
Designs, Codes and Cryptography (2019) 87:1973–1983
https://doi.org/10.1007/s10623-018-00598-2

On some quadratic APN functions

Hiroaki Taniguchi1

Received: 28 March 2018 / Revised: 14 December 2018 / Accepted: 14 December 2018 /
Published online: 3 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
A construction of APN functions using the bent function B(x, y) = xy is proposed in Carlet
(Des Codes Cryptogr 59:89–109, 2011). At this time, two families of APN functions using
this construction are known, that is, the family of Carlet (2011) and the family of Zhou and
Pott (AdvMath 234:43–60, 2013). In this note, we propose another family of APN functions
with this construction, which are not CCZ equivalent to the former two families on F28 . We
also propose a family of presemifields and determined the middle, left, right nuclei and the
center of the associated semifields.
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1 Introduction

Let m, n be positive integers. Let F2n be the finite field of 2n elements, and denote by F×
2n its

multiplicative group. For anyfinite set S,we denote by |S| the cardinality of S.A function F on
F
m
2 is called anAPN function if F satisfies |{x ∈ F

m
2 | F(x+a)+F(x) = b}| ≤ 2 for any non-

zero a ∈ F
m
2 and any b ∈ F

m
2 .We call F a quadratic function if F(x+y)+F(x)+F(y)+F(0)

is F2-bilinear for any x, y ∈ F
m
2 . Two functions F1 and F2 on Fm

2 are called CCZ equivalent
if the graphs GF1 := {(x, F1(x)) | x ∈ F

m
2 } and GF2 := {(x, F2(x)) | x ∈ F

m
2 } in F

m
2 × F

m
2

are affine equivalent, that is, if there exists a F2-linear isomorphism L ∈ GL2(F
m
2 × F

m
2 )

and an element v ∈ F
m
2 × F

m
2 such that L(GF1) + v = GF2 . A Γ -rank of a function F on

F
m
2 is the rank of the incidence matrix over F2 of an incidence structure {P,B, I }, where

P = F
m
2 × F

m
2 , B = F

m
2 × F

m
2 and (a, b)I (u, v) for (a, b) ∈ P and (u, v) ∈ B if and only if

F(a + u) = b + v.

Proposition 1 (Edel–Pott [11]) If two functions F1 and F2 on F
m
2 are CCZ equivalent, then

they have the same Γ -ranks.
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In this note, we identify Fn
2 with F2n and F2n

2 with F2n ×F2nas F2-vector spaces, and consider
the APN function F on F2n

2 with the following form:

F : F2n × F2n � (x, y) �→ (xy,G(x, y)) ∈ F2n × F2n . (1)

APN functions of this type were first considered by Carlet in [9]. The conditions on G such
that F is anAPN function are given byCarlet in 4.2.1 of [9]. If F is quadratic, these conditions
are as follows:

1. F2n � x �→ G(x, y) ∈ F2n is an APN function for every y ∈ F2n ,
2. F2n � y �→ G(x, y) ∈ F2n is an APN function for every x ∈ F2n , and
3. F2n � x �→ G(x, αx) ∈ F2n is an APN function for every α ∈ F

×
2n .

2 Known examples and their �-ranks in F28

For two positive integers m, n, the greatest common divisor of them is denoted by
GCD(m, n). So far, only two examples of APN functions of the form (1) are known.

Theorem 1 (Carlet [9]) Let n be an integer with n ≥ 2, i, j integers such that GCD(n, i −
j) = 1. Let s, t, u, v ∈ F2n with s �= 0, t �= 0. Set G(x, y) = sx2

i+2 j +ux2
i
y2

j +vx2
j
y2

i +
t y2

i+2 j
. Then F(x, y) := (xy,G(x, y)) is an APN function if and only if the polynomial

G(x, 1) = sx2
i+2 j + ux2

i + vx2
j + t has no root in F2n .

Theorem 2 (Zhou–Pott [15]) Let m, n be positive integers with n ≥ 2 and GCD(m, n) = 1.
Let α ∈ F

×
2n and σ ∈ Gal(F2n/F2), the Galois group of F2n over F2. Let G(x, y) =

x2
m+1 + αy(2m+1)σ . Then F(x, y) := (xy,G(x, y)) is an APN function if and only if α /∈

{a2m+1(t2
m + t)1−σ | a, t ∈ F2n }.

Corollary 1 (Zhou–Pott [15]) Let m, n be positive integers with n ≥ 2 even and
GCD(m, n) = 1. Let α ∈ F

×
2n and set G(x, y) = x2

m+1 +αy(2m+1)2i . If α is non-cubic (i.e.,
α �= t3 for any t ∈ F2n ) and i is even, F(x, y) := (xy,G(x, y)) is an APN function.

In case i = 0, or σ is an identity mapping, Theorem 2 and Corollary 1 are covered by
Theorem 1.

Lemma 1 Let F be a function and L a F2-linear function, both defined on F2n . Then F and
F + L are CCZ equivalent.

Proof We sometimes denote L(x) by xL , which means the linear operator L acts on x . Then

in F2n × F2n , we see (x, F(x))

(
1 L
0 1

)
= (x, F(x) + xL) = (x, F(x) + L(x)). 	


The following corollary may be well known.

Corollary 2 The APN functions in Theorem 1 are CCZ equivalent to F ′(x, y)
= (xy,G ′(x, y)) with G ′(x, y) = x2

m+1 + axy2
m + by2

m+1, where m = i − j , a ∈ {0, 1}
and some b ∈ F

×
2n , such that the polynomial G(x, 1) = x2

m+1 + ax + b has no root in F2n .

Proof By the coordinate change (x, y) �→ (x, λx+ y) for some λ ∈ F2n , we can eliminate u,
that is, we have F(x, y) = (xy + λx2,G1(x, y)), where G1(x, y) = s′x2i+2 j + v′x2 j

y2
i +

t ′y2i+2 j
with s′, v′, t ′ ∈ F2n , s′, t ′ �= 0. Next, by the linear transformation Φ1 : (u, v) �→
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(u, (v/s′)2− j
) on F2n ×F2n , we haveΦ1(F(x, y)) = (xy+λx2,G2(x, y))with G2(x, y) =

x2
m+1 + axy2

m + by2
m+1, where m = i − j and a, b ∈ F2n with b �= 0. If a = 0, we have

established the statement if we set G ′ := G2, since Φ1(F(x, y)) = (xy + λx2,G ′(x, y)) is
CCZ equivalent to F ′(x, y) = (xy,G ′(x, y)) by Lemma 1.

Let a �= 0. By the coordinate change (x, y) �→ (a2
−m

x, y) followed by the linear transfor-
mationΦ2 : (u, v) �→ ((1/a2

−m
)u, (1/a2

−m+1)v) onF2n ×F2n , we haveΦ2(Φ1(F(x, y))) =
(xy + λ′x2,G ′(x, y)) for some λ′ with G ′(x, y) = x2

m+1 + xy2
m + b′y2m+1 for some

b′ �= 0. We set b := b′. Then we have established the statement for the case a �= 0, since
Φ2(Φ1(F(x, y))) = (xy+λ′x2,G ′(x, y)) isCCZequivalent to F ′(x, y) = (xy,G ′(x, y))by
Lemma1.Note that, in both casesa = 0 anda = 1, the polynomialG ′(x, 1) = x2

m+1+ax+b
has no root in F2n by assumption on G(x, 1). 	


We have the following fact by Helleseth and Kholosha.

Fact 1 (Theorem. 1 of [12]) For a positive integer m < n with GCD(m, n) = 1, the number
of b ∈ F

×
2n such that the polynomial x2

m+1 + x + b has no root in F2n is (2n + 1)/3 if n is
odd, and (2n − 1)/3 if n is even.

Hence there are many polynomials x2
m+1+ax+b as in Corollary 2 which have no root in

F2n . As for the constant term b ∈ F
×
2n with n even such that the equation x2

m+1 + x + b = 0
with GCD(m, n) = 1 has no root in F2n , interesting and useful results are proved in [7].

The Γ -ranks of the APN functions F ′ in Corollary 2 on F28 , which equal the Γ -ranks of
the APN functions F in Theorem 1 on F28 by Proposition 1 and Corollary 2, are calculated
using Magma [6]. They are all 13,200, which is the Γ -rank of the function x3 + x17 +
u16(x18 + x33) + u15x48 in the Table 10, 2.1 of [11].

As for the functions F in Corollary 1 by Y. Zhou and A. Pott, there are the cases m = 1
or m = 3, and i = 0 or i = 2 on F28 . According to Zhou–Pott [15], the Γ -rank is 13,200 if
i = 0 (in this case F belongs to the family of Theorem 1). On the other hand, the Γ -rank
is 13,642 if i = 2. Thus, on F28 , the APN functions in Corollary 1 with i = 2 and the APN
functions in Theorem 1 are CCZ inequivalent.

3 Another example

Theorem 3 Let m, n be positive integers with n ≥ 2 and GCD(m, n) = 1. Let a ∈ F2n and
b ∈ F

×
2n . Let us define

G(x, y) = x2
2m+23m + ax2

2m
y2

m + by2
m+1. (2)

Then F(x, y) := (xy,G(x, y)) is an APN function if and only if the polynomial P(x) :=
x2

m+1 + ax + b has no root in F2n .

We note that, if a = 0, then F(x, y) in Theorem 3 belongs to the family of Theorem 2.
The next theorem is a different expression of Theorem 3. Note that Theorem 3 is obtained
from Theorem 4 by the substitution x �→ x2

2m
.

Theorem 4 Let m, n be positive integers with n ≥ 2 and GCD(m, n) = 1. Let a ∈ F2n and
b ∈ F

×
2n . Let us define G(x, y) = x2

m+1 + axy2
m + by2

m+1. Then

F(x, y) := (xτ y,G(x, y))

with xτ := x2
−2m

, is an APN function if and only if the polynomial G(x, 1) := x2
m+1+ax+b

has no root in F2n .

123



1976 H. Taniguchi

Using the expression of G(x, y) in Theorem 4 and using the same method as in the proof
of Corollary 2, we have the following proposition.

Proposition 2 The function F(x, y) = (xy,G(x, y)) in Theorem 3 is CCZ equivalent to the
function F ′(x, y) = (xy,G ′(x, y)), where G ′(x, y) = x2

2m+23m + a′x22m y2m + b′y2m+1

for some a′, b′ with a′ ∈ {0, 1} and b′ ∈ F
×
2n . Moreover, F ′ is APN if and only if P ′(x) =

x2
m+1 + a′x + b′ has no root in F2n .

We omit the proof because it is a copy of the proof of Corollary 2.

Proof of Theorem 3 We have to check the conditions 1,2,3 of Section 1 by Carlet. (See the last
paragraph of Section 1 of this article.) The conditions 1 and 2 are clearly satisfied.We have to
investigate on the condition 3. Since G(x, αx) = x2

2m+23m +aα2m x2
2m+2m +bα2m+1x2

m+1,
we see that G(x, αx) is the composition mapping of the Gold function z := g(x) = x2

m+1

and the linear mapping Lα(z) = z2
2m + aα2m z2

m + bα2m+1z. Hence, we see that G(x, αx)
is an APN function if Lα(z) is an injective mapping on F2n , that is, the polynomial Lα(z)
has no root other than z = 0. Since b �= 0 by assumption, we see that Lα(z) has no root
other than z = 0 if and only if the polynomial Lα(z)/z = z2

2m−1 + aα2m z2
m−1 + bα2m+1

has no root in F2n . Let s := z2
m−1. Then we see that this condition is equivalent to the

condition that Lα(z)/(α2m+1z) = (s/α)2
m+1 + a(s/α) + b has no root in F2n . Lastly,

let t := s/α, then we see that G(x, αx) is an APN function if the polynomial P(t) :=
Lα(z)/(α2m+1z) = t2

m+1 + at + b has no root in F2n . Now, assume to the contrary that
P(t) has a non-zero root t in F2n . Then Lα(z) has a non-zero root z = (αt)1/(2

m−1). Since
α �→ (αt)1/(2

m−1) is a permutation on F
×
2n for a fixed root t �= 0 and since g(x) = x2

m+1

is a Gold function, there exist a ∈ F
×
2n , b

′ ∈ F2n and α ∈ F
×
2n such that the two equations

g(x+a)+g(x) = b′ and g(x+a)+g(x) = b′+(αt)1/(2
m−1) have solutions. Let b := Lα(b′).

Then we have b = Lα(b′ + (αt)1/(2
m−1)) by definitions of t and α. Let x1 and x2 be solutions

of g(x + a) + g(x) = b′ and g(x + a) + g(x) = b′ + (αt)1/(2
m−1) respectively, then

x1 + a and x2 + a are also solutions of them. Recall G(x + a, α(x + a)) + G(x, αx) =
Lα(g(x+a)+g(x))with g(x) = x2

m+1. Then, fromG(x+a, α(x+a))+G(x, αx) = b, we
have g(x+a)+g(x) = b′ and g(x+a)+g(x) = b′+(αt)1/(2

m−1). Hencewe havemore than
four solutions x1, x1+a, x2 and x2 +a for the equation G(x +a, α(x +a))+G(x, αx) = b.
Thus G(x, αx) is not an APN function for some α ∈ F

×
2n if we assume that P(t) has a

non-zero root t in F2n . 	

We have calculated the Γ -ranks of the APN functions in Theorem 3 under the conditions

that a �= 0 using Magma [6]. We obtained that the Γ -rank is 13,700 if b5 = 1, and the
Γ -rank is 13,798 if b5 �= 1. If a = 0, the Γ -rank is 13,642, since APN functions (2) are in
a family of Corollary 1 with i = 2 if a = 0. Therefore, we see that the family in Theorem 3
has more than two CCZ equivalent classes on F28 . We notice that the Γ -ranks 13,700 and
13,798 of the APN functions in Theorem 3 do not appear in the list by Edel and Pott [11], or
the list by Budaghyan et al. [8] arising from the known infinite families of APN functions,
which means the function is also not equivalent to other known families such as the Gold or
the Budaghyan–Carlet–Leander functions.
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APN functions Γ -ranks in F28

Theorem 1 [Carlet] 13,200
Corollary 1 with i = 2 [Zhou–Pott] 13,642
Theorem 3 with a �= 0 and b5 = 1 13,700
Theorem 3 with a �= 0 and b5 �= 1 13,798

4 Related presemifields on Fpn

Let p be a prime number. Let F := Fpn be the finite field of pn elements. The polynomial
ax pm+1 + bx pm + cx + d ∈ F[x] with a �= 0 is called a projective polynomial. A recent
reference is Bluher [5]. Let K be a subfield of F with |K | ≥ 3. Let σ be a generator of the
Galois group Gal(F/K ) of F over K . Let a, b ∈ F and P(x) := xσ+1 + ax + b. Note that
P(x) is a projective polynomial. We assume that the equation P(x) = 0 has no root in F .
Let α be a non-zero element in F with the norm NF

K (−α) �= 1. Let us define a multiplication
x ◦α y := xσ y+αxyσ , which is the multiplication of the twisted presemifield of Albert [1].

Lemma 2 If x ◦α y = 0, then x = 0 or y = 0.

Proof Let x �= 0 and y �= 0, and assume that x ◦α y = 0. Then from xσ y + αxyσ = 0 we
have (x/y)σ /(x/y) = −α. Thus we have a contradiction since the norm of the left hand side
is 1, and the norm of the right hand side is not equal to 1 by assumption on α. 	


We need the following lemma.

Lemma 3 If the projective polynomial P(x) = xσ+1+ax+b above satisfies P(x) �= 0 for all
x ∈ F, then the linear mapping Lβ : F → F defined by Lβ(x) := xσ 2 + aβσ xσ + bβσ+1x
is invertible for any non-zero β ∈ F.

Proof Assume to the contradiction that Lβ(z) = 0 for some non-zero z ∈ F . Since z �= 0,

we have zσ
2−1 + aβσ zσ−1 + bβσ−1 = 0. Let us put X := zσ−1. Then we have Xσ+1 +

aβσ X +bβσ+1 = 0. Note that X �= 0 since z �= 0 and X = zσ /z. Next we divide both sides
of the equation by βσ+1 and put Y := X/β. Then Y σ+1 + aY + b = 0 with Y �= 0. Thus
we have P(Y ) = 0 with Y �= 0, which contradicts to the assumption that P(x) �= 0 for all
x ∈ F . 	

Theorem 5 Let (x, s), (y, t) ∈ F × F. We define a multiplication ∗ on F × F as follows.
Then we have a presemifield (F × F,+, ∗).

(x, s) ∗ (y, t) := ((x ◦α y)σ
2 − a(xσ t − αyσ s)σ − b(s ◦α t), xt + ys). (3)

We notice that, if a = 0, p is odd, α = 1 and the extension degree [F : K ] is odd, this
presemifield is a member of the presemifields in Theorem 1 of [15].

Proof It is clear that the multiplication (x, s) ∗ (y, t) is additive on both (x, s) and (y, t).
Now assume that (x, s) ∗ (y, t) = (0, 0). Then we have to prove that, if (x, s) �= (0, 0) then
(y, t) = (0, 0), and if (y, t) �= (0, 0) then (x, s) = (0, 0). We only give the proof of the first
case, since we are able to give the similar proof for the second case.

Firstly, let s = 0, then x �= 0 since (x, s) �= (0, 0), thus we have t = 0 from the second
equation xt + ys = 0 of (3). Therefore, we have x ◦α y = 0 from the first equation of (3)
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and hence we have y = 0 by Lemma 2. Thus we have proved that (y, t) = (0, 0). By the
same way, we have (y, t) = (0, 0) if x = 0.

Next, we will prove that (y, t) = (0, 0) under the conditions (x, s) ∗ (y, t) = (0, 0)
with x �= 0 and s �= 0. We assume to the contradiction that (y, t) �= (0, 0). From this
assumption, we must have y �= 0 and t �= 0 by the second equation xt + ys = 0 of
(3). Since xt + ys = 0 with x, y, s, t �= 0, there exists a non-zero β ∈ F such that
s/x = −t/y = β. Let us substitute s by βx , and t by −β y on the first equation of (3). Then
we have (x ◦α y)σ

2 + aβσ (x ◦α y)σ + bβσ+1(x ◦α y) = 0. Let us put z := x ◦α y, then we
have zσ

2 + aβσ zσ + bβσ+1z = 0. Recall that z �= 0 by the assumption that x �= 0, y �= 0
and by Lemma 2. Thus we have a contradiction since Lβ(z) = zσ

2 + aβσ zσ + bβσ+1z �= 0
by Lemma 3. 	


Let (F × F,+, 	) be the associated semifield of the presemifield (F × F,+, ∗) of The-
orem 5 with the identity element (1, 0) ∗ (1, 0). Then,

((x, s) ∗ (1, 0))	((1, 0) ∗ (y, t)) = (x, s) ∗ (y, t)

for any x, s, y, t ∈ F by Kaplansky’s trick (see [13]). As for the definitions of middle,
left, right nuclei and the center, we refer to Lavrauw and Polverino [13]. We note that the
center C of the semifield is the intersection of the associative center (the intersection of the
three nuclei) and the commutative center (consists of the elements which commute with all
elements of the semifield). We will prove the following theorem.

Theorem 6 We assume that the extension degree [F : K ] ≥ 3. Then the middle nucleus Nm

is isomorphic to K if a �= 0. The right nucleus Nr and the left nucleus Nl are also isomorphic
to K . The commutative center is isomorphic to K if α �= 1 or a �= 0. Hence the center C is
isomorphic to K if a �= 0.

We notice that K is a subfield of Nm , Nl , Nr andC of the semifield (F × F,+, 	) because
of Proposition 3 of [3], since it is easy to check that (lx, ls) ∗ (y, t) = (x, s) ∗ (ly, lt) =
l((x, s) ∗ (y, t)) for any l ∈ K and any x, s, t, y ∈ F for the multiplication ∗ defined by (3)
and the field multiplication of F denoted by l(x, s) = (lx, ly). In the case a = 0 and α = 1
(hence p and [F : K ] must be odd since NF

K (−α) �= 1), the results of Theorem 6 for middle,
left and right nuclei follow from Theorem 2(b) and Theorem 3 of [15]. The commutative
center is F × F since the associated semifields are commutative in the case a = 0 and α = 1
(see [15]). We will prove Theorem 6 using the Propositions 3–6 below, which will be proved
in the following part of this article.

Notice that x �→ xσ y + αxyσ is an injective mapping for any fixed y �= 0, and y �→
xσ y + αxyσ is an injective mapping for any fixed x �= 0. Let y, t ∈ F . Let y′ ∈ F be the
unique element determined by

(y′ + αy′σ )σ
2 − atσ = (yσ + αy)σ

2 + a(αt)σ (4)

from y and t . Then we easily see that

(y, t) ∗ (1, 0) = (1, 0) ∗ (y′, t).

Let x, s, y′, t ∈ F . Let A ∈ F be an element which satisfies that

(A, y′s + xt) ∗ (1, 0) = (x, s) ∗ (y′, t).

Then A is uniquely determined by

(Aσ + αA)σ
2 + a(α(y′s + xt))σ = (x ◦α y′)σ 2 − a(xσ t − αy′σ s)σ − b(s ◦α t). (5)
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Let y, t, z, u ∈ F . Let B ∈ F be an element which satisfies that

(1, 0) ∗ (B, zt + yu) = (y, t) ∗ (z, u).

Then B is uniquely determined by

(B + αBσ )σ
2 − a(zt + yu)σ = (y ◦α z)σ

2 − a(yσ u − αzσ t)σ − b(t ◦α u). (6)

Let X := (x, s) ∗ (1, 0), Y := (y, t) ∗ (1, 0) = (1, 0) ∗ (y′, t) and Z := (1, 0) ∗ (z, u).
Let us assume that

(X	Y )	Z = X	(Y	Z). (7)

Then we easily see, using Kaplansky’s trick (see [13]), that

(A, y′s + xt) ∗ (z, u) = (x, s) ∗ (B, zt + yu).

Thus, from (7), we have the equations:

(A ◦α z)σ
2 − a(Aσ u − αzσ (y′s + xt))σ − b((y′s + xt) ◦α u)

= (x ◦α B)σ
2 − a(xσ (zt + yu) − αBσ s)σ − b(s ◦α (zt + yu)) (8)

and

Au + z(y′s + xt) = Bs + x(zt + yu). (9)

Recall that the extension degree [F : K ] ≥ 3 by assumption, and σ is a generator of the
Galois group Gal(F/K ). We use the following lemma.

Lemma 4 Let a, b, c ∈ F such that azσ
2

i +bzσi +czi = 0 for some zi ∈ F, i = 1, 2, 3 which
are linearly independent over K . Then a = b = c = 0.

Proof See 3.51. Lemma of [14]. 	

Proposition 3 The middle nucleus Nm is isomorphic to K if a �= 0.

Proof We have to determine Y = (y, t) ∗ (1, 0) (= (1, 0) ∗ (y′, t)) if (7) is satisfied for any
X = (x, s) ∗ (1, 0) and Z = (1, 0) ∗ (z, u), i.e., for any (x, s), (z, u) ∈ F × F . Let u = 0
and s �= 0. Then from (9), we have B = zy′. Next using (6) with u = 0 and B = zy′, we
have

(y′z + α(y′z)σ )σ
2 − a(zt)σ = (y ◦α z)σ

2 + a(αzσ t)σ .

Thus we have

(ασ 2
yσ 2 − ασ 2

y′σ 3
)zσ

3 + (yσ 3 + aασ tσ − y′σ 2
)zσ

2 + atσ zσ = 0

for any z ∈ F . Then by Lemma 4, we have t = 0 since a �= 0, and y′σ = y, yσ = y′, hence
yσ 2 = y, for (y, t) with Y = (y, t) ∗ (1, 0) = (1, 0) ∗ (y′, t) ∈ Nm . Let u = 0 and s �= 0.
Then we have B = zy′ = zyσ by (9) as above. By (8) with u = 0, and using t = 0, y′ = yσ ,
we have

(A ◦α z)σ
2 + a(αzσ yσ s)σ = (xσ yσ z + αxyzσ )σ

2 + a(αyzσ s)σ .

Thus we have

(ασ 2
Aσ 2 − ασ 2

xσ 2
y)zσ

3 + (Aσ 3 + aασ ysσ − xσ 3
yσ − aασ yσ sσ )zσ

2 = 0.
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We notice that A is determined only by y, t, x, s by the Eq. (5) and independent of z, u.
Then we have Aσ 2 = xσ 2

y and aασ (y − yσ )sσ = 0. Thus we have yσ = y, i.e., y ∈ K if
a �= 0. Therefore we must have Y = (y, 0) ∗ (1, 0) with y ∈ K . Hence Nm is isomorphic to
K if a �= 0. 	

Proposition 4 The left nucleus Nl is isomorphic to K .

Proof We have to determine X = (x, s)∗(1, 0) if (7) is satisfied for any Y = (y, t)∗(1, 0) =
(1, 0) ∗ (y′, t) and Z = (1, 0) ∗ (z, u) with y, y′, t, z, u ∈ F . Firstly, we assume that s �= 0
to the contradiction. Let u = 0. Then from (9), we have B = zy′. Next using (6) with u = 0
and B = zy′, we have

(y′z + α(y′z)σ )σ
2 − a(zt)σ = (y ◦α z)σ

2 + a(αzσ t)σ .

This equation holds for any z ∈ F . Notice that y, y′, t are independent of z. From this
equation, we have

(ασ 2
yσ 2 − ασ 2

y′σ 3
)zσ

3 + (yσ 3 + aασ tσ − y′σ 2
)zσ

2 + atσ zσ = 0

for any z ∈ F . Then by Lemma 4, we have y′σ = y, yσ = y′ (and t = 0 if a �= 0). Thus we
must have yσ 2 = y if s �= 0. However, since y, t are any element in F and [F : K ] ≥ 3, we
have a contradiction if s �= 0. Therefore, we must have s = 0 if X = (x, s) ∗ (1, 0) ∈ Nl .
Since s = 0, we have A = xy from (9) if u �= 0. Let u �= 0 and t = 0. Then by (4) we have

y′ + αy′σ = yσ + αy.

By (5), we have

xσ y′ + αx y′σ = xσ yσ + αxy.

Thus we have

y′ − yσ = α(y − y′σ ) and xσ (y′ − yσ ) = αx(y − y′σ ). (10)

We note that, if y − y′σ = 0 or y′ − yσ = 0 then yσ 2 = y by (10). However, there exists
y ∈ F such that yσ 2 �= y since [F : K ] ≥ 3. Using this y, we have

xσ (y′ − yσ ) = x(y′ − yσ )

with y′ − yσ �= 0 by (10). Therefore, wemust have xσ = x . Thus we have X = (x, 0)∗(1, 0)
with x ∈ K . Hence Nl is isomorphic to K . 	

Proposition 5 The right nucleus Nr is isomorphic to K .

Proof We have to determine Z = (1, 0) ∗ (z, u) if (7) is satisfied for any X = (x, s) ∗ (1, 0)
and Y = (y, t) ∗ (1, 0) = (1, 0) ∗ (y′, t) with x, u, y, y′, t ∈ F . Firstly, we assume that
u �= 0 to the contradiction. Let s = 0. Then from (9), we have A = xy. Next using (5) with
s = 0 and A = xy, we have

((xy)σ + αxy)σ
2 + a(αxt)σ = (x ◦α y′)σ 2 − a(xσ t)σ .

This equation holds for any x ∈ F . Notice that y, y′, t are independent of x . Thus we
have

xσ 3
(yσ 3 − y′σ 2

) + xσ 2
(ασ 2

yσ 2 − ασ 2
y′σ 3 − atσ ) + xσ (aασ tσ ) = 0
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for any x ∈ F . Then by Lemma 4, we have y′σ = y, yσ = y′ (and t = 0 if a �= 0). Thus we
must have yσ 2 = y if u �= 0. However, since y, t are any element in F and [F : K ] ≥ 3, we
have a contradiction if u �= 0. Therefore, we must have u = 0 if Z = (1, 0) ∗ (z, u) ∈ Nr .
Since u = 0, we have B = zy′ from (9) if s �= 0. Let s �= 0 and t = 0. Then by (4), we have

y′ + αy′σ = yσ + αy.

By (6), we have

zy′ + αzσ y′σ = yσ z + αyzσ .

Then by the same method as in the proof of Proposition 4, we have Z = (1, 0) ∗ (z, 0)
with z ∈ K . Hence Nr is isomorphic to K . 	


Recall that, if a = 0 and α = 1 (hence p and [F : K ] must be odd since NF
K (−α) �= 1),

the presemifield in Theorem 5 belongs to the commutative presemifields of Theorem 1 of
Zhou–Pott [15].

Proposition 6 The commutative center is isomorphic to K if a �= 0 or α �= 1.

Proof Let x, s, y, t ∈ F . Let x ′, y′ ∈ F be

(x, s) ∗ (1, 0) = (1, 0) ∗ (x ′, s) and (y, t) ∗ (1, 0) = (1, 0) ∗ (y′, t).

Then we have

(x ′ + αx ′σ )σ
2 − asσ = (xσ + αx)σ

2 + a(αs)σ , and (11)

(y′ + αy′σ )σ
2 − atσ = (yσ + αy)σ

2 + a(αt)σ . (12)

Let us assume that (x, s)∗(1, 0) is in the commutative center. Then, for any (y, t) ∈ F×F ,
we have

((y, t) ∗ (1, 0))	((1, 0) ∗ (x ′, s)) = ((x, s) ∗ (1, 0))	((1, 0) ∗ (y′, t)).

By Kaplansky’s trick, we have

(y, t) ∗ (x ′, s) = (x, s) ∗ (y′, t) (13)

for any (y, t) ∈ F × F . We will prove that x = x ′ ∈ K and s = 0. It follows from (13) that

(y ◦α x ′)σ 2 − a(yσ s − αx ′σ t)σ − b(t ◦α s)

= (x ◦α y′)σ 2 − a(xσ t − αy′σ s)σ − b(s ◦α t), and (14)

x ′t + ys = xt + y′s. (15)

We easily see that, if x = x ′ ∈ K and s = 0, then (14) and (15) are both satisfied for any
y, t ∈ F because of (12).

Firstly, assume that α �= 1. We assume that s �= 0 to the contradiction. Let t = 0. Then
we have y = y′ by (15). Using y = y′ and t = 0, we have y + αyσ = yσ + αy by (12).
Hence we have y − yσ = α(y − yσ ). However, since α �= 1, we must have yσ = y. Thus
we have a contradiction since y is an arbitrary element in F and [F : K ] ≥ 3. Therefore
we must have s = 0. Next let t �= 0. Then x = x ′ by (15). It follows from (11) and s = 0,
x = x ′ that x + αxσ = xσ + αx . Thus we have xσ = x since α �= 1 by assumption.
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Next, assume that α = 1 and a �= 0. We recall that p and [F : K ] must be odd since
NF
K (−α) �= 1. Let t = 0. Then we have y = y′ by (12) and α = 1. Since y = y′, α = 1 and

t = 0, it follows from (14) that

(x ′σ 2 − xσ 2
)yσ 3 + (x ′σ 3 − xσ 3 + 2asσ )yσ 2 = 0.

Since y is an arbitrary element in F and [F : K ] ≥ 3, we have x = x ′ and s = 0. Next
we calculate (14) – (12)×xσ 2

using x = x ′, s = 0 and α = 1. Then we have

(y − y′)σ 2
(xσ 3 − xσ 2

) = 0.

Wenote that y �= y′ if t �= 0 by (12) and a �= 0,α = 1.Hencewemust have xσ 3−xσ 2 = 0,
that is, x ∈ K . Thus we see that, if (x, s) ∗ (1, 0) is an element in the commutative center,
we must have x ∈ K and s = 0. Therefore the commutative center is isomorphic to K . 	


In [3], Corollary 3, the middle nucleus Nm of the semifield associated to the presemifield
B(p,m, s, l,C1,C2), p odd, l �= 0, is determined as a quadratic extension of the center (in
a quadratic extension of F which is isomorphic to F × F as F-vector spaces) under some
conditions onC1,C2, and conjectured that Nm is always a quadratic extension of the center if
l �= 0. In [2], Theorem9, themiddle nucleus Nm of the semifield associated to the presemifield
B(2,m, s, l, t), s > 0, l �= 0 is a quadratic extension of the center. Therefore, under some
conditions, the semifield associated to the presemifield B(p,m, s, l, t) in Definition 1 of [4]
with p odd and l �= 0, or the presemifield B(2,m, s, l, t) in Definition 1 of [2] with l �= 0 are
not isotopic to the semifield (F × F,+, 	) associated to the presemifield (F × F,+, ∗) in
Theorem 5 of this article. We conjecture that these semifields associated to the presemifields
B(p,m, s, l, t) with p any prime and l �= 0, are not isotopic to our semifield (F × F,+, 	).
The semifields S(L1, L2) of type (a) and (b) in Sect. 4 of Dempwolff [10] of size q2n with q
an odd prime power and n a positive odd integer, have middle nucleus isomorphic to Fq and
left nucleus isomorphic to Fqn , right nucleus isomorphic to Fq (type (b)) or Fq2 (type (a))
(see Theorem 4.3 of [10]). So these semifields are not isotopic to our semifield (F × F,+, 	)

if n > 1. The semifields S(a, r , s, t) in Section 4 of Dempwolff [10] of size q2n with q an
odd prime power and n a positive odd integer have right nucleus isomorphic to Fq f with
f = 2 × GCD(n, r) (see Theorem 4.11 of [10]). Hence these semifields are not isotopic to
our semifield (F × F,+, 	) since n is odd and the right nucleus K of (F × F,+, 	) is a
subfield of Fqn .
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