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Abstract
This paper examines the linear complexity of a family of generalized cyclotomic binary
sequences of period pn recently proposed by Xiao et al. (Des Codes Cryptogr, 2017, https://
doi.org/10.1007/s10623-017-0408-7), where a conjecture about the linear complexity in the
special case that f = 2r for a positive integer r was made. We prove the conjecture and also
extend the result to more general even integers f .

Keywords Binary sequence · Linear complexity · Cyclotomy · Generalized cyclotomic
sequence

Mathematics Subject Classification 94A55 · 94A60

1 Introduction

Pseudo-random sequences used for stream ciphers are required to have the property of unpre-
dictability. Linear complexity is one of the main components that indicate this feature. The
linear complexity of a sequence is defined as the length of the shortest linear feedback shift
register that can generate the sequence [11]. Due to the Berlekamp–Massey algorithm, it is
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reasonable to suggest that the linear complexity of a “good” sequence should be at least a
half of the period.

Cyclotomy is an old topic of elementary number theory and is related to difference sets,
sequences, coding theory and cryptography [4]. In the past decades generalized cyclotomy
has been extensively studied [4,5,10,19,25]. Whiteman [19] introduced a generalized cyclo-
tomy with respect to pq , which was extended with respect to odd integers in [5]. Whiteman’s
generalized cyclotomy is not consistent with classical cyclotomy. A new generalized cyclo-
tomy that includes classical cyclotomy as a special case was later introduced by Ding and
Helleseth [4]. A unified approach that determines both of the Whiteman and Ding-Helleseth
generalized cyclotomy was proposed by Fan and Ge [10]. Recently another construction
was presented in [25], where the order of the generalized cyclotomic classes depends on the
choice of parameters.

Classical and generalized cyclotomies have been used in the construction of cyclic codes
[3,15] and sequences [2,4,7] with desirable properties. In recent years there has been some
research on generalized cyclotomic binary and non-binary sequences of period pn [1,7,8,16,
20,23] (see also references therein). Based on the generalized cyclotomic classes in [25], Xiao
et al. presented a new family of cyclotomic binary sequences of period pn and determined
the linear complexity of the sequences in the case that n = 2 and f = 2r for a positive
integer r [22]. As the exponent n increases, the experimental result indicates that the linear
complexity of this family of sequences is very close to pn . Based on this observation, the
authors of [22] made a conjecture about the linear complexity for any positive integer n and
even integer f = 2r . In this paper, we revisit the conjecture and prove it based on a detailed
investigation of some polynomials over certain extension fields of F2. With the help of this
new technique, we also extend the conjectured result from the special case f = 2r to more
general even integers f .

The remainder of this paper is organized as follows. In Sect. 2 we introduce some basics
and recall the generalized cyclotomic sequences and the conjecture in [22]. Section 3 is
dedicated to the study of the linear complexity of this family of cyclotomic sequences.
Section 4 concludes the work in this paper.

2 Preliminaries

Throughout this paper, wewill denote byZN the ring of integersmodulo N for a positive inte-
ger N , and byZ∗

N the multiplicative group ofZN , namely,Z∗
N = {x ∈ ZN | gcd(x, N ) = 1}.

In the following we will recall some basics of the linear complexity of a periodic sequence
and introduce the generalized cyclotomic sequences proposed in [22].

2.1 Linear complexity

Let s∞ = (s0, s1, s2, . . . ) be a binary sequence of period N and S(x) = s0 + s1x + · · · +
sN−1xN−1. It is well known (see, for instance, [2, p. 171]) that the minimal polynomial of
s∞ is given by

(xN − 1)
/
gcd

(
xN − 1, S(x)

)

and the linear complexity of s∞ is given by

L = N − deg
(
gcd

(
xN − 1, S(x)

))
.
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The linear complexity of generalized cyclotomic binary sequences 1185

This formula allows one to determine the linear complexity of s∞ by examining the roots
of S(x) in an extension of F2 (the finite field of two elements). More specifically, the linear
complexity of s∞ can be given by

L = N −
∣
∣
∣
{
i ∈ ZN | S(β i ) = 0

}∣∣
∣, (1)

where β is a primitive N th root of unity in an extension field of F2.

2.2 New generalized cyclotomic sequences

Let p be an odd prime and p = e f + 1, where e, f are positive integers. Let g be a primitive
rootmodulo p2. It is well known [12] that g is also a primitive rootmodulo p j for each integer
j ≥ 1, namely, the order of g modulo p j is equal to ϕ(p j ) = p j−1(p − 1), where ϕ(·) is
the Euler’s totient function. Below we recall the generalized cyclotomic classes introduced
in [25] and the cyclotomic sequences proposed in [22].

Let n be a positive integer. For j = 1, 2, . . . , n, denote d j = ϕ(p j )/e = p j−1 f and
define

D(p j )
0 =

{
gt ·d j (mod p j ) | 0 ≤ t < e

}
, and

D(p j )
i = gi D(p j )

0 =
{
gi x (mod p j ) : x ∈ D(p j )

0

}
, 1 ≤ i < d j . (2)

The cosets D(p j )
i , i = 0, 1, . . . , d j −1, are called generalized cyclotomic classes of order d j

with respect to p j . It was shown in [25] that
{
D(p j )
0 , D(p j )

1 , . . . , D(p j )
d j−1

}
forms a partition

of Z∗
p j for each integer j ≥ 1 and for an integer m ≥ 1,

Zpm =
m⋃

j=1

d j−1⋃

i=0

pm− j D(p j )
i ∪ {0}.

Based on the above generalized cyclotomic classes, a family of almost balanced binary
sequences was proposed in [22], where f is chosen to be 2r for a positive integer r . Indeed,
the construction of the sequence in [22] can be naturally extended to any even integer f as
follows.

Let f be a positive even integer and b an integer with 0 ≤ b < pn−1 f . Define two sets

C
(pn)
0 =

n⋃

j=1

d j−1⋃

i=d j /2

pn− j D(p j )

(i+b) (mod d j )
, and

C
(pn)
1 =

n⋃

j=1

d j /2−1⋃

i=0

pn− j D(p j )

(i+b) (mod d j )
∪ {0}. (3)

It is obvious that Zpn = C
(pn)
0 ∪ C

(pn)
1 and |C (pn)

1 | = (pn + 1)/2. A family of almost
balanced binary sequences s∞ = (s0, s1, s2, . . . ) of period pn can thus be defined as

si =
{
0, if i (mod pn) ∈ C

(pn)
0 ,

1, if i (mod pn) ∈ C
(pn)
1 .

(4)

In the case of f = 2r , the linear complexity of s∞ for n = 2 was determined in [22], where a
conjecture about the linear complexity of s∞ for any integer n ≥ 3 was also made as follows.
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1186 V. Edemskiy et al.

Conjecture 1 [22] Let s∞ be a generalized cyclotomic binary sequence of period pn defined
by (4). If 2(p−1) �≡ 1 (mod p2) and f = 2r , where r is a positive integer, then the linear
complexity of s∞ is given by

L =
⎧
⎨

⎩

pn − p−1
2 − δ

(
pn+1
2

)
, if 2 ∈ D(p)

0 ,

pn − δ
(
pn+1
2

)
, if 2 /∈ D(p)

0 ,

where δ(t) = 1 if t is even and δ(t) = 0 if t is odd.

In the next section we will revisit Conjecture 1 and develop a new technique to prove it.
It turns out that the new technique also works for other even integers f and leads to more
general result.

3 Linear complexity of generalized cyclotomic sequences

In this section, we will first give some subsidiary lemmas, and then investigate the linear
complexity of s∞ defined in (4). The main result will be presented in Sect. 3.2.

3.1 Subsidiary lemmas

An odd prime p satisfying 2p−1 ≡ 1 (mod p2) is known as a Wieferich prime. It is shown
in [6] that there are only two Wieferich primes 1093 and 3511 up to 6.7× 1015. In this paper
we will only focus on non-Wieferich primes.

For a non-Wieferich prime p with 2p−1 �≡ 1 (mod p2), some properties related to 2
(mod p j ) for integers j ≥ 1 are discussed below.

Lemma 1 Let p be a non-Wieferich prime and let 2 ≡ gu (mod p2) for some integer u. Then
gcd(u, p) = 1.

Proof Suppose gcd(u, p) �= 1, namely, p|u. Then 2p−1 ≡ gu(p−1) ≡ 1 (mod p2). This
contradicts the condition that p is a non-Wieferich prime. 
�
Lemma 2 Let p be a non-Wieferich prime and τ = ordp(2) be the order of 2modulo p. Then
the order of 2 modulo p j for an integer j ≥ 1 is τ p j−1.

Proof The statement for j = 1 is trivial and we only need to consider the case that j ≥ 2.
Since p is a non-Wieferich prime and τ is the order of 2 modulo p, there exists an integer t
such that 2τ = 1 + pt with gcd(p, t) = 1.

Let σ be the order of 2 modulo p j , namely, σ is the least positive integer satisfying 2σ ≡ 1
(mod p j ). By the properties of binomial coefficients,

2τ p j−1 = (1 + pt)p
j−1 ≡ 1 (mod p j ).

This implies σ | τ p j−1. On the other hand, it is clear that τ divides σ . Denote σ = τdpl ,
where gcd(p, d) = 1 and l ≥ 0. Again by the properties of binomial coefficients we have

2σ = 2τdpl = (1 + pt)dp
l ≡ 1 + dtpl+1 (mod pl+2).

Since gcd(dt, p) = 1, it follows that 2σ (mod p j ) = 1 if and only if l + 1 ≥ j . Hence
τ p j−1 divides σ = τdpl . From the above analysis the desired conclusion follows. 
�
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The linear complexity of generalized cyclotomic binary sequences 1187

Let F2 be the algebraic closure of F2 and αn ∈ F2 be a primitive pn th root of unity. Denote

α j = α
pn− j

n , j = 1, 2 . . . , n − 1. Then α j is a primitive p j th root of unity in an extension
field of F2. As usual, we denote by F2(α j ) a simple extension of F2 obtained by adjoining
an algebraic element α j [18]. The dimension of the vector space F2(α j ) over F2 is called the
degree of F2(α j ) over F2, in symbols [F2(α j ) : F2].
Lemma 3 For a non-Wieferich prime p, we have

[F2(α j+1) : F2(α j )] = p, j = 1, 2, . . . , n − 1,

where α j = α
pn− j

n and αn is a primitive pnth root of unity.

Proof It is well known [18] that ifF is a finite extension ofF2, then |F| = 2[F:F2] and the order
of any nonzero element F divides |F| − 1. Let τ be the order of 2 modulo p. It follows from
Lemma 2 that 2τ p j−1 ≡ 1 (mod p j ) and 2τ p j−1 �≡ 1 (mod p j+1) for any integer j ≥ 1,
which implies α j ∈ F

2τ p j−1 and α j+1 /∈ F
2τ p j−1 . That is to say, [F2(α j ) : F2] = τ p j−1 for

j = 1, 2, . . . , n. The desired result immediately follows. 
�
The following lemma discusses some of the basic properties of the generalized cyclotomic

classes defined in (2). Despite the simplicity, the proof is included here for completeness.

Lemma 4 For D(p j )
i defined as in (2), we have

(i) aD(p j )
i = D(p j )

i+k (mod d j )
for a ∈ D(p j )

k ; and

(ii) D(p j )
i (mod pl) = D(pl )

i (mod dl )
for 1 ≤ l ≤ j .

Proof (i) By the definition in (2), any element a in D(p j )
k can be written as a = gk+t0d j for

some integer t0 with 0 ≤ t0 < e. Thus,

aD(p j )
i =

{
gk+t0d j · gi+td j | 0 ≤ t < e

}
=

{
gi+k (mod d j ) · gt ′d j | 0 ≤ t ′ < e

}
= D(p j )

i+k (mod d j )
.

(ii) For any positive integer l with l ≤ j , since g is also a primitive root modulo pl , one has

gd j (mod pl) = g(pl−1(p j−l−1)+pl−1) f modpl) = gdl (mod pl),

whence

gi+d j t (mod pl) = gi (mod dl )+ti dl+td j (mod pl) = gi (mod dl )+t ′dl (mod pl).

The desired result thus follows.

�

The above auxiliary lemmas will be heavily used in our investigation of the linear com-
plexity of s∞ in the next subsection.

3.2 Main result

This subsection will investigate the linear complexity of s∞ defined in (4) for some even
integers f . The main result in this paper is given as follows.
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Theorem 5 Let p = e f + 1 be an odd prime with 2p−1 �≡ 1 (mod p2) and f being an even
positive integer. Let s∞ be the generalized cyclotomic binary sequence of period pn defined
in (4). Let ordp(2) denote the order of 2 modulo p and v = gcd

( p−1
ordp(2)

, f
)
. Then the linear

complexity of s∞ is given by

L = pn − r · ordp(2) − δ
( pn+1

2

)
, 0 ≤ r ≤ p−1

2ordp(2)
,

where δ(t) = 1 if t is even and δ(t) = 0 if t is odd. Furthermore,

(i) for p ≡ ±3 (mod 8), the linear complexity L = pn − δ
( pn+1

2

)
; and

(ii) for p ≡ ±1 (mod 8), the linear complexity

L =
{
pn − p−1

2 − δ
( pn+1

2

)
, if v = f ;

pn − δ
( pn+1

2

)
, if v| f

2 , or v = 2 and v �= f .

Remark 1 Suppose 2 ≡ gu (mod p) for some integer u. It is easily seen that gcd
( p−1
ordp(2)

, f
)

= gcd(u, f ). Thus the condition 2 ∈ D(p)
0 in Conjecture 1 is equivalent to v =

gcd
( p−1
ordp(2)

, f
) = f . In the case that f = 2r for a positive integer r , the integer v is

also a power of 2, which either equals f or divides f /2. Hence Conjecture 1 is included in
Theorem 5 as a special case.

Remark 2 A recent paper [24] studied the linear complexity of a family of generalized cyclo-
tomic sequences and also proved Conjecture 1. The authors of [24] pointed out that their
work is significantly different from the early version [9] of this paper with respect to the
sequences in consideration and the technique used in the computation of linear complexity.
When the sequences in the two papers are the same, the explicit result obtained in [24] is a
special case of Theorem 5.

Remark 3 Given an odd prime p with p ≡ ±1 (mod 8), one can flexibly choose a number of
even integers f satisfying the conditions in Theorem 5 (ii) according to the parity of p−1

ordp(2)
as follows.

(i) If ordp(2) is even, then any integer f with ν2( f ) > ν2(
p−1

ordp(2)
)will satisfy the condition

v | f
2 , where ν2(t) denotes the exponent of the largest power of 2 dividing an integer

t . In particular, when 2 is a primitive root modulo p, any even integer f satisfies the
condition.

(ii) If ordp(2) is odd, then any even integer f = 2 f1 with gcd( p−1
ordp(2)

, f1) = 1 will satisfy
the condition v = 2.

On the other hand, when an even integer f is not covered by Theorem 5 (ii), the experi-
mental result indicates that the linear complexity of s∞ varies for different choices of f (see,
e.g., Example 2).

Before we start with the proof of Theorem 5, we need to introduce some polynomials derived
from the sequence s∞ and investigate their properties.

Let S(x) = s0 + s1x + · · · + spn−1x pn−1 for the generalized cyclotomic sequences s∞
defined in (4) . Then,

S(x) =
pn−1∑

i=0

si x
i =

∑

t∈C (pn )
1

xt = 1 +
n∑

j=1

d j /2−1∑

i=0

∑

t∈D(p j )
i+b (mod d j )

x pn− j t . (5)
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The linear complexity of generalized cyclotomic binary sequences 1189

For simplicity of presentation, we define polynomials

E (p j )
i (x) =

∑

t∈D(p j )
i

x t , 1 ≤ j ≤ n, 0 ≤ i < d j , (6)

and

H (p j )
k (x) =

d j /2−1∑

i=0

E (p j )

i+k (mod d j )
(x), 0 ≤ k < d j ,

T (pm )
k (x) =

m∑

j=1

H (p j )
k (x pm− j

), m = 1, 2, . . . , n. (7)

Notice that the subscripts i in D(p j )
i , H (p j )

i (x) and T (p j )
i (x) are all taken modulo the order

d j . In the rest of this paper the modulo operation will be omitted when no confusion can
arise.

It can be easily seen from (5)–(7) that S(x) = 1+ T (pn)
b (x). By (1) the linear complexity

of s∞ in (4) can thus be given by

L = N −
∣∣∣
{
i ∈ Zpn | T (pn)

b (αi
n) = 1

}∣∣∣ , (8)

where αn is a pn th primitive root of unity. In the following we shall investigate the value of
T (pn)
b (αi

n) as i runs through Zpn .

From the definitions in (6) and (7), the polynomial T (pn)
b (x) heavily depends on the

polynomials E (p j )
i (x) and H (p j )

i (x) for 1 ≤ j ≤ n and 0 ≤ i < d j . Some basic properties
of these polynomials are given in the following lemma.

Lemma 6 Let α j = α
pn− j

n , 1 ≤ j ≤ n, be a p j th primitive root of unity. Given any element

a ∈ D(p j )
k , we have

(i) E (p j )
i (α

pla
j ) = E (p j−l )

i+k (α j−l) and H (p j )
i (α

pla
j ) = H (p j−l )

i+k (α j−l) for 0 ≤ l < j ; and

(ii) E (p j )
i (α

pla
j ) = e (mod 2) and H (p j )

i (α
pla
j ) = p j−1(p − 1)/2 (mod 2) for l ≥ j .

Proof (i) In this case, it follows from Lemma 4 (i) that

E (p j )
i

(
α
pla
j

)
=

∑

t∈D(p j )
i

(
α
pla
j

)t =
∑

t∈D(p j )
i+k

(
α
pl

j

)t =
∑

t∈D(p j )
i+k

αt
j−l .

Since α j−l is a p j−l th primitive root of unity, one has αt
j−l = α

t (mod p j−l )
j−l for t ∈ D(p j )

i+k .

Lemma 4 (ii) implies D(p j )
i+k (mod p j−l) = D(p j−l )

i+k , whence

E (p j )
i

(
α
pla
j

)
=

∑

t∈D(p j )
i+k

αt
j−l =

∑

t∈D(p j−l )
i+k

αt
j−l = E (p j−l )

i+k (α j−l).

Furthermore, by the definition of H (p j )
i (x) we have

H (p j )
i

(
α
pla
j

)
=

d j /2−1∑

i ′=0

E (p j )

i ′+i

(
α
pla
j

)
=

d j /2−1∑

i ′=0

E (p j−l )

i ′+i+k(α j−l).
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1190 V. Edemskiy et al.

We observe that
d j /2−1∑

i ′=d j−l/2
E (p j−l )

i ′+i+k(α j−l) = pl−1
2

d j−l−1∑

i ′=0
E (p j−l )

i ′ (α j−l) = pl−1
2

∑

t∈Z∗
p j−l

αt
j−l = 0.

This implies

H (p j )
i

(
α
pla
j

)
=

d j−l/2−1∑

i ′=0

E (p j−l )

i ′+i+k(α j−l) = H (p j−l )
i+k (α j−l).

(ii) In this case we have α
pl

j = 1. Then

E (p j )
i

(
α
pla
j

)
= E (p j )

i (1) = |D(p j )
i | (mod 2) = e (mod 2),

and H (p j )
i (α

pla
j ) = ed j/2 (mod 2) = p j−1(p − 1)/2 (mod 2).


�
The following proposition characterizes some properties of T (pm )

i (x) for 1 ≤ m ≤ n.

Proposition 1 For any a ∈ D(p j )
k , we have

(i) T (pm )
i (α

pla
m ) = T (pm−l )

i+k (αm−l) + (pl − 1)/2 (mod 2) for 0 ≤ l < m; and

(ii) T (pm )
i (αa

m) + T (pm )
i+dm/2(α

a
m) = 1.

Proof (i) From the definition in (6), Lemma 4 (ii) and Lemma 6, it follows that

T (pm )
i

(
α
pla
m

)
=

m∑

j=1

H (p j )
i

(
α
pm− j+l a
m

)

=
m∑

j=l+1

H (p j )
i

(
αa
j−l

) +
l∑

j=1

H (p j )
i (1)

=
m∑

j=l+1

H (p j−l )
i+k

(
α j−l

) + (pl − 1)/2 (mod 2)

=
m−l∑

j=1

H (p j )
i+k

(
α j

) + (pl − 1)/2 (mod 2). (9)

Similarly we have

T (pm−l )
i+k (αm−l) =

m−l∑

j=1

H (p j )
i+k

(
α
pm−l− j

m−l

) =
m−l∑

j=1

H (p j )
i+k

(
α j

)
.

The desired result thus follows.
(ii) By gcd(a, p) = 1 we know that αa

m is also a primitive pm th root of unity. Thus αa
m is a

root of the polynomial f (x) = (x pm − 1)/(x − 1) = x pm−1 + x pm−2 + · · · + x + 1. By
the definitions in (2), (6) and (7), it can be readily shown that

T (pm )
i (x) + T (pm )

i+dm/2(x) = x pm−1 + x pm−2 + · · · + x = f (x) + 1,

which immediately yields the desired result.

�
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The linear complexity of generalized cyclotomic binary sequences 1191

We now examine the value of T (pn)
b (αi

n) for some integers i ∈ Zpn .

Proposition 2 Let p be a non-Wieferich prime. Then T (pn)
b (αi

n) /∈ {0, 1} for i ∈ Zpn \ pn−1
Zp

and b = 0, 1, . . . , dn − 1.

Proof We will show T (pn)
b (αi

n) /∈ {0, 1} by contradiction. Suppose there exists an integer

i0 ∈ Zpn \pn−1
Zp such that T

(pn)
b (α

i0
n ) ∈ {0, 1}. The integer i0 can bewritten as i0 = pn−ma,

where 1 < m ≤ n and a ∈ Z
∗
pm . Assume a ∈ D(pm )

k . By Proposition 1 (i) we have

T (pn)
b (αi0

n ) = T (pn)
b (α

pn−ma
n ) = T (pm )

b+k (αm) + (pn−m − 1)/2 (mod 2),

whence T (pm )
b+k (αm) ∈ {0, 1}.Without loss of generality, we can assume b+k ≡ 0 (mod dm)

and T (pm )
0 (αm) = 0.

Suppose 2 ≡ gu (mod pm) for some integer u. Letting u1 ≡ u (mod dm), we have
2 ∈ D(pm )

u1 . It then follows from Proposition 1 (i) that

T (pm )
0 (αm) =

(
T (pm )
0 (αm)

)2 = T (pm )
0 (α2

m) = T (pm )
u1 (αm),

which implies T (pm )
0 (αm) = T (pm )

iu1
(αm) = 0 for any integer i ≥ 1.

Denote v = gcd(u1, dm). Since the subscript of T (pm )
i (x) is taken modulo dm , it is easily

seen that
0 = T (pm )

0 (αm) = T (pm )
iv (αm), i = 1, . . . , dm/v − 1. (10)

By Proposition 1 (ii) we have T (pm )
0 (αm)+ T (pm )

dm/2 (αm) = 1, whence T (pm )
dm/2 (αm) = 1. Thus v

does not divide dm/2. Since v = gcd(u1, dm) = gcd(u, dm) and gcd(u, p) = 1 (by Lemma
1), it follows that v divides f but does not divide f /2. A similar argument as in (10) gives

1 = T (pm )
dm/2 (αm) = T (pm )

dm/2+i f (αm) i = 1, . . . , dm/v − 1,

which implies T (pm )
f /2 (αm) = T (pm )

dm/2+ f (pm−1+1)/2
(αm) = 1. Hence we have

T (pm )
0 (αm) + T (pm )

f /2 (αm) = 1.

Denote ξ = H (pm )
0 (αm) + H (pm )

f /2 (αm). Since

T (pm )
0 (αm) + T (pm )

f /2 (αm) =
m∑

j=1

(
H (p j )
0

(
α
pm− j

m

)
+ H (p j )

f /2

(
α
pm− j

m

) )
,

it follows that

ξ = 1 +
m−1∑

j=1

(
H (p j )
0

(
α
pm−1− j

m−1

)
+ H (p j )

f /2

(
α
pm−1− j

m−1

) )
∈ F2(αm−1).
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On the other hand, by eliminating the overlapping terms in H (pm )
0 (αm) and H (pm )

f /2 (αm) we
obtain

ξ = E (pm )
0 (αm) + · · · + E (pm )

f /2−1(αm) + E (pm )
dm/2(αm) + · · · + E (pm )

f /2+dm/2−1(αm) =
∑

t∈D
αt
m,

(11)
where D = D(pm )

0 ∪ · · · ∪ D(pm )
f /2−1 ∪ D(pm )

dm/2 ∪ · · · ∪ D(pm )
f /2+dm/2−1. Observe that

D (mod p) = D(p)
0 ∪ · · · ∪ D(p)

f /2−1 ∪ D(p)
dm/2 (mod f ) ∪ · · · ∪ D(p)

f /2+dm/2−1 (mod f )

= D(p)
0 ∪ · · · ∪ D(p)

f /2−1 ∪ D(p)
f /2 ∪ · · · ∪ D(p)

f −1

= Z
∗
p.

Thus, by letting t (mod p) = t̄ for any t ∈ D we have

ξ =
∑

t∈D
αt
m =

∑

t∈D
α(t−t̄)+t̄
m =

∑

t∈D
α

(t−t̄)/p
m−1 α t̄

m =
p−1∑

i=1

ciα
i
m, ci ∈ F2(αm−1).

It means that αm is a root of the polynomial f (x) =
p−1∑

i=1
ci xi +ξ overF2(αm−1). This implies

[F2(αm) : F2(αm−1)] < p, which is in contradiction with Lemma 3. 
�
Remark 4 Proposition 2 greatly excludes the integers i ∈ Zpn that potentially lead to

T (pn)
b (αi

n) = 1, which is critical for the proof of the main theorem. The technique used
in the proof of Proposition 2 is generic and works for any integer n ≥ 2. In the case of n = 2,
it can be used to prove the statement in Lemma 6 [22], where the documented proof works
only for f = 2.

By Proposition 2, we only need to study the value of T (pn)
b (αi

n) for integers i in the set
pn−1

Zp . For any a ∈ Z
∗
p , it follows from Proposition 1 and Lemma 6 that

T (pn)
b (α

pn−1a
n ) = T (p)

b (αa
1 ) = H (p)

b (αa
1 ) = H (p)

k (α1),

where a ∈ D(p)
i for some integer i and k ≡ b + i (mod f ). The following proposition

examines the value of H (p)
k (α1) according to the relation between f and ordp(2).

Proposition 3 Let p = e f + 1 be an odd prime with f being an even positive integer and
v = gcd( p−1

ordp(2)
, f ). Then,

(i)
∣∣∣
{
k ∈ Z f | H (p)

k (α1) = 0
}∣∣∣ =

∣∣∣
{
k ∈ Z f | H (p)

k (α1) = 1
}∣∣∣ = f /2 if v = f ; and

(ii)
∣∣∣
{
k ∈ Z f | H (p)

k (α1) = 0
}∣∣∣ =

∣∣∣
{
k ∈ Z f | H (p)

k (α1) = 1
}∣∣∣ = 0 if v | f

2 , or v = 2 and

f �= v.

Proof From the definition of H (p)
k (x) we have

H (p)
k (α1) + H (p)

k+ f /2(α1) = α
p−1
1 + α

p−2
1 + · · · + α1 = 1 (12)

for k = 0, 1, . . . , f − 1. Thus
∣∣∣
{
k ∈ Z f | H (p)

k (α1) = 0
}∣∣∣ =

∣∣∣
{
k ∈ Z f | H (p)

k (α1) = 1
}∣∣∣.
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Assume 2 ≡ gu (mod p) for some integer u in Z
∗
p . Since ordp(2) = p−1

gcd(p−1, u)
, it

follows that gcd(p − 1, u) = p−1
ordp(2)

. Thus we can write u as u = (p−1)t
ordp(2)

with t co-prime

to f . Denote u1 ≡ u (mod f ). It follows that 2 ∈ D(p)
u1 and gcd(u1, f ) = gcd(u, f ) =

gcd( (p−1)t
ordp(2)

, f ) = gcd( (p−1)
ordp(2)

, f ) = v.

(i) In this case we have u1 ≡ 0 (mod f ). Then 2 ∈ D(p)
0 and

(
H (p)
k (α1)

)2 = H (p)
k (α2

1) = H (p)
k (α1)

for any k ∈ Z f , which implies H (p)
k (α1) ∈ F2. The desired result immediately follows

from (12).
(ii) We shall prove this case by contradiction. Suppose H (p)

k (α1) ∈ F2 for some integer k.

Without loss of generality, we assume k = 0 and H (p)
0 (α1) = 0.

In the case that v �= f , we have u1 < f . Since 2 ∈ D(p)
u1 and v = gcd(u1, f ), by a similar

argument as in the proof of Proposition 2 we get

0 = H (p)
0 (α1) = H (p)

v (α1) = · · · = H (p)
( f /v−1)v(α1),

and

1 = H (p)
f /2(α1) = H (p)

f /2+v(α1) = · · · = H (p)
f /2+( f /v−1)v(α1).

If v divides f /2, then H (p)
f /2(α1) = H (p)

f /2+v· f /2v(α1) = H (p)
0 (α1), which is a contradiction.

Let v = 2, v �= f and v does not divide f /2, it is clear that f /2 is odd. Then we get

0 = H (p)
0 (α1) = H (p)

2 (α1) = · · · = H (p)
( f −2)(α1),

and

1 = H (p)
1 (α1) = H (p)

3 (α1) = · · · = H (p)
f −1(α1).

So, we see that H (p)
i (α1) + H (p)

i+1(α1) + 1 = 0, i = 0, 1, . . . , f − 1 and then

E (p)
i (α1) + E (p)

i+ f /2(α1) + 1 = 0, i = 0, 1, . . . , f − 1. (13)

By the definition we can easily choose an integer j such that (p − 1) /∈
(
D(p)

j ∪ D(p)
j+ f /2

)
.

We define f (x) = E (p)
j (x)+E (p)

j+ f /2(x)+1. Given any a ∈ Z
∗
p , assuming a ∈ D(p)

k for an

integer k,we obtain fromLemma6and (13) that f (αa
1 ) = E (p)

j+k(α1)+E (p)
j+ f /2+k(α1)+1 = 0.

That is to say, f (αa
1 ) = 0 for any a ∈ Z

∗
p . This is a contradiction since the polynomial f (x)

has degree less than p − 1. 
�

With the preceding preparations, we are now in a position to prove the main theorem.

Proof of Theorem 5 Recall that the linear complexity of s∞ is given by

L = pn −
∣∣∣
{
i ∈ Zpn | T (pn)

b (αi
n) = 1

}∣∣∣ .
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From Proposition 2 we know
∣
∣
∣
{
i ∈ Zpn \ pn−1

Zp | T (pn)
b (αi

n) = 1
}∣∣
∣ = 0. For the remaining

set pn−1
Zp , if i = 0, then T (pn)

b (αi
n) = pn−1

2 (mod 2); if i ∈ pn−1
Z

∗
p , we have

T (pn)
b (αi

n) = T (p)
b (αa

1 ) = H (p)
b (αa

1 )

for some integera ∈ Z
∗
p . It is easily seen that

∣
∣
∣
{
a ∈ Z

∗
p | H (p)

b (αa
1 ) = 1

}∣∣
∣ = e

∣
∣
∣
{
k ∈ Z f | H (p)

k

(α1) = 1
}∣∣
∣ for any integer b with 0 ≤ b < dn . Hence the linear complexity

L = pn − δ
( pn+1

2

) − e
∣
∣
∣
{
k ∈ Z f | H (p)

k (α1) = 1
}∣∣
∣ . (14)

Suppose H (p)
k (α1) = 1 for some integer k. Then

1 = (H (p)
k (α1))

2 = H (p)
k (α2

1) = H (p)
k+u1

(α2
1),

where 2 ∈ D(p)
u1 for some integer u1. From the fact that H (p)

k (α1)+ H (p)
k+ f /2(α

a
1 ) = 1 for any

k ∈ Z f , we have

L = pn − δ(
pn+1
2 ) − r ordp(2),

where r is an integer with 0 ≤ r ≤ p−1
2 ordp(2)

.

(i) For p ≡ ±3 (mod 8), it is well known [12] that 2 is a quadratic non-residue of primes

since the Legendre symbol
( 2
p

) = (−1)
p2−1
8 . Assume 2 = gu (mod p) for some odd

integer u. It follows that gcd
( p−1
ordp(2)

, f
) = gcd(u, f ) is odd, which always divides f /2.

From Proposition 3 (ii) the desired result follows.
(ii) For p ≡ ±1 (mod 8), we immediately obtain the desired result from Proposition 3. 
�

At the end of this section, we give some examples demonstrating the main result in this
paper.

Example 1 Choose an odd prime p = 13. The possible even divisors f of p−1 are 2, 4, 6, 12
and in this case 2 is a primitive root. To avoid confusion we take a primitive root g = 6.

(i) For n = 1 and f = 2, 4, 6, 12, we take b = 1 and then obtain the following four
sequences:

1010011110010, 1010111000101, 1001011110100, 1010001011101.

Our experimental result shows that all these sequences have linear complexity 13, which
matches the statement of Theorem 5 (i).
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(ii) For n = 2 and f = 2, 4, 6, 12, we randomly take b = 7 and then obtain the following
four sequences:

1000110111000001000101001111010001110010111101001010001101010001010010

1110010111111100111111101001110100101000101011000101001011110100111000

10111100101000100000111011000,

1000100110000110100101011000100010110111111000101100010011010101100111

1110101101101110001001001010000001100101010011011100101110000001001011

10111001010110100111100110111,

1000110010000001110100011100010111110011010001101011000101010010110111

1011011111001000010011111011011110110100101010001101011000101100111110

10001110001011100000010011000,

1000110110110111100111111000111011000011101011101000100011111101111101

0110001000100110011011101110010100000100000011101110100010100011110010

00111000000110000100100100111.

Our experimental result shows that all these sequences have linear complexity 169,which
matches the statement of Theorem 5 (i).

(iii) For 3 ≤ n ≤ 6 and f = 2, 4, 6, 12, we also compute the linear complexities of the
sequences s∞ with a Magma program. Our experimental results are all consistent with
the statement of Theorem 5 (i).

Example 2 Choose an odd prime p = 31. We have ordp(2) = 5 and a primitive root g = 3.
For all possible even integers f that divide p − 1, the relation between v = ( p−1

ordp(2)
, f

)
and

f is given as follows.

f 2 6 10 30
v 2 6 2 6
relation v = f v = f v = 2 –

Here the dash indicates that the relation is not included in Theorem 5 (ii).

(i) For n = 1 and f = 2, 6, 10, 30, we take b = 3 and then obtain the following four
sequences s1, s2, s3, s4, respectively.

s1 : 1001001000011101010001111011011 s2 : 1000000100010111000101110111111
s3 : 1010001000110000111100111011101 s4 : 1000000010100100110110101111111

Our experimental result shows that the linear complexities of s1, s2, s3, s4 are
15, 15, 30, 25, respectively. The linear complexities of s1, s2, s3 match the statement
of Theorem 5 (ii), and the linear complexity of s4 matches the general statement of
Theorem 5.

(ii) For n = 2 and f = 2, 6, 10, 30, we take b = 0 and obtain four sequences s1, s2, s3, s4,
respectively. Our experimental result shows that the linear complexities of s1, s2, s3, s4
are 946, 946, 961, 956, respectively. These results are consistent with the statement of
Theorem 5.
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(iii) For n = 3, 4 and f = 2, 6, 10, 30, we also compute the linear complexity of the
sequences s∞ with a magma program. Our experimental results show that the linear
complexities of s∞ corresponding to f = 2, 6, 10 match the statement of Theorem 5
(ii), and the linear complexities of s∞ corresponding to f = 30 match the the general
statement of Theorem 5.

Remark 5 Low autocorrelation is one of the desirable properties of pseudo-random
sequences in cryptography and digital communication. Unfortunately some cyclotomic
binary sequences with high linear complexity do not have satisfactory autocorrelation proper-
ties [13,14,17]. For the sequences s∞ studied in this paper, because the generalized cyclotomic
classes in (2) have varying orders for 1 ≤ j ≤ n, it is challenging to obtain theoretical result
on the autocorrelation values of s∞. We checked all the sequences in Examples 1 and 2
by a computer program. Unfortunately, these sequences s∞ have many autocorrelation val-
ues with a large maximum out-of-phase autocorrelation. This makes a theoretical study of
autocorrelation properties of this family of sequences intractable and less interesting.

Very recently Wu et al. [21] studied the error linear complexity of the cyclotomic binary
sequences of period p2 in [22] for the case f = 2, and showed that the sequences are stable in
terms of kth error linear complexity. The error linear complexity of the cyclotomic sequences
of period pn is beyond the focus of this paper and interested readers are invited to work on
this topic.

4 Conclusion

This paper re-examined the linear complexity of a family of generalized cyclotomic binary
sequences of period pn . The major contribution of this paper is that it proved the conjecture
by Xiao et al. about the linear complexity of this family of sequences with a new technique,
and it applied the new technique to extend the conjectured result to more general cases.
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