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Abstract We provide some new families of permutation polynomials of Fq2n of the type
xr g(xs), where the integers r, s and the polynomial g ∈ Fq [x] satisfy particular restrictions.
Some generalizations of known permutation binomials and trinomials that involve a sort of
symmetric polynomials are given. Other constructions are based on the study of algebraic
curves associated to certain polynomials. In particular we generalize families of permutation
polynomials constructed by Gupta–Sharma, Li–Helleseth, Li–Qu–Li–Fu.
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1 Introduction

Let q = ph be a prime power. A polynomial f (x) ∈ Fq [x] is a permutation polynomial (PP)
if it is a bijection of the finite field Fq . On the other hand, each permutation of Fq can be
expressed as a polynomial over Fq .

In general it is not difficult to construct a random PP for a given Fq . Particular simple
structures or additional extraordinary properties are usually required in applications of PPs
in other areas of mathematics and engineering, such as cryptography, coding theory, or
combinatorial designs. Permutation polynomials meeting these criteria are usually difficult to
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find. For a deeper introductionon the connections betweenPPs andotherfields ofmathematics
we refer to [7,14] and the references therein.

A PP f (x) is said to be a complete permutation polynomial (CPP) if f (x) + x is also a
PP; see for instance [2] and the references therein. CPPs are also related to bent and negabent
functions which are studied for a number of applications in cryptography, combinatorial
designs, and coding theory; see for instance [8,13,17]. Recently monomial CPPs have been
related to exceptional polynomials; see [3].

The aim of this paper is to provide some new families of PPs of Fq of the type xr g(xs),
where the integers r, s and the polynomial g satisfy particular restrictions. We are interested
in some constructions arising from a well known criterion due to Park and Lee [15] (a shorter
proof can be found in [18]), given in the following lemma.

Lemma 1.1 [15,18] Let g(x) ∈ Fqn [x]. If d, s, r > 0 are integers such that qn − 1 = sd,
then xr g(xs) is a permutation over Fqn if and only if

(i) gcd(r, s) = 1, and
(ii) xr g(x)s permutes Ud = {x ∈ Fqn | xd = 1}, the group of d-th roots of unity in Fqn .

This criterion has been used in several papers in recent years, especially in even char-
acteristic and for polynomials g having a small number of terms in general (binomials or
trinomials). In the following we summarize some known constructions.

(i) In [9] the authors determine permutation trinomials of F22m , of the type f (x) = x +
xs(q−1)+1 + xt (q−1)+1, where

• (s, t) =
(

2k

2k−1
, −1
2k−1

)
, and gcd(2k − 1, 2m + 1) = 1, or

• (s, t) =
(

1
2k+1

, 2k

2k+1

)
, and gcd(2k + 1, 2m + 1) = 1.

Here negative or fractional numbers should be interpreted modulo q + 1.
(ii) In [12,19] PPs of Fq of the type f (x) = xr

(
bxk(q−1)/d + g(x (q−1)/d)

)
, where the

polynomial g(x) ∈ Fq [x] is divisible by xd−1 + xd−2 + · · · + x + 1, are studied.
(iii) In [6,7] the author determines all permutation trinomials of Fq2 of the form ax +bxq +

x2q−1 ∈ Fq2 [x].
(iv) Many families of permutation trinomials are determined in [10]. In particular, if q is

even they provide some sufficient conditions for the trinomials

x�q+�+3 + x (�+4)q+�−1 + x (�−1)q+�+4,

x�q+�+2 + x (�+2)q+� + x (�−1)q+�+3,

x�q+�+2 + x (�+4)q+�−2 + x (�−1)q+�+3,

x�q+�+3 + x (�+3)q+� + x (�−1)q+�+4,

x�q+�+1 + x (�+3)q+�−2 + x (�−1)q+�+2,

x�q+�+1 + x (�+4)q+�−3 + x (�−2)q+�+3

to be PPs in Fq2 .
(v) The author in [18] gives many sufficient conditions for a polynomial xr g(xs) to be a

PP.
(vi) A survey on other results on PP obtained using Lemma 1.1 can be found in [7, Sect. 3].

In this paper we investigate some families of PPs of Fq2n of the type x
r g(x

q2n−1
q+1 ) arising

from polynomials g(x) ∈ Fq [x] of particular shapes. In Sect. 2 we work with the notion
of a symmetric polynomial (Definition 2.1) in order to obtain permutation polynomials with
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many terms and, in particular, generalizations of some known permutation binomials and
trinomials in [4,9]; see Theorem 2.3. For instance, in Theorem 2.10 we show that for

g(x) = (
xt1/2 + xq+1−t1/2

) · · · (xtk/2 + xq+1−tk/2
) (
1 + xs1 + xq+1−s1

) · · ·(
1 + xs j + xq+1−s j

)
,

a carefully chosen polynomial over Fq , f (x) = xr g(x
q2n−1
q+1 ) ∈ Fq [x] permutes Fq2n for any

r coprime with q2n − 1.
In Sect. 3 we examine polynomials g(x) = x3 + bx + c ∈ Fq [x], bc �= 0, and obtain PPs

of Fq2 of the type x
3g(xq−1), where gcd(3, q − 1) = 1. Our approach involves the study of

the points (x, y) ∈ Uq+1 ×Uq+1 in the algebraic curve

−bx2y2 + bc(x2y + xy2) + (c2 − 1)(x2 + y2) + (c2 + b2 − 1)xy + bc(x + y) − b = 0

associated to g(x). In particular we generalize some families of permutation polynomials in
[4,9,10].

Finally in Sect. 4 we give a generalization of a recent result by Helleseth and Li in [9,
Theorem 1] where the authors present classes of permutation polynomials of F22m of the type
x(1+ xs(2

m−1) + xt (2
m−1)) for suitable pairs (s, t). We extend their result by showing that the

polynomial x(1+ Axs(2
m−1) + Axt (2

m−1)) is a PP of F22m with exactly the same conditions
on the pair (s, t), for many suitable parameters A ∈ F2m .

2 Permutation polynomials arising from “symmetric” polynomials

In this section if an integer t is written as a fraction or as a negative integer, then it should be
interpreted as modulo q + 1. For instance, t = −3 = q + 1 − 3 ≥ 1.

Definition 2.1 A polynomial f (x) ∈ Fq [x] is said to be symmetric if

f (xq) = f (x) ∀x ∈ Uq+1 = {x ∈ Fq2 | xq+1 = 1}.
Notice that if f (x) ∈ Fq [x] is symmetric and f (x) �= 0 for each x ∈ Uq+1, then

f (x)q−1 = 1 for each x ∈ Uq+1, that is f (x) satisfies the following theorem.

Theorem [1, Theorem 3.1] Let q − 1 = �s. Assume that f (t)s = 1 for any t ∈ U�. Then
P(x) = xr f (xs) is a permutation polynomial of Fq if and only if (r, q − 1) = 1.

We just point out that by definition we require that f (x) ∈ Fq [x], whereas in [1, Theorem
3.1] the polynomial f (x) ∈ Fq2 [x]. Similar results can be found in [8, Theorem 3.1] and
[11, Theorem 7.10]. Also, observe that the symmetric property is closed under multiplication
and, for any symmetric polynomial f (x) ∈ Fq [x] and ξ ∈ Fq , f (x) + ξ is still a symmetric
polynomial. For instance, for any t ≤ q , the polynomials a + bxt + bx−t ∈ Fq [x] are
symmetric.

We also observe that a polynomial f (x) ∈ Fq [x] is symmetric if and only if f (x) mod
(xq+1−1) is symmetric, and we can restrict ourselves to the study of symmetric polynomials
of degree less than q + 1.

Proposition 2.2 Let q > 3, and f (x) ∈ Fq [x] be a symmetric polynomial. Then there exists
a ξ ∈ Fq such that ξ + f (x) has no roots in Uq+1.

123



1592 D. Bartoli, L. Quoos

Proof Since f (x)q = f (xq) = f (x), the polynomial f (x) defines a function from Uq+1 to
Fq . For any x ∈ Uq+1, f (x) = f (1/x) and we conclude that f is not a surjective function,
i.e. there exists a ξ ∈ Fq such that f (x) + ξ �= 0,∀x ∈ Uq+1. ��

We now present a general construction of permutation polynomials of the type xr g(xs)
over Fq2n using symmetric polynomials over Fq and Proposition 2.2.

Theorem 2.3 Let f (x) ∈ Fq [x] be a symmetric polynomial and ξ ∈ Fq as in Proposition

2.2. For g(x) = f (x) + ξ, s = q2n−1
q+1 and r co-prime with q2n − 1, the polynomial xr g(xs)

is a permutation polynomial of Fq2n .

Proof Since gcd(r, s) = 1 from Lemma 1.1 it is enough to prove that xr g(x)s permutes the
setUq+1. Let s = (q − 1)s1, where s1 = ∑2n

i=1 q
2n−2i . By the choice of ξ for any x ∈ Uq+1

we have that g(x) �= 0 and we can write

xr g(x)s = xr (g(x)q−1)s1 = xr
(
g(x)q

g(x)

)s1
= xr ,

since g(x) is symmetric. From the hypothesis gcd(r, q + 1) = 1, the monomial xr permutes
Uq+1. ��
Remark 2.4 We point out that Theorem 2.3 is a special case of the multiplicative version of
the following theorem; see [16, Theorem 5.1].

Theorem Assume that A is a finite field and S is a subset of A such that the map λ : A → S
is surjective. Let g : A → A, h : S → S, and f : A → A be maps such that the following
diagram commutes:

A

λ

f (x)g(λ(x))
A

λ

S
h

S

Then the map p(x) = f (x)g(λ(x)) permutes A if and only if the following conditions hold.

(i) h is a bijection from λ(A) to λ(A).
(ii) g(y) �= 0 for every y ∈ λ(A) with �λ−1(y) > 1.
(iii) f (x) is injective on each λ−1(y) for all y ∈ λ(A).

In our case, A = Fq2n , S = Uq+1 ∪ {0}, λ(x) = xs, f (x) = xr , h(x) = xr g(x)s and
g(x) ∈ Fq [x] is symmetric with no roots in Uq+1.

We finish this section showing how we can obtain a PP over Fqn , n = 2k from a PP over
Fq2 using Lemma 1.1.

Theorem 2.5 Let q be a prime power, n = 2k, qn − 1 = sd, d = q + 1. Let r ∈ N and
f ∈ Fq [x] be such that gcd(kr, s) = gcd(k, d) = 1 and h(x) = xr f (xq−1) is a PP of Fq2 .

Then the polynomial xkr f (xs) is a PP of Fqn .

Proof Since h(x) is a PP of Fq2 , in particular x
r f (x)q−1 permutesUd . Consider the polyno-

mial h(x) = xkr f (xs). Since gcd(kr, s) = 1 we only have to show that xkr f (x)s permutes
Ud . Note that f (x)q = f (1/x) and f (x)q

2 = f (x), if x ∈ Ud . Therefore, if x ∈ Ud then

f (x)s = f (x)q
n−1−qn−2+···+q−1 = f (x)(q−1)(qn−2+qn−4+···+q2+1)

=
(
f (x)q

n−2+qn−4+···+q2+1
)q−1 = (

f (x)n/2)q−1 = (
f (x)q−1)k .
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Hence xkr f (x)s permutes Ud if and only if xkr
(
f (x)q−1

)k = (
xr f (x)q−1

)k
permutes Ud .

Since xr f (x)q−1 permutes Ud by assumption and gcd(k, d) = 1, the assertion follows. ��
2.1 Permutation polynomials over Fq2n, n ≥ 1

Next we present symmetric polynomials over Fq with no roots in Uq+1 and construct many
families of permutation polynomials of Fq2n .

Lemma 2.6 Let q be an odd prime power and q+1 = 2αm,m odd, and t1, . . . , tk be positive
integers such that 2α | ti , i = 1, . . . , k. Consider h(x) = (xt1 + 1) · · · (xtk + 1) ∈ Fq [x]. If
x ∈ Uq+1, then h(x) �= 0.

Proof If x ∈ Uq+1 and h(x) = 0, then xq+1 = 1 and x2ti = 1 for some i = 1, . . . , k.
Since gcd(2ti , q + 1) = gcd(ti , q + 1) we have that gcd(xq+1 − 1, xti + 1) = 1, which is a
contradiction. ��
Proposition 2.7 Let q be an odd prime power and q+1 = 2αm,m odd, t1, . . . , tk be positive

integers such that 2α | ti for i = 1, . . . , k and t1 + · · · + tk < 2(q + 1). For s = q2n−1
q+1 , r

co-prime with q2n − 1, and

g(x) = (
xt1/2 + x−t1/2

) · · · (xtk/2 + x−tk/2
)
,

the polynomial f (x) = xr g(xs) ∈ Fq [x] permutes Fq2n .

Proof Let x ∈ Uq+1. Since x �= 0, g(x) = x−(t1+···+tk )/2(xt1 + 1) · · · (xtk + 1) �= 0 by
Lemma 2.6. The polynomial g(x) is clearly symmetric and the result follows from Theorem
2.3. ��
Lemma 2.8 Suppose the characteristic of Fq is different from 3. For any t < q + 1 with
gcd(3t, q + 1) = 1, the polynomial g(x) = 1 + xt + x−t has no roots in Uq+1.

Proof Let 1 + xt + x−t = 0, then x3t = 1. Since gcd(3t, q + 1) = 1 and the characteristic
is not 3, the polynomials g(x) and xq+1 − 1 have no roots in common. ��

The following result is similar to [4, Theorem 3.4], where the authors give necessary and
sufficient conditions for the trinomial x(1 + xk(q−1) + x−k(q−1)) to be a PP of Fq2 .

Proposition 2.9 Suppose the characteristic of Fq is different from 3 and consider t1, . . . , tk

positive integers such that ti < q+1 and gcd(3ti , q+1) = 1 for i = 1, . . . , k. Let s = q2n−1
q+1 ,

r co-prime with q2n − 1, and

g(x) = (
1 + xt1 + x−t1

) · · · (1 + xtk + x−tk
)
, deg g(x) < q + 1, .

Then f (x) = xr g(xs) permutes Fq2n .

Proof The polynomial g(x) is clearly symmetric since it is the product of symmetric poly-
nomials and, by Lemma 2.8 it has no root in Uq+1. The result follows from Theorem 2.3.

��
Theorem 2.10 Let q = ph, p > 3 prime, and q+1 = 2αm, m odd. Let t1, . . . , tk be positive
integers such that 2α | ti for i = 1, . . . , k and t1 + · · · + tk < 2(q + 1). Let s1, . . . , s j be
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positive integers such that si < q + 1 and gcd(3si , q + 1) = 1, i = 1, . . . , j . For s = q2n−1
q+1 ,

r co-prime with q2n − 1, and

g(x) = (
xt1/2 + x−t1/2

) · · · (xtk/2 + x−tk/2
) (
1 + xs1 + x−s1

) · · · (1 + xs j + x−s j
)
,

deg g(x) < q + 1, the polynomial f (x) = xr g(xs) ∈ Fq [x] permutes Fq2n .

Proof It follows directly from Propositions 2.7 and 2.9 and by considering ξ = 0 in Theorem
2.3. ��

3 Permutation polynomials from g(x) = x3 + bx + c, bc �= 0

In this sectionwegive generalizations of some families that appear in [4,5,9,10]. For instance,
in [10, Theorem 2.3] the authors use the fact that 1 + x + x3 has no roots in U2m+1 and that
the polynomial x3(1 + x + x3)2

m−1 permutes the set U2m+1 to construct PPs over F22m of
the type x3(1 + x2

m−1 + x3.2
m−3) whenever 3 � m. In characteristics 2 and 3 the authors in

[4] work with trinomials g1(x) = 1 + xs + xt , 1 < s < t with no roots in Uq+1 in order to
obtain PPs of Fq2 of the type x

r g1(xq−1).
We are going to analyze trinomials of the type g(x) = x3 + bx + c ∈ Fq , with bc �= 0

in order to obtain PPs of Fq2 of the type x3g(xq−1), where gcd(3, q − 1) = 1. Many
constructions will work in any characteristic. Following the criterion in Lemma 1.1, we need
to show that x3g(x)q−1 permutes Uq+1. Suppose that g(x) has no roots in Uq+1. Then for
any x ∈ Uq+1 we have that

x3g(x)q−1 = x3
g(x)q

g(x)
= x3

x3q + bxq + c

x3 + bx + c
= x3

x−3 + bx−1 + c

x3 + bx + c
= cx3 + bx2 + 1

x3 + bx + c
.

Given the rational function f (x) = cx3+bx2+1
x3+bx+c

, we associate the algebraic curve C f with

equation f (x)− f (y)
x−y = 0:

C f :−bx2y2+bc(x2y+xy2)+(c2 − 1)(x2 + y2) + (c2 + b2 − 1)xy + bc(x + y) − b = 0.
(1)

The rational function f (x) permutesUq+1 if and only if for all x �= y ∈ Uq+1, C f (x, y) �= 0.
First we require that a polynomial of the type x3 + bx + c ∈ Fq [x] has no roots in Uq+1.

Proposition 3.1 Let g(x) = x3 + bx + c ∈ Fq [x], with bc �= 0. Then g(x) has no roots in
Uq+1 in the following cases:

(i) c2 + b − 1 �= 0 and (b + 1 − c2)3 + b3c2(b + 1 − c2) + b3c4 �= 0;
(ii) c2 + b − 1 = 0 and T 2 − cT + 1 has no roots in Uq+1.

Proof Let x ∈ Uq+1 and g(x) = 0. By raising the equality g(x) = 0 to the power q and
multiplying the result by x3 gives that

x3q + bxq + c = 0 ⇒ x−3 + bx−1 + c = 0 ⇒ cx3 + bx2 + 1 = 0.

By multiplying g(x) = 0 by c and comparing the result with cx3 + bx2 + 1 = 0, we obtain
that

bx2 − bcx + 1 − c2 = 0.
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Now we raise this equation to the power q and multiply the result by x2 to get

(1 − c2)x2 − bcx + b = 0.

From these two last equations, we get

b2 − (1 − c2)2 = bc(c2 + b − 1)x .

If b − 1+ c2 �= 0 then x = b+1−c2
bc has to be a root of g(x) and we get i). If b − 1+ c2 = 0

then bx2 − bcx + 1 − c2 = 0 implies x2 − cx + 1 = 0. ��
Proposition 3.2 Let q be even. Suppose x3 + bx + c ∈ Fq [x], with bc �= 0, has no roots

in Uq+1. Then the fractional polynomial f (x) = cx3+bx2+1
x3+bx+c

permutes Uq+1 in the following
cases

(i) c = k + k−1 and b = c2 + 1, where k ∈ Fq \ {0, 1};
(ii) b = 1 and c is such that T rFq |F2(1 + 1/c2) = 0 and the roots of T 2 + cT + 1 ∈ Fq [T ]

belong to Fq2 \Uq+1.

Proof We are going to show that with the given conditions on b and c the curve C f has no
points (x, y) ∈ Uq+1 ×Uq+1. In the first case the curve C f defined in (1) splits into

(x + k)(y + k)(x + k−1)(y + k−1) = 0.

Since k ∈ Fq \ {0, 1}, k /∈ Uq+1 and therefore −k,−k−1 /∈ Uq+1. In the second case the
curve C f factors as

(xy + αx + βy + 1)(xy + βx + αy + 1) = 0,

where α, β are the roots of T 2 + cT + c2 + 1. By the assumption TrFq |F2(1 + 1/c2) = 0,
we have that α, β ∈ Fq . The roots of T 2 + cT + c2 + 1 belong to Uq+1 if and only if
c2 + c + 1 = 0 and in this case {α, β} = {0, 1}: the two factors of C f are xy + x + 1 = 0
and xy + y + 1 = 0. It is easily seen that they do not have points belonging toUq+1 ×Uq+1.
Suppose that c2 + c + 1 �= 0. Then α, β /∈ Uq+1 and for any x ∈ Uq+1 we have that

yq =
(

αx + 1

x + β

)q

= α + x

βx + 1
.

Then yq+1 = 1 if and only if

α + x

βx + 1
=

(
αx + 1

β + x

)−1

⇐⇒ α2x + αx2 + α + x = β2x + βx2 + β + x

⇐⇒ x2 + cx + 1 = 0.

��
Remark 3.3 Note that if TrFq |F2(1 + 1/c2) = 1 then α, β ∈ Fq2 \ Fq . In this case, for any
x ∈ Uq+1, we have that

yq =
(

αx + 1

x + β

)q

= β + x

αx + 1
= y−1.

We now combine the results from Propositions 3.1 and 3.2 to present families of permutation
polynomials in even characteristic.
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Theorem 3.4 Let q = 22h+1, where h ∈ N. Consider g(x) = x3 + bx + c, with b, c ∈ F
∗
q .

Then x3g(xq−1) is a PP of Fq2 in the following cases:

(i) c = k + k−1, b = c2 + 1, where k ∈ Fq \ {0, 1} and T 2 + cT + 1 has no roots in Uq+1;
(ii) b = 1, T rFq |F2(1 + 1/c2) = 0 and the polynomial T 2 + cT + 1 has no roots in Uq+1.

Proof The conditions on b and c ∈ Fq guarantee that g(x) has no roots inUq+1 and f (x) =
cx3+bx2+1
x3+bx+c

permutesUq+1. Since q = 22h+1 we have that gcd(3, q − 1) = 1. Now apply the
criterion in Lemma 1.1. ��
Proposition 3.5 Let q = ph and p �= 3 be an odd prime. Suppose x3 + bx + c ∈ Fq [x],
bc �= 0, has no roots in Uq+1. Then the fractional polynomial f (x) = cx3+bx2+1

x3+bx+c
permutes

Uq+1 in the following cases

(i) c2 �= 1, b = −c2 + 1, T 2 − cT + 1 has no roots in Uq+1;
(ii) (b, c) = (−3, 1) and T 2 − T + 1 has no roots in Uq+1;
(iii) (b, c) = (−3,−1) and T 2 + T + 1 has no roots in Uq+1;
(iv) b = −3, c /∈ {±1,±2}, and T 2 − cT + 1 has no roots in Uq+1.

Proof We are going to show that with the given conditions on b and c the curve C f has no
points (x, y) ∈ Uq+1 ×Uq+1. In the first case the curve C f splits in

(y2 − cy + 1)(x2 − cx + 1) = 0

and we require that the roots of x2 − cx + 1 and y2 − cy + 1 are not in Uq+1. In the second
and third case we get the following decompositions:

(xy − y + 1)(xy − x + 1) = 0 and (xy + y + 1)(xy + x + 1) = 0,

respectively. In the second case let x ∈ Uq+1 and (x, y) ∈ C f , then y = −1/(x − 1) and we
have that y ∈ Uq+1 if and only if x2 − x + 1 = 0. For the third case an analogous argument
works.

Finally, in the last case the curve factors as

(xy + kx + j y + 1)(xy + j x + ky + 1) = 0,

where j and k are the roots of 3T 2 + 3cT + c2 − 1 = 0. The curve C f has a point (x, y) ∈
Uq+1 ×Uq+1 if and only if

j x + 1

x + k
∈ Uq+1.

If k and j do not belong to Fq then k = jq and j x+1
x+k ∈ Uq+1. We conlude that k and j are

in Fq . Note that k, j ∈ Uq+1 if and only if k, j ∈ {±1}, that is c ∈ {±1,±2}, impossible.
Therefore x + k �= 0. Finally,

(
j x + 1

x + k

)q

= j + x

kx + 1

equals x+k
j x+1 if and only if x2 + ( j + k)x + 1 = 0, that is T 2 − cT + 1 has roots in Uq+1. ��

We now combine the results from Propositions 3.1 and 3.5 to present families of permu-
tation polynomials in odd characteristic different from 3.
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Theorem 3.6 Let q be odd, q ≡ 2 mod 3, and g(x) = x3 + bx + c ∈ Fq [x], bc �= 0. Then
x3g(xq−1) is a PP of Fq2 in the following cases

(i) c2 �= 1, b = −c2 + 1, T 2 − cT + 1 has no roots in Uq+1;
(ii) b = −3, c2 �= 4, −3c2 + 12 is a square in Fq , and T 2 − cT + 1 has no roots in Uq+1.

Remark 3.7 Note that q ≡ 2 mod 3 implies that T 2 − T + 1 and T 2 + T + 1 have roots in
Uq+1.

4 A generalization of PP over F22m

In [9, Theorem 1] the authors present classes of permutation polynomials of Fq2 , q = 2m ,
of the type x(1+ xs(q−1) + xt (q−1)) for suitable pairs (s, t). We extend their result showing
that there exists a parameter A such that the polynomial x(1+ Axs(q−1) + Axt (q−1)) is still
a PP of Fq2 with exactly the same conditions on the pairs (s, t). In this section the pairs of
integers should be interpreted as modulo 2m + 1 when they are negative or fractions.

Lemma 4.1 Let q = 2m, a ∈ Uq+1 \ {1}, A2(a2 + 1) + a �= 0, e1 = a
A(a+1) , and A ∈

F2k , A �= 0. Suppose x2
k = e1x+1

x+e1+1/A . Then for any i ≥ 2

x2
ik =

{
x, e2

k

i−1 + e1 + 1/A = 0,
ei x+1

x+ei+1/A , e2
k

i−1 + e1 + 1/A �= 0,

where ei = ∞ if e2
k

i−1 + e1 + 1/A = 0, otherwise ei = e2
k

i−1e1+1

e2
k

i−1+e1+1/A
for any i ≥ 2.

Proof The proof can be done by induction and is very similar to [9, Lemma 2]. ��
Theorem 4.2 Let q = 2m, k ≥ 1 such that gcd(2k − 1, 2m + 1) = 1, and A ∈ F

∗
2k

∩ Fq .

Then f (x) = x(1 + Axs(q−1) + Axt (q−1)) for (s, t) =
(

2k

2k−1
, −1
2k−1

)
is a PP of Fq2 .

Proof The proof is very similar to [9, Theorem 1]. Following Lemma 1.1, we need to prove

that h(x) = x(1+Axs+Axt )q−1, for (s, t) =
(

2k

2k−1
, −1
2k−1

)
permutesUq+1. Since gcd(2k−

1, 2m +1) = 1, this is equivalent to showing that h(x2
k−1) = x2

k−1(1+ Ax2
k + Ax−1)2

m−1

permutes Uq+1. First of all notice that 1 + Ax2
k + Ax−1 �= 0 if x ∈ Uq+1. Suppose the

contrary. This yields x2
m = x−1, Ax2

k+1 + x + A = 0. By raising the second equality to the
power 2m and multiplying the result by x2

k+1 we get Ax2
k+1 + x2

k + A = 0, so x2
k = x and

therefore x = 1. Since gcd(2k − 1, q + 1) = 1 and 1+ Ax2
k + Ax−1 = 1+ A+ A = 1 �= 0

we obtain a contradiction. So for any x ∈ Uq+1 we can write h(x2
k−1) = Ax2

k+1+x2
k +A

Ax2k+1+x+A
.

Now let a ∈ Uq+1 and consider x ∈ Uq+1 satisfying

Ax2
k+1 + x2

k + A

Ax2k+1 + x + A
= a ⇐⇒ x2

k = ax + A(a + 1)

A(a + 1)x + 1
. (2)

We need to prove that (2) has at most one root x ∈ Uq+1 for each a ∈ Uq+1. Nowwe consider
three cases depending on a.

Case 1 a = 1. Then x2
k−1 = 1 and since gcd(2k − 1, 2m + 1) = 1 we get only one

solution x = 1.
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Case 2 A2(a2 + 1) + a = 0. Then (2) yields x2
k = A(a + 1), which has at most one

solution in Uq+1.
Case 3 a �= 1 and A2(a2 + 1) + a �= 0. Then (2) reads

x2
k = ax + A(a + 1)

A(a + 1)x + 1
= e1x + 1

x + e1 + 1/A
,

where e1 = a
A(a+1) . If k is odd then taking i = m in Lemma 4.1 we obtain that

em x+1
x+em+1/A = 1

x which implies x2 = Aem+1
Aem

. We only have at most one solution. If

k = 2 j k1, where 2 � k1, since gcd(2k − 1, 2m + 1) = 1 we have that k/ gcd(m, k) is odd
and 2 j | m. We take i = m/2 j and the argument is the same as in the odd case.

��
Theorem 4.3 Let q = 2m, gcd(2k + 1, 2m + 1) = 1, A ∈ F2k ∩ Fq . Then f (x) = x(1 +
Axs(q−1) + Axt (q−1)), (s, t) =

(
2k

2k+1
, 1
2k+1

)
is a PP in Fq2 .

Proof The proof is basically the same as in [9, Theorem 2] and Theorem 4.2. ��
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