) ≥ 36—attained by a conference matrix code (see [13, Sect. 2.4])—it follows
that A(17, 8) = 36. In [18] there is a remark that the next step would be to classify the
(17, 36, 8) codes, but no application or motivation for such work could then be anticipated.
However, later it turned out that the conference matrix code, if it is the unique code attaining
A(17, 8) = 36, would prove a result on the distribution of coordinate values of optimal codes.
Specifically, this would show that there are parameters for which no optimal codes have a
balanced coordinate (meaning that the number of 0s and 1s differ by at most one). Indeed,
that particular optimal code is unique.

The classification of even (17, 35, 8) codes can be obtained with roughly the same effort
as for even (17, 36, 8) codes, so those were also classified in [19]. However, for two rea-
sons the work was not extended to even (17, 33, 8) and (17, 34, 8) codes. First, necessary
computational resources for classifying the even (17, 33, 8) and (17, 34, 8) codes were not
available to the author at that time. Second, the increasing number of intermediate codes
posed a challenge for the approach used in [18] and [19].

3.2 General approach

The general algorithm used in [18,19] and here proceeds in a bottom-up fashion: to classify
the (n,M, d) codes, the (n−1,M ′, d) codeswithM ′ ≥ �M/2� are lengthened and equivalent
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copies amongst the constructed codes are removed (this is called isomorph rejection). Let us
now briefly consider the two subtasks of lengthening and isomorph rejection.

The task of lengthening error-correcting codes fits perfectly into the framework of finding
cliques in graphs. The vertices of such a graph correspond to the candidate words that are at
distance at least d from all codewords in the code from which the search starts, and there is
an edge in the graph exactly when the mutual distance between the corresponding words is
at least d . When lengthening an (n − 1,M ′, d) code to an (n,M, d) code, we specifically
want to find all cliques of size M − M ′ in this graph. In the current work, we have used the
Cliquer software [16], which is based on the algorithm presented in [17].

Whereas the implementation of the lengthening part poses little challenge with dedicated
software routines available, the isomorph rejection part is somewhat more involved. The
general technique employed here is canonical augmentation [14], which has established
itself as the standard method for classification [10, Sect. 4.2.3]. A useful tool in this work is
the nauty graph isomorphism software [15], which can be employed after a proper mapping
of codes into graphs [10, p. 89].

The set of (n − 1,M ′, d) codes with M ′ ≥ �M/2� are called seeds when classifying
(n,M, d) codes. Notice that an (n,M, d) code C can be obtained from n to 2n seeds (some
of which may be equivalent): C can be shortened in n coordinates, and when shortening in
some coordinate we get two seeds if there are equally many 0s and 1s in that coordinate and
one seed otherwise.

In our implementation of canonical augmentation, a code C obtained by lengthening a
code C ′ is subject to two tests, both of which must be passed for C to be accepted:

(i) Identify a canonical Aut(C)-orbit of seeds contained in C , and check whether the seed
from which C was extended is in that orbit.

(ii) IfC is obtained by extending a seedC ′, check whetherC is the (lexicographic) minimum
of its Aut(C ′)-orbit.
Test (i) is conveniently handled via nauty, see [12]. Notice, however, that all shortened

subcodes are seeds in [12] but not here. Proper coloring of the graph that is fed to nauty
ensures that the canonical subcode is indeed a seed. Invariants—which are, for example,
based on value distributions in coordinates—can be utilized as a part of determining whether
C ′ is in the canonical orbit of seeds. Invariants speed up the algorithm in two ways: Test (i)
can often be handled without calling nauty at all, and proper invariants speed up nauty. Care
must be taken to use the same invariants outside and inside of nauty.

In [12,18,19], Test (ii) is simply handled by instead comparing canonical labellings (pro-
duced by nauty) of all codes that pass Test (i) starting from some code C ′. However, Test (ii)
as stated here is faster and is also immune against the number of codes that pass the tests. As
an example, one code in the current work led to more than 10 million accepted lengthened
codes.

3.3 Results

The numbers of equivalence classes of even (n,M, 8) codes that have been classified are
given in Table 1, including old [18,19] as well as new results. The new entries are for even
(16, 17, 8), (17, 33, 8), and (17, 34, 8) codes and are given in bold.

The even (16, 17, 8) and (17, 33, 8) codes were classified using the approach discussed
earlier. Since there are only 459 equivalence classes of even (17, 33, 8) codes, the even
(17, 34, 8) codes are most conveniently classified from those, by adding one codeword in all
possible ways and carrying out isomorph rejection.
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Table 1 Equivalence classes of
even (n,M, 8) codes

n M # n M #

11 1 1 16 17 1 554 638 339

11 2 2 16 18 152 962 983

12 2 3 16 19 24 872 526

12 3 1 16 20 4 904 647

12 4 1 16 21 1 022 642

13 3 2 16 22 223 793

13 4 4 16 23 50 808

14 5 7 16 24 12 708

14 6 11 16 25 3 239

14 7 4 16 26 936

14 8 4 16 27 251

15 9 30 490 16 28 102

15 10 10 688 16 29 30

15 11 886 16 30 15

15 12 139 16 31 5

15 13 25 16 32 5

15 14 14 17 33 459

15 15 5 17 34 44

15 16 5 17 35 5

17 36 1

Most of the even (17,M, 8) codes with 33 ≤ M ≤ 36 are subsets of codewords of the
(unique) even (17, 36, 8) conference matrix code: 418 of the 459 equivalence classes for
length 33 and 42 of the 44 equivalence classes for length 34 have this property. The even
(17, 33, 8) codes have automorphism groups of order 96 (1 code), 16 (3 codes), 8 (7 codes),
3 (1 code), 2 (8 codes), and 1 (439 codes). The even (17, 34, 8) codes have automorphism
groups of order 272 (1 code), 16 (1 code), 8 (4 codes), 2 (2 codes), and 1 (36 codes).

In the final step, we need to lengthen the even (17,M, 8) codes with M ≥ 33.

Theorem 3.1 A(18, 8) = 64.

Proof Codes obtained by shortening the extended binary Golay code six times prove that
A(18, 8) ≥ 64.

By [19], we know that an even (18,M, 8) code with M ≥ 65 cannot be shortened to
a (17,M ′, 8) code with M ′ ≥ 35. Hence, if such a code exists, it can be shortened to a
(17,M ′, 8) code with �65/2� = 33 ≤ M ′ ≤ 34. However, when lengthening the classified
even (17, 33, 8) and (17, 34, 8) codes, the largest number of codewords that can be added is
7 and 3, respectively. Consequently, A(18, 8) < 65, and the theorem follows. ��
Corollary 3.1 A(n, 8) = 2n−12 for 18 ≤ n ≤ 24.

The intermediate results were validated by double counting [10, Sect. 10.2]. Consider the
step of classifying the even (n,M, d) codes, C, from representatives of even (n − 1,M ′, d)
codes with M ′ ≥ M/2, C′. Let N (C) denote the total number of codes found when length-
ening a code C ∈ C′, before isomorph rejection. Further, let S(C) = 1 if |C | = M/2 and
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S(C) = 2 otherwise (in the former case, an (n,M, d) code can be obtained from two sub-
codes, but in the latter case only from one). Utilizing the orbit–stabilizer theorem, we may
now in two ways count the number of labelled (n,M, d) codes with only even-weight or
only odd-weight codewords:

∑

C∈C

2nn!
|Aut(C)| =

∑

C∈C′

2n−1(n − 1)!N (C)S(C)

|Aut(C)| . (1)

When classifying the even (16, 17, 8) codes from the even (15,M ′, 8) codes withM ′ ≥ 9,
both sides of (1) give

2 124 460 504 747 223 745 822 720 000

andwhen classifying the even (17, 33, 8) codes from the even (16,M ′, 8) codeswithM ′ ≥ 17
(by [18] we may also assume that M ′ ≤ 20), both sides of (1) give

20 718 513 827 648 372 736 000.

The computationswere carried out on a compute cluster with 256 cores with 2.4-GHz Intel
Xeon E5-2665 processors and 192 cores with 2.5-GHz Intel Xeon E5-2680v3 processors,
with two virtual cores for each physical core. The total amount of compute time for the virtual
cores was approximately 37 years, practically all of which was spent on extending the even
(16, 17, 8) codes to even (17, 33, 8) codes by clique search.

It is known that the optimal (23, 2048, 8) and (24, 4096, 8) codes are unique [25]; see
[5] for a later and simpler proof. A classification of the optimal (n, 2n−12, 8) codes for
18 ≤ n ≤ 22 does not seem too far away but would still require at least hundreds of years of
core time with the current approach. One way to speed up the search could be to make use
of theoretical results, which were crucial for making the classification in [12] possible.

References

1. Agrell E., Vardy A., Zeger K.: A table of upper bounds for binary codes. IEEE Trans. Inf. Theory 47,
3004–3006 (2001).

2. Best M.R., Brouwer A.E., MacWilliams F.J., Odlyzko A.M., Sloane N.J.A.: Bounds for binary codes of
length less than 25. IEEE Trans. Inf. Theory 24, 81–93 (1978).

3. Brouwer A.E.: Disclosure. http://www.win.tue.nl/~aeb/codes/lpdetail.html.
4. Delsarte P.: Bounds for unrestricted codes, by linear programming. Philips Res. Rep. 27, 272–289 (1972).
5. Delsarte P., Goethals J.-M.: Unrestricted codes with the Golay parameters are unique. Discret. Math. 12,

211–224 (1975).
6. Gijswijt D.C., Mittelmann H.D., Schrijver A.: Semidefinite code bounds based on quadruple distances.

IEEE Trans. Inf. Theory 58, 2697–2705 (2012).
7. Golay M.J.E.: Notes on digital coding. Proc. IRE 37, 657 (1949).
8. Hamming R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950).
9. Johnson S.M.: On upper bounds for unrestricted binary error-correcting codes. IEEE Trans. Inf. Theory

17, 466–478 (1971).
10. Kaski P., Östergård P.R.J.: Classification Algorithms for Codes and Designs. Springer, Berlin (2006).
11. Kim H.K., Toan P.T.: Improved semidefinite programming bound on sizes of codes. IEEE Trans. Inf.

Theory 59, 7337–7345 (2013).
12. Krotov D.S., Östergård P.R.J., Pottonen O.: On optimal binary one-error-correcting codes of lengths

2m − 4 and 2m − 3. IEEE Trans. Inf. Theory 57, 6771–6779 (2011).
13. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam

(1977).
14. McKay B.D.: Isomorph-free exhaustive generation. J. Algorithms 26, 306–324 (1998).
15. McKay B.D., Piperno A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014).

123

http://www.win.tue.nl/~aeb/codes/lpdetail.html


The sextuply shortened binary Golay code is optimal 347

16. Niskanen S., Östergård P.R.J.: Cliquer User’s Guide: Version 1.0, Technical report T48, Communications
Laboratory, Helsinki University of Technology, Espoo (2003).

17. Östergård P.R.J.: A fast algorithm for the maximum clique problem. Discret. Appl. Math. 120, 197–207
(2002).

18. Östergård P.R.J.: On the size of optimal three-error-correcting binary codes of length 16. IEEE Trans. Inf.
Theory 57, 6824–6826 (2011).

19. Östergård P.R.J.: On optimal binary codes with unbalanced coordinates. Appl. Algebra Eng. Commun.
Comput. 24, 197–200 (2013).

20. Östergård P.R.J., PottonenO.: The perfect binary one-error-correcting codes of length 15. I. Classification.
IEEE Trans. Inf. Theory 55, 4657–4660 (2009).

21. Plotkin M.: Binary Codes with Specified Minimum Distance, M.Sc. Thesis [cf. Refs. 25 & 26], Moore
School of Electrical Engineering, University of Pennsylvania (1952).

22. Plotkin M.: Binary codes with specified minimum distance. IRE Trans. Inf. Theory 6, 445–450 (1960).
23. Schrijver A.: New code upper bounds from the Terwilliger algebra and semidefinite programming. IEEE

Trans. Inf. Theory 51, 2859–2866 (2005).
24. Shannon C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656

(1948).
25. Snover S.L.: The Uniqueness of the Nordstrom–Robinson and the Golay Binary Codes, Ph.D. Thesis,

Department of Mathematics, Michigan State University (1973).
26. van Pul C.L.M.: On Bounds on Codes, M.Sc. Thesis, Department of Mathematics and Computer Science,

Eindhoven University of Technology (1982).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	The sextuply shortened binary Golay code is optimal
	Abstract
	1 Introduction
	2 On subcodes of the binary Golay code
	3 Classifying error-correcting codes
	3.1 Background and preliminaries
	3.2 General approach
	3.3 Results

	References




