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1768 I. Blanco-Chacón et al.

1 Introduction

In [4,5], the zeta polynomial of a q-ary linear code of length n and minimum distance d is
defined to be the unique polynomial PC(T ) of degree at most n − d such that the generating
function has expansion around T given by

PC(T )

(1 − T )(1 − qT )
(xT + y(1 − T ))n = · · · + AC(x, y) − xn

q − 1
T n−d + · · · , (1.1)

where AC(x, y) is the Hamming weight enumerator of C. For an MDS code C, the weight
enumerator AC(x, y) is obtained by setting PC(T ) = 1. In general the degree of PC(T ) is
given by n + 2 − d − d⊥ ≥ 0 and is equal to zero if and only if the code is MDS. For
codes with high minimum distance and high dual minimum distance, the weight enumerator
is completely determined by the polynomial PC(T ) of small degree. In such cases there
is an advantage in encoding the weight enumerator AC(x, y) by the smaller polynomial
PC(T ). Among the properties of the zeta polynomial PC(T ) is an easy transform between
the polynomials PC(T ) and PC⊥(T ) for the code and its dual, and invariance under puncturing
and shortening for codes that have a transitive automorphism group. For example, a cyclic
code and its extended code use (1.1) with the same zeta polynomial PC(T ) but with different
n and d . The special form of the generating function is motivated by its interpretation for
Reed–Solomon codes. A Reed–Solomon codeword represents the values of a polynomial
in the elements of a finite field. The generating function counts the number of zeroes of
polynomials and therefore describes the weight distribution of Reed–Solomon codes.

In this paper we establish that the zeta polynomial and its properties have q-analogues for
rank metric codes. Rank metric codes have a Singleton type upper bound for the parameters.
Codes that attain the bound are called maximum rank distance codes (MRD codes). They
include Gabidulin codes that are the q-analogues of Reed–Solomon codes. The rank distance
distribution of a MRD code is uniquely determined by the parameters of the code. The rank
metric zeta function has the property that PC(T ) = 1 for MRD codes, and thus in particular
for Gabidulin codes. In general the zeta polynomial is of low degree if both the minimum
distance and the dual minimum distance of a code are close to the Singleton bound.

In Sect. 2we summarize some preliminarymaterial and definitions. In Sect. 3we introduce
the zeta function ZC(T ) of a rank metric code C in terms of its normalized q-binomial
moments, and we define the q-analogue of the zeta polynomial for a rank metric code with
the generating function ZC(T ). In analogy with the Hamming metric case PC(T ) = 1 if
and only if C is an MRD code. In Sect. 4 we relate the weight enumerator of a rank metric
code C with its zeta polynomial and obtain the rank metric analogue of (1.1). Moreover,
we show that coefficients of the zeta polynomial coincide with those in the representation
of a weight enumerator as a Q-linear combination of MRD weight enumerators. In Sect. 5
we establish relations between the polynomials PC(T ) and PC⊥(T ) for a code and its dual.
We then demonstrate that the zeroes of PC(T ) can be related to the minimum distance of a
code by giving an upper bound for the minimum distance in terms of these zeroes. In Sect. 6
we define operations of puncturing and shortening of rank metric codes and show that the
action of these on the average weight enumerator of a code can be realized in terms of q-
derivatives. As in the Hammingmetric case the zeta polynomial is invariant under puncturing
and shortening. We introduce the normalized weight enumerator and express the action of
puncturing and shortening on it in terms of q-commuting operators. In Sect. 7 we discuss
the zeroes of the zeta polynomial. For a self-dual code, the reciprocal zeroes occur in pairs
{α, qm/α} and occur as conjugate pairs if and only if both have absolute value qm/2. We
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Rank metric codes and zeta functions 1769

consider some classes of codes with zeta polynomials for which all complex zeroes have the
same absolute value.

2 Preliminaries

We will assume that m, n are positive integers with n ≤ m and that q is an arbitrary prime
power. We write Fm×n

q to denote the m × n matrices with entries in Fq . For any X ∈ Fm×n
q ,

we write ker X or X⊥ to denote the (right) nullspace of X in Fn
q . That is,

X⊥ := {y ∈ Fn
q : XyT = 0}.

Unless explicitly stated otherwise, we assume that C is an Fq -linear subspace of Fm×n
q .

Definition 1 The dual code of C is the Fq -linear code

C⊥ := {Y ∈ Fm×n
q : Tr(XY t ) = 0 for all X ∈ C}.

The map (X, Y ) �→ Tr(XY t ) defines an inner product on the space Fm×n
q , so we have

dim(C⊥) = mn − dim(C) and C⊥⊥ = C.

Definition 2 The rank distance between matrices X, Y ∈ Fm×n
q is d(X, Y ) := rk(X − Y ).

For |C| ≥ 2, theminimum rank distance of C is the integer defined by d(C) := min{d(X, Y ) :
X, Y ∈ C, X �= Y }. The weight distribution of C is the integer vector W (C) = (Wt (C) : 0 ≤
t ≤ n), where, for all t ∈ {0, . . . , n},

Wt (C) := |{X ∈ C : rk(X) = t}|.
The rank metric weight enumerator of C is the bivariate polynomial

WC(x, y) =
n∑

t=0

Wt (C)xn−t yt . (2.1)

Recall that the Gaussian binomial or q-binomial coefficient is defined by

[
n
r

]

q
:=

⎧
⎪⎪⎨

⎪⎪⎩

(qn − 1)(qn − q) · · · (qn − qr−1)

(qr − 1)(qr − q) · · · (qr − qr−1)
if r ∈ {1, . . . , n},

1 if r = 0,
0 otherwise.

This quantity counts the number of r -dimensional subspaces of an n-dimensional subspace
over Fq . Since all the Gaussian binomial coefficients are with respect to q throughout this

paper, for brevity we write

[
n
r

]
to mean

[
n
r

]

q
. The rank metric analogue of the Singleton

bound says that |C| ≤ qm(n−d+1) for any C of minimum rank distance d [2]. Rank metric
codes that meet this bound are called maximum-rank-distance (MRD) codes. It has been
known for some decades that such codes exist for all choices of m, n, d [2,7,13]. In [2] it
was shown that the weight enumerator of an MRD code in Fm×n

q of minimum distance d is
uniquely determined and given by

Mn,d(x, y) := xn +
n∑

t=d

t∑

i=d

(−1)t−i q(t−i
2 )
[
n

t

][
t

i

]
(qm(i−d+1) − 1)xn−t yt ,
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1770 I. Blanco-Chacón et al.

where the coefficient of xn−t yt counts the number of matrices in the MRD code of rank t . It
is not hard to see that for fixed n the Mn,d are linearly independent overQ. Any code C whose
dual code has minimum distance at least 2 has weight enumerator that can be expressed as a
Q-linear combination of theMRDweight enumerators. That is, there exist p0, . . . , pn−d ∈ Q

satisfying

WC(x, y) = p0Mn,d(x, y) + · · · + pn−dMn,n(x, y).

These coefficients will turn out to define the zeta polynomial of C, that we introduce in the
next section.

Let P be a partially ordered set (poset, from now on). TheMöbius function for P is defined
via the recursive formula

μ(x, x) = 1,

μ(x, z) = −
∑

x≤y<z

μ(x, y), for x < z. (2.2)

Lemma 1 (Möbius inversion formula) Let f, g : P → Z be any two functions on P. Then

1. f (x) =
∑

x≤y

g(y) if and only if g(x) =
∑

x≤y

μ(x, y) f (y).

2. f (x) =
∑

x≥y

g(y) if and only if g(x) =
∑

x≥y

μ(y, x) f (y).

In particular, for the subspace lattice of Fm×n
q (with partial order defined by set inclusion),

and for two subspaces U and V of dimensions u and v, we have that

μ (U, V ) =
⎧
⎨

⎩

(−1)v−uq(v−u
2 ) if U ≤ V

0 otherwise.
(2.3)

3 The zeta function

We introduce the zeta function of a rank metric code C in terms of its normalized q-binomial
moments, following the approach for the Hamming metric case as given in [6]. In order to
do so we use the notion of a shortened code (cf. [12]).

Definition 3 Let U ⊆ Fn
q be a subspace of dimension u. The shortened subcode of C with

respect to U is

CU :=
{
X ∈ C : U ≤ X⊥} .

The strict shortening of C by U is

ĈU :=
{
X ∈ C : U = X⊥} .

Notice that CU is a subspace (indeed a subcode of C), but ĈU in general is not. Clearly every
element of ĈU has rank exactly n − u.

Definition 4 For u ≥ 0, the uth binomial moment of C is defined by

Bu(C) :=
∑

dim(U )=n−u

(|CU | − 1).
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Rank metric codes and zeta functions 1771

Lemma 3 is a straightforward consequence of the following duality result. The result is
used in [12] to obtain a short proof of the MacWilliams’ Identity for rank metric codes.

Lemma 2 ([12, Lemma 28]) Let U be a subspace of Fn
q of dimension n − u. Then

|CU | = |C||C⊥
U⊥|

qm(n−u)
.

Proof Let RU be the subspace of m × n matrices over Fq with row vectors in U , and let
b : C × RU be the bilinear form with b(X, Y ) = Tr(XY t ). The left null space is CU and the
right null space is RU ∩ C⊥ = C⊥

U⊥ . So that |C|/|CU | = |RU |/|C⊥
U⊥|. ��

Lemma 3 Let C have dimension k and minimum rank distance d, and let C⊥ have minimum
distance d⊥. Then

Bu(C) =
⎧
⎨

⎩

0 if u < d

(qk−m(n−u) − 1)

[
n
u

]
if u > n − d⊥

Proof Any X ∈ C satisfies rk(X⊥) ≤ n − d , so if U has dimension n − u > n − d then
CU = {0}. Similarly, C⊥

U⊥ = {0} if dim(U⊥) = u > n − d⊥ since every element X ∈ C⊥

has rank at least d⊥. Then from Lemma 2 we get that

|CU | =
{
1 if u < d
qk−m(n−u) if u > n − d⊥ .

Since

[
n
u

]
counts number of subspaces of Fn

q of dimension n − u, the result follows. ��

We remark that in the instance that C is an MRD code, the values Bu(C) of Lemma 3 were
given in [3]. Moreover, we may invoke Lemma 2 along with the Singleton bound to deduce
that if U has dimension u then

|CU | ≤ |C |/qmu ≤ qm(n−u−d+1).

Definition 5 For u ≥ 0, the u-th normalized binomial moment of C of minimum distance d
is defined by

bu(C) := Bu+d(C)
[ n
u+d

] .

Then bu(C) counts the average number of non-zero elements of the shortened code CU
where U has dimension n − u − d .

We extend the definition of bu to all u ∈ Z, by setting

bu(C) =
{
0, if u < 0.

qk−m(n−u−d) − 1, if u > n − d⊥ − d.

Note that if C is an MRD code of minimum distance d then k = m(n − d + 1) and
d⊥ = n + 2− d . Then bu(C) = qm(u+1) − 1 for all u ≥ 0. In particular, the values bu(C) are
independent of the minimum distance of C. For this reason we write bu instead of bu(C) in
the cases that C is MRD.
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1772 I. Blanco-Chacón et al.

Definition 6 The zeta function of C (cf. [6]) is defined by

ZC(T ) := (qm − 1)−1
∑

u≥0

bu(C)T u .

It is straightforward to check that for u /∈ {0, . . . , n − d⊥ − d + 2} we have the following
relation among the bu(C), namely,

bu(C) − (qm + 1)bu−1(C) + qmbu−2(C) = 0. (3.1)

Definition 7 For u ≥ 0, define

pu(C) := (qm − 1)−1(bu(C) − (qm + 1)bu−1(C) + qmbu−2(C)).

The zeta polynomial of C is defined by

PC(T ) :=
n−d⊥−d+2∑

u=0

pu(C)T u .

Clearly, for any C, the zeta polynomial PC(T ) has degree at most n − d + 1, and pu(C) = 0
for any u > n − d − d⊥ + 2. We will assume that the minimum distance of the dual code is
at least 2, and write

PC(T ) =
n−d∑

u=0

pu(C)T u .

The recursion relates the zeta function and zeta polynomial via

ZC(T ) = (qm + 1)T ZC(T ) − qmT 2ZC(T ) + PC(T ),

and hence we obtain that the generating function ZC(T ) satisfies the equation

ZC(T ) = PC(T )

(1 − T )(1 − qmT )
.

This immediately yields the following for an MRD code.

Lemma 4 Let C be an MRD code. Then PC(T ) = 1 and

ZC(T ) = 1

(1 − T )(1 − qmT )
.

Proof C is MRD if and only if d + d⊥ = n + 2, in which case (3.1) holds for all u > 0 and
PC(T ) = 1. ��

4 Weight enumerators and zeta functions

We will establish a relation between the weight enumerator of a code and its zeta function,
giving the rank metric analogue of [5, Theorem 9.5]. We first approach this using Möbius
inversion. Given a subspace U of Fn

q , we have the relation:

|CU | =
∑

U≤V

|ĈV |, (4.1)
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Rank metric codes and zeta functions 1773

consequently, by the Möbius inversion formula we get

|ĈU | =
∑

U≤V

μ(U, V )|CV |, (4.2)

for μ(U, V ) defined as in (2.3).
Next, we derive a more explicit description of WC(x, y) in terms of the normalized bino-

mial moments.

Lemma 5 Let C have minimum distance d and let be U a subspace of Fn
q of dimension

u < n. Then

|ĈU | =
n−d−u∑

w=0

(−1)wq(w
2)

∑

dim(V ) = u + w

U ≤ V

(|CV | − 1)

Proof TheMöbius recursive formula (2.2) applied withU < Fn
q gives

∑
U≤V μ(U, V ) = 0.

Also, with Lemma 3, |CV | = 1 for v > n − d . Thus,

|ĈU | =
∑

U≤V

μ(U, V )|CV |,

=
∑

U≤V

μ(U, V )(|CV | − 1),

=
∑

U≤V,v≤n−d

μ(U, V )(|CV | − 1),

=
∑

U≤V,v≤n−d

(−1)v−uq(v−u
2 )(|CV | − 1),

=
n−d−u∑

w=0

(−1)wq(w
2)

∑

dim(V ) = u + w

U ≤ V

(|CV | − 1),

proving the claim. ��
Proposition 1 Let C have minimum distance d. Then

Wt (C) =
t∑

i=d

(−1)t−i q(t−i
2 )
[
n

t

][
t

i

]
bi−d(C).

Proof Let t = n − u, and write Wn−u(C) =
∑

dim(U )=u

|ĈU |. Applying Lemma 5 and setting

u + w = v, this equals

n−d−u∑

w=0

(−1)wq(w
2)
∑

U≤V

(|CV | − 1).

For a fixed V , there are
[u+w

u

]
U ′s contained in V of dimension u. Hence

Wt (C) =
n−d−u∑

w=0

(−1)wq(w
2)
[
u + w

u

]
Bn−(u+w)(C), (4.3)
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1774 I. Blanco-Chacón et al.

which equals

t−d∑

w=0

(−1)wq(w
2)
[

n

n − t + w

][
n − t + w

n − t

]
bt−w−d(C) =

t−d∑

w=0

(−1)wq(w
2)
[
n

t

][
t

w

]
bt−w−d(C).

Setting t − w = i and observing that
[ t
w

] = [ t
t−w

]
, the result follows. ��

Equivalently, the following statement holds.

Corollary 1 Let C have minimum distance d. Then

WC(x, y) = xn +
n∑

i=d

(
n∑

t=i

(−1)t−i q(t−i
2 )
[
n

t

][
t

i

]
xn−t yt

)

bi−d(C).

In particular, in the case of an MRD code with weight enumerator Mn,d(x, y) we get

Mn,d(x, y) − xn =
n∑

i=d

(
n∑

t=i

(−1)t−i q(t−i
2 )
[
n

t

][
t

i

]
xn−t yt

)

(qm(i−d+1) − 1). (4.4)

Definition 8 For each r ∈ {0, . . . , n} define
φn,n−r (x, y) := (qm − 1)−1 (Mn,r (x, y) − (qm + 1)Mn,r+1(x, y) + qmMn,r+2(x, y)

)
,

and

φn(T ) :=
n∑

r=0

φn,r (x, y)T
r .

Therefore,

φn(T )

(1 − T )(1 − qmT )
≡ (qm − 1)−1

n∑

r=0

(
Mn,r (x, y) − xn

)
T n−r (mod T n+1) (4.5)

Lemma 6 For each r ∈ {0, . . . , d}, the coefficient of T n−r in the expression,

ZC(T )φn(T ) = PC(T )φn(T )

(1 − T )(1 − qmT )

is given by

(qm − 1)−1

(
n−r∑

i=0

pi (C)Mn,r+i (x, y) − xn
)

.

Proof From (4.5), the coefficient of T n−r in the left-hand-side of the above expression is

(qm − 1)−1

(
n−r∑

i=0

pi (C)Mn,r+i (x, y) − xn
n−r∑

i=0

pi (C)

)

.

Now from Definition 6 we have that
n−r∑

i=0

pi (C) = bn−r (C) − qmbn−r−1(C)

qm − 1
.
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Rank metric codes and zeta functions 1775

Then since r ≤ d , we have n − r − 1 > n − d⊥ − d , and so bn−r (C) = qk−m(r−d) − 1
and bn−r−1(C) = qk−m(r+1−d) − 1. Therefore

n−r∑

i=0

pi (C) =
(
qk−m(r−d) − 1

)− qm
(
qk−m(r+1−d) − 1

)

qm − 1
= 1,

proving the claim. ��
An explicit expression for φn(T ) is given by:

Lemma 7

φn(T ) =
n∑

i=0

(
n∑

t=i

(−1)t−i q(t−i
2 )
[
n

t

][
t

i

]
xt yn−t

)

T n−i .

Proof By definition, we have,

(qm − 1)φn,n−r (x, y) = Mn,r (x, y) − (qm + 1)Mn,r+1(x, y) + qmMn,r+2(x, y).

Then by (4.4), we get

=
n∑

t=r

(−1)t−r q(t−r
2 )
[
n

t

][
t

r

]
xt yn−t (qm − 1)

+
n∑

t=r+1

(−1)t−r−1q(t−r−1
2 )
[
n

t

][
t

r + 1

]
xt yn−t (q2m − 1 − (qm + 1)(qm − 1))

+
n∑

i=r+2

n∑

t=i

(−1)t−i q(t−i
2 )
[
n

t

][
t

i

]
xt yn−t (bi−r+1 − (qm + 1)bi−r + qmbi−r−1)

=
n∑

t=r

(−1)t−r q(t−r
2 )
[
n

t

][
t

r

]
xt yn−t (qm − 1),

as the third sum vanishes due to the relation (3.1). ��
Therefore, the weight enumerators Mn,d(x, y) and WC(x, y) can be expressed as

Mn,d(x, y) = xn +
n∑

i=d

φn,n−i (x, y)bi−d , (4.6)

WC(x, y) = xn +
n∑

i=d

φn,n−i (x, y)bi−d(C). (4.7)

In fact, the polynomials φn,n−r (x, y) are related to a well known class of q-polynomials
(see, e.g., [9]), and are given by

φn,n−r (x, y) =
[
n
r

]
pn−r (x, y)y

r ,

where pk(x, y) :=∏k−1
j=0(x − q j y) =∑k

j=0(−1)k− j q(k− j
2 )
[
k
j

]
x j yk− j . Therefore,

WC(x, y) = xn +
n∑

i=d

bi−d(C)

[
n
i

]
pn−i (x, y)y

i . (4.8)
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1776 I. Blanco-Chacón et al.

We now establish a connection between the weight enumerator of a code and its zeta
function.

Theorem 1 The coefficient of T n−d in the expression,

ZC(T )φn(T ) = PC(T )φn(T )

(1 − T )(1 − qmT )
,

is given by

WC(x, y) − xn

qm − 1
.

In particular, the zeta polynomial PC(T ) is the unique polynomial of degree at most n − d

such that WC(x, y) =
n−d∑

i=0

pi Mn,d+i (x, y).

Proof It is immediate from (4.8) that the coefficient of T n−d in ZC(T )φn(T ) is (qm −
1)−1(WC(x, y) − xn). From Lemma 6, we have that this coefficient is equal to (qm −
1)−1(−xn + ∑n−d

i=0 pi Mn,d+i (x, y)), and thus WC(x, y) =
n−d∑

i=0

pi (C)Mn,d+i (x, y). Since

the Mn,d+i (x, y) are linearly independent over Q, the result follows. ��

Remark 1 Given the polynomial
∑n−d

i=0 pi T i , there exists weight enumeratorsWr (x, y) cor-
responding to putative codes of minimum distance r for each 0 ≤ r ≤ d that arise as
coefficients of the generating function ZC(T )φn(T ). In particular the weight enumerator of
a given code is produced from its zeta polynomial only if d is known. Different codes may
share the same zeta polynomial.

Example 1 Let us consider m = n = 3. Then we have the following weight enumerators for
MRD codes

M3,3 = x3 + (q3 − 1)y3

M3,2 = x3 + (q3 − 1)(q2 + q + 1)xy2 + (q3 − 1)(q3 − q2 − q)y3

M3,1 = x3 + (q3 − 1)(q2 + q + 1)x2y + (q3 − 1)2(q2 + q)xy2

+ (q3 − 1)(q3 − q)(q3 − q2)y3

Taking q = 2 we get

M3,3 = x3 + 7y3

M3,2 = x3 + 49xy2 + 14y3

M3,1 = x3 + 49x2y + 294xy2 + 168y3

We formally define M3,4 = xn , the weight enumerator of the trivial code. Consider a code
C of constant rank 2; that is, every nonzero codeword in C has rank weight two. If C has
dimension k, then WC(x, y) = x3 + (qk − 1)xy2. Such codes always exist for k = 3, and
exist with k = 4, q = 2. The former is a special case of [3, Theorem 4], while the latter is an
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Rank metric codes and zeta functions 1777

example found by computer, and is only known to exist when q = 2; see [3, Section 1]. For
k = 3, we have a code C1 with weight enumerator

WC1(x, y) = 1

q2 + q + 1

(
M3,2 − (q3 − q2 − q)M3,3 + q3M3,4

)
,

and hence

PC1(T ) = 1 − (q3 − q2 − q)T + q3T 2

q2 + q + 1
.

For k = 4 and q = 2, we get a code C2 with zeta polynomial

PC2(T ) = 1

49

(
15 − 30T + 64T 2) .

This reflects the fact that

x3 + 15xy2 = 1

49

(
15(x3 + 49xy2 + 14y3) − 30(x3 + 7y3) + 64x4

)
.

From considering an MRD code of 3 × 3 matrices with minimum distance 2 over Fq2 as
a subspace of 6 × 6 matrices over Fq , we produce a code C3 with weight enumerator

WC3(x, y) = x6 + (q6 − 1)(q4 + q2 + 1)x2y4 + (q6 − 1)(q6 − q4 − q2)y6,

and zeta polynomial

PC3(T ) = 1 + (−q6 + q4 + q3 + q2 + q)T + q6T 2

q4 + q3 + q2 + q + 1
.

Taking q = 2 we get

PC3(T ) = 1 − 34T + 64T 2

31
.

5 Duality and an upper bound

A number of authors have described the duality theory of rank metric codes [2,8,12]. In [8,
Theorem 1], the authors give a direct analogue of MacWilliams’ duality theorem relating the
weight enumerator of a code with that of its dual, or more precisely, with the q-transform of
its dual. Delsarte [2] showed that the dual code of an MRD code is also MRD; the dual of an
MRD code with minimum distance d is an MRD code with minimum distance n − d + 2.
Since an MRD code exists for all choices ofm, n, d , the family of MRD weight enumerators
is closed under the MacWilliams identity. Explicitly, we have that the weight enumerator
M⊥

n,d(x, y) of an MRD code in Fm×n
q of minimum distance d is given by:

Theorem 2

M⊥
n,d(x, y) = qm(n−d+1)Mn,n−d+2(x, y).

Moreover, the MacWilliams transform relating the weight enumerator of a code with that of
its dual is aQ-linear map [2]. We apply these observations to deduce the following corollary.
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Corollary 2 Let C ⊆ Fm×n
q be a matrix code with minimal rank distance d and dimension

k. Let d⊥ be the minimal rank distance of the dual code C⊥. Setting

WC(x, y) =
r∑

i=0

pi Mn,d+i and WC⊥(x, y) =
t∑

j=0

s j Mn,d⊥+ j ,

we have that

(a) r = t = n − d − d⊥ + 2;
(b) s j = pr− j qm(d⊥+ j−1)−k;

Proof Applying the MacWilliams Q-linear transform to WC(x, y) and using Theorem 2
gives

WC⊥(x, y) =
r∑

i=0

qm(n−d−i+1)−k pi Mn,n−d−i+2.

Setting d⊥ + j = n−d− i +2, its minimal value ( j = 0) happens when i = n−d−d⊥ +2
and its maximal value (i = 0) when j = n − d − d⊥ + 2. Hence (a) follows. Claim (b)
follows from the fact that the MRD family is aQ-basis, hence the decomposition of WC⊥ as
a linear combination of MRD polynomials of different minimal distances must be unique. ��

The MacWilliams identity can be translated into a functional relation between the zeta
function of a code and that of its dual, or just between the zeta function of the code at different
arguments if the code is formally self-dual (and so simply satisfies WC(x, y) = WC⊥(x, y)),
as we now show.

Theorem 3

ZC⊥(T ) = qm(n−d+1)+kT r−2ZC
(

1

qmT

)
.

In particular, if C is formally self-dual, then

ZC(T ) = qm(n−d+1)+kT r−2ZC
(

1

qmT

)
.

Proof Let PC(T ) =
r∑

i=0

pi T
i and PC⊥(T ) =

r∑

j=0

si T
i , for some pi , si ∈ Q. By Corollary

1, for 0 ≤ j ≤ r :

s j = pr− j q
m(d⊥+ j−1)−k,

hence multiplying by T j−r , summing in j and then changing j to r − j :

T−r PC⊥(T ) =
r∑

j=0

p jq
m(d⊥+r− j−1)−kT− j = qm(d⊥+r−1)−k PC

(
1

qmT

)
.

Therefore,

PC⊥(T ) = T rqm(n−d+1)−k PC
(

1

qmT

)
.

Taking the quotient with (1 − T )(1 − qmT ), the result follows. ��
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Example 2 We consider the zeta polynomials of the duals of the codes from Example 1. The
code C2 has m = n = 3, d = 2, k = 4, q = 2, and zeta polynomial

PC2(T ) = 1

49

(
15 − 30T + 64T 2) .

Therefore,

PC⊥
2
(T ) = T 222PC

(
1

23T

)
,

= 1

49

(
4 − 15T + 60T 2) .

The code C3 has m = n = 6, d = 4, k = 12, and zeta polynomial

PC3(T ) = 1 − 34T + 64T 2

31
.

Therefore,

PC⊥
3
(T ) = T 226PC3

(
1

26T

)

= 1 − 34T + 64T 2

31
= PC3(T ).

Note that although C3 and C⊥
3 have the same zeta polynomial (and hence the same zeta

function), they do not have the same weight enumerator, as they have different minimum
distances. In fact, if a code has quadratic zeta polynomial, which occurs if and only if
d + d⊥ = n, then its dual will have the same zeta polynomial if and only if k = m(n − d).

We close this section by showing how the zeta function can be used to derive an upper
bound on the minimum distance of code, which is the rank metric analogue of [4, Section 2].
We remark that this result gives an upper bound on the minimum distance of a code based
only on its zeta function; while codes with different weight enumerators may have the same
zeta function, as we observed in the example above.

Theorem 4 Let PC(T ) = p0(1 + aT + · · · ) be the zeta polynomial of a rank metric code
C ⊆ Fm×n

q , of degree r ≤ n − d and let a be the negative of the sum of its reciprocal roots.
Then

d ≤ logq
[
(a + qm + 1)(q − 1) + 1

]− 1.

Proof First, observe that according to Theorem 1 the coefficient of T n−d in ZC(T )φn(T ) is

WC(x, y) − xn

qm − 1
. (5.1)

Second, since 1
(1−T )(1−qmT )

is the common zeta-function of all theMRDweight enumerators
(in particular, of those with length n), again due to Theorem 1, we have

φn(T )

(1 − T )(1 − qmT )
= 1

qm − 1

n−d∑

i=0

(
Mn,d+i (x, y) − xn

)
T n−d−i + · · ·
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Likewise, the coefficient of T n−d in ZC(T )φn(T ) is

1

qm − 1

r∑

i=0

pi
(
Mn,d+i (x, y) − xn

)
. (5.2)

Within the coefficient of T n−d in these two coincident expressions, we need to compare the
coefficients of xn−d yd and xn−d−1yd+1.

The coefficient of xn−d yd in (5.1) is Wn−d (C)
qm−1 ,Wn−d(C) being the number of codewords of

rank d in C, which equals the coefficient of xn−d yd in (5.2), i.e., in p0
qm−1

(
Mn,d(x, y) − xn

)
.

Using Theorem 1, this last expression can be expanded as

p0
qm − 1

(
n∑

i=d

φn,n−i (x, y)bi−d

)

= p0
qm − 1

n∑

i=d

[
n

i

]
bi−d y

i
n−i∑

j=0

(−1)n−i− j q(n−i− j
2 )

×
[
n − i

j

]
x j yn−i− j ,

the coefficient of xn−d yd in which expression is precisely p0
qm−1

[n
d

]
b0. Comparing with the

corresponding coefficient in (5.1) we obtain p0 ≥ 0. Observe that the numbers bu are the
normalized q-binomial coefficients of an MRD code of length n, and they are independent
of the minimal distance d .

Now, we compare the coefficients of xn−d−1yd+1. First, this coefficient is Wn−d−1(C)
qm−1 ≥ 0

in (4.3). In (5.2), this equals the coefficient of xn−d−1yd+1 in the sub-expression

1

qm − 1

(
p0(Mn,d(x, y) − xn) + p1(Mn,d+1(x, y) − xn)

)
.

The coefficient in p1
qm−1

(
Mn,d+1(x, y) − xn

)
is, as before

p1
qm − 1

[
n

d + 1

]
b0. (5.3)

As for the coefficient in p0
qm−1

(
Mn,d(x, y) − xn

)
, we expand this expression again as

p0
qm − 1

n∑

i=d

φn,n−i (x, y)bi−d ,

from which we isolate the sought for coefficient, which is

p0
qm − 1

([
n

d + 1

]
b1 −
[
n

d

][
n − d

n − d − 1

]
b0

)
. (5.4)

Adding (5.3) and (5.4), dividing by p0 and taking into account that
[ n
d+1

] = qn−d−1
qd+1−1

[n
d

]
, yields

ab0
qn−d − 1

qd+1 − 1
+ b1

qn−d − 1

qd+1 − 1
− b0

[
n − d

n − d − 1

]
≥ 0. (5.5)

Since
[ n−d
n−d−1

] = qn−d−1
q−1 , it holds that,

ab0 + b1 − b0
qd+1 − 1

q − 1
≥ 0.
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Since bu = qm(u+1) − 1 for each u ≥ 0, dividing by b0 yields

a + qm + 1 ≥ qd+1 − 1

q − 1
.

By taking the logarithm the result follows. ��

6 Puncturing and shortening

Puncturing and shortening are fundamental operations of coding theory. In [4], the zeta
functionwas related to the normalized weight enumerator of a code, by successive puncturing
and shortening of an MDS weight enumerator. We consider the rank metric case in what
follows.

We have already considered shortened subcodes in order to define the zeta function of
a code. We will now consider puncturing and shortening as operations that yield codes in
F
m×(n−1)
q , that is, as projections of codes in Fm×n

q . Such operations have been considered in
[1], with a slightly different definition. We will establish the invariance of the normalized
weight enumerator of a code under puncturing and shortening.

Definition 9 Let H be a hyperplane in Fn
q . Fix a basis of H and let PH ∈ F

n×(n−1)
q be the

matrix whose columns are the elements of this basis of H , in some order. Let h ∈ Fn
q\H .

We define the punctured and shortened codes of C with respect to H , respectively by:

�H (C) := {X PH : X ∈ C} ⊂ Fm×(n−1)
q (punctured code),

�h,H (C) := {X PH : X ∈ C, XhT = 0} ⊂ Fm×(n−1)
q (shortened code).

Clearly �H (C) and �h,H (C) are only well-defined up to a choice of basis of H . We
assert that this is sufficient for our purposes, which is to define operations of puncturing and
shortening on normalized weight enumerators. With these definitions, C can by punctured

in any of

[
n

n − 1

]
=
[
n
1

]
ways and can be shortened in any of qn−1

[
n
1

]
= |{(〈h〉, H) :

dim H = n − 1, h /∈ H}|.
Lemma 8 Let H be a hyperplane in Fn

q and let PH ∈ F
n×(n−1)
q have columns that form a

basis of H. Let X be non-zero in Fm×n
q . Then

rk(X PH ) =
{
rk(X) if X⊥ �⊂ H
rk(X) − 1 if X⊥ ⊂ H

Proof Let h ∈ Fn
q\H . Then rk(X) = rk(X [PH , hT ]) = rk([X PH , XhT ]) = rk(X PH )

if and only if XhT is contained in the column-space of X PH , which holds if and only if
h ∈ X⊥ + H . X⊥ �⊂ H if and only if Fn

q = X⊥ + H , in which case h ∈ X⊥ + H and

rk(X) = rk(X PH ). If X⊥ ⊂ H then h /∈ X⊥ + H = H , so rk(X PH ) = rk(X) − 1. ��
Corollary 3 Let H be a hyperplane in Fn

q and let h ∈ Fn
q\H. Let C have parameters

[m×n, k, d ≥ 2] overFq . Then the punctured code�H (C) has parameters [m×(n−1), k,≥
d − 1]. The shortened code �h,H (C) has parameters [m × (n − 1),≥ k − m,≥ d].
Proof The lower bounds on theminimumdistances of the codes follows directly fromLemma
8. Let PH ∈ F

n×(n−1)
q have columns that form a basis of H . Then X PH = 0 if and only if
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H ⊂ X⊥, in which case X = 0, since otherwise dim X⊥ = n − rk(X) ≤ n − d ≤ n − 2. It
follows that C and �H (C) have the same cardinality.

Let h ∈ Fn
q\H . Consider the map θh : Fm×n

q −→ Fm
q : X �→ XhT . Then C ∩ ker θh =

C〈h〉 := {X ∈ C : XhT = 0}. Therefore dim C〈h〉 = dim(C∩ker θh) ≥ k−m. The result now
follows since �h,H (C) is obtained as the punctured code of C〈h〉 with respect to H , which
both have the same dimension. ��

Given an arbitrary code, C and hyperplanes H1, H2, the punctured codes �H1(C) and
�H2(C) may have different weight enumerators. Neither is the weight enumerator of a short-
ened code �h,H (C) necessarily uniquely determined. However, in the case of an MRD code
C we observe:

Corollary 4 Let d ≥ 2. The shortened and punctured codes of an MRD code with weight
enumerator Mn,d(x, y) are also MRD and have weight enumerators Mn−1,d(x, y) and
Mn−1,d−1(x, y), respectively.

Proof Let H be a hyperplane in Fn
q . Applying Corollary 3 together with the rank metric

Singleton bound, we see that the punctured code�H (C) has parameters [m× (n−1),m(n−
d + 1), d − 1] and is thus MRD. Similarly the shortened code �h,H (C) has parameters
[m × (n − 1),m(n − d), d] and is also an MRD code. ��

Wewish to define algebraic operations on the weight enumerator of a code corresponding
to the expected weight enumerator of its punctured or shortened codes. In the Hamming
metric case, such operations are defined in terms of partial derivatives [4]. In the rank metric
case, we may implement q-analogues of partial derivatives (cf. [9], [11]). We define such
operations as follows.

Definition 10 Let f (x, y) =∑n
i=0 fi xn−i yi ∈ Q[x, y]. The partialq-derivatives of f (x, y)

with respect to x and y are defined by:

Dx ( f (x, y)) := f (qx, y) − f (x, y)

(q − 1)x
=

n∑

i=0

fi

[
n − i
1

]
xn−i−1yi ,

Dy( f (x, y)) := f (x, qy) − f (x, y)

(q − 1)y
=

n∑

i=0

fi

[
i
1

]
xn−i yi−1,

Dq,x ( f (x, y)) := f (qx, qy) − f (x, qy)

(q − 1)x
=

n∑

i=0

fi q
i
[
n − i
1

]
xn−i−1yi .

It is straightforward to check that these are linear operators. In analogy with [4, Section 3] we
now define the operations of puncturing and shortening on the homogeneous polynomials of
degree n in Q[x, y] by

P :=
[
n
1

]−1 (
Dq,x + Dy

)
and S :=

[
n
1

]−1

Dx .

Let us consider the average weight enumerator arrived at over all possible shortenings or
puncturings (cf. [4]).

Theorem 5 The average weight enumerators over all shortened and punctured codes of C
are given by
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1. P(WC(x, y)) =
[
n
1

]−1 ∑

dim H=n−1

W�H (C)(x, y),

2. S(WC(x, y)) =
[
n
1

]−1 1

qn−1

∑

dim H=n−1,〈h〉�⊂H

W�h,H (C)(x, y).

Proof Let H be a hyperplane in Fn
q and let PH ∈ F

n×(n−1)
q have columns that form a basis of

H . From Lemma 8, rk(X Ph) = rk(X) if and only if X⊥ �⊂ H . Let X ∈ C have rank w > 0.
Then rk(X PH ) = w − 1 if and only if X⊥ ⊂ H .

Since there are

[
n − (n − w)

n − 1 − (n − w)

]
=
[
w

1

]
hyperplanes in Fn

q containing X⊥, X cor-

responds to a word of rank w − 1 in

[
w

1

]
punctured codes of C and to a word of rank w

in

[
n
1

]
−
[
w

1

]
= qw

[
n − w

1

]
punctured codes of C. Therefore, each term xn−w yw of the

weight enumerator of C yields the contribution

qw

[
n − w

1

]
xn−w−1yw +

[
w

1

]
xn−w yw−1,

in the sum of the

[
n
1

]
different weight enumerators of all possible punctured codes.

For any h /∈ H , X PH ∈ �h,H (C) if and only if h ∈ X⊥. There are |X⊥\X⊥ ∩ H | such
vectors h and so qn−w−1 one dimensional subspaces 〈h〉 such that X PH ∈ �h,H (C). As

outlined above, there are qw

[
n − w

1

]
hyperplanes not containing X⊥. In particular each

term xn−w yw of the weight enumerator of C yields the contribution

qn−w−1qw

[
n − w

1

]
xn−1−w yw = qn−1

[
n − w

1

]
,

in the sum of the qn−1
[
n
1

]
different weight enumerators of all possible shortened codes. ��

Example 3 Consider the F2-[3 × 3, 4, 2] code

C =
〈⎡

⎣
1 0 0
0 0 0
0 1 0

⎤

⎦ ,

⎡

⎣
0 0 1
1 0 0
0 0 0

⎤

⎦ ,

⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦ ,

⎡

⎣
0 0 1
0 1 0
0 1 0

⎤

⎦
〉

,

which has weight enumerator WC(x, y) = x3 + 13xy2 + 2y3. Then 6 hyperplanes H yield
shortened codes with distribution of weight enumerators similar to those for H = 001⊥, and
the hyperplane H = 010⊥ yields 4 shortened codes �h,H of order 2.

H h W�h,H (x, y) H h W�h,H (x, y)

001⊥ 001 x2 + 3y2 010⊥ 110 x2 + y2

111 x2 + y2 010 x2 + y2

011 x2 + y2 111 x2 + y2

101 x2 + 3y2 011 x2 + y2
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Then the average weight enumerator over all shortened codes is given by
[
3
1

]−1

(1/4)
∑

dim H=2,〈h〉�⊂H

W�h,H (C)(x, y) = (1/28)(28x2 + 52y2)

= x2 + 13/7y2

= S(x3 + 13xy2 + 2y3)

=
[
3
1

]−1 ([3
1

]
x2 + 13y2

)
.

Lemma 9 The zeta polynomial PC(T ) is invariant under the shortening and puncturing
operations S and P .

Proof From Corollary 4, we have

S(WC(x, y)) = S
(
n−d∑

i=0

pi (C)Mn,d+i (x, y)

)

=
n−1−d∑

i=0

pi (C)Mn−1,d+i (x, y),

and

P(WC(x, y)) = P
(
n−d∑

i=0

pi (C)Mn,d+i (x, y)

)

=
n−d∑

i=0

pi (C)Mn−1,d+i−1(x, y).

��
Definition 11 The normalized weight enumerator of C is defined to be the polynomial,

WC(T ) := (qm − 1)−1
n∑

i=d

[
n
i

]−1

Wi (C)T i−d .

WewriteWP
C (T ) andWS

C (T ) to denote the normalizedweight enumerators corresponding
to P(WC(x, y)) and S(WC(x, y)), respectively.

Theorem 6 Let C have minimum distance d. Then,

1. WP
C (T ) = qdTWC(qT ) + WC(T ) − (qm − 1)−1Wn(C)qnT n−d+1,

2. WS
C (T ) = WC(T ) − (qm − 1)−1Wn(C)T n−d .

Proof To show (1), we apply the operation P =
[
n
1

]−1 (
Dq,x + Dy

)
to WC(x, y).

P(WC(x, y)) =
[
n
1

]−1
([

n
1

]
xn−1 +

n−1∑

i=d

Wi (C)qi
[
n − i
1

]
xn−i−1yi

+
n∑

i=d

Wi (C)

[
i
1

]
xn−i yi−1

)

= xn−1 +
[
n
1

]−1
(
n−1∑

i=d

Wi (C)qi
[
n − i
1

]
xn−i−1yi

+
n∑

i=d

Wi (C)

[
i
1

]
xn−i yi−1

)
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= xn−1 +
[
n
1

]−1 n−1∑

i=d−1

(
Wi (C)qi

[
n − i
1

]

+ Wi+1(C)

[
i + 1
1

])
xn−1−i yi .

Therefore, the associated normalized polynomial WP
C (T ) is given by:

= (qm − 1)−1
[
n
1

]−1 n−1∑

i=d−1

(
Wi (C)qi

[
n − i
1

]
+ Wi+1(C)

[
i + 1
1

])[
n − 1
i

]−1

T i−d+1

= (qm − 1)−1
n−1∑

i=d−1

(

Wi (C)qi
[
n
i

]−1

+ Wi+1(C)

[
n

i + 1

]−1
)

T i−d+1

= (qm − 1)−1
n∑

i=d

Wi (C)qi
[
n
i

]−1

T i−d+1 − (qm − 1)−1qnWn(C)T n−d+1

+ (qm − 1)−1
n∑

i=d

Wi (C)

[
n
i

]−1

T i−d ,

= qdTWC(qT ) + WC(T ) − (qm − 1)−1qnWn(C)T n−d+1.

The proof of (2) is similar. ��

Consider the following operations α, ε on rational functions f (T ) in indeterminate T .

α f (T ) := T f (T ) = and ε f (T ) := f (qT ). (6.1)

Now α, ε form a q-commuting pair [11], and obey the relations

εα = qαε, qα = αq, qε = εq, (6.2)

with respect to composition. Then α, ε are non-commuting operators with respect to the
q-product determined by the relations in (6.2) and generate the Q-algebra 〈α, ε〉, which acts
on the space of rational functions. We thus express Theorem 6(1) as

WP
C (T ) ≡ (1 + qdαε)WC(T ) = (1 + qd−1εα)WC(T ) mod T n−d+1, (6.3)

An immediate corollary of Theorem 6 is as follows.

Corollary 5 Let C have minimum distance d. For 0 ≤ i ≤ d we have that,

1. (1 + qdαε)iWS
C (T ) ≡ (1 + qdαε)iWC(T ) mod T n−d ,

2. (1 + qdαε)iWP
C (T ) ≡ (1 + qdαε)i+1WC(T ) mod T n−d+1.

In particular, for dS = d, dP = d − 1 and nP = nS = n − 1 we have

1. (1 + qdαε)dSWS
C (T ) ≡ (1 + qdαε)dWC(T ) mod T nS−dS+1,

2. (1 + qdαε)dPWP
C (T ) ≡ (1 + qdαε)dWC(T ) mod T nP−dP+1.

WewriteWPr

C (T ) to denote the normalized weight enumerator that results from applying the
puncturing operation r times toWC(T ). Note that the operators (1 + qrαε) and (1 + qsαε)

commute, so there is no ambiguity in the following statement.
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Corollary 6 Let C have minimum distance d. Then

WPr

C (T ) ≡
r−1∏

j=0

(1 + qd− jαε)WC(T ) mod T n−d+1,

=
r∑

j=0

q j (d−r+ j)
[
r
j

]
T jWC(q j T ).

Proof The first equation is derived by repeated applications of (6.3). The well known identity
∏r−1

j=0(1+ q j y) =∑r
j=0 q

( j
2)
[
r
j

]
y j , along with the fact that (αε) j = q( j

2)α jε j , yields the

equation

r−1∏

j=0

(1 + q j (qd−r+1αε)) =
r∑

j=0

q j (d−r+ j)
[
r
j

]
α jε j .

Applying this to WC(T ) results in the 2nd equation. ��
Example 4 Let Mm×n,d(T ) be the normalized weight enumerator of an F2-[m × n,m(n −
d+1), d] code. Then successively puncturingM7×7,4(T ), we arrive at the normalizedweight
enumerator of the whole space WF7×4

2
(T ) = M7×4,1(T ).

M7×7,4(T ) = 1 + 98T + 9688T 2 + 610112T 3.

M7×6,3(T ) = 1 + 114T + 12824T 2 + 1230144T 3,

≡ (1 + 24αε)M7×7,4(T ) mod T 4,

= 1 + 114T + 12824T 2 + 1230144T 3 + 78094336T 4.

M7×5,2(T ) = 1 + 122T + 14648T 2 + 1640512T 3,

≡ (1 + 23αε)M7×6,3(T ) mod T 4,

= 1 + 122T + 14648T 2 + 1640512T 3 + 78729216T 4,

≡ (1 + 23αε)(1 + 24αε)M7×7,4(T ) mod T 4,

= 1 + 122T + 14648T 2 + 1640512T 3 + 156823552T 4 + 9996075008T 5.

W
F
7×4
2

(T ) = 1 + 126T + 15624T 2 + 1874880T 3,

≡ (1 + 22αε)M7×5,2(T ) mod T 4,

= 1 + 126T + 15624T 2 + 1874880T 3 + 52496384T 4,

≡ (1 + 22αε)(1 + 23αε)M7×6,3(T ) mod T 4,

≡ (1 + 22αε)(1 + 23αε)(1 + 24αε)M7×7,4(T ) mod T 4,

= 1 + 126T + 15624T 2 + 1874880T 3,

+ 209319936T 4 + 20032782336T 5 + 1279497601024T 6.

If we consider the action of α and ε on Q[T ]/〈T s〉 for some positive integer s, then they
may be represented as s × s rational matrices:

α =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 · · · 0 0
1 0 · · · 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1 0

⎞

⎟⎟⎟⎟⎟
⎠

and ε = diag(1, q, q2, . . . , qs−1),
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so that 〈α, ε〉 form a sub-algebra of Qs×s . Then as an element of Qs×s , α is nilpotent so the
inverse of the operator (1 + qtεα) exists and is given by

(1 + qtεα)−1 = 1 − qtεα + (qtεα)2 + · · · + (−1)s−1(qtεα)s−1.

For example, with s = 3, we have

1 + qtεα =
⎛

⎝
1 0 0

qt+1 1 0
0 qt+2 1

⎞

⎠ and (1 + qtεα)−1 =
⎛

⎝
1 0 0

−qt+1 1 0
q2t+3 −qt+2 1

⎞

⎠ .

Recall the following formulae (see [9]):

(T ; q)� :=
�−1∏

j=0

(1 − q j T ) and (T ; q)−1
� =

∞∑

j=0

[
� + j − 1

j

]
T j .

Then
∏r−1

j=0(1 + q j (qd−r+1αε)) = (−qd−r+1αε; q)r and so

(−qd−r+1αε; q)−1
r =

∞∑

j=0

(−1) j
[
r + j − 1

j

]
q j (d−r+1)+( j

2)α jε j .

Lemma 10 Let C have minimum distance d. Then

WC(T ) ≡ (−qd−r+1αε; q)−1
r WPr

C (T ) mod T n−d+1

=
∞∑

j=0

(−1) j q j (d−r+1)+( j
2)
[
r + j − 1

j

]
T jWPr

C (q j T ).

In particular, puncturing is an invertible operation on normalized weight enumerators,
modulo T n−d+1.

Example 5 As
∏i−1

j=0(q
m − q j )

[
�

i

]
is the number of m × � matrices of rank i , we see that

W
F
m×�
q

(T ) =
�∑

i=1

i−1∏

j=1

(qm − q j )T i−1.

As in Example 4, the full space Fm×�
q is an MRD code with parameters [m × �,m�, 1] and

can be obtained by successive puncturings of an MRD code. Let M(T ) be the normalized
weight enumerator of anMRD [m×(n+r),m(n−d+1), d+r ] code for some non-negative
integer r . Then the previous observations along with Corollary 6 implies that

M(T ) ≡
n−d+1∑

i=1

i−1∏

j=1

(qm − q j )

d+r−1∏

j=0

(1 + qd+r− jαε)−1T i−1 mod T n−d+1

= (qm − 1)−1
n−d+1∑

i=1

qim(q−m; q)i (−qd−r+1αε; q)−1
r T i−1

= (qm − 1)−1
n−d+1∑

i=1

qim(q−m; q)i

∞∑

j=0

(−1) j q j (d−r+i)+( j
2)
[
r + j − 1

j

]
T i+ j−1.
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Lemma 11 Let C have minimum distance d. Then the normalized weight enumerator of the
code C satisfies

WC(T ) ≡ (qm − 1)−1
n−d∑

i=0

Wd+i

[
n

i + d

]−1 T i

(T ; q)i+1
mod T n−d+1.

Proof We have

T i

(T ; q)i+1
=

∞∑

j=0

[
i + j
j

]
T j+i =

∞∑

j=i

[
j
i

]
T j ,

which yields

n−d∑

i=0

Wd+i

[
n

i + d

]−1 T i

(T ; q)i+1
=

n−d∑

i=0

Wd+i

[
n

i + d

]−1 ∞∑

j=i

[
j
i

]
T j

=
∞∑

j=0

T j
n−d∑

i=0

Wd+i

[
n

i + d

]−1 [
j
i

]

=
∞∑

j=0

T jWd+ j

[
n

j + d

]−1

.

��

7 Zeroes of the zeta polynomial

For a self-dual code C, Theorem 3 shows that the (in general complex) zeroes of the zeta
polynomial PC(T ) occur in pairs (α, 1/(qmα)). The two zeroes in a pair are of the same
absolute value if and only if |α| = (qm)−1/2. Writing ζ(s) = Z(T = (qm)−s), this is the
case if and only if as zeroes of ζ(s) they satisfy Re s = 1/2. The latter is the critical line for
the classical Riemann zeta function as well as for the zeta function of a curve over a finite
field, which we recall here for convenience of the reader.

If C is a non-singular projective curve defined over Fq , for k ≥ 1, denote by Nk the
number of Fqk -rational points of C , i.e., the cardinality of C(Fqk ). The zeta-function of C is
the formal power series

Z(C, T ) = exp

⎛

⎝
∑

k≥1

Nk

k
T k

⎞

⎠ .

This expression iswell defined as a formal power series (cf. [10, AppendixC]) and satisfies
the following properties:

Theorem 7 (Weil, Dwork) The zeta function of any non-singular projective curve of genus
g can be expressed as

Z(C, T ) = P(T )

(1 − T )(1 − qT )
,
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with P(T ) ∈ Z[T ] a polynomial of degree 2g, called the zeta-polynomial of C. Moreover,
for each root ω of P(T ) we have

|ω| = q1/2.

As we see, Z(C, T ) is primarily used as a generating function for the number of points
on a curve. There is no immediate analogue of this property for linear codes. In another
interpretation, the zeta function of a curve describes the growth rate for the dimensions of
linear systems on the curve. This is analogous to describing the growth rate of the binomial
moments of a linear code. For codes for which the growth rate of the binomial moments is
close to the growth rate of dimensions of linear systems the zeroes of the zeta polynomial
will lie on the critical line. For the Hamming metric, this occurs for remarkably many codes
(more so when the field size is small), including for infinite families of extremal weight
enumerators. The zeta polynomial defined in this paper measures the growth rate of binomial
moments for rank metric codes, and we may ask whether this growth rate is such that we
can expect to find codes with zeroes of the zeta polynomial on the critical line. We give an
example where the zeta polynomial is an exact match to the zeta polynomial of a (Hasse-Weil
maximal) elliptic curve.

Example 6 To construct a formally self-dual 4 × 4 rank metric code we take the extended
binary QR-code of length 18 in double-circulant form. We puncture at the last coordinate in
one circulant block and shorten at the last coordinate in the other block. We then read out the
remaining 16 coordinates in order and from each group of four coordinates form a row for a
codeword in 4 × 4 format. The rank distribution for the 256 codewords is 01, 221, 3162, 472.
The normalized binomial moments are b0 = 3/5, b1 = 24 − 1, b2 = 28 − 1, . . . The code
has zeta function

ZC(T ) := 1

16 − 1

(
3

5
+ (16 − 1)T + (162 − 1)T 2 + · · ·

)
= 1

25

1 + 8 T + 16 T 2

(1 − T ) (1 − 16 T )

and zeta polynomial P(T ) = (1 + 8T + 16T 2)/25 = (1 + 4T )2/25. The double zero
T = −1/4 has absolute value (qm)−1/2 = (24)−1/2 = 1/4 and thus the zeroes of the zeta
function lie on the critical line. The zeta function is that of a maximal elliptic curve over the
field of 16 elements.

Remark 2 Note that constructing a self-dual rank metric code from a self-dual linear code in
this way is not unique; in other words, equivalent codes of length 16 may lead to inequivalent
4 × 4 rank metric codes. The rank weight distributions obtained need not bear any relations
to each other. It requires further research as to what distributions, and hence what zeta
polynomials, may occur from codes constructed in this way.

Heuristics for the Hamming metric are that a sufficient condition for a matching growth
rate, and thus for zeroes on the critical line, are that a (formally self-dual) code has large
enough minimum distance and weight distribution close to that of a random code. Precise
formulations of these observations and their verification are an open problem.

We applied the same construction as in the example to double-circulant codes of length 38
to obtain formally self-dual 6 × 6 rank metric codes. Among those, 12 codes had minimum
rank distance 3 and thus a quadratic zeta polynomial. The rank distributions for these codes
are not far apart and in all 12 cases the zeroes of the zeta polynomial are on the critical line.
Among codes with lower minimum rank distance a wider range of rank distributions occurs.
The distributions close to the average have zeroes on the critical line and those farther away
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have pairs of real zeroes. Typically one of the real zeroes among (α, 1/(qmα)) is close to 1
and the other close to 1/qm . This agrees with observations for the Hamming metric. These
preliminary observations suggest that the zeroes of zeta polynomials for the rank metric
have properties similar to those for the Hamming metric. It remains to make these properties
precise and to establish to what extent or under which additional assumptions the properties
are similar to those for curves.

7.1 Self-dual divisible codes

Here we consider a family of codes which are divisible (that is, the rank weight of every code-
word is divisible by some integer c > 1) and also formally self-dual. It is known that for codes
in the Hamming metric, such codes can only exist for (q, c) ∈ {(2, 2), (2, 4), (3, 3), (4, 2)}.
In [4] the zeta polynomials of self-dual divisible codes that are also randomwere considered.

Here we show the existence of formally self-dual divisible codes for c = 2 and all values
of q . However we note that this construction never leads to random codes.

The matrix space Mm×n(Fqc ) can be naturally embedded in the space Mcm×cn(Fq). The
rank of every matrix in the image of this map is a multiple of c; in fact, we have

rkFq (A) = c · rkFqc (A).

Therefore, from codes over an extension field, we can produce divisible codes easily. This
is in contrast to the Hamming metric case, where the Hamming weight of a vector does not
behave well when reducing the field of interest.

A code C′ of dimension k over Fqc produces a code C of dimension kc over Fq . If we wish
C to be formally self-dual, we must have k = mnc/2. As k ≤ mn, we need c = 2, and thus
C′ is in fact the full space Mm×n(Fq2).

For the image of the space M2×2(Fq2) in M4×4(Fq), we get the zeta polynomial

P(T ) = 1 + (−q4 + q2 + q)T + q4T 2

q2 + q + 1
.

For example taking q = 2 we get the zeta polynomial P(T ) = (1 − 10T + 16T 2)/7. The
discriminant of this polynomial is positive for all values of q ≥ 2, and so we get two real
roots, whose product is q−4.

For the image of the space M3×3(Fq2) in M6×6(Fq), we get the zeta polynomial

P(T ) = 1 + (−q6 + q2 + q)T + (−q8 − q7 + q6 + q4 + q3)T 2 + (−q12 + q8 + q7)T 3 + q12T 4

q4 + q3 + q2 + q + 1
.

For example taking q = 2 we get P(T ) = (1 − 58T − 296T 2 − 3712T 3 + 4096T 4)/15,
which has two real roots and one pair of conjugate complex roots.

In general, the image C of the space Mm×m(Fq2) in M2m×2m(Fq) is a formally self-dual
code with minimum rank distance d = 2 and all rank weights divisible by c = 2. Let
ρ = q−m . The zeta polynomial P(T ) for C has two real roots. As m → ∞, the roots
converge to 1 and ρ2. The rescaled polynomial p(T ) = P(ρT )/P(0) = 1 + · · · + T 2m−2

is self-reciprocal. It has two real roots that converge to ρ−1 and ρ as m → ∞ and 2m − 4
complex roots that lie on the unit circle. As m → ∞, the factor p1(T ) of p(T ) with two real
roots converges to 1− (ρ−1 + ρ)T + T 2. The cofactor p2(T ) with complex roots converges
to 1 + T 2m−4 (Fig. 1).

The coefficients of p(T ) approach 0 as m → ∞ except for the coefficients at 1, T, T 2

and their reciprocals. The coefficients of p(T ) at 1, T and T 2 can be obtained with (4.4) by
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Fig. 1 Complex zeroes for the
image of M9(F4) in M18(F2)
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expressing the rank weight enumerator of C as a linear combination of the Fq rank weight
enumerators M2m,d , for d ≥ 2. We find

lim
m→∞ p(T ) = 1 − (qm − ρ(q2 + q))T − (q2 + q − ρ2(q6 + q4 + q2)T 2 + · · · +

−(q2 + q − ρ2(q6 + q4 + q2)T 2m−4 − (qm − ρ(q2 + q))T 2m−3 + T 2m−2.

Asm → ∞, and thus ρ = q−m → 0, p(ρ) → 0. Therefore, p1(T ) = 1− (ρ−1 +ρ)T +T 2

divides the limit and the cofactor p2(T ) satisfies

lim
m→∞ p2(T ) = 1 + (q2 + q + 1)ρT + (q6 + q4 + 2q2 + q + 1)ρ2T 2 + · · · +

+ (q6 + q4 + 2q2 + q + 1)ρ2T 2m−6 + (q2 + q + 1)ρT 2m−5 + T 2m−4.

The limits converge fast. We find that the complex zeroes of the zeta polynomial for the
image of Mm×m(Fq2) in M2m×2m(Fq) all have the same absolute value ρ and, already for
small m, are close to the zeroes of 1 + (qmT )2m−4 = 0.
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