
Designs, Codes and Cryptography (2019) 87:1897–1926
https://doi.org/10.1007/s10623-018-00594-6

An algorithmic framework for the generalized birthday
problem

Itai Dinur1

Received: 2 July 2018 / Revised: 6 December 2018 / Accepted: 7 December 2018 /
Published online: 17 December 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
The generalized birthday problem (GBP) was introduced by Wagner in 2002 and has shown
to have many applications in cryptanalysis. In its typical variant, we are given access to a
function H : {0, 1}� → {0, 1}n (whose specification depends on the underlying problem)
and an integer K > 0. The goal is to find K distinct inputs to H (denoted by {xi }Ki=1)

such that
∑K

i=1 H(xi) = 0. Wagner’s K-tree algorithm solves the problem in time and
memory complexities of about N 1/(�log K �+1) (where N = 2n). In this paper, we improve
the best known GBP time-memory tradeoff curve (published independently by Nikolić and
Sasaki and also by Biryukov and Khovratovich) for all K ≥ 8 from T 2M�log K �−1 = N
to T �(log K)/2�+1M�(log K)/2� = N , applicable for a large range of parameters. We further
consider values of K which are not powers of 2 and show that in many cases even more
efficient time-memory tradeoff curves can be obtained. Finally, we optimize our techniques
for several concrete GBP instances and show how to solve some of them with improved time
and memory complexities compared to the state-of-the-art. Our results are obtained using a
framework that combines several algorithmic techniques such as variants of the Schroeppel–
Shamir algorithm for solving knapsack problems (devised in works by Howgrave-Graham
and Joux and by Becker, Coron and Joux) and dissection algorithms (published by Dinur,
Dunkelman, Keller and Shamir).

Keywords Cryptanalysis · Time-memory tradeoff · Generalized birthday problem · K-tree
algorithm

Mathematics Subject Classification 94A60

Communicated by A. Winterhof.

B Itai Dinur
dinuri@cs.bgu.ac.il

1 Department of Computer Science, Ben-Gurion University, Beersheba, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-018-00594-6&domain=pdf

1898 I. Dinur

1 Introduction

The generalized birthday problem (GBP) is a generalization of the classical birthday problem
of finding a collision between two elements in two lists, introduced by Wagner in 2002 [15].
Since its introduction, Wagner’s K-tree algorithm for GBP has become a widely applicable
tool used in cryptanalysis of code-based cryptosystems [2] (that are important designs in
post-quantum cryptography), hash functions (such as FSB [4]) and stream ciphers, where
it is used as a procedure in fast correlation attacks [6,10]. Furthermore, it is an important
component in improved algorithms for hard instances of the knapsack problem [1,9].

We consider themost relevant GBP variant in cryptanalysis. For integer parameters K > 0
and 0 ≤ � ≤ n, we are given access to a function H : {0, 1}� → {0, 1}n , and the goal is
to find K distinct inputs to H , {xi }Ki=1, such that

∑K
i=1 H(xi) = 0. For simplicity, we

assume that addition is performed bitwise over GF(2), but our algorithms easily extend
to work with addition over GF(2n). We view H as a random oracle whose outputs are
selected independently and uniformly at random from {0, 1}n . The number of K -tuples over
�-bit words is about 2K�, and as the problem places an n-bit constraint on the solution, the
expected number of solutions is 2K�−n . In particular, we expect a solution only if K� ≥ n.
For K ≥ 2, the problem can be solved in time 2n/2 using a simple collision search. Wagner’s
observation was that for values of K ≥ 4, the problem can be solved much more efficiently
assuming that the number of expected solutions is sufficiently large.

As a specific application of GBP to cryptanalysis, we consider the problem of breaking
a code-based cryptosystem which can typically be reduced to solving a syndrome decoding
(SD) problem. The input to the SD problem consists of a matrix B ∈ {0, 1}n×m , a word
s ∈ {0, 1}n and an integer w > 0. The goal is to find a word e ∈ {0, 1}m of Hamming weight
(at most) w such that Be = s. In other words, we are looking for w columns of B that sum to
s over GF(2n). We can reduce this problem to GBP with K = w by defining H(i) to output
the i’th column of the matrix (for i ∈ [m]).1 We note that instances of SD which originate
from cryptography typically have many solutions, and hence GBP algorithms are relevant.
For more details about the application of GBP to cryptanalysis of code-based cryptosystems,
we refer the reader to [8].

Wagner’s K-tree algorithm for GBP with K = 2k (where k is a positive integer) receives
as input K lists {Li }Ki=1, each containing about 2

n/(k+1) strings of n bits, which are assumed
to be uniform in {0, 1}n . The algorithm returns a K -tuple {yi }Ki=1, where yi ∈ Li such that
∑K

i=1 yi = 0. The algorithm can be used to solve GBP assuming that � ≥ n/(k + 1) by
initializing the lists {Li }Ki=1 with elements of the form y = H(x) for arbitrary values of
x ∈ {0, 1}�.

At a high level, the K-tree algorithmmerges its 2k inputs lists in a full binary tree structure
with k layers. In each layer, the lists are merged in pairs, where each merged pair gives a
new list that is input to the next layer and contains words with a larger zero prefix. Finally,
the last layer yields a zero word which can be traced back to a K -tuple {xi }Ki=1 such that
∑K

i=1 H(xi) = 0 as required. The time and memory complexities of the K-tree algorithm
are about 2n/(k+1) = N 1/(log K+1) (up to constants and small multiplicative factors in n, K),
as detailed in Sect. 3. Since any GBP algorithm for a certain value of K can be extended
with the same complexity to any K ′ > K , the time and memory complexities of the K-tree
algorithm for general K are N 1/(log K+1), where log K is rounded down to the nearest integer.

1 GBP formally requires that
∑K

i=1 H(xi) = 0, but it is typically easy to tweak GBP algorithms to output

{xi }Ki=1, such that
∑K

i=1 H(xi) = s for any fixed s ∈ {0, 1}n .

123

An algorithmic framework for the GBP 1899

Legend: (K 8)
Our curve
Previous best curve

m n0 1
4

t n

1
4

1
2

1
7

2
7

Legend: (K 16)
Our curve
Previous best curve

m n0 1
5

t n

1
5

1
2

1
14

2
7

Legend: (K 32)
Our curve
Previous best curve

m n0 1
6

t n

1
6

1
2

1
37

1
10

1
5

11
37

If the point (m , t) = (m/n, t/n) is on the curve, then given 2m n = 2m memory, the algorithm solves GBP in
time 2t n = 2t (e.g., for K = 8, the point (1/7,2/7) is on the curve of our algorithm, namely, it solves GBP in
memory and time complexities of M = 2n/7 = N1/7 and T = 22n/7 = N2/7, respectively).

Fig. 1 GBP time-memory tradeoff curves for K ∈ {8, 16, 32}

Due to the high memory consumption of the K-tree algorithm, an important challenge
(already pointed out by Wagner) is to investigate time-memory tradeoff algorithms for GBP,
which optimize the time complexity T given only 2m = M < 2n/(k+1) memory. The trivial
time-memory tradeoff algorithm repeatedly builds K lists of size M from arbitrary inputs to
H and executes the K-tree algorithm until a solution is found. Simple analysis shows that
this algorithm achieves a tradeoff of T M log K = N , which is very inefficient even when K is
moderately large, as the time complexity T increases sharply for memory M < N 1/(log K+1).

Improved tradeoffs were first published in [3,4] (by Bernstein and Bernstein et al., respec-
tively), where the main idea is to execute (what we call) a preparation phase before running
the K-tree algorithm. This phase iterates over a portion of the domain space and builds lists
that are input to the K-tree algorithm (rather than building them arbitrarily), thus increasing
its probability to find a solution. A different approach to the preparation phase based on partial
collisions in H was published independently by Nikolić and Sasaki [12] and by Biryukov and
Khovratovich [5]. This technique gives the currently best known GBP time-memory tradeoff
of T 2M log K−1 = N .

In this paper, we devise a sub-linear2 time-memory tradeoff T �(log K)/2�+1M�(log K)/2� =
N forGBPwith K ≥ 8. This improves upon the currently best known tradeoff T 2M log K−1 =
N for all K ≥ 8. Our tradeoff is applicable whenever T 1/2 ≤ M ≤ T . For the range
1 < M ≤ T 1/2, we also improve upon the best known tradeoff for K ≥ 8, but our curve
formula becomesmore complex as K grows. In general, given an instance of GBP, one selects
a GBP algorithm that is applicable for the available amount of memory M .

We plot our GBP tradeoff curves for K ∈ {8, 16, 32} in Fig. 1, while comparing them
to the best known ones [5,12]. Note that the tradeoff T �(log K)/2�+1M�(log K)/2� = N for the
range T 1/2 ≤ M ≤ T corresponds to the rightmost linear piece of our curve (for K = 16
it extends beyond this range), and its improvement compared to the previously best known
curve grows with K (visually, the angle between the curves grows with K).

2 In a sub-linear time-memory tradeoff, the exponent of T is larger than the exponent of M .

123

1900 I. Dinur

Legend: (K 6)
Our curve
Previous best curve

m n0 1
3

t n

1
3

1
2

1
6

Legend: (K 14)
Our curve
Previous best curve

m n0 1
4

t n

1
4

1
2

1
14

1
8

2
7

Fig. 2 GBP time-memory tradeoff curves for K ∈ {6, 14}

We further improve the best known tradeoffs for values of K that are not powers of 2. Our
improved tradeoffs for K ∈ {6, 14} are plotted in Fig. 2.

Finally, we consider practical settings in which the domain size L = 2� of H is limited and
the K-tree algorithm cannot be directly applied. The best known algorithm for such cases is
an extension of the K-tree algorithm, published byMinder and Sinclair [11]. In this restricted
setting, we show how to solve many GBP instances more efficiently than the extended K-tree
algorithm, improving both its time and memory complexities.

As noted above, previous time-memory tradeoffs applied a preparation phase to initialize
several lists and search for a solution among them in (what we call) a list sum phase. In these
works the focus was placed on the preparation phase, while the list sum phase applied the
K-tree algorithm. In contrast, we focus on the list sum phase and develop algorithms that
are superior to the straightforward application of the K-tree algorithm when the available
memory is limited. We then carefully combine these algorithms with previous preparation
phase techniques to obtain improved time-memory tradeoffs for GBP.

We begin by considering a list sum problemwhose input consists of K sorted lists {Li }Ki=1
of n-bit words and the goal is to find a certain number of K -tuples {yi }Ki=1, where yi ∈ Li

such that
∑K

i=1 yi = 0. There are several exhaustive list sum memory-efficient algorithms
known for this problem that output all solutions. These algorithms are the starting points of
the framework we develop in this paper. Our framework transforms such an exhaustive list
sum algorithm into an efficient GBP algorithm for a given amount of memory. Obviously,
an exhaustive list sum algorithm can be directly applied to solve GBP (after initializing
{Li }Ki=1 accordingly), as the goal is to find only one out of all solutions. However, this trivial
application is inefficient since it does not exploit the fact that we only search for a single
solution and moreover, it does not use a preparation phase.

Our framework consists of three main parts. First, we transform a given exhaustive list
sum algorithm to efficiently output a limited number of solutions, obtaining a basic list sum
algorithm, optimized for a specific value of K = P . The second part of the framework
composes basic algorithms for K = P in a layered tree structure which resembles the K-tree
algorithm (but with arity P instead of 2). This gives optimized list sum algorithms for values
of K = Pk (and additional values) where k is a positive integer. Finally, after optimizing the
list sum phase, we combine it with a preparation phase to obtain a memory-efficient GBP
algorithm.

123

An algorithmic framework for the GBP 1901

Arguably, the most interesting part of our framework is the first part in which we analyze
exhaustive list sum algorithms and transform them to efficiently output a limited number of
solutions. There are two classes of exhaustive memory-efficient list sum algorithms relevant
to thiswork: the first class consists of variants of the Schroeppel–Shamir algorithm for solving
knapsacks, devised by Howgrave-Graham and Joux [9] (which focused on K = 4) and by
Becker et al. [1] (which applied a recursive variant for K = 16). The second class consists
of dissection algorithms [7], published by Dinur et al. and used to efficiently solve certain
search problems with limited amount of memory.

In general, both classes of exhaustive list sum algorithms partition the problem on K
lists into smaller subproblems, solve these subproblems and merge the solutions to solve
the original problem. The difference between the classes is in the way the problem is parti-
tioned: while Schroeppel–Shamir variants partition problem symmetrically into subproblems
of equal sizes, dissection algorithms partition the problem asymmetrically into smaller and
larger subproblems. Thus, Schroeppel–Shamir variants work best on values of K which are
powers of 2, while dissectionworks best on “magic numbers” of K (which are not necessarily
powers of 2) such as 7 and 11 that exhibit ideal asymmetric partitions.

Even though the focus of this work is on memory-efficient GBP algorithms, for many
GBP instances with restricted domains our techniques yield improvements in both time and
memory complexities compared to the extended K-tree algorithm [11] (which is the current
state-of-the-art). This occurs for values of K which are not powers of 2 (such as K = 7),where
our new algorithms extend the dissection framework. The time complexity improvement is
due to the fact that symmetric algorithms round the value of K down to the nearest power
of 2 and ignore many of the possible solutions. On the other hand, the efficiency of GBP
algorithms depends on their ability to find one out of many solutions, and ignoring a large
fraction of them in advance is a suboptimal approach.

The rest of the paper is organized as follows. In Sect. 2 we introduce our notations and
conventions, and describe preliminaries and previous work in Sect. 3. The first part of our
framework that transforms exhaustive list sum algorithms to basic ones is introduced in
Sect. 4, while the second part that constructs new layered algorithms is described in Sect. 5.
In Sect. 6 we focus on the third part of the framework that combines preparation and list
sum phase algorithms to solve GBP. Finally, in Sect. 7 we apply our new algorithms to GBP
instances with a restricted domain and conclude the paper in Sect. 8.

2 Notations and conventions

Given an n-bit string x , we label its bits as x[1], x[2], . . . , x[n] (where x[1] is the least
significant bit or LSB). Given integers 1 ≤ a ≤ b ≤ n, we denote by x[a–b] the (b−a+1)-
bit string x[a], x[a + 1], . . . , x[b].

Let F : {0, 1}� → {0, 1}n , be a function for � ≤ n . Given parameters �′ ≤ � and n′ ≤ n,
define the truncated function F|�′,n′ : {0, 1}�′ → {0, 1}n′

as F|�′,n′(x ′) = F(x)[1–n′] (where
the �-bit string x is constructed by appending � − �′ zero most significant bits to the �′-bit
string x ′).
The generalized birthday problem (GBP) GBP with parameter K is given oracle access to a
function H : {0, 1}� → {0, 1}n for � ≤ n, and the goal is to find a K -tuple {xi }Ki=1, where

xi ∈ {0, 1}� are distinct (i.e., xi �= x j for i �= j) such that
∑K

i=1 H(xi) = 0. The addition is
performed bitwise over GF(2).

123

1902 I. Dinur

We assume in this paper that H is a pseudo-random function. Our goal is to optimize
the time complexity T of solving GBP with parameters K and �, given M = 2m words of
memory, each of length n bits. In some settings (such as in [4]) each xi in the output K -tuple
needs to come from a different domain. This can be modeled using K functions {Hi }Ki=1. The
adaptation of the algorithms we consider to this setting is mostly straightforward.

Typically, GBP algorithms evaluate the function H in a preparation phase in order to set
up an instance of the list sum problem.
The list sum problemGiven K sorted lists {Li }Ki=1, each of M = 2m words (chosen uniformly
at random) of length at least n, the goal is to find S (one, several, or all) K -tuples {yi }Ki=1,

where yi ∈ Li such that (
∑K

i=1 yi)[1–n] = 0. The number of required solutions S is a
parameter to the problem. We note that in our framework list sum algorithms use about
M = 2m memory (which is the input size, up to the constant K).3

The list sum problem is related to the well-known K -SUM problem, which searches for a
single solution

∑K
i=1 yi = 0 in one input set, as opposed to several lists. Moreover, typically

the distribution of words in the input set of the K -SUM problem is arbitrary and it is a worst
case problem (whereas we are interested in average case complexity).

2.1 Naming conventions and notations for list sum algorithms

An algorithm that finds all solutions to the list sum problem is called an exhaustive list sum
algorithm. Otherwise, we name algorithms that output a limited number of solutions (with a
bound on S) according to their internal structure: in general we have basic algorithms and
layered algorithms that compose basic algorithms in a tree structure (similarly to the K-tree
algorithm).

We refer to a list sum algorithm that solves the list sum problem for a specific value of
K as a K -way list sum algorithm. However, when referring to specific list sum algorithms
we mostly need more refined notation that distinguishes them according to the values of K
and S (the number of required solutions) and also the type of basic algorithms composed in
layered algorithms (which determine the arity of the tree). These parameters are sufficient to
uniquely identify each list sum algorithm considered in this paper.

The (unique) non-layered list sum algorithm with parameters K , S is denoted by AK ,S ,
where S is the number of solutions it produces. In case the algorithm is exhaustive (outputs all
solutions), we simply write AK . For example, A4 is an exhaustive 4-way list sum algorithm,
while A4,1 produces only a single solution (and hence can be naturally used to solve GBP
with K = 4).4 In general, we will be interested in exhaustive AK algorithms, basic AK ,1

algorithms that output a single solution and basic AK ,2m algorithms that produce S = 2m

solutions, allowing to compose basic algorithms and form layered ones.
The (unique) layered list sum algorithm with S = 1 and arity P is denoted by AP

K (we do
not consider layered algorithms with S > 1 in this paper). For example, the K-tree algorithm
is denoted by A2

K , as it merges its input lists in pairs. We note that layered algorithms can
be uniquely distinguished by their arity P , while K is left in symbolic form (unlike basic

3 This definition does not capture algorithms (such as Minder and Sinclair’s algorithm [11]) that merge the
initial lists into larger ones. However, the restriction typically does not result in loss of generality, as an initial
merge can be considered as a preparation phase algorithm by defining the function H appropriately.
4 When the number of expected solutions to the list sum problem is S, then AK ,S typically coincides with
AK . The more interesting case is when the number of expected solutions is greater than S and AK ,S could
potentially be more efficient than AK .

123

An algorithmic framework for the GBP 1903

algorithms). We also remark that for any specific value of K , the algorithm AK
K has a single

layer and is actually the basic algorithm AK ,1 (which is our preferred notation).
When composing basic list sum algorithms in layers, the LSBs of the words in the input

lists to the algorithms may already be zeroed by a previously applied basic algorithm and
the task of the succeeding basic algorithm is to output solutions where the next sequence
of bits is nullified. In such cases, we can ignore the zero LSBs in the input lists, resulting
in a problem that complies with the above definition of list merge problem (which requires
nullifying LSBs).

2.2 Complexity evaluation

The time and memory complexities of our algorithms are functions of the parameters n
and K (and also L = 2� for some GBP instances). In the complexity analysis, we ignore
multiplicative polynomial (and constant) factors in n and K , which is common practice in
exponential-time algorithms. Nevertheless, we note that these factors are relatively small for
the algorithms considered.

3 Preliminaries and previous work

The literature relevant to this work is vast and consists of [1,3–5,7,9,12,14,15]. In this sec-
tion we summarize it constructively so we can build upon it in the rest of this paper. We
first describe general properties of list sum algorithms in Sect. 3.1. Then, we describe pre-
vious exhaustive list sum algorithms AK : in Sect. 3.2 we focus on exhaustive symmetric
Schroeppel–Shamir variants for several values of K which are powers of 2 (K ∈ {4, 16}
and the basic K = 2), while in Sect. 3.3 we deal with asymmetric exhaustive dissection
algorithms. In Sect. 3.4, we show how exhaustive algorithms for K = 2 and K = 4 were
efficiently adapted to basic algorithms that output a limited number of solutions. In Sect. 3.5,
we describe the (layered) K-tree algorithm. Next, in Sect. 3.6 we focus on the prepara-
tion phase algorithms parallel collision search (PCS) and clamping through precomputation
(CTP). We end this section by summarizing the currently best known time-memory tradeoff
for GBP in Sect. 3.7.

3.1 General properties of list sum algorithms

From a combinatorial viewpoint, the number of K -tuples {yi }Ki=1 in the K lists input to
the list sum problem is 2Km . Since the problem imposes an n-bit restriction on them, the
number of expected solutions is 2Km−n . Hence the list sum problem is interesting only if
m ≥ n/K . If we impose an additional b-bit constraint on the tuples (e.g., by requiring that
(y1 + y2)[1–b] = c for an arbitrary b-bit value c), then the number of expected solutions
drops5 to S = 2s = 2Km−b−n .
Nullifying bits In this paper, we mostly use an equivalent statement, where we view n as
a parameter: if we search for S = 2s solutions to the problem and set an additional b-bit
constraint on the solutions, then the number of bits we can nullify is

n = Km − b − s. (1)

5 Our algorithms will also assume that the number of solutions has low variance, hence such constraints have
to be set carefully for this to hold.

123

1904 I. Dinur

By default, a list sum algorithm is given the n-bit target value 0, but it can easily be
adapted and applied with similar complexity to an arbitrary n-bit target value w, such that it
outputs K -tuples {yi }Ki=1 where

∑K
i=1 yi [1–n] = w. This can be done by XORing w to the

all the words in L1, resorting it and solving the problem with a target of 0.
A basic list sum algorithm that searches for a single solution S = 1 for a certain K

value using M memory (such that m ≥ n/K) can be applied with the same complexity
to any K ′ > K . This is done by choosing an arbitrary (K ′ − K)-tuple {yi }K ′

i=K+1 from

lists {Li }K ′
i=K+1, and applying the given algorithm with input lists {Li }Ki=1 and target value

∑K ′
i=K+1 yi [1–n]. Hence the list sum problem for S = 1 does not become harder as K grows,

in contrast to exhaustive list sum problems that require all solutions.
We now describe exhaustive list sum algorithms of type AK for several values of K . We

denote by T = 2τKm (for a parameter τK) the time complexity of AK .

3.2 Exhaustive symmetric list sum algorithms AK for K = 2k

3.2.1 A2

The standard list sum algorithm A2 looks for all matches on n bits between two sorted lists
of size 2m . There are 22m−n possible solutions to the problem and A2 finds them in time
T = 2m (τ2 = 1) assuming that their number is at most 2m , namely, 22m−n ≤ 2m or m ≤ n.

3.2.2 A4 [9]

This algorithm was devised in [9] by Howgrave-Graham and Joux as a practical variant of
the Schroeppel–Shamir’s algorithm [13] (see Fig. 3).

1. For all 2m possible values of the m-bit word c:

(a) Apply A2 to the sorted lists L1, L2 with the m-bit word c as the target value.
Namely, look for pairs (y1, y2) ∈ L1 × L2 such that (y1 + y2)[1–m] = c. Store
the expected number of 22m−m = 2m output sums y1 + y2 in a new sorted list
L ′
1, along with the corresponding (y1, y2) ∈ L1 × L2.

(b) Apply A2 to the sorted lists L3, L4 with c as the target value and build the sorted
list L ′

2.
(c) Apply A2 to the sorted lists L ′

1, L
′
2 with target value 0.

a Trace the output pairs
(y′

1, y
′
2) back to solutions to the list sum problem: (y1, y2, y3, y4) ∈ L1 × L2 ×

L3 × L4 where (y1 + y2 + y3 + y4)[1–n] = 0.

a Note that for any y′
1 ∈ L ′

1 and y′
2 ∈ L ′

2 we have (y′
1 + y′

2)[1–m] = 0, hence it remains to nullify bits
[m + 1–n].

The A4 algorithm enumerates all possible solutions, as any specific solution y1 + y2 +
y3 + y4 = 0 is output when the value of c is set to (y1 + y2)[1–m]. The expected number of
solutions is 24m−n , and assuming that their number is not larger than 22m (i.e., 24m−n ≤ 22m

orm ≤ n/2), then its time complexity is T = 22m , namely τ4 = 2 (since the time complexity
of the loop for each value of c is 2m).

The algorithm may produce up to 22m solutions, but its memory complexity is only 2m .
This is possible since we not required to store the solutions, but may stream them to another

123

An algorithmic framework for the GBP 1905

Fig. 3 A4 with
M = 2n/4, T = 2n/2

L4 L3 L2 L1

c c n 4

0 3n 4

n 4
zeroed by repeating
with 2n 4 values of c

algorithm that will process them on-the-fly. This is an important property that holds for all
list sum algorithms described in this paper.

3.2.3 A16 [1]

An extension of the A4 algorithm will allow us to construct algorithms that find a single
solution (S = 1) for a limited range of the memory parameter M . An extension of the
A16 algorithm below will yield algorithms that find a single solution for a broader range of
memory complexities. The exhaustive A16 algorithm is a recursive variant of the previous
A4 algorithm, published by Becker et al. [1] (see Fig. 4).

1. For all 29m possible values of the four 3m-bit words c1, c2, c3, c4 that satisfy c1 +
c2 + c3 + c4 = 0:

(a) Apply the 4-way list sum algorithm A4 four times to lists {Li }4i=1, {Li }8i=5,
{Li }12i=9 and {Li }16i=13,with c1, c2, c3, c4 as the 3m-bit target values, respectively.
Store the outcomes of these algorithms in four sorted lists L ′

1, L
′
2, L

′
3, L

′
4, each

of expected size 24m−3m = 2m .
(b) Apply the 4-way list sum algorithm A4 to L ′

1, L
′
2, L

′
3, L

′
4 (nullifying bits

[3m + 1–n]) and from each output 4-tuple, derive a corresponding 16-tuple
as a solution to the problem.

We iterate over all possible solutions in time T = 29m+2m = 211m (τ16 = 11),6 assuming
the number of solutions satisfies 216m−n ≤ 211m or m ≤ n/5.

6 We note that [1] extended this algorithm to a time-memory tradeoff. However, as it uses memory larger than
2m (the size of the input lists), we do not consider it in this paper.

123

1906 I. Dinur

L4 L3 L2 L1

b1 a1 n 16

c1

set by repeating with
2n 16 values of a1, b1

3n 16

L8 L7 L6 L5

b2 a2

c2

L12 L11 L10 L9

b3 a3

c3

L16 L15 L14 L13

b4 a4ai bi
ci 1–n 16

c4c1 c2 c3 c4
d 1–3n 16

d 4n 16d

0
zeroed by repeating with

2n 16 values of d 3n 16–4n 16 6n 16
n 16

9n 16zeroed by repeating with
29n 16 values of c1, c2, c3, c4

Fig. 4 A16 with M = 2n/16, T = 211n/16

3.3 Exhaustive asymmetric list sum algorithms AK [7]

Dissection is an algorithmic framework for solving certain combinatorial search problems
with optimized time-memory tradeoffs. It was introduced byDinur et al. at CRYPTO2012 [7]
and used in order to break multiple encryption (i.e., an iterated construction of a block cipher
with independent keys) and to solve the knapsack and Rubic’s cube problems with improved
combinations of time and space complexities. In our context, we view dissection algorithms
as memory-efficient asymmetric list sum algorithms of class AK .

Given a AK ′ algorithm, it can be trivially utilized as a AK algorithm for K > K ′ (with
no additional memory) by enumerating all the 2m(K−K ′) possible tuples in the first K − K ′
lists, and applying AK ′ on the remaining K ′ lists (with the target sum set to be the sum of
the current (K − K ′)-tuple). However, for certain values of K we can do better than this
trivial algorithm, and dissection algorithms define a sequence of values of K for which this
efficiency gain occurs.

The first dissection algorithm is defined for K = 2 (namely A2), and it looks formatches in
its 2 sorted input lists. The next number in the sequence is K = 4 and this dissection algorithm
essentially coincides with A4 described above. Next is the 7-way dissection algorithm, which
utilizes the 3-way list sum algorithm A3 described below.

3.3.1 A3

For each pair (y1, y2) ∈ L1 × L2, compute y1 + y2, and search for a match y3 ∈ L3

such that y3[1–n] = (y1 + y2)[1–n]. For each match found, output the triplet
(y1, y2, y3).

The algorithm enumerates over all 23m−n solutions in time T = 22m (τ3 = 2) assuming
m ≤ n.

123

An algorithmic framework for the GBP 1907

3.3.2 A7

For K ≥ 7, the asymmetry in dissection algorithms becomes more apparent, as they partition
the problem of size K into two subproblems of different sizes. We begin by describing the
K = 7 algorithm.

1. For each possible value of the 2m-bit word c:

(a) Apply the A3 algorithm to L1, L2, L3 with the 2m-bit target value c, and store
the expected number of 23m−2m = 2m outputs (whose 2m LSBs equal to c) in
a new sorted list L ′. Each word is stored along with the corresponding triplet
of indexes in L1 × L2 × L3.

(b) Apply the A4 algorithm of Sect. 3.2 to L4, L5, L6, L7 with the 2m-bit target c.
For each obtained solution quartet, (y4, y5, y6, y7) ∈ L4 × L5 × L6 × L7 (such
that (y4 + y5 + y6 + y7)[1–2m] = c), search L ′ for matches on (y4 + y5 + y6 +
y7)[2m + 1–n] and output the corresponding 7-tuples.

The algorithm enumerates all possible solutions to the problem, since each solution can
be decomposed as above. The time complexity of each 3-way and 4-way list sum steps in
the loop is 22m , while we iterate over 22m possible values of c. Hence, the expected time
complexity is T = 24m (τ7 = 4) as long as the number of solutions is at most 24m . Since the
expected number of solution is 27m−n , we require 7m − n ≤ 4m or m ≤ n/3.

Wealso note that the algorithmsplits the problemon7 lists into 2 subproblemsof respective
sizes 3, 4, while the size 4 problem itself is internally split into two subproblems of sizes
2, 2 by the A4 algorithm. Altogether, the problem of size 7 is split into 3 subproblems of
respective sizes 3, 2, 2.

3.3.3 General dissection

The now give the details and analysis of general dissection algorithms. For a value of i =
0, 1, 2, . . ., we construct a Ki -way list sum algorithm that runs in time τKi such that Ki =
1 + i(i + 1)/2 and τKi = 1 + i(i − 1)/2. Note that, as always, we require that m ≥ n/K
so at least one solution is expected. Moreover, the expected number of solutions cannot be
larger than the runtime, i.e., 2Kim−n ≤ 2τKi m or (Ki − τKi)m ≤ n, giving the requirement
m ≤ n/i (for a positive i).

In particular, after A7 which corresponds to K3 = 7, τ7 = 4, we have K4 = 11 and
τ11 = 7, i.e. the A11 dissection algorithm has time complexity 27m (assuming m ≤ n/4).
Internally, AKi recursively splits the problem of size Ki = 1+ i(i +1)/2 into i subproblems
of sizes i, i − 1, i − 2, . . . , 3, 2, 2 and applies the algorithms Ai , Ai−1, . . . , A3, A2, A2,
respectively, for various choices of intermediate target values (such as the 2m-bit word c in
A7).

Assume that we have a AK ′ algorithm that givenM = 2m memory runs in time complexity
T ′ = 2τK ′m < 2n (for an integer τK ′ ≥ 1). Moreover, the algorithm can be applied in
streaming mode (as all list sum algorithms described in this paper). Namely, given a target of
n′ = m(K ′ − τK ′) bits with arbitrary value, it finds all the 2n−m(K ′−τK ′) expected solutions
in time T ′ = 2τK ′m (assuming m ≥ n/K ′). Then, we can construct a AK algorithm for
K = 2K ′ − τK ′ + 1 with time complexity T = 2K

′m (τK = K ′) and memory complexity
M = 2m as follows.

123

1908 I. Dinur

1. For each m(K ′ − τK ′)-bit value c:

(a) Apply a AK ′−τK ′+1 algorithm to {Li }K
′−τK ′+1

i=1 , with c as the target, and store the

expected number of 2m(K ′−τK ′+1−(K ′−τK ′)) = 2m outputs (whose m(K ′ − τK ′)
LSBs equal to c) in a new sorted list L ′. Each word is stored along with the

corresponding (K ′ − τK ′ + 1)-tuple of indexes in {Li }K
′−τK ′+1

i=1 .

(b) Apply the given AK ′ algorithm to {Li }2K
′−τK ′+1

i=K ′−τK ′+2 (the remaining K ′ lists) with
c as the target. For each obtained K ′-tuple, search for a match in L ′ on the
remaining n − m(K ′ − τK ′) bits and output the corresponding K -tuples.

The memory complexity of the algorithm is indeed M = 2m . In terms of time complexity,
Since τK ′ ≥ 1, then the AK ′ algorithm dominates the AK ′−τK ′+1 algorithm in the inner
loop (it is applied to a problem of size at least as large). Overall, the time complexity is
T = 2m(K ′−τK ′)+τK ′m = 2K

′m as claimed.
The algorithm can be applied in streamingmode and therefore it can be applied recursively,

giving a sequence of dissection algorithms. The dissection sequence starts with K0 = 1 and
τK0 = τ1 = 1 (which is a trivial 1-way list sum algorithm). Next, we obtain K1 = 2K0 −
τK0 +1 = 2 and τK1 = τ2 = K0 = 1, K2 = 2K1 − τK1 +1 = 4 and τK2 = τ4 = K1 = 2. In
general, it is easy to verify that Ki = 1+ i(i + 1)/2 and τKi = 1+ i(i − 1)/2. In particular,
after K3 = 7, we have K4 = 11 and τ11 = 7, i.e. the A11 dissection algorithm has time
complexity 27m . As mentioned above, observe that AKi recursively splits the problem of size
Ki = 1 + i(i + 1)/2 into i subproblems of respective sizes i, i − 1, i − 2, . . . , 3, 2, 2.

3.4 Basic list sum algorithms

3.4.1 A2,1 and A2,2m

The A2,1 algorithm is an extension of the A2 algorithm of Sect. 3.2. It searches for a single
solution (S = 2s = 1) to the problem by looking for an n-bit match in the two lists. According
to (1), A2,1 can nullify n = 2m bits in time T = 2m .

For A2,2m , instead of matching and nullifying 2m bits using A2,1 with S = 1, we require
S = 2m solutions, or s = m. Plugging K = 2, b = 0, s = m into (1), we conclude that we
match and nullify n = m bits (in time complexity T = 2m).

3.4.2 A3,1

This algorithm extends the A3 algorithm of Sect. 3.3. It searches for a single solution to the
problem and hence can nullify n = 3m bits in time 22m .

3.4.3 A4,1 and A4,2m [9]

The A4,1 algorithm is an extensionof the A4 algorithmofSect. 3.2, also described in [9].When
we search for a limited number of solutions to the list sum problem, we can enumerate over
fewer values of the m-bit intermediate target value c in the A4 algorithm. This is equivalent
to placing another constraint on the 4-tuple solutions: for 0 ≤ v ≤ m, we place a (m − v)-bit
constraint by only enumerating over 2v values of c. Setting v = 0 places an m-bit constraint

123

An algorithmic framework for the GBP 1909

and reduces the time complexity of the algorithm to 2m , while nullifying n = 4m −m = 3m
bits (according to (1)). In general, we can nullify n = 4m − (m − v) = 3m + v bits in time
T = 2m+v , giving the tradeoff

T M2 = 2m+v · 22m = 23m+v = 2n = N .

The tradeoff is only applicable for 0 ≤ v ≤ m or T 1/2 ≤ M ≤ T .
For A4,2m we apply a similar algorithm, but (according to (1)) since s is increased by m

then n is reduced by m. Denote by n′ the parameter of A4,1, then n = n′ − m. Using the
tradeoff formula above, we obtain T M2 = 2n

′ = 2n+m = NM or T M = N , applicable
once again for T 1/2 ≤ M ≤ T .

3.5 The K-tree algorithm: A2K [15]

We begin by describing the K-tree algorithm for K = 4 (namely, A2
4) below. This algorithm

is also shown in Fig. 5.

1. Apply A2,2m to the sorted lists L1, L2. Namely, look for pairs (y1, y2) ∈ L1 × L2

such that (y1 + y2)[1–m] = 0. Store the expected number of 22m−m = 2m output
sums y1 + y2 in a new sorted list L ′

1, along with the corresponding (y1, y2) ∈
L1 × L2.

2. Apply A2,2m to the sorted lists L3, L4 and build the sorted list L ′
2.

3. Apply A2,1 to the sorted lists L ′
1, L

′
2. Trace an output pair (y

′
1, y

′
2) back to a solution

to the list sum problem: (y1, y2, y3, y4) ∈ L1 × L2 × L3 × L4 where (y1 + y2 +
y3 + y4)[1–n] = 0.

The algorithm is composed to 2 layers. The input to the first layer consists of 4 input
lists and it merges the lists in pairs by applying A2,2m and outputting the lists L ′

1, L
′
2, each

containing 2m words whose m LSBs are zero (since A2,2m nullifies m bits). These lists are
input to layer 2 which applies A2,1 to obtain the final solution, nullifying additional 2m bits.
Altogether, n = 3m bits are nullified in T = 2m = 2n/3 = N 1/3 time and M = 2m = N 1/3

memory.
Note that A4,1 above for M = T is, in fact, the A2

4 algorithm. Indeed, when M = T , A4,1

is composed of 2 layers of 2-way list sum algorithms.
The general algorithm. The K-tree algorithm for general K = 2k is a A2

K algorithm that
works in k layers as summarized next. For more details, refer to [15].

For any integer 0 ≤ j ≤ k − 1, the input to layer j consists of K/2 j sorted input lists,
where for each word in each list the j ·m LSBs are zero. At layer 0 ≤ j < k−1 the algorithm
merges the lists in pairs by applying A2,2m and outputting K/2 j+1 new lists, each containing
2m words whose (j + 1) · m LSBs are zero (as A2,2m nullifies m bits). These lists are input
to the next layer j + 1.

Finally, the input to layer j = k − 1 consists of K/2k−1 = 2 lists of expected size 2m

containing words whose (k − 1) · m LSBs are zero. The K-tree algorithm then applies A2,1

to obtain the final solution, nullifying additional 2m bits. Altogether, n = (k + 1) · m bits
are nullified in T = 2m = 2n/(k+1) = N 1/(log K+1) time and M = 2m = N 1/(log K+1)

memory.

123

1910 I. Dinur

Fig. 5 A24 with

M = 2n/3, T = 2n/3

L4 L3 L2 L1

0 0 n 3

0

3.6 Preparation phase algorithms

3.6.1 Parallel collision search [14]

The parallel collision search (PCS) algorithmwas published by vanOorschot andWiener [14]
as a memory-efficient technique for finding collisions in an r -bit function F : {0, 1}r →
{0, 1}r . Given 2m ≤ 2r words of memory, the algorithm builds a chain structure containing
2m chains, where a chain starts at an arbitrary point and computed by iteratively applying
F . Each chain is terminated after about 2(r−m)/2 evaluations, hence the structure contains a
total of about 2m · 2(r−m)/2 = 2(r+m)/2 distinct points. The fact that the chains are of length
2(r−m)/2 ensures that each chain collides with a different chain in the structure with high
probability according to the birthday paradox, as the number of relevant pairs of points is
2(r−m)/2 · 2(r+m)/2 = 2r . Therefore, the structure contains about 2m collisions.

The collisions can be recovered efficiently by defining a set of 2(r+m)/2 distinguished
points according to an easily verifiable condition (e.g., the (r − m)/2 LSBs of the r -bit
word are 0). Each chain in the structure is terminated at a distinguished point (and hence
its expected length is 2r/2(r+m)/2 = 2(r−m)/2 as required). The PCS algorithm stores the
distinguished points sorted in memory and collisions between chains are detected at their
distinguished points. The actual collisions are obtained by recomputing the colliding chains.

In total, PCS finds 2m collisions in an r -bit function in time complexity

T = 2(r+m)/2.

3.6.2 Parallel collision search in expanding functions [14]

Assume that our goal is to find 2m collisions using 2m memory in the expanding function
F : {0, 1}� → {0, 1}r , where (r + m)/2 ≤ � ≤ r (ensuring that 2m collisions indeed exist
in F). We apply PCS to the truncated function F|�,� to find 2m collisions on � bits of F in
2(�+m)/2 time. Each such collision extends to a full r -bit collision with probability 2�−r . In
other words, the PCS execution gives an expected number of 2m+�−r full collisions in F . To

123

An algorithmic framework for the GBP 1911

find the required 2m collisions, we repeat the process 2r−� times, giving time complexity of

T = 2r−� · 2(�+m)/2 = 2r+(m−�)/2.

We note that in order to make the different PCS executions essentially independent, we
have to use a different flavor of F|�,� in each execution (as done in [14]). For example, we
can define the i’th flavor as Fi

|�,�(x) = F|�,�(x) + i .

3.6.3 Clamping through precomputation [3,4]

The goal here is to find 2m values xi such that F(xi)[1–r] = 0 for a parameter r , given a
function F : {0, 1}� → {0, 1}n (for m + r ≤ � ≤ n). This can be done by using clamping
through precomputation (CTP) [3,4], as detailed below.

1. For 2m+r arbitrary strings of � bits x0, x1, . . . , x2m+r :

(a) Compute F(xi). If F(xi)[1–r] = 0, then add xi to a list L .

After exhausting T = 2m+r values of xi , we expect L to contain 2m+r−r = 2m strings
that satisfy the r -bit condition F(xi)[1–r] = 0, as required.

3.7 Previous GBP tradeoff algorithms for K = 2k [5,12]

The best known time-memory tradeoff algorithm for GBP was published independently by
Nikolić and Sasaki [5,12] and also by Biryukov and Khovratovich [5]. We describe this
algorithm for GBP with K = 2k and M = 2m words of memory, such that m ≤ n/(k + 1)
(see Fig. 6).

Given an integer parameter r ≥ m to be determined later, the algorithm uses the truncated
function H|r ,r (as defined in Sect. 2).

1. Run PCS on the function H|r ,r and look for 2m collisions. For each collision
H(x)[1–r] = H(x ′)[1–r], compute y = H(x) + H(x ′) and store all these words
in K/2 lists {Li }K/2

i=1 of size about 2m (along with the corresponding x values).
2. Apply the K-tree algorithm to the K/2 lists (nullifying bits [r +1–n]). Obtain K/2

words yi ∈ Li such that
∑K/2

i=1 yi = 0 and use them (based on the first step) to

construct a solution to GBP by recovering the K words xi such that
∑K

i=1 H(xi) =
∑K/2

i=1 yi = 0 as required.

We now calculate the value of r that ensures that the algorithm succeeds to find a solution
(with high probability). The K-tree algorithm is run using 2k

′ = 2k−1 lists, each of size 2m ,
and it has to zero the remaining n′ = n−r bits after the PCS is executed. Therefore, according
to the analysis of the K-tree algorithm in Sect. 3.5 we require m = n′/(k′ + 1) = (n − r)/k.
This gives r = n − mk.

The time complexity of the PCS algorithm is 2(r+m)/2 = 2(n−m(k−1))/2, while the time
complexity of the K-tree algorithm is 2m ≤ 2(r+m)/2 (and can be neglected).

123

1912 I. Dinur

Fig. 6 Previous GBP tradeoff
algorithm for K = 8 with
M = 2n/8, T = 23n/8

x4 x4 x3 x3 x2 x2 x1 x1 5n 8

PCS

L4

0

L3

0

L2

0

L1

0 5n 8

0 0 6n 8

0

PCS colliding values (xi’s) are arbitrary.

Therefore, the total time complexity is T = 2(n−m(log K−1))/2. This gives a time-memory
tradeoff of

T 2M log K−1 = N ,

assuming that M ≤ N 1/(log K+1). Note that when M = N 1/(log K+1), the PCS is similar to
the first layer of the K-tree algorithm, as the function H|r ,r is iterated only once. In addition,
observe that the two steps of the algorithm are not balanced since the time complexity of
PCS is larger than the time complexity of the K-tree algorithm.

4 Construction of new basic list sum algorithms

The first part of our framework transforms exhaustive list sum algorithms (of type AK) into
basic ones of types AK ,1 and AK ,2m (that are useful for devising layered algorithms). In this
section we transform both exhaustive symmetric and asymmetric algorithms described in
Sects. 3.2 and 3.3, respectively. The most relevant basic list sum algorithms obtained in this
section and in [9] are summarized in the first four entries of Table 1.

4.1 Preliminary construction and analysis of basic list sum algorithms

Recall that we denote the time complexity of AK by 2τKm for a parameter τK . As we show
next, the time-memory tradeoff for AK ,1 is of the form T MαK = N for αK = K − τK .

123

An algorithmic framework for the GBP 1913

Table 1 Basic list sum algorithms

Algorithm Time-memory
tradeoff

Range (M vs. T) Range (M vs. N) Reference

A4,1 T M2 = N T 1/2 ≤ M ≤ T N1/4 ≤ M ≤ N1/3 [9]

A7,1 T M3 = N T 1/4 ≤ M ≤ T 1/2 N1/7 ≤ M ≤ N1/5 New

A11,1 T M4 = N T 1/7 ≤ M ≤ T 1/2 N1/11 ≤ M ≤ N1/6 New

A16,1 T M5 = N T 1/11 ≤ M ≤ T 1/2 N1/16 ≤ M ≤ N1/7 New

AKi ,1 T Mi = N T 1/τKi ≤ M ≤ T 1/τi N1/(τKi +i) ≤ M ≤ N1/(τi+i) New

Ki = 1 + i(i + 1)/2) (τKi = 1 + i(i − 1)/2)

The basic idea generalizes the one used to construct A4,1 in Sect. 3.4. We deal with an
algorithm AK that partitions the problem of size K into several smaller subproblems, solves
each one for various choices of intermediate target values and for each such choice, merges
the outputs, aiming to obtain a final solution. When we iterate over a subset that contains a
2−b fraction of the possible intermediate target values we essentially set an additional b-bit
constraint on the returned solutions. Ideally, this allows to reduce the time complexity of the
algorithm by a factor of 2b to 2τKm−b at the expense of nullifying less bits: recall from (1)
that by setting a b-bit constraint on the solutions, we can nullify n = Km−b− s = Km−b
bits (as s = 0 for AK ,1). Therefore, we obtain a tradeoff of

T MK−τK = N . (2)

Indeed, after setting the b-bit constraint, we hope to reduce the time complexity to T =
2τKm−b and obtain T MK−τK = 2τKm−b+m(K−τK) = 2Km−b = 2n = N . We stress that
this is an ideal formula which cannot always be achieved using a concrete algorithm. We
carefully design such algorithms below, aiming to apply the ideal formula to the widest range
of parameters possible. This will be relatively simply for symmetric list sum algorithms, but
requires deeper insight for asymmetric algorithms.

As deduced above in (2), ideally the tradeoff curve of a basic list sum algorithm of type
AK ,1 is of the form

T MαK = N (3)

for a constant αK = K − τK . When considering the variant AK ,2m , we require 2m solutions
and the number of bits that can be nullified is reduced from n to n − m. Consequently, the
tradeoff becomes T MαK = N ′ for N ′ = 2n−m , giving

T MαK−1 = N . (4)

As a result, we do not need to analyze AK ,2m separately.

4.2 Basic symmetric list sum algorithms

The algorithms A4,1 and A4,2m for K = 4 (that are applicable in the range T 1/2 ≤ M ≤ T)
were already constructed in Sect. 3.4, where we showed that indeed α4 = 4 − τ4 = 2. We
continue with K = 16.

123

1914 I. Dinur

4.2.1 A16,1 and A16,2m

Following the general approach above, we extend the 16-way list sum algorithm A16 of
Sect. 3.2. Since the time complexity of A16 is 211m , we have τ16 = 11 andα16 = 16−τ16 = 5
as given by (2) and (3). Below, we perform this computation in more detail and calculate the
range for which this tradeoff is applicable.

If we fix all the words c1, c2, c3, c4 in A16 (such that their sum is 0), we cast a constraint
of 9m bits on the 16-tuples and can nullify n = 16m − 9m = 7m bits in time complexity
22m (which is the time complexity of the A4 algorithms).

More generally, when we vary 2v times the value of c1, c2, c3, c4, we cast a (9m − v)-bit
constraint on the 16-tuples and nullify n = 16m−(9m−v) = 7m+v bits in time complexity
T = 22m+v , giving a tradeoff of

T M5 = N ,

namely α16 = 5 as expected. Since we can choose any 0 ≤ v ≤ 9m, the tradeoff is applicable
for T 1/11 ≤ M ≤ T 1/2.

4.2.2 Beyond 16-way list sum algorithms

In order to extend the tradeoff curve of A4,1 to smaller memory ranges of M ≤ T 1/2 we
squared K . We can continue to extend the curve to very small memory values in a similar
way by defining AK for K = 162 = 256 and transforming it to AK ,1. For even smaller
memory ranges, we use K = 2562 = 216 and so forth.

4.3 Basic asymmetric list sum algorithms

4.3.1 A7,1 and A7,2m

We extend the 7-way dissection A7 of Sect. 3.3, whose time complexity is 2τ7m = 24m to
A7,1. According to the preliminary analysis above, we have α7 = 7− τ7 = 3, as obtained in
more detail below.

If we fix the 2m-bit value c in the loop of A7, we set a 2m-bit constraint and can nullify
7m − 2m = 5m bits in time 24m−2m = 22m . In general, when we vary 2v times the value of
c, we nullify n = 5m + v bits in time T = 22m+v , giving

T M3 = N ,

namely α7 = 3 as obtained above. Since we can choose any 0 ≤ v ≤ 2m, the tradeoff is
applicable for T 1/4 ≤ M ≤ T 1/2. The algorithm for the specific parameters M = 2n/5, T =
22n/5 is sketched in Fig. 7.

4.3.2 A11,1 and A11,2m

We consider the next value of K = 11 in the dissection sequence described in Sect. 3.3,
which has time complexity of T = 27m (nullifying 11m bits), i.e., τ11 = 7. The main loop of
A11 splits the problem into subproblem of sizes 4 and 7, while iterating over 3m intermediate
target values. To construct A11,1, we can easily fix these 3m values which reduces the time
complexity to 24m (nullifying only 8m bits). In general, we obtain the tradeoff T M4 = N

123

An algorithmic framework for the GBP 1915

L7 L6 L5 L4 L3 L2 L1

a2
a1 a2
c 1–n 5 a1 n 5

c c 2n 5

0 4n 5

n 5
zeroed by repeating
with 2n 5 values of a1

a1 (along with a2) varies while c is fixed.

Fig. 7 A7,1 with M = 2n/5, T = 22n/5

(α11 = 11−τ11 = 4) for T 1/7 ≤ M ≤ T 1/4. Interestingly, we can recursively fixmore values
and extend this tradeoff to T 1/7 ≤ M ≤ T 1/2, which is crucial when the number of solutions
is large. Below, we describe the algorithm for M = T 1/2 (i.e., M = 2n/6, T = 22n/6). This
algorithm is sketched in Fig. 8.

1. For a fixed 3m-bit word c, apply the A4,2m algorithm to {Li }4i=1 with the target
value c, and store the expected number of 24m−3m = 2m outputs in a new sorted
list L ′. Each word is stored along with the corresponding 4-tuple of indexes from
{Li }4i=1.

2. Apply a A7,22m algorithm to {Li }11i=5 with the 3m-bit target value c by recur-
sively fixing (additional) 2m bits (the expected number of solutions is indeed
27m−3m−2m = 22m). For each returned solution {yi }11i=5, look for matches with

{yi }4i=1 in L ′ and obtain an 11-tuple {yi }11i=1 such that
∑11

i=1 yi = 0 as required.

The complexity of both steps is 22m , hence T = 22m . Altogether, 3m + 2m = 5m bits are
fixed and n = 11m − 5m = 6m bits are nullified. Therefore, M = 2n/6, T = 22n/6 as
claimed. The ability to recursively fix target values (while maintaining the tradeoff of (3))
is a distinct feature of asymmetric algorithms. Next, we elaborate on which and how many
values can be fixed this way for general K .

123

1916 I. Dinur

L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1

a2

a1 a2
c 1–n 6 a1 n 6a4

a3 a4
b2 1–n 6 a3 n 6

b2 b1 2n 6
b1 b2
c 1–2n 6

c 3n 6 c 2n 6
n 6

set by repeating
with 2n 6 values of a1

0zeroed by repeating
with 2n 6 values of a3

5n 6

n 6

a1 (along with a2) and a3 (along with a4) vary while b1,b2,c are fixed.

Fig. 8 A11,1 with M = 2n/6, T = 22n/6

4.3.3 Generic analysis of basic asymmetric list sum algorithms

We analyze the transformation of the Ki -way dissection algorithm AKi (mentioned in
Sect. 3.3) to AKi ,1. As described in Sect. 3.3, AKi for Ki = 1+ i(i +1)/2 runs in time 2τKi m

for τKi = 1 + i(i − 1)/2. Therefore αKi = Ki − τKi = i , ideally giving the tradeoff

T Mi = N .

Determining the range of parameters for which this tradeoff applies is more subtle, as
demonstrated for A11,1 above. Recall from Sect. 3.3 that AKi splits the problem into subprob-
lems of sizes i, i−1, i−2, . . . , 3, 2, 2, and applies the algorithms Ai , Ai−1, . . . , A3, A2, A2,
respectively. Hence, the time complexity of the algorithm cannot be reduced below the time
complexity of Ai ,7 which is 2τi m . In conclusion, the tradeoff is applicable in the range
T 1/τKi ≤ M ≤ T 1/τi .

For example, for i = 3, we have K3 = 7, τ7 = 4 (as the time complexity of AK3 = A7

is 24m) and τ3 = 2 (as the time complexity of Ai = A3 is 22m). Therefore, we obtain the
tradeoff T M3 = N , applicable for T 1/4 ≤ M ≤ T 1/2, which indeed coincides with the A7,1

tradeoff obtained above. For i = 4, we have K4 = 11 and obtain the tradeoff T M4 = N ,
applicable for T 1/7 ≤ M ≤ T 1/2.

7 We could try to fix additional intermediate target values that the algorithm Ai iterates over internally.
However, this generally results in a less efficient tradeoff compared to T Mi = N .

123

An algorithmic framework for the GBP 1917

Table 2 Multiple-layer list sum algorithms

Algorithm Time-memory tradeoff Range (M vs. T) Reference

A2K T = M = N1/(log K+1) T = M [15]

A4K T �(log K)/2�M�(log K)/2�+1 = N T 1/2 ≤ M ≤ T New

A7K T log7 K M2 log7 K+1 = N T 1/4 ≤ M ≤ T 1/2 New

A11K T log11 K M3 log11 K+1 = N T 1/7 ≤ M ≤ T 1/2 New

A16K T log16 K M4 log16 K+1 = N T 1/11 ≤ M ≤ T 1/2 New

5 Construction of newmultiple-layer list sum algorithms

The second part of our framework uses the basic AP,1 and AP,2m algorithms developed in
the previous sections in order to construct multi-layered8 algorithms AP

K . We recall the P is
the arity of the tree of the multi-layered list sum algorithm (e.g., the K-tree algorithm uses
P = 2, as it merges the lists in pairs). In this section we construct the algorithm AP

K for any
given choice of K , P, M . However, recall from Sect. 2 that P is not a formal parameter of
the list sum problem, hence it is a free parameter. Therefore, given the parameters K , M , one
should apply the algorithm AP

K for a value of P that minimizes the time complexity.
The most relevant multi-layer list sum algorithms obtained in this section and in [15] are

summarized in Table 2.
The analysis for AP

K will use the parameter αP established for AP,1 according to its
tradeoff curve (3).

5.1 Generic construction and analysis of multiple-layer algorithms

Given K , P , we write K = Pk · Q, where 1 ≤ Q < P and P, k, Q are integers (if K is not
of the required form we round it down to K ′ of this form and apply the algorithm for K ′).
For example, if K = 32 and P = 4 then Q = 2 since 32 = 42 · 2. In this decomposition, we
have k = logP K (the logarithm is rounded down to the nearest integer). We now construct
the algorithm AP

K .

If Q = 1, AP
K has k − 1 layers of AP,2m (merging the lists in groups of P , where each

merge outputs a list of 2m inputs into the next layer) and a final layer of AP,1. If Q > 1, AP
K

has k layers of AP,2m and a final layer of AQ,1. For example, A4
16 has logP K −1 = 2−1 = 1

layer of A4,2m and one layer of A4,1, while A4
32 has logP K = 2 layers of A4,2m and one

layer of A2,1.
First, we analyze the case of K = Pk (namely, Q = 1), based on the tradeoff parameter

αP for AP,1 (as specified in Eq. (3)). Fix a parameter n′ such that each of the k − 1 layers of
AP,2m nullifies n′ bits in time complexity 2n

′−(αP−1)m , according to the tradeoff curve (4) for
AP,2m . Altogether, n′(k − 1) bits are nullified in these layers and n − n′(k − 1) remain to be
nullified by the final layer AP,1 in time 2n−n′(k−1)−αPm . In order to balance the algorithm, we
equate the time complexities of the layers by setting n′ − (αP −1)m = n−n′(k−1)−αPm
or n′ = (n − m)/k. Consequently, the time complexity of the layered algorithm is T =
2n

′−(αP−1)m = 2(n−m)/k−(αP−1)m = 2(n−m(k(αP−1)+1))/k . This gives a time-memory tradeoff
of T kMk(αP−1)+1 = N or

8 Note that in this section we rename the parameter of basic algorithms from K to P .

123

1918 I. Dinur

T logP K M logP K ·(αP−1)+1 = N . (5)

It is applicable for the same time-memory range as AP,1 (and AP,2m).
For example, in the K-tree algorithm, we have P = 2 and α2 = 2 − τ2 = 1. Hence, the

tradeoff of T logP K M logP K ·(α2−1)+1 collapses to T log K M = N . Setting T = M (which is
the only point in which the K-tree algorithm is directly applicable) gives the standard formula
of T log K+1 = N or T = N 1/(log K+1).

In case K = Pk · Q for 1 < Q < P , the generic analysis becomes more involved and
depends on the time-memory tradeoff curve of AQ,1.

In this paper we focus on Q = 2, where the final merge is a basic A2,1 algorithm that
runs in fixed time complexity of 2m and nullifies 2m bits. Fix a parameter n′ such that each
of the k layers of AP,2m nullifies n′ bits in time complexity 2n

′−(αP−1)m . Altogether, n′k bits
are nullified in these layers and n − n′k remain to be nullified by the final layer A2,1 in time
2m . Since the final 2-way list sum algorithm nullifies 2m bits, we have n − n′k = 2m or
n′ = (n − 2m)/k.

The algorithm’s time complexity is dominated by the first k layers and is therefore
T = 2n

′−(αP−1)m = 2(n−2m)/k−(αP−1)m = 2(n−m(k(αP−1)+2))/k . This gives a time-memory
tradeoff of

T logP K M logP K ·(αP−1)+2 = N , (6)

applicable for the same time-memory parameter range as AP,1 (and AP,2m).

5.2 Analysis of specific multiple-layer list sum algorithms

We analyze the A4
K algorithm according to the generic approach above. The analysis of the

rest of the layered algorithms AP
K summarized in Table 2 is obtained in a similar manner by

plugging the relevant αP parameter into (5).

5.2.1 A4K

For arity P = 4, we only analyze values of K which are powers of 2 (as this allows direct
comparison to previous tradeoffs forGBP). For A4,1, we haveα4 = 2, established in Sect. 4.2.

In case K = 4k , we plug logP K = log4 K = log K/2 and αP = α4 = 2 into (5),
obtaining

T (log K)/2M (log K)/2+1 = N ,

applicable for T 1/2 ≤ M ≤ T (as the A4,1 and A4,2m algorithms).
We demonstrate the A4

16 algorithm (that works in two layers with Q = 1) below.

1. Apply the A4,2m algorithm of Sect. 3.4 four times to lists {Li }4i=1, {Li }8i=5, {Li }12i=9
and {Li }16i=13, nullifyingn

′ = (n−m)/2 bits.Obtain four sorted lists L ′
1, L

′
2, L

′
3, L

′
4,

each of expected size 2m .
2. Apply the A4,1 algorithm of Sect. 3.4 to L ′

1, L
′
2, L

′
3, L

′
4, nullifying the remain-

ing n − n′ = (n + m)/2 bits. Derive a single solution to the list sum problem∑16
i=1 yi [1–n] = 0.

123

An algorithmic framework for the GBP 1919

Table 3 Time-memory tradeoffs of GBP algorithms

K Time-memory tradeoff Range (M vs. T) Building blocks

≥ 8 T �(log K)/2�+1M�(log K)/2� = N T 1/2 ≤ M ≤ T PCS + A4K/2

≥ 8 T 2M3�(log K)/2�−2−(log K) mod 2 = N 1 ≤ M ≤ T 1/2 PCS + A4K/2

8 T 3M = N T 1/2 ≤ M ≤ T PCS + A4,1

8 T 2M3 = N 1 ≤ M ≤ T 1/2 PCS + A4,1

16 T 3M2 = N T 1/2 ≤ M ≤ T PCS + A48
16 T 3M2 = N T 1/4 ≤ M ≤ T 1/2 PCS + A7,1

16 T 2M6 = N 1 ≤ M ≤ T 1/4 PCS + A7,1

32 T 4M2 = N T 1/2 ≤ M ≤ T PCS + A416
32 T 3M4 = N T 1/11 ≤ M ≤ T 1/2 PCS + A16,1

32 T 2M15 = N 1 ≤ M ≤ T 1/11 PCS + A16,1

6 T 2M2 = N 1 ≤ M ≤ T 1/2 PCS + A3,1

7 T 2M2 = N T 1/4 ≤ M ≤ T 1/2 CTP + A7,1

14 T 3M2 = N T 1/4 ≤ M ≤ T 1/2 PCS + A7,1

14 T 2M6 = N 1 ≤ M ≤ T 1/4 PCS + A7,1

In case K = 2 · 4k , we have P = 4, Q = 2 and log4 K = (log K − 1)/2. Plugging these
values into (6) we obtain

T (log K−1)/2M (log K−1)/2+2 = N ,

applicable for T 1/2 ≤ M ≤ T .
Unified formula for powers of 2Unifying the tradeoff formulas obtained above to any K = 2k ,
we obtain

T �(log K)/2�M�(log K)/2�+1 = N ,

applicable for T 1/2 ≤ M ≤ T .

6 Construction of new algorithms for the generalized birthday problem

The third part of our framework combines preparation phase and list sum algorithms (for
S = 1) to obtain new GBP algorithms. It combines either PCS (memory-consuming parallel
collision search) or CTP (clamping through precomputation) with a given list sum algorithm.
The generic formulas are then used to obtain improved tradeoffs for various specific K values
(some ofwhich are specified inTable 3).We focus on values of K that allowdirect comparison
to previous tradeoff curves in addition to values that are relevant to Sect. 7, where we analyze
concrete GBP instances.

For a parameter K , we construct a GBP algorithm assuming we have a list sum algorithm
A (which can be a basic or layered algorithm) with S = 1 for a parameter K ′ (whose value
will be either K ′ = K or K ′ = K/2). We assume that the time-memory tradeoff curve of
A for K ′ is T βMγ = N for parameters β, γ . Our analysis also uses a parameter δ, which

123

1920 I. Dinur

specifies the lower range limit for the tradeoff algorithm of A as M ≥ T 1/δ . For example,
we established the tradeoff T M3 = N for A7,1 in the range T 1/4 ≤ M ≤ T 1/2, hence we
have β = 1, γ = 3, δ = 4. We will derive a basic tradeoff for M ≥ T 1/δ and then extend it
to M < T 1/δ . Furthermore, the tradeoffs depend on the input range size L = 2� since the
complexity of the preparation phase algorithm varies according to whether or not � is below
some value. For example, when applying PCS with a small value of �, we have to apply it to
an expanding function and adapt the complexity as specified on Sect. 3.6.

Altogether, a GBP tradeoff formula depends on a triplet of parameters (preparation phase
algorithm, memory range, input size range) and there are 23 = 8 such possible triplets.
However, only 6 are relevant in this paper and they are summarized in Table 4. Deriving
these formulas is a mechanical procedure of parameter optimization. Below, we explicitly
derive the first 4 tradeoffs for the specific case of K = 14 with the PCS preparation phase.

6.1 Tradeoff algorithm for K = 14

For K = 14 with the PCS preparation phase, we use an algorithm A for K ′ = K/2 =
7, namely A7,1. The tradeoff formula for A7,1 is T M3 = N (i.e., its time complexity is
T = 2n−3m) in the range T 1/4 ≤ M ≤ T 1/2. The combination algorithm uses the truncated
function H|r ,r (as defined in Sect. 2) for a parameter r ≥ m, set below to optimize the
algorithm.

1. Run PCS on the function H|r ,r and look for 2m collisions. For each collision
H(x)[1–r] = H(x ′)[1–r], compute y = H(x) + H(x ′) and store all these words
in 7 lists {Li }7i=1 of size about 2

m (along with the corresponding x values).
2. Run A on {Li }7i=1 (nullifying bits [r + 1–n]). Obtain 7 words yi ∈ Li such that

∑7
i=1 yi = 0 and use them (based on the first step) to construct a solution to GBP

by recovering the K words xi such that
∑14

i=1 H(xi) = ∑7
i=1 yi = 0 as required.

In the first step, we execute PCSwith parameter r in time 2(r+m)/2 (according to Sect. 3.6).
In the second step we nullify the remaining n′ = n− r bits by using A7,1 in time complexity
2n

′−3m = 2n−r−3m . Then, to balance the two steps we require (r + m)/2 = n − r − 3m or
r = (2n − 7m)/3, giving time complexity of T = 2(n−2m)/3 and a tradeoff of

T 3M2 = N .

This matches Tradeoff 1 for K = 14 in Table 4 (recall that for A7,1, β = 1, γ = 3, δ = 4).
This tradeoff is valid for T 1/4 ≤ M ≤ T 1/2 (as A7,1). The algorithm for parameters T =
N 1/4, M = N 1/8 is sketched in Fig. 9.

WhenM < T 1/4, we can extend the tradeoff by applying A7,1 to nullify less bits (i.e., with
a smaller value of n′), implying that PCS will nullify more bits and dominate the complexity
of the algorithm which becomes T = 2(r+m)/2 = 2(n−n′+m)/2. In order to calculate n′, we
use the tradeoff curve T̂ M3 = N ′ of A7,1 at its lower range M = T̂ 1/4 or T̂ = M4 (here,
T̂ denotes the time complexity of A7,1) and obtain N ′ = M7, namely n′ = 7m. Therefore,
T = 2(n−n′+m)/2 = (n − 6m)/2, giving the tradeoff

T 2M6 = N .

This matches Tradeoff 2 in Table 4.

123

An algorithmic framework for the GBP 1921

Ta
bl
e
4

G
en
er
ic
G
B
P
tim

e-
m
em

or
y
tr
ad
eo
ff
s
fo
rm

ul
as

T
ra
de
of
f

T
im

e-
m
em

or
y
tr
ad
eo
ff

K
′

R
an
ge

(M
vs
.T

)
R
an
ge

(L
)

B
ui
ld
in
g
bl
oc
ks

1
T

β
+2

M
γ
−1

=
N

K
/
2

M
≥

T
1/

δ
(s
am

e
as

A
)

�
≥

2n
−2

m
γ
−m

β
β
+2

PC
S

+
A

2
T
2
M

δβ
+γ

−1
=

N
K

/
2

M
≤

T
1/

δ
�

≥
n

−
m

(δ
β

+
γ
)

PC
S

+
A

3
T

β
+1

M
γ
−1

/
2
L
1/
2

=
N

K
/
2

M
≥

T
1/

δ
(s
am

e
as

A
)

�
≤

2n
−2

m
γ
−m

β
β
+2

PC
S

+
A

4
T
M

δβ
+γ

−1
/
2
L
1/
2

=
N

K
/
2

M
≤

T
1/

δ
�

≤
n

−
m

(δ
β

+
γ
)

PC
S

+
A

5
T

β
+1

M
γ
−1

=
N

K
M

≥
T
1/

δ
(s
am

e
as

A
)

�
≥

n−
m

γ
+m

β
+1

C
T
P

+
A

6
T

β
M

γ
−1

L
=

N
K

M
≥

T
1/

δ
(s
am

e
as

A
)

�
≤

n−
m

γ
+m

β
+1

C
T
P

+
A

123

1922 I. Dinur

6.1.1 Restricted domain

Recall from the first tradeoff that r = (2n − 7m)/3. In case � < r = (2n − 7m)/3 (the
domain size of H is 2� < 2r) we are forced to use H|�,r which is an expanding function.
The time complexity of PCS for the expanding function H|�,r is 2r+(m−�)/2 (as specified in
Sect. 3.6), while the time complexity of A7,1 remains T = 2n−r−3m . Balancing the steps in
this case gives r + (m − �)/2 = n − r − 3m or r = n/2− 7m/4+ �/4 and time complexity
of T = r + (m − �)/2 = n/2 − 5m/4 − �/4. This gives the formula

T 2M5/2L1/2 = N ,

matching Tradeoff 3 in Table 4.
When M < T 1/4, the steps cannot be balanced as above and the time complexity becomes

2r+(m−�)/2 (dominated by PCS). Here, r = n − n′ = n − 7m (n′ = 7m as in the case where
the domain is not restricted). We obtain T = 2n−13m/2−�/2, giving the formula

T M13/2L1/2 = N

and matching Tradeoff 4 in Table 4.

6.2 Tradeoff formulas for K = 2k (and K ≥ 8)

We now derive improved GBP tradeoffs for K = 2k assuming that K ≥ 8. These tradeoffs
are obtained by combining PCS with multiple layers of the 4-way list sum algorithm A4

K/2
(described in Sect. 5) as the generic algorithm A. The formula is calculated according to
Tradeoff 1 in Table 4.

We recall the formula of A4
K/2 from Table 2, which9 is T �(log K−1)/2�M�(log K−1)/2�+1 =

N , namely β = �(log K − 1)/2� = �(log K)/2� − 1 and γ = �(log K − 1)/2� + 1 =
�(log K)/2�+ 1. Adding 2 to β and reducing γ by 1 (as in Tradeoff 1 in Table 4), we obtain

T �(log K)/2�+1M�(log K)/2� = N ,

applicable for T 1/2 ≤ M ≤ T .

6.2.1 Extending the tradeoffs toM < T1/2

In case M < T 1/2, PCS dominates the algorithm’s time complexity and the for-
mula is given in Tradeoff 2 in Table 4 as T 2Mδβ+γ−1, where δ = 2. We obtain
T 2M2�(log K)/2�−2+�(log K)/2� = N , or

T 2M3�(log K)/2�−2−(log K) mod 2 = N .

The tradeoff is applicable for M ≤ T 1/2.

6.2.2 Tradeoff formulas for K = 16, K = 32 and beyond

The tradeoff curve for T 1/2 ≤ M ≤ T above is the best we can obtain for K = 2k . On the
other hand, the curve for M < T 1/2 is only optimal for K = 8 as for larger K values it is
possible to apply more complex list sum algorithms as described in Sect. 5.

9 Note that the evaluation is performed at K/2 rather than K .

123

An algorithmic framework for the GBP 1923

x7 x7 x6 x6 x5 x5 x4 x4 x3 x3 x2 x2 x1 x1 3n 8

PCS

L7

0

L6

0

L5

0

L4

0

L3

0

L2

0

L1

0 3n 8

0
a2a1 a2

c 1–n 8 0
a1

3n 8
n 8

0
c

0
c

3n 8
2n 8

0 7n 8

n 8
zeroed by repeating
with 2n 8 values of a1

a1 (along with a2) varies while c is fixed. PCS colliding values (xi’s) are arbitrary.

Fig. 9 GBP algorithm for K = 14 with M = 2n/8, T = 2n/4

While we cannot obtain generic optimal formulas that are applicable to all values of
K = 2k and M < T 1/2, we further extend the tradeoffs for K = 16 and K = 32 in Table 3.
The results were obtained using the formulas of the combination algorithms (Tradeoffs 1,2
in Table 4) after plugging in the parameters of the relevant list sum algorithms (specified as
building blocks in Table 3). The methods to obtain tradeoffs for K = 64 and beyond are
similar.

6.3 Tradeoff formulas for K ∈ {6, 7, 14}

As for values of K = 2k analyzed above, the results for K ∈ {6, 7, 14, 15} in Table 3
were obtained using the formulas of the combination algorithms with the list sum algorithms
specified as building blocks in the table.

123

1924 I. Dinur

Table 5 Some GBP algorithms for restricted domains

K Time-memory tradeoff Range (M vs. T) Domain range Building blocks

6 T M5/2L1/2 = N 1 ≤ M ≤ T 1/2 L ≤ NM−3 PCS + A3,1

7 T M2L = N T 1/4 ≤ M ≤ T 1/2 L ≤ N1/2M−1 CTP + A7,1

14 T 2M5/2L1/2 = N T 1/4 ≤ M ≤ T 1/2 L ≤ N2/3M−7/3 hbox PCS + A7,1

Table 6 Complexities for concrete GBP instances

K n � Time/memory [11]
(Extended K-tree)

Our time/memory Our tradeoff

6 120 37 T = M = 248 T = 248/M = 225 T M5/2L1/2 = N

6 120 32 T = M = 258 T = 249/M = 224 T M5/2L1/2 = N

7 120 36 T = M = 250 T = 245/M = 224 T M2L = N

7 120 28 T = M = 266 T = 249/M = 226 T M2L = N

14 120 14 T = M = 267 T = 239/M = 220 T 2M5/2L1/2 = N

6.3.1 Restricted domains

Using combination algorithms for restricted domains L = 2� < N , we derive additional
tradeoffs in Table 5.10 These tradeoffs are applicable to the concrete GBP instances analyzed
in the next section.

7 Restricted domain instances of the generalized birthday problem

The best known algorithm for GBP instances with restricted domain is the extended K-tree
algorithm [11], which can be directly applied to values of K = 2k for any N 1/K ≤ L ≤
N 1/(log K+1). Here, we use our GBP tradeoffs derived in Sect. 6.3 (specified in Table 5) and
compare the results for some GBP instances in Table 6.

For fair comparison, we multiply the time and memory complexities obtained by our
general formulas above by K . For example, for K = 6, n = 120, � = 37 the relevant
curve in Table 5 is T M5/2L1/2 = N for M ≤ T 1/2. To optimize the time complexity we
set M = T 1/2, giving T = N 4/9L−2/9 ≈ 245. After multiplication by K = 6, we obtain
M ≈ 225, T ≈ 248.

Generally, our tradeoffs give better results for values of K that are far away from their
nearest smaller power of 2. However, we remark that our algorithms also give interesting
tradeoffs for some instances with values of K that are powers of 2. For example, for K =
16, n = 120, � = 15, the extendedK-tree algorithm gives T = M = 234. Assumewewant to
keep the memory close to 215, then we can directly apply the 16-way list sum algorithm A4

16
of Sect. 5 (with the tradeoff of T 2M3 = N) and obtain (after multiplication with K = 16),

10 These algorithms are not optimal for a very small domain size close to 2n/K , which is the minimal value
required for a solution to exist with high probability. In such cases it is more efficient to apply a final layer
of random-walk collision search (as done in [4,7]). However, the practical relevance of these algorithms is
relatively limited and they are beyond the scope of this paper (as we focus on practical tradeoffs for GBP
instances with limited domain sizes).

123

An algorithmic framework for the GBP 1925

M = 219 and T ≈ 241.5. Hence we reduce the memory complexity by a factor of 215 and
increase the time complexity by 27.5, which may be preferable is practical settings.

8 Conclusions

In this paper, we devised new GBP time-memory tradeoff algorithms, improving the state-
of-the-art for a large range of parameters. The improvement is mainly due to a careful
transformation of exhaustive list sum memory-efficient algorithms (i.e., variants of the
Schroeppel–Shamir algorithm and dissection algorithms) to algorithms that efficiently find
a single solution to the list sum problem. It is thus plausible that future improvements to
exhaustive list sum algorithms will also result in improved time-memory tradeoffs for GBP
using our transformation.

Acknowledgements The author was supported in part by the Israeli Science Foundation through Grant No.
573/16.

References

1. Becker A., Coron J., Joux A.: Improved generic algorithms for hard knapsacks. In: Paterson K.G. (ed)
Advances in Cryptology—EUROCRYPT 2011—30th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15–19, 2011. Lecture Notes in
Computer Science, vol. 6632, pp. 364–385. Springer, New York (2011).

2. Becker A., Joux A., May A., Meurer A.: Decoding random binary linear codes in 2n/20: how
1 + 1 = 0 improves information set decoding. In: Pointcheval D., Johansson T. (eds.) Advances in
Cryptology—EUROCRYPT 2012—31st Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Lecture Notes in Computer
Science, vol. 7237, pp. 520–536. Springer, New York (2012).

3. Bernstein D.J.: Better price-performance ratios for generalized birthday attacks. In: SHARCS07: Special-
Purpose Hardware for Attacking Cryptographic Systems (2007).

4. Bernstein D.J., Lange T., Niederhagen R., Peters C., Schwabe P.: FSBday. In: Roy B.K., Sendrier N. (eds.)
Progress in Cryptology—INDOCRYPT2009, 10th International Conference onCryptology in India, New
Delhi, India, December 13–16, 2009. Lecture Notes in Computer Science, vol. 5922, pp. 18–38. Springer,
New York (2009).

5. Biryukov A., Khovratovich D.: Equihash: asymmetric proof-of-work based on the generalized birthday
problem. In: 23ndAnnual Network andDistributed SystemSecurity Symposium,NDSS 2016, SanDiego,
California, USA, February 21–24, 2016. The Internet Society (2016).

6. Canteaut A., Trabbia M.: Improved fast correlation attacks using parity-check equations of weight 4 and
5. In: Preneel B. (ed.) Advances in Cryptology—EUROCRYPT 2000, International Conference on the
Theory andApplication of Cryptographic Techniques, Bruges, Belgium,May 14–18, 2000. Lecture Notes
in Computer Science, vol. 1807, pp. 573–588. Springer, New York (2000).

7. Dinur I., Dunkelman O., Keller N., Shamir A.: Efficient dissection of composite problems, with appli-
cations to cryptanalysis, knapsacks, and combinatorial search problems. In: Safavi-Naini R., Canetti R.
(eds.) Advances in Cryptology—CRYPTO 2012—32nd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 19–23, 2012. Lecture Notes in Computer Science, vol. 7417, pp. 719–740. Springer,
New York (2012).

8. Finiasz M., Sendrier N.: Security bounds for the design of code-based cryptosystems. In: Matsui M.
(ed.) Advances in Cryptology—ASIACRYPT 2009, 15th International Conference on the Theory and
Application of Cryptology and Information Security, Tokyo, Japan, December 6–10, 2009. Lecture Notes
in Computer Science, vol. 5912, pp. 88–105. Springer, New York (2009).

9. Howgrave-GrahamN., JouxA.: New generic algorithms for hard knapsacks. In: Gilbert H. (ed.) Advances
in Cryptology—EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, French Riviera, May 30–June 3, 2010. Lecture Notes in Computer
Science, vol. 6110, pp. 235–256. Springer, New York(2010).

123

1926 I. Dinur

10. Meier W., Staffelbach O.: Fast correlation attacks on certain stream ciphers. J. Cryptol. 1(3), 159–176
(1989).

11. Minder L., Sinclair A.: The extended k-tree algorithm. J. Cryptol. 25(2), 349–382 (2012).
12. Nikolic, I., Sasaki, Y.: Refinements of the k-tree Algorithm for the Generalized Birthday Problem. In:

T. Iwata and J. H. Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st International
Conference on the Theory and Application of Cryptology and Information Security, Auckland, New
Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume 9453 of Lecture Notes in
Computer Science, pages 683–703. Springer, (2015)

13. Schroeppel R., Shamir A.: AT = O(2n/2), S = O(2n/4) algorithm for certain NP-complete problems.
SIAM J. Comput. 10(3), 456–464 (1981).

14. vanOorschot P.C.,WienerM.J.: Parallel collision searchwith cryptanalytic applications. J. Cryptol. 12(1),
1–28 (1999).

15. Wagner D.A.: A generalized birthday problem. In: Yung M. (ed.) Advances in Cryptology—CRYPTO
2002, 22ndAnnual International Cryptology Conference, Santa Barbara, California, USA, August 18–22,
2002. Lecture Notes in Computer Science, vol. 2442, pp. 288–303. Springer, New York(2002).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	An algorithmic framework for the generalized birthday problem
	Abstract
	1 Introduction
	2 Notations and conventions
	2.1 Naming conventions and notations for list sum algorithms
	2.2 Complexity evaluation

	3 Preliminaries and previous work
	3.1 General properties of list sum algorithms
	3.2 Exhaustive symmetric list sum algorithms AK for K=2k
	3.2.1 A2
	3.2.2 A4 HowgravespsGrahamJ10
	3.2.3 A16 BeckerCJ11

	3.3 Exhaustive asymmetric list sum algorithms AK DinurDKS12
	3.3.1 A3
	3.3.2 A7
	3.3.3 General dissection

	3.4 Basic list sum algorithms
	3.4.1 A2,1 and A2,2m
	3.4.2 A3,1
	3.4.3 A4,1 and A4,2m HowgravespsGrahamJ10

	3.5 The K-tree algorithm: AK2 Wagner02
	3.6 Preparation phase algorithms
	3.6.1 Parallel collision search OorschotW99
	3.6.2 Parallel collision search in expanding functions OorschotW99
	3.6.3 Clamping through precomputation Bernstein07,BernsteinLNPS09

	3.7 Previous GBP tradeoff algorithms for K=2k BiryukovK16,NikolicS15

	4 Construction of new basic list sum algorithms
	4.1 Preliminary construction and analysis of basic list sum algorithms
	4.2 Basic symmetric list sum algorithms
	4.2.1 A16,1 and A16,2m
	4.2.2 Beyond 16-way list sum algorithms

	4.3 Basic asymmetric list sum algorithms
	4.3.1 A7,1 and A7,2m
	4.3.2 A11,1 and A11,2m
	4.3.3 Generic analysis of basic asymmetric list sum algorithms

	5 Construction of new multiple-layer list sum algorithms
	5.1 Generic construction and analysis of multiple-layer algorithms
	5.2 Analysis of specific multiple-layer list sum algorithms
	5.2.1 AK4

	6 Construction of new algorithms for the generalized birthday problem
	6.1 Tradeoff algorithm for K=14
	6.1.1 Restricted domain

	6.2 Tradeoff formulas for K=2k (and K 8)
	6.2.1 Extending the tradeoffs to M < T1/2
	6.2.2 Tradeoff formulas for K=16, K=32 and beyond

	6.3 Tradeoff formulas for K in{6,7,14}
	6.3.1 Restricted domains

	7 Restricted domain instances of the generalized birthday problem
	8 Conclusions
	Acknowledgements
	References

