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Abstract On the provable security of a block cipher against impossible differential crypt-
analysis, the maximal length of impossible differentials is an essential aspect. Most previous
work on finding impossible differentials for AES, omits the non-linear component (S-box),
which is important for the security. In EUROCRYPT 2016, Sun et al. showed how to bound
the length of impossible differentials of a SPN “structure” using the primitive index of its
linear layer. They proved that there do not exist impossible differentials longer than four
rounds for the AES “structure”, instead of the AES cipher. Since they do not consider the
details of the S-box, their bound is not feasible for a concrete cipher. With their result, the
upper bound of the length of impossible differentials for AES, is still unknown. We fill this
gap in our paper. By revealing some important properties of the AES S-box, we further prove
that even though the details of the S-box are considered, there do not exist truncated impos-
sible differentials covering more than four rounds for AES, under the assumption that round
keys are independent and uniformly random. Specially, even though the details of the S-box
and key schedule are both considered, there do not exist truncated impossible differentials
covering more than four rounds for AES-256.
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1 Introduction

Since Rijndael was selected as the Advanced Encryption Standard (AES) [8], its security has
been widely studied by many cryptanalysts. Differential cryptanalysis [5] and linear crypt-
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analysis [19] are among the most powerful cryptanalysis tools, against which the AES adopts
“wide trail strategy [9]” to provide elegant provable security. Differential attack makes use of
differential characteristics with high probability to sieve right keys. By counting the number
of differential active S-boxes (S-box with non-zero input difference) in a differential charac-
teristic covering several rounds, we could give upper bound on the differential probability of
this differential characteristic. Things are similar for the linear attack.

Unlike differential attack, impossible differential attack [3,15] utilizes impossible dif-
ferentials, namely differentials with probability 0, to discard wrong keys. Among these
impossible differentials, truncated impossible differentials [13,16] attract much attention.
For AES, there are many four-round truncated impossible differentials being constructed
[1,4,6,22]. In [1,4,6,22], some four-round truncated impossible differentials, which are the
longest truncated impossible differentials found so far for AES, are used to mount impossible
differential attack on (seven-round) AES-128. Therefore, the maximal length of impossible
differentials for a cipher, are estimated to evaluate the resistance of this cipher against impos-
sible differential cryptanalysis.

Althoughmany approaches (likeU -method [14],UID-method [18],WW -method [26] and
Cui-method [7]) have been proposed to find impossible differentials for SPN block ciphers,
they do not take advantage of the properties of the non-linear substitution layer (e.g., S-box),
which might result in tighter bound on the length of impossible differentials.

In EUROCRYPT 2016, Sun et al. [24] utilized the “primitive index” [7,24] of the linear
layer of SPN “structure”, to bound the length of impossible differentials. They proved that
there do not exist impossible differentials coveringmore than four rounds forAES“structure”.
Their target is not the concrete cipher, but the “structure” [24,25]:

Definition 1 [24] Let E : Fn
2 → Fn

2 be a block cipher with bijective S-boxes as the basic
non-linear components.

1. A structure εE on Fn
2 is defined as a set of block ciphers E ′ which is exactly the same

as E except that the S-boxes can take all possible bijective transformations on the corre-
sponding domains.

2. Let a, b ∈ Fn
2 . If for any E ′ ∈ εE , a → b is an impossible differential of E ′, a → b is

called an impossible differential of εE .

With their method, we are able to get the upper bound of the length of impossible dif-
ferentials for a “structure”. However, the concept of “structure” is far from practical cipher,
since S-boxes are often fixed, or varying within a much small subspace of the space of all
bijective S-boxes (when viewing AddRoundKey transformation and fixed S-boxes into vari-
able S-boxes controlled by keys) in a concrete cipher. Their method cannot prove that there
do not exist impossible differentials covering more than four rounds for AES.

These existing methods do not exploit the properties of the non-linear S-box transfor-
mation. Therefore, finding a method, that exploits the properties of the S-boxes and gives
practical maximal length of impossible differentials for SPN ciphers (such as AES and AES-
like ciphers), is a problem worth further investigating.

Relation to the five-round impossible differential distinguisher proposed by Grassi
et al. [11]. As we mentioned before, four-round “key-independent” impossible differentials
are used to mount impossible differential attack on round-reduced AES (typically on seven-
round AES-128). Such a four-round key-independent impossible differentials can be used to
mount key-recovery attacks on five-roundAES, namely, five-roundAES can be distinguished
from a random permutation on knowing some key bytes of the first or last round. In [23], a
five-round “key-dependent” zero-correlation linear hull (it can also be seen as an impossible
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differential) was derived from a four-round “key-independent” zero-correlation linear hull,
on knowing the difference of two key bytes. This “key-dependent” distinguishing property
(in other words, five-round key-recovery attack) was further turn into a five-round integral
distinguisher onAES by Sun et al. [23]. Later, such five-round “key-dependent” distinguisher
propertywas further explainedwith “subspace trails” notation and greatly improved byGrassi
et al. [11]. In [11], Grassi et al. set up an impossible differential attack on five rounds ofAES to
recover the difference of two key bytes, based on a four-round “key-independent” impossible
differential. Furthermore, they turned this five-round key recovery attack into a five-round
(subspace) impossible differential distinguisher forAES. Therefore, both the five-round zero-
correlation linear hull in [23] and five-round impossible differential in [11] aremuch different
from the usual “key-independent” zero-correlation linear hulls or impossible differentials that
are used in the zero-correlation linear attack or the impossible differential attack. In our paper,
we consider the maximal length of the core “key-independent” impossible differentials, that
are used in the impossible differential attacks and their [11,23] five-round distinguisher on
AES.

Our contributions By revealing some important properties of the AES S-box, we prove
that there do not exist truncated impossible differentials covering more than four rounds for
AES with the details of S-boxes considered (stronger than the ”structure” as [24]), under
practical assumption that round keys are independent and uniformly random. Specially, for
AES-256, even though the S-boxes and the key schedule are both taken into consideration,
there do not exist truncated impossible differentials covering more than four rounds.

Outline In Sect. 2, we give some preliminaries to make our representation clear and
understandable. In Sect. 3, we reveal an important property of the AES S-box, and then attain
the longest rounds of truncated impossible differentials for AES. Whole paper is concluded
in Sect. 4.

2 Preliminaries

2.1 Notations

⊕ : bitwise XOR (it is coincided with the addition in the finite field F28 in our represen-
tation).
a∨b : bitwise OR of binary vectors a and b.
|A| or #{A}: the number of elements in the set A.
X : matrix defined over a finite field, X = (xi, j )4×4, xi, j ∈ F28 .
x�, j : the j th column of the state matrix X .
ΔX : the difference of X .
ΔX̃ : the truncated difference of X .
◦ : composition of transformations.
f, f −1 : transformation f and its inverse.

2.2 Some definitions

AES is an SPN block cipher with block size 128 bits. These 128 bits are organized as a 4× 4
matrix of bytes, denoted by X = (xi, j )4×4, xi, j ∈ F28 , as Fig. 1.

The round function of AES is composed of four transformations [8,20]:
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Fig. 1 AES state

1. SubBytes (SB): apply the same 8-bit invertible S-box to 16 bytes in parallel. The S-
box is composed of the multiplicative inverse function in F28 and an invertible affine
transformation, denoted by s(x) = A · x−1 ⊕ b.

2. ShiftRows (SR): shift the i th row by i bytes to the left circularly.
3. MixColumns (MC): left multiplication by a 4 × 4 MDS matrix with elements in F28 .

This matrix and its inverse are defined as:

C =

⎡
⎢⎢⎣
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤
⎥⎥⎦ ,C−1 =

⎡
⎢⎢⎣
e b d 9
9 e b d
d 9 e b
b d 9 e

⎤
⎥⎥⎦ .

4. AddRoundKey (AK Ki ): bitwise exclusive-or with 128-bit round key K i . K i denotes the
subkey of the i th round, and K 0 denotes the whiten key before the first round.

The i th full round transformation of AES can be written as AK Ki ◦ MC ◦ SR ◦ SB.
Since SR and MC are linear, we could change the order of SR, MC and AK Ki by XORing
equivalent subkeys beforeMC or SR, denoted by MC ◦ AKMC−1(Ki ) ◦ SR ◦ SB and MC ◦
SR ◦ AK SR−1◦MC−1(Ki ) ◦ SB respectively. Here, MC−1(K i ) and SR−1 ◦MC−1(K i ) denote
the equivalent subkeys at differential places respectively.

We wouldn’t introduce the details of the key schedule of AES, since our main result is
under the assumption that its round keys are independent and uniformly random.

Definition 2 For function f : Fn
2 �→ Fn

2 , its differential probability for the differential
Δx → Δy is defined as:

P(Δx
f−→ Δy) = # {x | f (x ⊕ Δx) ⊕ f (x) = Δy}

2n
.

Definition 3 For a keyed function fk : Fn
2 �→ Fn

2 , k ∈ K , its differential probability for
differential Δx → Δy is defined as:

P(Δx → Δy) = 1

|K |
∑
k∈K

P

(
Δx

fk−→ Δy

)
.

Definition 4 (Pattern) Let X = (x1, x2, . . . , xn) ∈ Fn
2m , then the pattern of X is defined as:

χ(X) = (y1, y2, . . . , yn) ∈ Fn
2 ,

where yi = 0 if xi = 0, and yi = 1 otherwise.

To characterize the diffusion of differences through the MixColumns transformation, we
define the operation ofMC on the difference patterns (truncated differences) as:
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Definition 5 For the MixColumns transformation MC of AES, its operation on the state
pattern (or truncated difference) X̃ = (x̃i, j )4×4, is defined as: let state pattern Ỹ =
MC(X̃), then the j th(0 ≤ j ≤ 3) column of Ỹ is calculated as ỹ�, j = MC(x̃�, j ) =
(x̃0, j c̃�,0)∨(x̃1, j c̃�,1)∨(x̃2, j c̃�,2)∨(x̃3, j c̃�,3), where c̃�,i = χ(c�,i ) and c�,i denotes the i th(0 ≤
i ≤ 3) column of the MixColumns matrix C . Similar for MC−1.

Definition 6 [13] For function f : Fn
2m �→ Fn

2m , its truncated differential probability for
truncated differential ΔX̃ → ΔỸ is defined as:

P(ΔX̃
f−→ ΔỸ ) =

∑
χ(ΔX)=ΔX̃ ,χ(ΔY )=ΔỸ

P(ΔX
f−→ ΔY )

#
{
ΔX |χ(ΔX) = ΔX̃

} .

Definition 7 For a keyed function fk : Fn
2m �→ Fn

2m , k ∈ K , its truncated differential
probability for truncated differential ΔX̃ → ΔỸ is defined as:

P(ΔX̃
fk ,K−−−→ ΔỸ ) = 1

|K |
∑
k∈K

P(ΔX̃
fk−→ ΔỸ ).

Then for a cipher Ek with key space K , a truncated differential ΔX̃ → ΔỸ is impossible

if P(ΔX̃
Ek ,K−−−→ ΔỸ ) = 0, which means that for any k ∈ K and any differential ΔX → ΔY

such that χ(ΔX) = ΔX̃ and χ(ΔY ) = ΔỸ , we have P(ΔX
Ek−→ ΔY ) = 0. However,

ΔX̃ → ΔỸ is possible if for some k ∈ K and differential ΔX → ΔY such that χ(ΔX) =
ΔX̃ and χ(ΔY ) = ΔỸ , we have P(ΔX

Ek−→ ΔY ) 
= 0.

3 Our claims on AES

To prove that the upper bound of the length of truncated impossible differentials for AES is
four rounds, we would show that any nontrivial truncated differential ΔX̃ → ΔỸ is possible
for five-round AES (without MixColumns in the last round). As stated at the end of the
Section 2.1, we aim to construct a concrete differential ΔX → ΔY such that χ(ΔX) = ΔX̃
and χ(ΔY ) = ΔỸ , as well as a series of round keys (wemake the assumption that round keys

are independent and uniformly random), which make that P(ΔX
5_round_AES−−−−−−−−→ ΔY ) 
= 0.

Firstly, we need to investigate some details about the AES S-box in Sect. 3.1.

3.1 Some properties of the AES S-box

In this section, we investigate the properties of the AES S-box. The AES S-box is composed
of two functions: the multiplicative inverse function in F28 , denoted by x

−1, and an invertible
affine transformation, denoted by L(x) = A · x ⊕ b. Then, the AES S-box is described as:

s(x) = L(x−1) = A · x−1 ⊕ b, wi th 0−1 = 0,

123



1546 Q. Wang, C. Jin

here,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
0
0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We mainly focus on the properties of the multiplicative inverse function in F28 . Then, a
nontrivial differential α → β is possible for this function if for some x ,

(x ⊕ α)−1 ⊕ x−1 = β. (1)

For Eq. (1), when the output difference β is fixed, the set of all the possible input difference
α possesses a special property, deduced byDaemen et al. [10]. This property can be expressed
as the following lemma:

Lemma 1 For any nonzero output difference β of the multiplicative inverse function in F28 ,
the set of the multiplicative inverse elements of all the possible input differences α (add 0
element) forms a 7-dimensional linear space over F2. Namely, Vβ = {α−1|(x ⊕ α)−1 ⊕
(x)−1 = β, x ∈ F28}

⋃{0} is a 7-dimensional linear space over F2.

Proof This fact has been proved by Daemen et al. [10]. ��
Based on the linear property of the multiplicative inverse function in Lemma 1, we can

get the following essential property of the AES S-box, which plays an important role in the
construction of our differential trails.

Theorem 1 For all (β0, β1, β2, β3) ∈ [F∗
28

]4, (c0, c1, c2, c3) ∈ [F∗
28

]4, there exist

(k0, k1, k2, k3) ∈ F4
28

and α ∈ F∗
28
, satisfying the following system of equations:

⎧⎪⎪⎨
⎪⎪⎩

β0 = s(c0α ⊕ k0) ⊕ s(k0)
β1 = s(c1α ⊕ k1) ⊕ s(k1)
β2 = s(c2α ⊕ k2) ⊕ s(k2)
β3 = s(c3α ⊕ k3) ⊕ s(k3)

, (∗)

where s denotes the AES S-box, s(x) = A · x−1 ⊕ b and 0−1 = 0.

Proof By peeling off the bijective affine transformation in AES S-box s, we get that the
system (*) is equivalent to the following one

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c0(A−1β0) = (α ⊕ c−1
0 k0)

−1 ⊕ (c−1
0 k0)

−1

c1(A−1β1) = (α ⊕ c−1
1 k1)

−1 ⊕ (c−1
1 k0)

−1

c2(A−1β2) = (α ⊕ c−1
2 k2)

−1 ⊕ (c−1
2 k0)

−1

c3(A−1β3) = (α ⊕ c−1
3 k3)

−1 ⊕ (c−1
3 k0)

−1

(∗∗)

By Lemma 1, we know that Vci (A−1βi )
(0 ≤ i ≤ 3) are all 7-dimensional lin-

ear space over F2. Since F28 is an 8-dimensional linear space over F2, we have∣∣Vc0(A−1β0)

⋂
Vc1(A−1β1)

⋂
Vc2(A−1β2)

⋂
Vc3(A−1β3)

∣∣ ≥ 24. Take nonzero α−1 ∈ Vc0(A−1β0)

123



Upper bound of the length of truncated impossible differentials 1547

⋂
Vc1(A−1β1)

⋂
Vc2(A−1β2)

⋂
Vc3(A−1β3)

, then there exists corresponding xi (0 ≤ i ≤ 3) such

that ci (A−1βi ) = (α ⊕ xi )−1 ⊕ (xi )−1(0 ≤ i ≤ 3). Take ki = ci xi (0 ≤ i ≤ 3). Thus,
resulting α ∈ F∗

28
and (k0, k1, k2, k3) ∈ F4

28
satisfy the system (**), also the system (*). ��

3.2 Bound the length of truncated impossible differentials for AES

To prove that any nontrivial truncated differential ΔX̃0 → ΔX̃5 is possible for five-round
AES (without MixColumns in the last round), the main idea of our proof is: for any non-
trivial truncated differential ΔX̃0 → ΔX̃5, construct a five-round truncated differential
trail, ΔX̃0 → ΔX̃1 → ΔX̃2 → ΔX̃3 → ΔX̃4 → ΔX̃5, following from Sun’s idea
“meet-in-the-middle” in [24] (this procedure is shown with a special example in Fig. 2);
along with the construction of this truncated differential trail, a concrete differential trail,
ΔX0 → ΔX1 → ΔX2 → ΔX3 → ΔX4 → ΔX5 such that χ(ΔXi ) = ΔX̃ i , is con-
structed, whose existence heavily depends on the algebraic property of the AES S-box in
Theorem 1.

To construct the differential trail as we want, we need to have a good knowledge of the
difference propagation of the AES round function. Combining the properties of the AES
S-box and its linear layer, we get the following lemmas on the differential properties of the
AES round function.

Lemma 2 For any nonzero truncated difference ΔX̃ and concrete difference ΔY of the AES
state such that χ(ΔY ) = MC(ΔX̃), there exist ΔX and X, such that χ(ΔX) = ΔX̃ ,
satisfying SB ◦ MC(X ⊕ ΔX) ⊕ SB ◦ MC(X) = ΔY .

Proof Let ΔY 1 = MC(ΔX) and Y 1 = MC(X). Then the j th(0 ≤ j ≤ 3) column of ΔY 1

is represented as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δy10, j = 2Δx0, j ⊕ 3Δx1, j ⊕ Δx2, j ⊕ Δx3, j
Δy11, j = Δx0, j ⊕ 2Δx1, j ⊕ 3Δx2, j ⊕ Δx3, j
Δy12, j = Δx0, j ⊕ Δx1, j ⊕ 2Δx2, j ⊕ 3Δx3, j
Δy13, j = 3Δx0, j ⊕ Δx1, j ⊕ Δx2, j ⊕ 2Δx3, j

If Δx̃·, j = 0, then Δx·, j = 0 and Δy·, j = MC(Δx·, j ) = 0. Naturally, x·, j can be
arbitrary.

Therefore, we only need to consider those nonzero columns of Δx̃ , i.e. those Δx̃·, j 
= 0.
Suppose that Δxi, j = ci, jα j (0 ≤ i ≤ 3). Here, ci, j (0 ≤ i ≤ 3) are taken as the following
steps:

1. If Δx̃0, j 
= 0, take nonzero c0, j then (2c0, j , c0, j , c0, j , 3c0, j ) is all-nonzero, else take
c0, j = 0;

2. IfΔx̃1, j 
= 0, take nonzero c1, j such that (2c0, j ⊕3c1, j , c0, j ⊕2c1, j , c0, j ⊕c1, j , 3c0, j ⊕
c1, j ) is all-nonzero, else take c1, j = 0;

3. IfΔx̃2, j 
= 0, take nonzero c2, j such that (2c0, j ⊕3c1, j ⊕c2, j , c0, j ⊕2c1, j ⊕3c2, j , c0, j ⊕
c1, j ⊕ 2c2, j , 3c0, j ⊕ c1, j ⊕ c2, j ) is all-nonzero, else take c2, j = 0;

4. If Δx̃3, j 
= 0, take nonzero c3, j such that (2c0, j ⊕ 3c1, j ⊕ c2, j ⊕ c3, j , c0, j ⊕ 2c1, j ⊕
3c2, j ⊕ c3, j , c0, j ⊕ c1, j ⊕ 2c2, j ⊕ 3c3, j , 3c0, j ⊕ c1, j ⊕ c2, j ⊕ 2c3, j ) is all-nonzero, else
take c3, j = 0.
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With above values of c0, j , c1, j , c2, j and c3, j , we can get⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δy10, j = (2c0, j ⊕ 3c1, j ⊕ c2, j ⊕ c3, j )α j = c′
0, jα j

Δy11, j = (c0, j ⊕ 2c1, j ⊕ 3c2, j ⊕ c3, j )α j = c′
1, jα j

Δy12, j = (c0, j ⊕ c1, j ⊕ 2c2, j ⊕ 3c3, j )α j = c′
2, jα j

Δy13, j = (3c0, j ⊕ c1, j ⊕ c2, j ⊕ 2c3, j )α j = c′
3, jα j

, where c′
i, j 
= 0(0 ≤ i ≤ 3).

Since ΔY = SB(ΔY 1) ⊕ SB(ΔY 1 ⊕ Y 1),
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δy0, j = s
(
c′
0, jα j ⊕ y10, j

)
⊕ s

(
y10, j

)

Δy1, j = s
(
c′
1, jα j ⊕ y11, j

)
⊕ s

(
y11, j

)

Δy2, j = s
(
c′
2, jα j ⊕ y12, j

)
⊕ s

(
y12, j

)

Δy3, j = s
(
c′
3, jα j ⊕ y13, j

)
⊕ s

(
y13, j

)
.

By Theorem 1, we know that for all (Δy0,0,Δy1,0,Δy2,0,Δy3,0) ∈ [F∗
28

]4, above system
has solutions on variables α j and y1·, j . We get the j th column of ΔX by taking Δx0, j =
c0, jα j , Δx1, j = c1, jα j , Δx2, j = c2, jα j , Δx3, j = c3, jα j , and get the j th column of X
by X = MC−1(Y 1). Other nonzero columns of ΔX and corresponding columns of X are
similarly calculated.

Then, resulting ΔX and X satisfies SB ◦ MC(X ⊕ ΔX) ⊕ SB ◦ MC(X) = ΔY . ��
Lemma 3 For any nonzero concrete difference ΔX and truncated difference ΔỸ of the AES
state such that ΔỸ = MC−1(χ(ΔX)), there exist ΔY and X, such that χ(ΔY ) = ΔỸ ,
satisfying MC−1 ◦ SB−1(ΔX) ⊕ MC−1 ◦ SB−1(ΔX ⊕ X) = ΔY .

Proof Let ΔX1 = SB−1(X) ⊕ SB−1(X ⊕ ΔX). Suppose that Δx·, j 
= 0, then the j th
column of ΔY is represented as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δy0, j = eΔx10, j ⊕ bΔx11, j ⊕ dΔx12, j ⊕ 9Δx13, j
Δy1, j = 9Δx10, j ⊕ eΔx11, j ⊕ bΔx12, j ⊕ dΔx13, j
Δy2, j = dΔx10, j ⊕ 9Δx11, j ⊕ eΔx12, j ⊕ bΔx13, j
Δy3, j = bΔx10, j ⊕ dΔx11, j ⊕ 9Δx12, j ⊕ eΔx13, j

,

where Δx1i, j = s−1(xi, j ) ⊕ s−1(xi, j ⊕ Δxi, j ), 0 ≤ i ≤ 3.

For nonzero Δxi, j , resulting Δx1i, j can take 27 − 1 different nonzero values when xi, j
runs through F28 [10]. For Δxi, j equal to 0, resulting Δx1i, j = 0 obviously. Then, we are

able to construct (Δx10, j ,Δx11, j ,Δx12, j ,Δx13, j ) such that (Δy0, j ,Δy1, j ,Δy2, j ,Δy3, j ) is all-
nonzero, by changing (x0, j , x1, j , x2, j , x3, j ) as the following steps:

1. If Δx0, j 
= 0, take arbitrary x0, j then Δx10, j 
= 0 and (eΔx10, j , 9Δx10, j , dΔx10, j , bΔx10, j )

is all-nonzero. If Δx0, j = 0, then Δx10, j = 0 and take x0, j arbitrarily.

2. If Δx1, j 
= 0, there are at most 4 values of Δx11, j which make that there is zero in

(eΔx10, j ⊕bΔx11, j , 9Δx10, j ⊕eΔx11, j , dΔx10, j ⊕9Δx11, j , bΔx10, j ⊕dΔx11, j ). SinceΔx11, j
can take 27 − 1 different nonzero values, we can easily avoid those 4 values of Δx11, j
by changing x1, j . Take x1, j such that (eΔx10, j ⊕ bΔx11, j , 9Δx10, j ⊕ eΔx11, j , dΔx10, j ⊕
9Δx11, j , bΔx10, j ⊕ dΔx11, j ) is all-nonzero. If Δx1, j = 0, then Δx11, j = 0 and take x1, j
arbitrarily.
......

123



Upper bound of the length of truncated impossible differentials 1549

3. Step by step. Things are similar for x2, j and x3, j . Eventually, we construct (x0, j , x1, j ,
x2, j , x3, j ) such that (Δy0, j ,Δy1, j ,Δy2, j ,Δy3, j ) is all-nonzero.

For other nonzero columns of ΔX , corresponding columns of X and ΔY are similarly
calculated.

For zero columns of ΔX , corresponding columns of X are arbitrary and ΔY are all-zero.
Then, resulting X and ΔY satisfying MC−1 ◦ SB−1(ΔX)⊕ MC−1 ◦ SB−1(ΔX ⊕ X) =

ΔY . ��
Lemma 4 Let R1 = SB◦MC ◦SR◦AK K ◦SB◦MC. For any nonzero truncated difference
ΔX̃ and all-nonzero concrete difference ΔY of the AES state, there existΔX, K and X, such
that χ(ΔX) = ΔX̃ , satisfying R1(X ⊕ ΔX) ⊕ R1(X) = ΔY .

Proof Let Y 1 = SB ◦ MC(X), ΔY 1 = SB ◦ MC(X) ⊕ SB ◦ MC(ΔX ⊕ X) and Y 2 =
SR ◦ AK K (Y 1).

Take ΔỸ 1 = MC(ΔX̃), then ΔỸ 1 has at least one all-nonzero column by the definition
of MC on a truncated difference (see Definition 5), and every column of ΔỸ 2 = SR(ΔỸ 1)

is nonzero.
For ΔỸ 2 SB◦MC−−−−→ ΔY , since every column of ΔỸ 2 is nonzero, we know that MC(ΔỸ 2)

is all-nonzero (namely, MC(ΔỸ 2) = χ(ΔY )). By Lemma 2, there exist corresponding ΔY 2

and Y 2, such that χ(ΔY 2) = ΔỸ 2, satisfyingΔY = SB ◦MC(Y 2)⊕ SB ◦MC(Y 2⊕ΔY 2).
Then ΔY 1 = SR−1(ΔY 2) and χ(ΔY 1) = ΔỸ 1.

For ΔX̃
SB◦MC−−−−→ ΔY 1, since χ(ΔY 1) = ΔỸ 1 = MC(ΔX̃) as we take, by Lemma 2,

there exist corresponding ΔX and X , such that χ(ΔX) = ΔX̃ , satisfying ΔY 1 = SB ◦
MC(X) ⊕ SB ◦ MC(ΔX ⊕ X). Take K = Y 1 ⊕ SR−1(Y 2).

Therefore, resulting ΔX , K and X satisfying R1(X ⊕ ΔX) ⊕ R1(X) = ΔY . ��
Lemma 5 Let R2 = MC−1 ◦ SB−1 ◦ SR−1 ◦ MC−1. For any nonzero truncated difference
ΔX̃ and all-nonzero truncated difference ΔỸ of the AES state, there exist ΔX, ΔY and X,
such that χ(ΔX) = ΔX̃ and χ(ΔY ) = ΔỸ , satisfying R2(X ⊕ ΔX) ⊕ R2(X) = ΔY .

Proof According to the proof of Lemma 3, we could take nonzero bytes of ΔX such that
corresponding columns of the MC−1(ΔX) are all-nonzero. Then, every column of the
ΔX1 = SR−1 ◦ MC−1(ΔX) is nonzero.

For ΔX1 MC−1◦SB−1−−−−−−−→ ΔỸ , since every column of the ΔX1 is nonzero, we know that
MC−1(χ(ΔX1)) is all-nonzero (namely, MC−1(χ(ΔX1)) = ΔỸ ). By Lemma 3, there exist
correspondingΔY and X1, such that χ(ΔY ) = ΔỸ , satisfyingΔY = MC−1 ◦ SB−1(X1)⊕
MC−1 ◦ SB−1(X1 ⊕ ΔX1). Take X = MC ◦ SR(X1).

Therefore, resulting ΔX , ΔY and X satisfying R2(X ⊕ ΔX) ⊕ R2(X) = ΔY . ��
Based on above preparation, we are able to give our claims on AES. Note that Sun et al.

[24] didn’t consider the S-box, therefore, their bound is not suitable for AES (cipher). Our
Theorem 2 is stronger than it, since our bound is built on the details of the AES S-box.

Theorem 2 There do not exist truncated impossible differentials covering more than four
rounds for AES with S-box considered and under the assumption that round keys are inde-
pendent and uniformly random. Longer truncated impossible differentials might exist only if
the key schedule is considered.

Proof We will prove this by showing that any nontrivial truncated differential is possible for
five-round AES (without MixColumns transformation in the last round, as shown in Fig. 2).
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Fig. 2 Five-round AES (Note that this figure only shows the ”meet-in-the-middle” of a special truncated
differential which is only nonzero at one byte of the input difference and one byte of the output difference,
but our proof considers all possible truncated differentials)

Write the five-round AES transformation (without MixColumns transformation in the last
round) as: 5_round_AES = AK K 5 ◦SR◦SB◦AK K 4 ◦R◦AKMC−1(K 1)◦SR◦SB◦AK K 0 ,
here R = MC ◦ SR ◦ SB ◦ MC ◦ SR ◦ AK SR−1◦MC−1(K 3) ◦ SB ◦ MC ◦ AKMC−1(K 2) ◦
SR ◦ SB ◦ MC .

Since transformations AKMC−1(K 1) ◦ SR ◦ SB ◦ AK K 0 before the R and AK K 5 ◦ SR ◦
SB ◦ AK K 4 after the R, are “transparent”1 with truncated differences, we only need to prove

that for any nontrivial truncated differential ΔX̃ → ΔZ̃ , P(ΔX̃
R−→ ΔZ̃) 
= 0.

We prove this by showing that there exists concrete differential ΔX → ΔZ , such that

χ(ΔX) = ΔX̃ and χ(ΔZ) = ΔZ̃ , satisfying P(ΔX
R−→ ΔZ) 
= 0. That is to say, there exist

corresponding ΔX , ΔZ , X , K 2 and K 3 satisfying R(X) ⊕ R(X ⊕ ΔX) = ΔZ .
We write the R as: R = R2 ◦ AKMC−1(K 3) ◦ SR ◦ R1, here R1 = SB ◦ MC ◦ SR ◦

AK SR−1◦MC−1(K 2) ◦ SB ◦ MC , R2 = MC ◦ SR ◦ SB ◦ MC . Note that R1 is key-dependent,
and R2 is key-independent.

1 “Transparent” means that the transformations do not mix the input state pattern.
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For any nontrivial truncated differential ΔX̃ → ΔZ̃ , we construct one corresponding
concrete differential following from “meet-in-the-middle” idea, as following steps:

1. By Lemma 5, for any nonzero ΔZ̃ , there exist ΔZ and Z , such that χ(ΔZ) = ΔZ̃ ,
satisfying ΔY = R−1

2 (Z) ⊕ R−1
2 (Z ⊕ ΔZ) is all-nonzero. Then SR−1(ΔY ) is all-

nonzero obviously.
2. By Lemma 4, for SR−1(ΔY ) and any nonzero ΔX̃ , there exist ΔX , X and K 2, such that

χ(ΔX) = ΔX̃ , satisfying SR−1(ΔY ) = R1(X) ⊕ R1(X ⊕ ΔX).
3. Take K 3 = MC(SR ◦ R1(X) ⊕ R−1

2 (Z)).

Therefore, resulting ΔX , ΔZ , X , K 2 and K 3 satisfying R(X ⊕ ΔX) ⊕ R(X) = ΔZ . ��
3.3 Special case for AES-256

Notice following property of the AES-256 key schedule:

Property 1 [8] On knowing 256-bit round keys of any consecutive two rounds for AES-256,
the key schedule of AES-256 would allow to uniquely regenerate all the other round keys.

For AES-256, the assumption that round keys are independent and uniformly random can
be removed. We have following theorem:

Theorem 3 Even though the key schedule is considered, there do not exist truncated impos-
sible differentials covering more than four rounds for AES-256 with S-box considered.

Proof In the proof of Theorem 2, we prove that any truncated differential ΔX̃ → ΔZ̃ for
the R is possible, by elaborately choosing consecutive two-round keys K 2 and K 3, input X
and output Z of the R. By Property 1, “choosing consecutive two-round keys: K 2 and K 3”
is feasible in the key schedule of AES-256. Therefore, proof of Theorem 2 is also suitable
for AES-256 with key schedule. ��

4 Conclusion

In this paper, we investigate the provable security of AES against impossible differential
cryptanalysis, by giving the maximal length of truncated impossible differentials. From a
more practical point than previous work, we dive into the non-linear S-box, which is always
“structured [24]” or “idealized [7]” by other researchers, but significant for the practical
maximal length of impossible differentials of SPN block ciphers. After revealing several
essential properties of the AES S-box, we prove that there do not exist truncated impossible
differentials longer than four rounds forAESwith S-box considered and under the assumption
that round keys are independent and uniformly random. Specially, for AES-256, even though
the S-box and the key schedule are both considered, there do not exist truncated impossible
differentials longer than four rounds.

On the security of the AES, impossible differentials covering more than four rounds might
be constructed only if the key schedule is considered (exclude AES-256), or the differential
is concrete (not truncated differential). These investigation may shed light on how to design
block ciphers with provable security against impossible differential attack.
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