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Abstract LetG be a finite nonabelian group. Bent functions on G are defined by the Fourier
transforms at irreducible representations of G. We introduce a dual basis ̂G, consisting of
functions on G determined by its unitary irreducible representations, that will play a role
similar to the dual group of a finite abelian group. Then we define the Fourier transforms as
functions on ̂G, and obtain characterizations of a bent function by its Fourier transforms (as
functions on ̂G). For a function f from G to another finite group, we define a dual function
˜f on ̂G, and characterize the nonlinearity of f by its dual function ˜f . Some known results
are direct consequences. Constructions of bent functions and perfect nonlinear functions are
also presented.

Keywords Fourier transforms · Bent functions · Perfect nonlinear functions · Dual basis ·
Dual functions
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1 Introduction

The notion of aBoolean bent functionwas first introduced byRothaus [22] in 1976. Since then
Boolean bent functions have been studied in numerous papers, and various generalizations of
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this notion have been developed. Applications of bent functions and their generalizations can
be found in information theory, cryptography, coding theory, etc. Tokareva [25] presented a
systematic survey of the recent development of the research in this field. Among the general-
izations of Boolean bent functions, bent functions which are defined on the direct product of
a finite number of identical cyclic groups and take values in this cyclic group were introduced
by Chung et al. [5] and Kumar et al. [13]. As further generalizations, Logachev et al. [15]
defined bent functions on finite abelian groups, and Poinsot [18] defined bent functions on
finite non-abelian groups. Carlet and Ding [4] and Pott [21] studied perfect nonlinear func-
tions between two finite abelian groups, which can be regarded as a generalization of bent
functions on finite abelian groups introduced in [15]. Later, the notion of perfect nonlinear
functions between two finite abelian groups in [4,21] is generalized to perfect nonlinear func-
tions between two arbitrary finite groups by Poinsot [19]. More research on bent functions
and perfect nonlinear functions on finite (abelian or non-abelian) groups can be found in
other papers (cf. [24,26–28]). Other generalizations of bent functions on finite groups are
also studied; for example, see [8,9,20].

Perfect nonlinear functions on finite groups can be used to construct DES-like cryptosys-
tems that are resistant to differential attacks. An example of using the classical XOR as well
as the addition in a cyclic group and the multiplication in the group of units of a finite field
can be found in Lai and Massey [14]. Also see [23] for more examples of S-boxes that use
addition in a cyclic group. Pott [21] mentioned that “It seems that in most applications (in
particular in cryptography) people use nonlinear functions on finite fields. However, there is
no technical reason why you should restrict yourselves to this case”.

For arbitrary finite groups, the connections between the perfect nonlinear functions and
relative difference sets are studied by Pott [21]. Let G and H be arbitrary finite groups, and
f : G → H a function. Pott [21] proved that f is a perfect nonlinear function if and only
if the set R f := {(s, f (s)) : s ∈ G} ⊂ G × H is a semiregular (|G|, |H |, |G|, |G|/|H |)
relative difference set in G × H relative to {1G} × H , where 1G is the identity element
of G. Furthermore, the notion of a (G, H)-related difference family is introduced in [26].
It is proved in [26, Theorem 1.3] that f is perfect nonlinear if and only if {Sy : y ∈
H} is a (G, H)-related difference family in G, where Sy := f −1(y). In particuar, if f
is perfect nonlinear, then by [26, Corollary 1.4], {Sy : y ∈ f (G)} is also a partitioned
(|G|, K , |G|/|H |) difference family in G, where K := {|Sy | : y ∈ f (G)}.

Let G be a finite group, and let f be a complex valued function on G. If G is abelian, then
there is the dual group ̂G ofG consisting of its (irreducible) characters. The Fourier transform
̂f of f is defined as a function on the dual group ̂G, and the bentness of f is defined by its
Fourier transform. That is, if the values of f on G are on the unit circle, then f is said to be
a bent function if the absolute value of ̂f (χ) is

√|G|, for any χ ∈ ̂G. If G is nonabelian,
then the Fourier transform ̂f of f is defined as a function on the irreducible representations
of G, and the bentness of f is also defined by its Fourier transform (see Sects. 2 and 3 below
for some details).

Let G be a finite nonabelian group. We introduce a dual basis of G, also denoted by
̂G, that consists of complex valued functions on G determined by its unitary irreducible
representations (see Definition 2.3 in Sect. 2). The dual basis ̂G will play a role similar to the
dual group of a finite abelian group in our discussions. That is, for a complex valued function f
onG, we will define the Fourier transform ̂f as a function on ̂G (see Definition 2.5 in Sect. 2).
Although our definition of the Fourier transform (as a function on ̂G) is equivalent to the
traditional definition of the Fourier transform (as a function on the irreducible representations
of G), by this new definition we are able to obtain further characterizations of bent functions
on finite nonabelian groups (see Theorems 3.3 and 3.4 in Sect. 3). Furthermore, if f is a
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function from G to another group H , then we define a dual function ˜f of f as a function
from ̂G to the vector space with basis ̂H . We will characterize the nonlinearity of f by its
dual function ˜f (see Theorems 4.2 and 4.3 in Sect. 4). The method developed in this paper
also provides conceptual proofs of some known results (see Corollaries 3.9 and 4.8).

The rest of the paper is organized as follows. In Sect. 2 we discuss properties of the Fourier
transform as a function on the dual basis ̂G. Then in Sect. 3, we study characterizations of
bent functions. Characterizations of perfect nonlinear functions between two arbitrary finite
groups are discussed in Sect. 4, and constructions of bent functions and perfect nonlinear
functions are presented in Sect. 5.

2 Fourier transforms on finite groups

Let G be a finite group. The identity element of G is denoted by 1G , or simply by 1 when
no ambiguity can occur. Let GL(m, C) be the group of all invertible m × m matrices over
the complex numbers C. Then a homomorphism � : G → GL(m, C) is called a (matrix)
representation of G, and m is called the degree of �. We say that a representation � : G →
GL(m, C) is reducible if there is P ∈ GL(m, C) such that

P−1�(x)P =
(

A(x) O
O C(x)

)

, for all x ∈ G,

where A(x) and C(x) are square matrices, and O are zero matrices. If a representation �

is not reducible, then we say that � is irreducible. Two representations � and � of G are
said to be equivalent if there is an invertible matrix P such that �(x) = P−1�(x)P , for all
x ∈ G. Let Tr(M) denote the trace of a square matrix M . Then the character ϕ of G afforded
by a representation� is the function ϕ : G → C defined by ϕ(x) = Tr(�(x)), for all x ∈ G,
and ϕ is called an irreducible character if � is irreducible. The degree of � is also called
the degree of ϕ, and denoted by nϕ . Two irreducible representations are equivalent if and
only if they afford the same character. A representation � is called a unitary representation
if �(x) is a unitary matrix, for any x ∈ G. Note that any irreducible representation of G is
equivalent to a unitary irreducible representation (see [12, Theorem 4.17]).

The principal irreducible representation of G is �1 : G → GL(1, C), x �→ 1, and the
principal irreducible character is ϕ1 afforded by �1. Any other irreducible representation
(character) is called a non-principal irreducible representation (character). Throughout the
paper, let Irr(G) denote the set of irreducible characters of G. For the references of the
representation and character theory of finite groups, the reader is referred to [1,11,12,16].

Let f : G → C be a function. Then for an irreducible representation� : G → GL(m, C),
the Fourier transform of f at � is defined as

̂f (�) :=
∑

x∈G
f (x)�(x) ∈ Matm(C), (2.1)

where Matm(C) is the algebra of all m × m matrices over C. The order of G is denoted by
|G|. Let {�1,�2, . . . , �k} be a complete set of representatives of inequivalent irreducible
representations of G, where k is the number of conjugacy classes of G. It is known that the
Fourier transforms of f at �1,�2, . . . , �k determine f through the inversion formula

f (x) = 1

|G|
k
∑

i=1

ni Tr
(

�i (x
−1)̂f (�i )

)

, where ni is the degree of �i . (2.2)
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For each ψ ∈ Irr(G), we fix a unitary irreducible representation �ψ that affords ψ . Then

for any s ∈ G, �ψ(s) is an nψ × nψ unitary matrix, denoted by
(

φ
ψ
i j (s)

)

i, j . Thus, for any

ψ ∈ Irr(G), we have n2ψ functions on G defined by �ψ :

φ
ψ
i j : G → C, s �→ φ

ψ
i j (s), 1 ≤ i, j ≤ nψ.

Throughout the paper, the following notation will be used.

Notation 2.1 For each ψ ∈ Irr(G), let �ψ be a (fixed) unitary irreducible representation
that affords ψ , and we also write

�ψ := (

φ
ψ
i j

)

i, j .

Furthermore, let

̂G := {φψ
i j : ψ ∈ Irr(G), 1 ≤ i, j ≤ nψ }.

The set C
G of complex functions on G is an |G|-dimensional complex space. It is also a

G-module (or G-space) with the G-action defined by

s f : G → C, t �→ f (s−1t), for any s ∈ G, f ∈ C
G . (2.3)

The complex conjugate of any z ∈ C is denoted by z. For any f ∈ C
G , let f be the complex

conjugate of f defined by f : G → C, s �→ f (s). The next lemma collects some basic facts
about ̂G. These results are known and can be found in the references mentioned above.

Lemma 2.2 With Notation 2.1, the following hold.

(i) |̂G| = |G|.
(ii) ψ =

nψ
∑

i=1
φ

ψ
i i , for all ψ ∈ Irr(G).

(iii) φ
ψ
i j (s) = φ

ψ
j i (s

−1), for all φψ
i j ∈ ̂G and s ∈ G.

(iv) φ
ψ
i j (st) =

nψ
∑

k=1
φ

ψ
ik(s)φ

ψ
k j (t), for all φ

ψ
i j ∈ ̂G and s, t ∈ G. In particular,

sφψ
i j =

nψ
∑

k=1

φ
ψ
ik(s

−1)φ
ψ
k j , for any s ∈ G. (2.4)

From (2.2) and Lemma 2.2, ̂G is a basis of C
G .

Definition 2.3 With Notation 2.1, we call ̂G a dual basis of G.

The dual basis ̂G will play a role similar to the dual group of a finite abelian group in our
treatment of Fourier transforms on finite nonabelian groups.

Note that C
G is a unitary space with the inner product

〈 f, g〉G =
∑

s∈G
f (s)g(s), for any f, g ∈ C

G . (2.5)

The next lemma is well known (cf. [16, p. 187, Theorem 2.2]). It says that ̂G is an orthogonal
basis of C

G .
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Lemma 2.4 (Orthogonality Relations) For any φ
ψ
i j , φ

χ
kl ∈ ̂G,

〈

φ
ψ
i j , φ

χ
kl

〉

G
=
{ |G|

nψ
, if φψ

i j = φ
χ
kl ;

0, if φψ
i j 
= φ

χ
kl .

(2.6)

For any f ∈ C
G , in the next definitionwe define its Fourier transform ̂f as a function on ̂G.

Note that this definition is equivalent to the original definition of ̂f in (2.1) and the inversion
formula (2.2). In this paper we will regard ̂f as a function on irreducible representations and
also on ̂G as well. To simplify the notation, the summation over all φ

ψ
i j ∈ ̂G is denoted by

∑

(ψ,i, j)
.

Definition 2.5 For any f ∈ C
G , the Fourier transform ̂f of f on ̂G is defined by

̂f (φψ
i j ) =

∑

s∈G
f (s)φψ

i j (s), for any φ
ψ
i j ∈ ̂G.

On the other hand, for any function τ : ̂G → C, we define the Fourier inversion τ̂ ∈ C
G as

follows:

τ̂ (s) = 1

|G|
∑

(ψ,i, j)

nψφ
ψ
i j (s)τ (φ

ψ
i j ), for all s ∈ G.

Thus, from Definition 2.5 and (2.1), we have

̂f (�ψ) =
(

̂f (φψ
i j )
)

i, j
, for any ψ ∈ Irr(G). (2.7)

Remark 2.6 Since ̂G is a basis of C
G , we have C

G = ĈG. Let σ : ̂G → C be a function.
Then σ can be linearly extended to a function (still denoted by σ ) on ĈG as follows:

σ : ĈG → C,
∑

(ψ,i, j)

α
ψ
i jφ

ψ
i j �→

∑

(ψ,i, j)

α
ψ
i jσ

(

φ
ψ
i j

)

.

In particular, for any function f : G → C, its Fourier transform ̂f , a function on ̂G, is also
a function on ĈG by linear extension.

The next lemma is straightforward.

Lemma 2.7 ̂
̂f = f for any f ∈ C

G, and̂τ̂ = τ for any τ ∈ C
̂G .

The next lemma discusses the relation between a function and its Fourier transform on ̂G.
It can be regarded as a reformulation of the inversion formula (2.2).

Lemma 2.8 Let f ∈ C
G, and f the complex conjugate of f . Then

f = 1

|G|
∑

(ψ,i, j)

nψ
̂f (φψ

i j )φ
ψ
i j .

Proof Since ̂G is a basis of C
G , we may assume that f = ∑

(ψ,i, j) α
ψ
i jφ

ψ
i j , where α

ψ
i j ∈ C.

Therefore, f = ∑

(ψ,i, j) α
ψ
i j φ

ψ
i j , and hence ̂f = ∑

(ψ,i, j) α
ψ
i j

̂

φ
ψ
i j . So by Lemma 2.4,

̂f (φχ
kl) =

∑

(ψ,i, j)

α
ψ
i j

̂

φ
ψ
i j (φ

χ
kl) =

∑

(ψ,i, j)

α
ψ
i j

〈

φ
χ
kl , φ

ψ
i j

〉

G
= |G|

nχ

α
χ
kl , for any φ

χ
kl ∈ ̂G.

Hence, the lemma holds. ��
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Remark 2.9 For any s ∈ G, we have the characteristic function 1s ∈ C
G (i.e. 1s(t) = 0

if t 
= s and 1s(s) = 1), whose Fourier transform iŝ1s(φ
ψ
i j ) = φ

ψ
i j (s), for any φ

ψ
i j ∈ ̂G.

For any function σ : ̂G → C, it is straightforward to check that σ = ∑

s∈G σ̂ (s)̂1s . So the
Fourier transform and the Fourier inversion can be regarded as transformations between ̂G
and {̂1s : s ∈ G}.

Let V be a vector space of dimension |G| with a basis B := {et }t∈G indexed by the
elements of G. Then any s ∈ G induces a linear transformation (an isomorphism)�s : V →
V, et �→ est , for any t ∈ G.

Definition 2.10 With the notation in the above paragraph, the (left) regular representation
of G is

� : G → GL(|G|, C), s �→ MatB(�s),

where MatB(�s) is the matrix of �s with respect to the basis B.

The regular character ρ of G is the character afforded by the (left) regular representation
of G. It is known that ρ = ∑

ψ∈Irr(G) nψψ (see [12, Lemma 2.11]), ρ(1G) = |G|, and
ρ(s) = 0 for any s ∈ G\{1G} (see [12, Lemma 2.10]). Let In be the n × n identity matrix
for any positive integer n. For any g ∈ C

G , since ̂G is a basis of C
G , and ρ = ∑

(ψ,i) nψφ
ψ
i i ,

the following are equivalent by Lemma 2.8 and (2.7):

(i) g(s) = 0 for any s ∈ G\{1G};
(ii) g = g(1)

|G| ρ (or g = g(1)
|G| ρ);

(iii) ĝ(�ψ) = g(1)Inψ , for any ψ ∈ Irr(G).

More generally, we have the next result.

Lemma 2.11 (Cf. [27, Lemma 2.1]) Let f ∈ C
G and λ ∈ C. Then the following are

equivalent.

(i) For any s ∈ G\{1G}, f (s) = λ.
(ii) For any non-principal irreducible character ψ of G, ̂f (�ψ) = ( f (1) − λ)Inψ .

Proof Let g = f − λψ1, where ψ1 is the principal irreducible character of G. Note that for
any non-principal irreducible character ψ of G,

∑

x∈G �ψ(x) = O (the zero matrix, cf. [12,
Problem 2.1]). Hence,

ĝ(�ψ) = ̂f (�ψ), for any non-principal irreducible character ψ of G. (2.8)

Assume (i). Then g = g(1)
|G| ρ, and hence for any ψ ∈ Irr(G), ĝ(�ψ) = g(1)Inψ by the

remark before the lemma. So (ii) holds by (2.8).
Assume (ii). Then by Lemma 2.8 and (2.8),

g = 1

|G|
∑

(ψ,i, j)

nψ ĝ(φ
ψ
i j )φ

ψ
i j = 1

|G| ĝ(ψ1)ψ1 + 1

|G|
∑

(ψ,i),ψ 
=ψ1

nψ

(

f (1) − λ
)

φ
ψ
i i

= g(1)

|G| ρ + 1

|G|
(

ĝ(ψ1) − g(1)
)

ψ1.

Thus, g(1) = g(1)
|G| ρ(1) + 1

|G|
(

ĝ(ψ1) − g(1)
)

ψ1(1), and hence ĝ(ψ1)) − g(1) = 0. So

g = g(1)
|G| ρ, and (i) holds. ��
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The next corollary will be needed later.

Corollary 2.12 The following hold:

(i) A function f ∈ C
G is constant on G if and only if for any non-principal irreducible

character ψ of G, ̂f (�ψ) = O, the zero matrix.
(ii) For any

∑

s∈G αss ∈ CG, αs are equal for all s ∈ G if and only if for any non-principal
irreducible character ψ of G, �ψ

(∑

s∈G αss
) = O, the zero matrix.

Proof (i) follows directly from Lemma 2.11, with f (1) = λ.
(ii) Let f : G → C, s �→ αs . Then ̂f (�ψ) = �ψ

(∑

s∈G αss
)

. So (ii) follows from (i). ��

The set C
̂G of complex functions on ̂G is also a unitary complex space with the inner

product:
〈ξ, η〉

̂G =
∑

(ψ,i, j)

nψξ(φ
ψ
i j )η(φ

ψ
i j ), for any ξ, η ∈ C

̂G , (2.9)

where η : ̂G → C is the complex conjugate of η defined by η(φ
ψ
i j ) = η(φ

ψ
i j ), for any

φ
ψ
i j ∈ ̂G.

Lemma 2.13 For any f, g ∈ C
G,
〈

̂f , ĝ
〉

̂G = |G|〈 f, g〉G .

Proof It follows from (2.9), (2.5), Definition 2.5, and Lemma 2.2(iii, iv) that

〈

̂f , ĝ
〉

̂G =
∑

(ψ,i, j)

nψ
̂f (φψ

i j )ĝ(φ
ψ
i j ) =

∑

(ψ,i, j)

∑

s,t∈G
nψ f (s)φψ

i j (s)g(t) φ
ψ
i j (t)

=
∑

s,t∈G
f (s)g(t)

∑

(ψ,i, j)

nψφ
ψ
i j (s)φ

ψ
j i (t

−1)

=
∑

s,t∈G
f (s)g(t)ρ(st−1), where ρ is the regular character of G,

= |G|〈 f, g〉G .

So the lemma holds. ��

3 Bent functions

In this section we study characterizations of bent functions by their Fourier transforms on
the dual basis ̂G. The main results are Theorems 3.3 and 3.4 below.

In the following we always assume that G is an arbitrary finite group, �ψ = (

φ
ψ
i j

)

i, j is a

unitary irreducible representation of G that affords ψ , for any ψ ∈ Irr(G), and ̂G := {φψ
i j :

ψ ∈ Irr(G), 1 ≤ i, j ≤ nψ } is a dual basis of G. For any matrix M , let M∗ denote the
conjugate transpose of M . Let T := {z ∈ C : |z| = 1} be the unit circle in C.

Definition 3.1 (Cf. [18, Definition 9]) A function f : G → T is called a bent function if

̂f (�ψ)
[

̂f (�ψ)]∗ = |G|Inψ , for any ψ ∈ Irr(G).
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A function g ∈ C
G is said to be balanced on G if

∑

x∈G g(x) = 0.
Let f : G → C be a function, and a ∈ G. Then the derivative of f in the direction a,

da f , is defined by

da f : G → C, x �→ f (ax) f (x).

Poinsot [18, Theorem 3] characterizes a bent function by its derivatives (see Corollary 3.9
below).

Let σ : ̂G → C be a function. Then σ is also a function on ĈG by linear extension. We
can define the derivative of σ in a similar way. That is, for any a ∈ G, the derivative of σ in
the direction a, daσ , is defined by

daσ : ̂G → C, φ
ψ
i j �→ σ(aφ

ψ
i j )σ (φ

ψ
i j ).

Recall that theG-action on ̂G is given by (2.4); i.e. aφ
ψ
i j = ∑nψ

k=1 φ
ψ
ik(a

−1)φ
ψ
k j , for any a ∈ G

and φ
ψ
i j ∈ ̂G.

Definition 3.2 A function σ : ̂G → C is said to be balanced on ̂G if
∑

(ψ,i, j)

nψσ(φ
ψ
i j ) = 0.

The next theorem is our first main result of this section. It characterizes a bent function f
by the derivatives of its Fourier transform ̂f .

Theorem 3.3 Let f : G → T be a function. Then the following are equivalent.

(i) f is a bent function.
(ii) For any a ∈ G\{1G}, da ̂f is balanced on ̂G. That is,

∑

(ψ,i, j)

nψ
̂f (aφ

ψ
i j )

̂f (φψ
i j ) = 0, for any a ∈ G\{1G}.

The kernel of ψ ∈ Irr(G) is kerψ := {s ∈ G : ψ(s) = nψ }. It is well known that kerψ
is a normal subgroup of G. To simply the notation, for a normal subgroup N of G, let

N⊥ := {ψ : ψ ∈ Irr(G) and kerψ ⊇ N }. (3.1)

Such a notation is used for subgroups of an abelian group in the literature (cf. [15], etc.),
with slightly different definitions.

In the case that f ∈ C
G is not bent, the conditions under which the set {a ∈ G : da f is

balanced on G} contains Q\{1G} for some subgroup Q of G (when G is abelian) have been
studied in the literature (cf. [15], etc.). Our second main result of this section characterizes
functions f that have balanced derivatives da f for a (
= 1G) in a normal subgroup. Note that
Theorem 3.4 below is not a generalization of the results of Logachev et al. (cf. [15, Theorems
4 and 5]).

Theorem 3.4 Let f : G → T be a function, and N (
= {1G}) a normal subgroup of G. Then
the following are equivalent.

(i) For any a ∈ N\{1G}, da f is balanced on G, i.e.
∑

s∈G
(

da f
)

(s) = 0.

(ii) For any a ∈ N\{1G}, da ̂f is balanced on ̂G, i.e.
∑

(ψ,i, j) nψ

(

da ̂f
)

(φ
ψ
i j ) = 0.
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(iii) For any a ∈ N\{1G},

∑

(ψ,i, j),ψ /∈N⊥
nψ

(

da ̂f
)

(φ
ψ
i j ) = −|G|2

|N | .

The rest of this section is devoted to the proofs of Theorems 3.3 and 3.4. Let us start with
the following definition.

Definition 3.5 Let f ∈ C
G . If f = ∑

(ψ,i, j)
α

ψ
i jφ

ψ
i j , where α

ψ
i j ∈ C, then for any ψ ∈ Irr(G),

fψ :=
nψ
∑

i, j=1
α

ψ
i jφ

ψ
i j is called the ψ-component of f , and the nψ × nψ matrix M( f )ψ :=

(

α
ψ
i j

)

i, j is called the ψ-matrix of f .

For a matrix M = (αi j )i, j , let M = (αi j )i, j . Then for any f ∈ C
G , it follows from

Lemma 2.8 and (2.7) that

M
(

f
)

ψ
= nψ

|G| ̂f (�ψ), for any ψ ∈ Irr(G). (3.2)

Hence, the following are equivalent by the remark before Lemma 2.11: (i) f (s) = 0 for any
s ∈ G\{1G}; (ii) M( f )ψ = f (1) nψ

|G| Inψ , for any ψ ∈ Irr(G); and (iii) ̂f (�ψ) = f (1)Inψ ,
for any ψ ∈ Irr(G).

The convolutions of functions on G play an important role in the study of bent functions
when G is abelian. For any two functions σ, τ ∈ C

G , the convolution of σ and τ , σ ∗ τ , is
defined by

σ ∗ τ : G → C, a �→
∑

s∈G
σ(s)τ (s−1a). (3.3)

If G is abelian and τ ∈ ̂G, then τ(s−1) = τ(s) for any s ∈ G. But if G is nonabelian,

then for any φ
ψ
i j ∈ ̂G and s ∈ G, φψ

i j (s
−1) 
= φ

ψ
i j (s) in general (see Lemma 2.2(iii)). So for

nonabelian finite groups, we need a modified convolution.

Definition 3.6 Let f, g ∈ C
G . Then the quasi-convolution of f and g, f �g, is defined by

f �g : G → C, a �→
∑

x∈G
f (ax)g(x).

Lemma 3.7 Let f, g ∈ C
G. Then the following hold.

(i) For any ψ ∈ Irr(G), M( f �g)ψ = |G|
nψ

M( f )ψ
[

M(g)ψ
]∗
.

(ii) For any ψ, χ ∈ Irr(G), ( f �g)ψ = fψ �gψ , and fψ �gχ = 0 if ψ 
= χ .
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Proof (i) Assume that f = ∑

(ψ,i, j) α
ψ
i jφ

ψ
i j , and g = ∑

(χ,k,l) β
χ
klφ

χ
kl . Then for any a ∈ G,

it follows from Lemma 2.2(iv) and Lemma 2.4 that

( f �g)(a) =
∑

x∈G

∑

(ψ,i, j)

α
ψ
i jφ

ψ
i j (ax)

∑

(χ,k,l)

β
χ
kl φ

χ
kl(x)

=
∑

(ψ,i, j)

∑

(χ,k,l)

α
ψ
i jβ

χ
kl

∑

x∈G

nψ
∑

m=1

φ
ψ
im(a)φ

ψ
mj (x)φ

χ
kl(x)

=
∑

(ψ,i, j)

∑

(χ,k,l)

α
ψ
i jβ

χ
kl

nψ
∑

m=1

φ
ψ
im(a)

〈

φ
ψ
mj , φ

χ
kl

〉

G

=
∑

(ψ,i, j)

nψ
∑

k=1

|G|
nψ

α
ψ
i jβ

ψ
k jφ

ψ
ik(a) =

∑

(ψ,i,k)

|G|
nψ

nψ
∑

j=1

α
ψ
i jβ

ψ
k jφ

ψ
ik(a).

So (i) holds.
(ii) follows directly from (i) and its proof. ��
The next lemma characterizes a function with balanced derivatives in terms of its ψ-

matrices, for all ψ ∈ Irr(G).

Lemma 3.8 Let f : G → C be a function. Then the following are equivalent.

(i) For any a ∈ G\{1G}, da f is balanced.
(ii) f � f = β

|G|ρ, where β = ∑

x∈G | f (x)|2, and ρ is the regular character.
(iii) For any ψ ∈ Irr(G),

M( f )ψ
[

M( f )ψ
]∗ = n2ψ

|G|2 β Inψ , where β is the same as in (ii).

Proof Since for any a ∈ G,
∑

x∈G da f (x) = ∑

x∈G f (ax) f (x) = ( f� f )(a), (i) and (ii) are
equivalent. From the remark after Definition 3.5, (ii) holds if and only if for any ψ ∈ Irr(G),
M( f � f )ψ = nψ

|G|β Inψ . Hence, (ii) and (iii) are equivalent by Lemma 3.7. ��
Since for a function f : G → T , f � f = ρ if and only if f � f = ρ, as a direct

consequence of Lemma 3.8 and (3.2), we have the next result.

Corollary 3.9 (Cf. [18, Theorem 3]) A function f : G → T is bent if and only if for any
a ∈ G\{1G}, da f is balanced.
Remark 3.10 Theorem 3.3 can also be obtained as a consequence of Theorem 3.4 (with
N = G) and Corollary 3.9. But our approach to the proof of Theorem 3.3 yields Corollary 3.9
as a direct consequence, and provides a clear explanation why Theorem 3.3 and Corollary 3.9
are true.

Similar to Definition 3.6, we can define the quasi-convolution of two functions on the dual
basis ̂G as a function on G.

Definition 3.11 Let σ, τ be functions on the dual basis ̂G. Then the quasi-convolution of σ

and τ , σ �τ , is a function on G defined by

σ �τ : G → C, a �→
∑

(ψ,i, j)

nψσ(aφ
ψ
i j ) τ (φ

ψ
i j ).
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Therefore, for any σ, τ ∈ C
̂G ,

(σ �τ)(1G) = 〈σ, τ 〉
̂G and

∑

(ψ,i, j)

nψ daσ(φ
ψ
i j ) = (σ �σ)(a), for any a ∈ G. (3.4)

For any function σ : ̂G → C and any ψ ∈ Irr(G), let σ(�ψ) be the nψ × nψ matrix
(

σ(φ
ψ
i j )
)

i, j , and let σ(�ψ) be the conjugate of σ(�ψ), i.e. σ(�ψ) :=
(

σ(φ
ψ
i j )

)

i, j
. The

transpose of a matrix M is denoted by M�.

Lemma 3.12 For any functions σ and τ on ̂G and any ψ ∈ Irr(G), the ψ-matrix of σ �τ is

M
(

σ �τ
)

ψ
= nψ σ(�ψ) τ(�ψ)�.

Proof Since for any a ∈ G and φ
ψ
i j ∈ ̂G, aφ

ψ
i j = ∑nψ

k=1 φ
ψ
ik(a

−1)φ
ψ
k j by (2.4), it follows that

∑

(ψ,i, j)

nψσ(aφ
ψ
i j ) τ (φ

ψ
i j ) =

∑

(ψ,i, j)

nψ

nψ
∑

k=1

φ
ψ
ik(a

−1)σ (φ
ψ
k j ) τ (φ

ψ
i j )

=
∑

ψ∈Irr(G)

nψ

nψ
∑

k,i=1

⎛

⎝

nψ
∑

j=1

σ(φ
ψ
k j ) τ (φ

ψ
i j )

⎞

⎠φ
ψ
ki (a).

Let βψ
ki be the (k, i)-entry of σ(�ψ)

[

τ(�ψ)
]∗. Then β

ψ
ki = ∑nψ

j=1 σ(φ
ψ
k j ) τ (φ

ψ
i j ). Hence,

(σ �τ)(a) =
∑

(ψ,k,i)

nψβ
ψ
kiφ

ψ
ki (a), for any a ∈ G.

So the lemma holds. ��
Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3 Since 〈̂f , ̂f 〉
̂G = |G|〈 f, f 〉G = |G|2 by Lemma 2.13, it follows from

(3.4) that

(ii) holds ⇔ ̂f � ̂f = |G|ρ ⇔ ̂f � ̂f = |G|ρ,

where ρ is the regular character. But by Lemma 3.12,

̂f � ̂f = |G|ρ ⇔ M
(

̂f � ̂f
)

ψ
= nψ |G|Inψ , for any ψ ∈ Irr(G)

⇔ ̂f (�ψ)
[

̂f (�ψ)
]� = |G|Inψ , for any ψ ∈ Irr(G).

Since ̂f (�ψ)
[

̂f (�ψ)
]� = |G|Inψ if and only if ̂f (�ψ)

[

̂f (�ψ)
]∗ = |G|Inψ , the theorem

holds. ��
In order to prove Theorem 3.4, we need the next two lemmas. Lemma 3.13 is also needed

for the proof of Theorem 4.3 in Sect. 4.

Lemma 3.13 Let N be a normal subgroup of G. Then the following hold.

(i) For any s ∈ G,
∑

(ψ,i),ψ∈N⊥
nψφ

ψ
i i (s) =

{

|G/N |, if s ∈ N ;
0, if s /∈ N .

(3.5)
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(ii) For any a ∈ N\{1G} and b ∈ G,

∑

(ψ,i),ψ /∈N⊥
nψφ

ψ
i i (a

−1b) =

⎧

⎪

⎨

⎪

⎩

|G| − |G/N |, if b = a;
−|G/N |, if b ∈ N\{a};
0, otherwise.

(3.6)

Proof (i) For any ψ ∈ Irr(G) such that kerψ ⊇ N , �ψ is also an irreducible representation
of the quotient groupG/N with�ψ(sN ) = �ψ(s), for any s ∈ G, andψ is also an irreducible
character of G/N with ψ(sN ) = ψ(s), for any s ∈ G. Furthermore, Irr(G/N ) = {ψ : ψ ∈
Irr(G) and kerψ ⊇ N }, i.e. Irr(G/N ) = N⊥. Hence,

∑

ψ∈N⊥
∑

1≤i≤nψ
nψφ

ψ
i i is the regular

character of G/N , and (i) holds.
(ii) Since

∑

(ψ,i),ψ /∈N⊥
nψφ

ψ
i i (a

−1b) =
∑

(ψ,i)

nψφ
ψ
i i (a

−1b) −
∑

(ψ,i),ψ∈N⊥
nψφ

ψ
i i (a

−1b)

= ρ(a−1b) −
∑

(ψ,i),ψ∈N⊥
nψφ

ψ
i i (a

−1b),

where ρ is the regular character of G, (ii) follows directly from (3.5). ��
Lemma 3.14 Let f ∈ C

G. Then for any a ∈ G,
∑

(ψ,i, j)

nψ

(

da ̂f
)

(φ
ψ
i j ) = |G|

∑

t∈G

(

da f
)

(t).

Proof For any a, s ∈ G and φ
ψ
i j ∈ ̂G,

(

aφ
ψ
i j

)

(s) = φ
ψ
i j (a

−1s) by (2.3). Thus,

nψ
∑

j=1

(

da ̂f
)

(φ
ψ
i j ) =

nψ
∑

j=1

̂f (aφ
ψ
i j )

̂f (φψ
i j ) =

nψ
∑

j=1

∑

s,t∈G
f (s)

(

aφ
ψ
i j

)

(s) f (t) φ
ψ
i j (t)

=
∑

s,t∈G

nψ
∑

j=1

φ
ψ
i j (a

−1s)φψ
i j (t) f (s) f (t)

=
∑

s,t∈G
φ

ψ
i i (a

−1st−1) f (s) f (t). (by Lemma 2.2(iii, iv))

=
∑

b,t∈G
φ

ψ
i i (a

−1b) f (bt) f (t). (where b = st−1)

That is,
nψ
∑

j=1

(

da ̂f
)

(φ
ψ
i j ) =

∑

b,t∈G
φ

ψ
i i (a

−1b) f (bt) f (t). (3.7)

Hence,
∑

(ψ,i, j)

nψ

(

da ̂f
)

(φ
ψ
i j ) =

∑

(ψ,i)

∑

b,t∈G
nψφ

ψ
i i (a

−1b) f (bt) f (t)

=
∑

b,t∈G
ρ(a−1b) f (bt) f (t) (where ρ is the regular character of G)

= |G|
∑

t∈G
f (at) f (t).
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So the lemma holds. ��

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4 The equivalence of (i) and (ii) follows directly from Lemma 3.14. In
the following we prove that (ii) implies (iii) and that (iii) implies (i).

Assume (ii). Then for any a ∈ N\{1G},
∑

(ψ,i, j),ψ /∈N⊥
nψ

(

da ̂f
)

(φ
ψ
i j )

=
∑

(ψ,i, j)

nψ

(

da ̂f
)

(φ
ψ
i j ) −

∑

(ψ,i, j),ψ∈N⊥
nψ

(

da ̂f
)

(φ
ψ
i j )

= 0 −
∑

(ψ,i),ψ∈N⊥

∑

b,t∈G
nψφ

ψ
i i (a

−1b) f (bt) f (t) (by (ii) and (3.7))

= −|G/N |
∑

b∈N ,t∈G
f (bt) f (t) (by (3.5), because a ∈ N )

= −|G|
|N |

∑

t∈G
f (t) f (t) (from the equivalence of (i) and (ii))

= −|G|2
|N | .

This proves that (ii) implies (iii).
Now assume (iii). For any a ∈ N\{1G},

∑

(ψ,i, j),ψ /∈N⊥
nψ

(

da ̂f
)

(φ
ψ
i j )

=
∑

(ψ,i),ψ /∈N⊥

∑

b,t∈G
nψφ

ψ
i i (a

−1b) f (bt) f (t) (by (3.7))

= (|G| − |G/N |)
∑

t∈G
f (at) f (t) − |G/N |

∑

b∈N\{a}

∑

t∈G
f (bt) f (t) (by (3.6))

= |G|
∑

t∈G
f (at) f (t) − |G/N |

∑

b∈N

∑

t∈G
f (bt) f (t)

= |G|
∑

t∈G
f (at) f (t) − |G/N |

∑

b∈N
b 
=1G

∑

t∈G
f (bt) f (t) − |G|2

|N | .

Thus, (iii) implies that

|G|
∑

t∈G
f (at) f (t) − |G/N |

∑

b∈N
b 
=1G

∑

t∈G
f (bt) f (t) = 0, for any a ∈ N\{1G}.

That is,

|N |
∑

t∈G
f (at) f (t) =

∑

b∈N
b 
=1G

∑

t∈G
f (bt) f (t), for any a ∈ N\{1G}.
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The above equality says that
∑

t∈G f (at) f (t) are equal for all a ∈ N\{1G}, and hence
|N |

∑

t∈G
f (at) f (t) = (|N | − 1)

∑

t∈G
f (at) f (t), for all a ∈ N\{1G}.

Sowemust have that
∑

t∈G f (at) f (t) = 0, for all a ∈ N\{1G}. This proves that (iii) implies
(i). ��

4 Perfect nonlinear functions

In this section we always assume that G and H are arbitrary finite groups, and study charac-
terizations of perfect nonlinear functions from G to H . Our main results are Theorems 4.2,
4.3, and 4.7.

Let f : G → H be a function. For any h ∈ H , let f −1(h) := {s ∈ G : f (s) = h} be
the inverse image of h under f . If |H | divides |G|, and for any h ∈ H , | f −1(h)| = |G|/|H |,
then we say that f is evenly-balanced (cf [26]). An evenly-balanced function is also called
a balanced function in the literature (cf. [4,19]).

The (left) derivative of a function f : G → H in direction a ∈ G is defined by (cf. [19])

Da f : G → H, x �→ f (ax) f (x)−1.

Definition 4.1 (Cf. [19, Definition 1.1]) Let G, H be finite groups. Then a function f :
G → H is said to be perfect nonlinear if for any a ∈ G\{1G}, Da f is evenly-balanced.

For any two functions σ, τ ∈ C
G , the convolution of σ and τ , σ ∗ τ , is defined by (3.3).

It is clear that for any a ∈ G, (σ ∗ τ)(a) = ∑

s∈G σ(as)τ (s−1). For any σ ∈ C
G , we define

a function σ (−) ∈ C
G by

σ (−) : G → C, a �→ σ(a−1).

Since {1s : s ∈ G} is a basis of C
G , where 1s is the characteristic function (i.e. 1s(t) = 0 if

t 
= s and 1s(s) = 1), for any function f : G → H , we can define the dual function ˜f of f
as follows:

˜f : C
G → C

H ,
∑

s∈G
αs1s �→

∑

s∈G
αs1 f (s).

In particular, ˜f is also a function on ̂G.
The next theorem characterizes a perfect nonlinear function in terms of its dual function

and the dual basis ̂G.

Theorem 4.2 Let G, H be finite groups, and f : G → H a function. Then the following are
equivalent.

(i) f is a perfect nonlinear function.
(ii) For any a ∈ G\{1G},

∑

(ψ,i, j)

nψ

(

˜f (aφ
ψ
i j ) ∗ [ ˜f (φψ

i j )
]
(−)
)

= |G|2
|H | ζ1,

where ζ1 is the principal irreducible character of H.
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Let f : G → H be a function. In the case that f is not perfect nonlinear, the set
{a ∈ G|Da f : G → H is evenly-balanced} describes how close f is to being perfect
nonlinear. Let N be a normal subgroup of G. The next theorem discusses the sufficient and
necessary conditions under which Da f : G → H is evenly-balanced for any a ∈ N\{1G}.
Recall that N⊥ := {ψ : ψ ∈ Irr(G) and kerψ ⊇ N } (see (3.1)).
Theorem 4.3 Let G, H be finite groups, f : G → H a function, and N (
= {1G}) a normal
subgroup of G. Let ρH and ζ1 be the regular character and principal irreducible character
of H, respectively. Then the following are equivalent.

(i) For any a ∈ N\{1G}, Da f : G → H is evenly-balanced.
(ii) For any a ∈ N\{1G},

∑

(ψ,i, j)

nψ

(

˜f (aφ
ψ
i j ) ∗ [ ˜f (φψ

i j )
]
(−)
)

= |G|2
|H | ζ1.

(iii) For any a ∈ N\{1G},
∑

(ψ,i, j),ψ /∈N⊥
nψ

(

˜f (aφ
ψ
i j ) ∗ [ ˜f (φψ

i j )
]
(−)
)

= |G|2
|H | · |N | (ζ1 − ρH ).

Note that Theorem 4.2 is a special case of Theorem 4.3 with N = G. So we only need to
prove Theorem 4.3. We need the next two lemmas first.

Lemma 4.4 Let G, H be finite groups, and f : G → H a function. Then f is evenly-
balanced if and only if

∑

s∈G
1 f (s) = |G|

|H |ζ1, where ζ1 is the principal irreducible character of H.

Proof If f is evenly-balanced, then in the group algebra CH ,

∑

s∈G
f (s) = |G|

|H |
∑

h∈H
h. (4.1)

On the other hand, if (4.1) holds, then for any h ∈ H , by comparing the coefficients of h
in both sides of (4.1), we see that |H | divides |G|, and | f −1(h)| = |G|/|H |. Thus, f is
evenly-balanced if and only if (4.1) holds. Since {1h : h ∈ H} is a basis of C

H , it follows
that (4.1) holds if and only if

∑

s∈G
1 f (s) = |G|

|H |
∑

h∈H
1h = |G|

|H |ζ1.

So the lemma holds. ��
Lemma 4.5 Let G, H be finite groups, a ∈ G\{1G}, and f : G → H a function. Then Da f
is evenly-balanced if and only if

∑

(ψ,i, j)

nψ

(

˜f (aφ
ψ
i j ) ∗ [ ˜f (φψ

i j )
]
(−)
)

= |G|2
|H | ζ1,

where ζ1 is the principal irreducible character of H.
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Proof Since φ
ψ
i j = ∑

s∈G φ
ψ
i j (s)1s , and

(

1 f (s)
)(−) = 1 f (s)−1 , we see that

˜f (φψ
i j ) =

∑

s∈G
φ

ψ
i j (s)1 f (s) and

[

˜f (φψ
i j )
](−)

=
∑

s∈G
φ

ψ
i j (s)1 f (s)−1 , for any φ

ψ
i j ∈ ̂G.

Furthermore, it follows from aφ
ψ
i j = ∑nψ

k=1 φ
ψ
ik(a

−1)φ
ψ
k j that

˜f (aφ
ψ
i j ) =

nψ
∑

k=1

φ
ψ
ik(a

−1)˜f (φψ
k j ) =

nψ
∑

k=1

∑

t∈G
φ

ψ
ik(a

−1)φ
ψ
k j (t)1 f (t).

Since 1 f (t) ∗ 1 f (s)−1 = 1 f (t) f (s)−1 , Lemma 2.2(iii, iv) yields that

nψ
∑

j=1

(

˜f (aφ
ψ
i j ) ∗ [ ˜f (φψ

i j )
]
(−)
)

=
∑

s,t∈G

nψ
∑

j,k=1

φ
ψ
ik(a

−1)φ
ψ
k j (t)φ

ψ
i j (s)

(

1 f (t) ∗ 1 f (s)−1
)

=
∑

s,t∈G
φ

ψ
i i (a

−1ts−1)1 f (t) f (s)−1

=
∑

b,s∈G
φ

ψ
i i (a

−1b)1 f (bs) f (s)−1 . (where b = ts−1)

That is,
nψ
∑

j=1

(

˜f (aφ
ψ
i j ) ∗ [ ˜f (φψ

i j )
]
(−)
)

=
∑

b,s∈G
φ

ψ
i i (a

−1b)1 f (bs) f (s)−1 . (4.2)

Therefore,

∑

(ψ,i, j)

nψ

(

˜f (aφ
ψ
i j ) ∗ [ ˜f (φψ

i j )
]
(−)
)

=
∑

b,s∈G

∑

(ψ,i)

nψφ
ψ
i i (a

−1b)1 f (bs) f (s)−1

= |G|
∑

s∈G
1 f (as) f (s)−1 .

Hence, the lemma holds by Lemma 4.4. ��
Now we are ready to prove Theorem 4.3.

Proof of Theorem 4.3 The equivalence of (i) and (ii) follows directly from Lemma 4.5. In
the following we prove that (ii) implies (iii) and that (iii) implies (i).

Assume (ii). Then

∑

(ψ,i, j),ψ /∈N⊥
nψ

(

˜f (aφ
ψ
i j ) ∗ [ ˜f (φψ

i j )
]
(−)
)

=
∑

(ψ,i, j)

nψ

(

˜f (aφ
ψ
i j ) ∗ [ ˜f (φψ

i j )
]
(−)
)

−
∑

(ψ,i, j),ψ∈N⊥
nψ

(

˜f (aφ
ψ
i j ) ∗ [ ˜f (φψ

i j )
]
(−)
)

= |G|2
|H | ζ1 −

∑

b,s∈G

∑

(ψ,i),ψ∈N⊥
nψφ

ψ
i i (a

−1b)1 f (bs) f (s)−1 (by (ii) and (4.2))

= |G|2
|H | ζ1 − |G/N |

∑

b∈N

∑

s∈G
1 f (bs) f (s)−1 , (by (3.5))

123



Fourier transforms and bent functions on finite groups 2107

Since (i) and (ii) are equivalent, i.e. Db f : G → H is evenly-balanced for any b ∈ N\{1G},
by Lemma 4.4 we see that

∑

b∈N

∑

s∈G
1 f (bs) f (s)−1 = |G|

|H |ρH + (|N | − 1)
|G|
|H |ζ1.

Thus, (iii) holds.
Now assume (iii). Note that

∑

(ψ,i, j),ψ /∈N⊥
nψ

(

˜f (aφ
ψ
i j ) ∗ [ ˜f (φψ

i j )
]
(−)
)

=
∑

b,s∈G

∑

(ψ,i),ψ /∈N⊥
nψφ

ψ
i i (a

−1b)1 f (bs) f (s)−1 (by (4.2))

= (|G| − |G/N |)
∑

s∈G
1 f (as) f (s)−1 − |G/N |

∑

b∈N\{a}

∑

s∈G
1 f (bs) f (s)−1 , (by (3.6))

= |G|
∑

s∈G
1 f (as) f (s)−1 − |G/N |

∑

b∈N

∑

s∈G
1 f (bs) f (s)−1 .

So (iii) implies that for any a ∈ N\{1G},

|G|
∑

s∈G
1 f (as) f (s)−1 − |G/N |

∑

b∈N
b 
=1G

∑

s∈G
1 f (bs) f (s)−1 = |G|2

|N | · |H |ζ1. (4.3)

The above equality implies that
∑

s∈G 1 f (as) f (s)−1 are equal for all a ∈ N\{1G}, and hence
(|G| − |G/N |(|N | − 1)

)
∑

s∈G
1 f (as) f (s)−1 = |G|2

|N | · |H |ζ1, for any a ∈ N\{1G}.

Hence,

∑

s∈G
1 f (as) f (s)−1 = |G|

|H |ζ1, for any a ∈ N\{1G}.

Thus, Da f is evenly-balanced for any a ∈ N\{1G} by Lemma 4.4, and (i) holds. ��

For each ζ ∈ Irr(H), let us fix a unitary irreducible representation �ζ := (

λ
ζ
i j

)

i, j of H .

Let ̂H := {λζ
i j : ζ ∈ Irr(H), 1 ≤ i, j ≤ nζ } be a dual basis of H , and let Irr(H)� :=

Irr(H)\{ζ1}, where ζ1 is the principal irreducible character of H . For any function f : G →
H and any λ

ζ
i j ∈ ̂H , we define a function f ζ

i j on G as follows:

f ζ
i j : G → C, a �→

∑

s∈G

(

λ
ζ
i j ◦ Da f

)

(s).

f ζ
i j is called an autocorrelation function of f in [19].

Lemma 4.6 Let G, H be finite groups, and f : G → H a function. Then for any ζ ∈ Irr(H),

f ζ
i j =

nζ
∑

k=1

[

(λ
ζ
ik ◦ f )�(λ

ζ
jk ◦ f )

]

.
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Proof For any a ∈ G, Lemma 2.2(iii, iv) implies that

f ζ
i j (a) =

∑

s∈G
λ

ζ
i j

(

f (as) f (s)−1) =
nζ
∑

k=1

∑

s∈G
λ

ζ
ik( f (as))λ jk( f (s))

=
nζ
∑

k=1

[

(λ
ζ
ik ◦ f )�(λ

ζ
jk ◦ f )

]

(a).

So the lemma holds. ��
The next theorem characterizes a perfect nonlinear function f : G → H in terms of f ζ

i j .
Let δi j be the Kronecker delta.

Theorem 4.7 Let G, H be finite groups, and f : G → H a function. Then the following are
equivalent.

(i) f is a perfect nonlinear function.
(ii) For any ζ ∈ Irr(H)�, f ζ

i j = δi jρ, where ρ is the regular character of G.

(iii) For any ζ ∈ Irr(H)�,

nζ
∑

k=1

M
(

λ
ζ
ik ◦ f

)

ψ

[

M
(

λ
ζ
jk ◦ f

)

ψ

]∗ = δi j
n2ψ
|G| Inψ , for any ψ ∈ Irr(G).

Proof Let g : G → H be a function. Then by (4.1), g is evenly-balanced if and only if
∑

s∈G g(s) = (|G|/|H |)∑h∈H h. Hence by Corollary 2.12(ii), g is evenly-balanced if and

only if for any ζ ∈ Irr(H)�, the function λ
ζ
i j ◦ g : G → C is balanced. Therefore,

f is perfect nonlinear ⇔ λ
ζ
i j ◦ Da f is balanced, for any a ∈ G\{1G} and ζ ∈ Irr(H)�,

⇔ f ζ
i j (a) = 0, for any a ∈ G\{1G} and ζ ∈ Irr(H)�.

But for any ζ ∈ Irr(H)�,

f ζ
i j (1G) =

∑

s∈G
λ

ζ
i j

(

f (s) f (s)−1) = |G|λζ
i j (1H ) = δi j |G|.

So f is perfect nonlinear if and only if f ζ
i j = δi jρ, for any ζ ∈ Irr(H)�, and the equivalence

of (i) and (ii) holds.
For any ζ ∈ Irr(H), f ζ

i j = ∑nζ

k=1

[

(λ
ζ
ik ◦ f )�(λ

ζ
jk ◦ f )

]

by Lemma 4.6. Therefore, for
any ψ ∈ Irr(G), Lemma 3.7(i) implies that

M( f ζ
i j )ψ = |G|

nψ

nζ
∑

k=1

M
(

λ
ζ
ik ◦ f

)

ψ

[

M
(

λ
ζ
jk ◦ f

)

ψ

]∗
.

Note that f ζ
i j = δi jρ if and only if M( f ζ

i j )ψ = δi j nψ Inψ , for any ψ ∈ Irr(G). So the
equivalence of (ii) and (iii) holds. ��

Since f ζ
i j = δi jρ if and only if f ζ

i j = δi jρ, as a direct consequence of Theorem 4.7 and
(3.2), we have the following corollary. Our approach also provides a conceptual proof of
Corollary 4.8.
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Corollary 4.8 (Cf. [19, Theorem 4]) Let G, H be finite groups, and f : G → H a function.
Then f is perfect nonlinear if and only if for any ψ ∈ Irr(G),

nζ
∑

k=1

̂
(

λ
ζ
ik ◦ f

)

(�ψ)

[

̂
(

λ
ζ
jk ◦ f

)

(�ψ)

]∗
= δi j |G|Inψ , for any ζ ∈ Irr(H)�.

5 Constructions of bent functions

Let N , H be finite groups, and let μ : H → Aut(N ), h �→ μh be a group homomorphism,
where Aut(N ) is the automorphism group of N . Let N �μ H be the semidirect product of
N and H with respect to μ. That is, as a set, N �μ H is the Cartesian product N × H , and
the multiplication of elements in N �μ H is defined by

(a1, h1) ∗ (a2, h2) := (a1μh1(a2), h1h2), for any (a1, h1), (a2, h2) ∈ N �μ H.

Note that the identity element of N �μ H is (1N , 1H ). Recall that T is the unit circle in the
complex numbers.

Proposition 5.1 With the notation in the above paragraph, let f : N → T and g : H → T
be bent functions. Then the following hold.

(i) f × g : N �μ H → T, (a, h) �→ f (a)g(h) is a bent function.
(ii) f ×μ g : N �μ H → T, (a, h) �→ f

(

μh−1(a)
)

g(h) is a bent function.

Proof (i) Let (a, h) ∈ N �μ H\{(1N , 1H )}. Then
∑

(b,k)∈N�μH

( f × g)
(

(a, h) ∗ (b, k)
)

( f × g)
(

(b, k)
)

=
∑

(b,k)∈N�μH

f (aμh(b))g(hk) f (b)g(k)

=
∑

b∈N
f (aμh(b)) f (b)

∑

k∈H
g(hk)g(k).

If h 
= 1H , then
∑

k∈H g(hk)g(k) = 0 (because g is bent). If h = 1H , then μh is the identity
map on N , and a 
= 1N . Thus,

∑

b∈N f (aμh(b)) f (b) = ∑

b∈N f (ab) f (b) = 0. So (i)
holds.

(ii) Let (a, h) ∈ N �μ H\{(1N , 1H )}. Then
∑

(b,k)∈N�μH

( f ×μ g)
(

(a, h) ∗ (b, k)
)

( f ×μ g)
(

(b, k)
)

=
∑

(b,k)∈N�μH

f
(

μ(hk)−1(aμh(b))
)

g(hk) f
(

μk−1(b)
)

g(k)

=
∑

k∈H

∑

b∈N
f
(

μk−1h−1(a)μk−1(b)
)

f
(

μk−1(b)
)

g(hk)g(k). (because μ(hk)−1μh = μk−1)

If a 
= 1N , then μk−1h−1(a) 
= 1N , and hence f a bent function implies that
∑

b∈N
f
(

μk−1h−1(a)μk−1(b)
)

f
(

μk−1(b)
) =

∑

b′∈N
f
(

μk−1h−1(a)b′) f (b′) = 0,

for all k ∈ H,where b′ = μk−1(b).
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If a = 1N , then h 
= 1H , and f
(

μk−1h−1(a)μk−1(b)
)

f
(

μk−1(b)
) = 1 for all b ∈ N . Hence,

∑

k∈H

∑

b∈N
f
(

μk−1h−1(a)μk−1(b)
)

f
(

μk−1(b)
)

g(hk)g(k) = |N |
∑

k∈H
g(hk)g(k) = 0.

So (ii) holds. ��
If the homomorphism μ : H → Aut(N ) is trivial, i.e. μh is the identity map on N for

any h ∈ H , then the semidirect product N �μ H is the direct product of N and H . So
Proposition 5.1(i) is also true for direct products of finite groups.

Note that many nonabelian finite groups are (isomorphic to) semidirect products of finite
abelian groups. Sowe can obtain bent functions onmany nonabelian finite groups by applying
Proposition 5.1. Also the same nonabelian finite group can be the semidirect products of
different (non-isomorphic) finite (abelian) groups. So by Proposition 5.1, we can construct
different bent functions on the same group.

Similarly for perfect nonlinear functions, we have the following result.

Proposition 5.2 With the notation in the paragraph before Proposition 5.1, let Q be a finite
group, and let f : N → Q and g : H → Q be perfect nonlinear functions. Then the
following hold.

(i) f × g : N �μ H → Q, (a, h) �→ f (a)g(h) is a perfect nonlinear function.
(ii) f ×μ g : N �μ H → Q, (a, h) �→ f

(

μh−1(a)
)

g(h) is a perfect nonlinear function.

Proof (i) Let (a, h) ∈ N �μ H\{(1N , 1H )}. Then
∑

(b,k)∈N�μH

( f × g)
(

(a, h) ∗ (b, k)
) [

( f × g)
(

(b, k)
)]−1

=
∑

b∈N

[

f (aμh(b))
(
∑

k∈H
g(hk)g(k)−1

)

f (b)−1

]

.

If h 
= 1H , then
∑

k∈H g(hk)g(k)−1 = |H |
|Q|

∑

x∈Q x (because g is perfect nonlinear). Hence,

f (aμh(b))
(
∑

k∈H
g(hk)g(k)−1

)

f (b)−1 = |H |
|Q|

∑

x∈Q
x, for any b ∈ N .

Therefore,
∑

(b,k)∈N�μH

( f × g)
(

(a, h) ∗ (b, k)
) [

( f × g)
(

(b, k)
)]−1 = |N | · |H |

|Q|
∑

x∈Q
x . (5.1)

If h = 1H , thenμh is the identity map on N , and a 
= 1N . Thus,
∑

b∈N f (aμh(b)) f (b)−1 =
∑

b∈N f (ab) f (b)−1 = |N |
|Q|

∑

x∈Q x , and (5.1) is also true. So (i) holds.
The proof of (ii) is similar. ��
With the assumption in Proposition 5.2, it follows from [21, Theorem 1] that the set

R f := {(a, f (a)) : a ∈ N } ⊂ N × Q is a semiregular (|N |, |Q|, |N |, |N |/|Q|) relative
difference set in N × Q relative to {1N }× Q, and Rg := {(h, g(h)) : h ∈ H} ⊂ H × Q is a
semiregular (|H |, |Q|, |H |, |H |/|Q|) relative difference set in H × Q relative to {1H } × Q.
From Proposition 5.2(i),

R f ×g := {((a, h), ( f × g)(a, h)
) : (a, h) ∈ N �μ H} ⊂ (N �μ H) × Q
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is a semiregular (|N �μ H |, |Q|, |N �μ H |, |N �μ H |/|Q|) relative difference set in (N �μ

H)×Q relative to {(1N , 1H )}×Q. LetG1 := N×Q,G2 := H×Q, andG := (N�μH)×Q.
Then we can regard G as G1G2, and R f ×g as R f Rg . So Proposition 5.2(i) also follows from
[10, Theorem 4].

Let G be a finite group. Let N be a normal subgroup of G, {bi : 1 ≤ i ≤ m} a complete
set of representatives of (left) cosets of N in G, and ε : {bi : 1 ≤ i ≤ m} → T a
function. Furthermore, let θ = (θ1, . . . , θm) and π = (π1, . . . , πm), where θi , 1 ≤ i ≤ m,
are automorphisms (not necessarily all distinct) of N , and πi : N → T, 1 ≤ i ≤ m, are
group homomorphisms (not necessarily all distinct). The existence of θi and πi is clear. For
example, θi can be the map

θi : N → N , x �→ b−1
i xbi ,

and πi can be any linear irreducible character of N .

Proposition 5.3 With the notation in the above paragraph, let f : N → T be a bent function
on N. Let

fε,π,θ : G → T, bi x �→ ε(bi )πi (x) f (θi (x)), for any x ∈ N , 1 ≤ i ≤ m.

Then for any a ∈ N\{1G}, da( fε,π,θ ) is balanced on G.

Proof Let a ∈ N\{1G}. Then for any x ∈ N , abi x = bi (b
−1
i abi x) ∈ bi N for all bi . Hence,

∑

y∈G
da( fε,π,θ )(y) =

m
∑

i=1

∑

x∈N
fε,π,θ (abi x) fε,π,θ (bi x)

=
m
∑

i=1

∑

x∈N
ε(bi )πi (b

−1
i abi x) f (θi (b

−1
i abi x))ε(bi )πi (x) f (θi (x))

=
m
∑

i=1

∑

x∈N
πi (b

−1
i abi ) f (θi (b

−1
i abi )θi (x)) f (θi (x)).

Since f is a bent function on N , θi ∈ Aut(N ), and a 
= 1G , we see that θi (b
−1
i abi ) ∈ N\{1G},

and hence
∑

x∈N
f (θi (b

−1
i abi )θi (x)) f (θi (x)) = 0, 1 ≤ i ≤ m.

So the proposition holds. ��

For perfect nonlinear functions, we have the following result.

Proposition 5.4 With the notation in the paragraph before Proposition 5.3, let H be a finite
group, and f : N → H a perfect nonlinear function. Let

fθ : G → H, bi x �→ f (θi (x)), for any x ∈ N , 1 ≤ i ≤ m.

Then for any a ∈ N\{1G}, Da( fθ ) : G → H is evenly-balanced.
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Proof Let a ∈ N\{1G}. Then for any x ∈ N , abi x = bi (b
−1
i abi x) ∈ bi N for all bi . Hence,

∑

y∈G
Da( fθ )(y) =

m
∑

i=1

∑

x∈N
fθ (abi x) fθ (bi x)

−1

=
m
∑

i=1

∑

x∈N
f (θi (b

−1
i abi x)) f (θi (x))

−1

=
m
∑

i=1

∑

x∈N
f (θi (b

−1
i abi )θi (x)) f (θi (x))

−1.

Since f is perfect nonlinear on N , θi ∈ Aut(N ), and a 
= 1G , we see that θi (b
−1
i abi ) ∈

N\{1G}, and hence
∑

x∈N
f (θi (b

−1
i abi )θi (x)) f (θi (x))

−1 = |N |
|H |

∑

z∈H
z, 1 ≤ i ≤ m.

So the proposition holds. ��
Davis and Poinset [7] studied perfect nonlinear functions and difference sets on group

actions (called G-perfect nonlinear functions and G-difference sets, respectively). Similar to
[7, Theorem 3.3] (also see [9, Corollary 2.11]), we have the next result.

Proposition 5.5 Let G be an arbitrary finite group, and H := {0, 1} an additive group of
order 2. Let f : G → H be a function, and Si := f −1(i), i = 0, 1. Then f is perfect
nonlinear if and only if 4 divides |G| and S0 is a (|G|, |S0|, |S0|− |G|/4) difference set in G.

The above proposition can be obtained as a consequence of [7, Theorem 3.3] (or [9,
Corollary 2.11]). Here we include a proof for the convenience of the reader. For a nonempty
subset C of G, let C+ := ∑

s∈C s and C (−) := ∑

s∈C s−1. For any
∑

s∈G γss in the group

algebra CG, let
(∑

s∈G γss
)(−) := ∑

s∈G γss−1.

Proof of Proposition 5.5 By [26, Theorem1.3], f is perfect nonlinear if and only if {S0, S1} is
a (G, H)-related difference family, i.e. S+

0 S(−)
1 +S+

1 S(−)
0 = |G|

|H |
(

G\{1G})+. Since S0∩S1 =
∅ and S0 ∪ S1 = G, we see that S+

0 S(−)
1 = S+

0

(

G+ − S(−)
0

) = |S0|G+ − S+
0 S(−)

0 , and

S+
1 S(−)

0 = (

S+
0 S(−)

1

)(−) = S+
0 S(−)

1 . Thus,

f is perfect nonlinear ⇔ |S0|G+ − S+
0 S(−)

0 = |G|
4

(

G+ − 1G
)

⇔ S+
0 S(−)

0 = |S0| · 1G +
(

|S0| − |G|
4

)

(G+ − 1G).

Hence, the proposition holds. ��
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