

A characterization of $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear codes

Joaquim Borges1 · Cristina Fernández-Córdoba1

Received: 30 November 2016 / Revised: 31 March 2017 / Accepted: 28 July 2017 / Published online: 4 August 2017 © Springer Science+Business Media, LLC 2017

Abstract We prove that the class of $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear codes is exactly the class of \mathbb{Z}_2 -linear codes with automorphism group of even order. Using this characterization, we give examples of known codes, e.g. perfect codes, which have a nontrivial $\mathbb{Z}_2\mathbb{Z}_2[u]$ structure. Moreover, we exhibit some examples of \mathbb{Z}_2 -linear codes which are not $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear. Also, we state that the duality of $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes is the same as the duality of \mathbb{Z}_2 -linear codes. Finally, we prove that the class of $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes which are also \mathbb{Z}_2 -linear is strictly contained in the class of $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear codes.

Keywords \mathbb{Z}_2 -linear codes $\cdot \mathbb{Z}_2 \mathbb{Z}_4$ -linear codes $\cdot \mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear codes

Mathematics Subject Classification 94B60 · 94B25

1 Introduction

A $\mathbb{Z}_2\mathbb{Z}_4$ -linear code *C* is a binary image of a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code *C* that is an additive subgroup of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$. We say that *C* (and also *C*) has parameters (α, β) . $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes were first introduced in [\[15](#page-12-0)] as abelian translation-invariant propelinear codes. Later, in [\[5\]](#page-11-0), a comprehensive description of $\mathbb{Z}_2 \mathbb{Z}_4$ -linear codes appeared. In [\[5](#page-11-0)], the duality of such codes

 \boxtimes Joaquim Borges jborges@deic.uab.cat

> Cristina Fernández-Córdoba cfernandez@deic.uab.cat

Communicated by J. Bierbrauer.

This work has been partially supported by the Spanish MINECO Grants TIN2016-77918-P (AEI/FEDER, UE) and MTM2015-69138-REDT, and by the Catalan AGAUR Grant 2014SGR-691.

¹ Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain

was studied, an appropriate inner product was defined and it was stated that the $\mathbb{Z}_2\mathbb{Z}_4$ -dual code is not the same as the standard orthogonal code, that is, using the standard inner product of binary vectors.

Recently, $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes with parameters (α , β) have been introduced in [\[3](#page-11-1)]. They are binary images of $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -additive codes, which are submodules of the ring $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$, where $u^2 = 0$. These codes have some similarities with $\mathbb{Z}_2 \mathbb{Z}_4$ -linear codes. However, there is a key difference: every $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear code is also \mathbb{Z}_2 -linear, which is not true, in general, for $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes. In this paper, when we refer to the parameters of a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear or $\mathbb{Z}_2\mathbb{Z}_4$ -linear code, we mean the values of (α, β) .

The aim of this paper is to clarify the relation among all these classes. Specifically, we prove that a \mathbb{Z}_2 -linear code is $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear if and only if its automorphism group has even order. We also show that for a $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear code, its $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -dual code is exactly its \mathbb{Z}_2 -dual code, that is, its standard binary dual code. This, in turn, implies directly that the dual weight distributions are related by the MacWilliams identity. This fact was proved in [\[3](#page-11-1)]. By using these properties, we find $\mathbb{Z}_2 \mathbb{Z}_2[u]$ structures for all binary linear perfect codes. In particular, for any binary linear perfect code *C*, we compute the possible values of α and β such that *C* is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code with parameters (α, β) . We also show that in the case of a binary Hamming code, its extended code, its dual code (that is a simplex code) and the dual of its extended code (that is a Hadamard code) are also $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes. All binary perfect codes are optimal codes since they have the maximum possible number of codewords for their length and minimum distance. Therefore, we have a family of $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes that are optimal. Computationally, and considering the characterization of $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes given in this paper, a large number of the best known linear codes of length *n* and dimension *k* in the database of Magma [\[7\]](#page-11-2), $C_B(n, k)$, are also $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes. We also give some examples of codes $C_B(n, k)$ that are not $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes.

If *C* is a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code with parameters (α, β) which is also \mathbb{Z}_2 -linear, then we prove that *C* has a $\mathbb{Z}_2\mathbb{Z}_2[u]$ structure with the same parameters (α, β) . In addition, we give an example showing that there are $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes which are not $\mathbb{Z}_2\mathbb{Z}_4$ -linear.

The paper is organized as follows. In the next section, we give basic definitions and concepts. In Sect. [3,](#page-3-0) we prove that for a given $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear code *C*, its $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -dual code is exactly C^{\perp} , i.e. the standard binary orthogonal code. In Sect. [4,](#page-5-0) we study the conditions for a \mathbb{Z}_2 -linear code to be $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear. Moreover, we characterize $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes as \mathbb{Z}_2 -linear codes with automorphism group of even order. In Sect. [5,](#page-6-0) we prove that all \mathbb{Z}_2 linear perfect codes are $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear with parameters (α, β) , where $\beta > 0$. In addition, we compute the possible values of α and β . In Sect. [6,](#page-9-0) we analyze the relation to $\mathbb{Z}_2\mathbb{Z}_4$ linear codes. In particular, we prove that if *C* is \mathbb{Z}_2 -linear and $\mathbb{Z}_2\mathbb{Z}_4$ -linear with parameters (α, β) , then *C* is also a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code with the same parameters (α, β) . We note that the converse statement is not true. Finally, in Sect. [7,](#page-11-3) we give some conclusions about the meaningfulness of $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes and we point out some possible further research on the topic.

2 Preliminaries

Denote by \mathbb{Z}_2 and \mathbb{Z}_4 the rings of integers modulo 2 and modulo 4, respectively. A binary code of length *n* is any non-empty subset *C* of \mathbb{Z}_2^n . If that subset is a vector space then we say that it is a \mathbb{Z}_2 -linear code (or binary linear code). Any non-empty subset *C* of \mathbb{Z}_4^n is a quaternary code of length *n*, and an additive subgroup of \mathbb{Z}_4^n is called a quaternary linear code. The elements of a code are called codewords.

For any binary code *C*, an automorphism of *C* is a coordinate permutation that leaves *C* invariant. The automorphism group of *C*, denoted *Aut*(*C*), is the group of all automorphisms of *C*.

The classical Gray map ϕ : $\mathbb{Z}_4 \longrightarrow \mathbb{Z}_2^2$ is defined by

$$
\phi(0) = (0, 0), \quad \phi(1) = (0, 1), \quad \phi(2) = (1, 1), \quad \phi(3) = (1, 0).
$$

If $a = (a_1, \ldots, a_m) \in \mathbb{Z}_4^m$, then the Gray map of *a* is the coordinate-wise extended map $\phi(a) = (\phi(a_1), \dots, \phi(a_m))$. We naturally extend the Gray map for vectors $\mathbf{x} = (x \mid x') \in$ $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ so that $\Phi(\mathbf{x}) = (x \mid \phi(x')).$

Denote by $wt_H(x)$ the Hamming weight of $x \in \mathbb{Z}_2^{\alpha}$ and by $wt_L(x')$ the Lee weight of $x' \in \mathbb{Z}_4^{\beta}$. For a vector $\mathbf{x} = (x \mid x') \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, define the weight of **x**, denoted by $wt(\mathbf{x})$, as $wt_H(x) + wt_L(x')$. Clearly, $wt(\mathbf{x}) = wt_H(\Phi(\mathbf{x}))$.

Definition 1 A $\mathbb{Z}_2\mathbb{Z}_4$ -additive code *C* with parameters (α, β) is an additive subgroup of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}.$

Such codes are extensively studied in [\[5](#page-11-0)]. Alternatively, we can define a $\mathbb{Z}_2 \mathbb{Z}_4$ -additive code as a \mathbb{Z}_4 -submodule of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, where the scalar product $\lambda \mathbf{x}$, for $\lambda \in \mathbb{Z}_4$, $\mathbf{x} \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$. is defined as $\mathbf{x} + \cdots + \mathbf{x}$, λ times (of course, if $\lambda = 0$, then $\lambda \mathbf{x} = 0$).

If *C* is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code with parameters (α, β) , then the binary image $C = \Phi(C)$ is called a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code with parameters (α, β) . Note that *C* is a binary code of length $n = \alpha + 2\beta$ but *C* is not \mathbb{Z}_2 -linear, in general [\[5\]](#page-11-0). If $\alpha = 0$, then *C* is called a \mathbb{Z}_4 -linear code. If $\beta = 0$, then *C* is simply a \mathbb{Z}_2 -linear code.

The standard inner product in $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, defined in [\[5\]](#page-11-0), can be written as

$$
\mathbf{u} \cdot \mathbf{v} = 2 \left(\sum_{i=1}^{\alpha} u_i v_i \right) + \sum_{j=1}^{\beta} u'_j v'_j \in \mathbb{Z}_4,
$$

where the computations are made taking the zeros and ones in the α binary coordinates as quaternary zeros and ones, respectively. The dual code of a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code C is defined in the standard way by

$$
\mathcal{C}^{\perp} = \{ \mathbf{v} \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta} \mid \mathbf{u} \cdot \mathbf{v} = 0, \text{ for all } \mathbf{u} \in \mathcal{C} \}.
$$

The $\mathbb{Z}_2\mathbb{Z}_4$ -dual of $C = \Phi(\mathcal{C})$ is the code $\Phi(\mathcal{C}^{\perp})$.

Consider the ring $\mathbb{Z}_2[u] = \mathbb{Z}_2 + u\mathbb{Z}_2 = \{0, 1, u, 1 + u\}$, where $u^2 = 0$. Note that $(\mathbb{Z}_2[u], +)$ is group-isomorphic to the Klein group $(\mathbb{Z}_2^2, +)$. With the product operation, $(\mathbb{Z}_2[u], \cdot)$ is monoid-isomorphic to (\mathbb{Z}_4, \cdot) . Define the map $\pi : \mathbb{Z}_2[u] \longrightarrow \mathbb{Z}_2$, such that $\pi(0) = \pi(u) = 0$ and $\pi(1) = \pi(1 + u) = 1$. Then, for $\lambda \in \mathbb{Z}_2[u]$ and $\mathbf{x} = (x_1, \dots, x_\alpha)$ x'_1, \ldots, x'_β) $\in \mathbb{Z}_2^\alpha \times \mathbb{Z}_2[u]^\beta$, we can consider the scalar product

$$
\lambda \mathbf{x} = (\pi(\lambda)x_1, \ldots, \pi(\lambda)x_\alpha \mid \lambda x'_1, \ldots, \lambda x'_\beta) \in \mathbb{Z}_2^\alpha \times \mathbb{Z}_2[u]^\beta.
$$

With this operation, $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$ is a $\mathbb{Z}_2[u]$ -module. Note that, a $\mathbb{Z}_2[u]$ -submodule of $\mathbb{Z}_2^{\alpha} \times$ $\mathbb{Z}_2[u]^\beta$ is not the same as a subgroup of $\mathbb{Z}_2^\alpha \times \mathbb{Z}_2[u]^\beta$.

Definition 2 ([\[3](#page-11-1)]) A $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive code *C* with parameters (α, β) is a $\mathbb{Z}_2[u]$ -submodule of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$.

The following straightforward equivalence can be used as an alternative definition.

Lemma 1 *A code* $C \subseteq \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$ *is* $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive if and only if

$$
u\mathbf{z} \in C \quad \forall \mathbf{z} \in C, \text{ and}
$$

 $\mathbf{x} + \mathbf{y} \in C \quad \forall \mathbf{x}, \mathbf{y} \in C.$

As for $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, we can also define a Gray-like map. Let $\psi : \mathbb{Z}_2[u] \longrightarrow \mathbb{Z}_2^2$ be defined as

$$
\psi(0) = (0, 0), \quad \psi(1) = (0, 1), \quad \psi(u) = (1, 1), \quad \psi(1 + u) = (1, 0).
$$

If $a = (a_1, \ldots, a_m) \in \mathbb{Z}_2[u]^m$, then the coordinate-wise extension of ψ is $\psi(a) =$ $(\psi(a_1), \ldots, \psi(a_m))$. Now, we define the Gray-like map for elements $\mathbf{x} = (x \mid x') \in \mathbb{R}$ $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$ so that $\Psi(\mathbf{x}) = (x \mid \psi(x')).$

The Lee weight of the elements 0, 1, u , $1 + u \in Z_2[u]$ are 0, 1, 2, 1, respectively. Denote by $wt_L(x')$ the Lee weight of $x' \in \mathbb{Z}_2[u]^{\beta}$, which is the rational sum of the Lee weights of the coordinates of *x'*. For a vector $\mathbf{x} = (x \mid x') \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$, define the weight of **x** as $wt(\mathbf{x}) = wt_H(\mathbf{x}) + wt_L(\mathbf{x}').$ Clearly, $wt(\mathbf{x}) = wt_H(\Psi(\mathbf{x})).$

If *C* is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive code with parameters (α, β) , then the binary image $C = \Psi(C)$ is called a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code with parameters (α, β) . Note that, unlike for $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes, *C* is a \mathbb{Z}_2 -linear code of length $n = \alpha + 2\beta$. This fact is clear since for any pair of elements **x**, $\mathbf{y} \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^\beta$, we have that $\Psi(\mathbf{x}) + \Psi(\mathbf{y}) = \Psi(\mathbf{x} + \mathbf{y})$.

The inner product in $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$, defined in [\[3\]](#page-11-1), can be written as

$$
\mathbf{u} \cdot \mathbf{v} = u\left(\sum_{i=1}^{\alpha} u_i v_i\right) + \sum_{j=1}^{\beta} u'_j v'_j \in \mathbb{Z}_2[u],
$$

where the computations are made taking the zeros and ones in the α binary coordinates as zeros and ones in $\mathbb{Z}_2[u]$, respectively. The dual code of a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive code C is defined in the standard way by

$$
\mathcal{C}^{\perp} = \{ \mathbf{v} \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^\beta \mid \mathbf{u} \cdot \mathbf{v} = 0, \text{ for all } \mathbf{u} \in \mathcal{C} \}.
$$

The $\mathbb{Z}_2\mathbb{Z}_2[u]$ -dual code of $C = \Psi(\mathcal{C})$ is the code $\Psi(\mathcal{C}^{\perp})$.

The weight distributions of a binary linear code C and its dual C^{\perp} are related to each other by the MacWilliams identity [\[14](#page-12-1)]. If *C* and *D* are two binary codes, not necessarily linear, such that their weight enumerators are related by the MacWilliams identity, then we say that *C* and *D* are formally dual.

If *C* is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, then the codes $\Phi(\mathcal{C})$ and $\Phi(\mathcal{C}^{\perp})$ are not necessarily linear, so they are not dual in the binary linear sense, in general. However, the weight enumerator polynomial of $\Phi(\mathcal{C}^{\perp})$ is the MacWilliams transform of the weight enumerator polynomial of $\Phi(C)$ [\[9\]](#page-11-4) and therefore they are formally dual. We will see in the following section that a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code $\Psi(\mathcal{C})$ and its $\mathbb{Z}_2\mathbb{Z}_2[u]$ -dual code $\Psi(\mathcal{C}^{\perp})$ are not only formally dual, as it was proved in [\[3\]](#page-11-1), but also dual in the binary usual sense, i.e. $\Psi(\mathcal{C})^{\perp} = \Psi(\mathcal{C}^{\perp})$.

3 Duality of $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear codes

It is readily verified that if $a, b \in \mathbb{Z}_2[u]$, then $\psi(a) \cdot \psi(b) = 1$ if and only if $ab \in \{1, u\}$. This property can be easily generalized for elements in $\mathbb{Z}_2[u]$ ^β.

Lemma 2 *If* x' , $y' \in \mathbb{Z}_2[u]^{\beta}$, then $\psi(x') \cdot \psi(y') = 1$ *if and only if* $x' \cdot y' \in \{1, u\}$ *.*

Proof We have that $x' \cdot y' = \sum_{i=1}^{\beta} x_i' y_i'$. Therefore, in order to calculate $x' \cdot y'$ we can omit all reduced to the state of y' . On the state $y' \cdot y' = 0$ of $y' \cdot y' = 0$. addends such that $x'_i y'_i = 0$ that also implies $\psi(x'_i) \cdot \psi(y'_i) = 0$. Moreover, if $x'_i y'_i = x'_j y'_j$, for some $i \neq j$, then $x_i' y_i' + x_j' y_j' = 0$ and it is easy to check that $\psi(x_i') \cdot \psi(y_i') + \psi(x_j') \cdot \psi(y_j') = 0$. Hence, we can cancel pairs of addends that are equal in $x \cdot y$. With these reductions, we have that the set *S* of the remaining addends in $x' \cdot y'$ is

- (i) $S = \{1, u, 1 + u\}$ or $S = \emptyset$, if $x' \cdot y' = 0$.
- (ii) $S = \{1\}$ or $S = \{u, 1 + u\}$, if $x' \cdot y' = 1$.
- (iii) $S = \{u\}$ or $S = \{1, 1 + u\}$, if $x' \cdot y' = u$.
- (iv) $S = \{1 + u\}$ or $S = \{1, u\}$, if $x' \cdot y' = 1 + u$.

Since $\psi(x_i') \cdot \psi(y_i') = 1$ if and only if $x_i' y_i' \in \{1, u\}$, we only have to consider the elements 1 and *u* in each possible set *S*. Clearly, cases (i) and (iv) give $\psi(x') \cdot \psi(y') = 0$, whereas cases (ii) and (iii) give $\psi(x') \cdot \psi(y)$ $) = 1.$ \Box

Proposition 1 *Let* **x**, $y \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$ *.*

- (i) $If \mathbf{x} \cdot \mathbf{v} = 0$, then $\Psi(\mathbf{x}) \cdot \Psi(\mathbf{v}) = 0$.
- (ii) *If* $\mathbf{x} \cdot \mathbf{y} \neq 0$ *and* $\Psi(\mathbf{x}) \cdot \Psi(\mathbf{y}) = 0$, then $\Psi(\mathbf{x}) \cdot \Psi((1 + u)\mathbf{y}) = 1$.

Proof Let $\mathbf{x} = (x \mid x')$ and $\mathbf{y} = (y \mid y')$ be elements in $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^\beta$. We can write the inner product of **x** and **y** as $\mathbf{x} \cdot \mathbf{y} = u(x \cdot y) + (x' \cdot y')$.

- (i) If $\mathbf{x} \cdot \mathbf{y} = 0$, then either (a) $x \cdot y = x' \cdot y' = 0$, or (b) $x \cdot y = 1$ and $x' \cdot y' = u$.
	- (a) By Lemma [2,](#page-3-1) we have that $\psi(x') \cdot \psi(y') = 0$ and hence $\Psi(\mathbf{x}) \cdot \Psi(\mathbf{y}) = 0$.
	- (b) Again, by Lemma [2,](#page-3-1) we obtain $\psi(x') \cdot \psi(y') = 1$ and then $\Psi(\mathbf{x}) \cdot \Psi(\mathbf{y}) = 0$.

(ii) If $\mathbf{x} \cdot \mathbf{y} \neq 0$, then either (a) $x \cdot y = 0$ and $x' \cdot y' \neq 0$, or (b) $x \cdot y = 1$ and $x' \cdot y' \neq u$.

- (a) In this case $x' \cdot y' \in \{1, u, 1 + u\}$. Since $x \cdot y = 0$ and $\Psi(x) \cdot \Psi(y) = 0$, we have that $\psi(x') \cdot \psi(y') = 0$ and hence, by Lemma [2,](#page-3-1) the only possible case is that $x' \cdot y' = 1 + u$. Therefore, $x' \cdot ((1 + u)y') = 1$ and $\psi(x') \cdot \psi((1 + u)y') = 1$, again by Lemma [2.](#page-3-1) Thus, $\Psi(\mathbf{x}) \cdot \Psi((1+u)\mathbf{y}) = 1$.
- (b) We have $x' \cdot y' \in \{0, 1, 1 + u\}$. Since $x \cdot y = 1$ and $\Psi(\mathbf{x}) \cdot \Psi(\mathbf{y}) = 0$, we obtain $\psi(x') \cdot \psi(y') = 1$. By Lemma [2,](#page-3-1) the only possibility is $x' \cdot y' = 1$. Hence, $x' \cdot ((1 +$ $(u) y' = 1 + u$ and $\psi(x') \cdot \psi((1 + u)y') = 0$. We conclude $\Psi(\mathbf{x}) \cdot \Psi((1 + u)\mathbf{y}) = 1$.

Theorem 1 Let C be a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive code and let $C = \Psi(C)$ be the corresponding *binary* $\mathbb{Z}_2 \mathbb{Z}_2[u]$ *-linear code. Then,* $\Psi(\mathcal{C}^{\perp}) = C^{\perp}$ *.*

Proof If $\mathbf{x} \in C^{\perp}$, then $\mathbf{x} \cdot \mathbf{c} = 0$, for all $\mathbf{c} \in C$. Hence, by Proposition [1\(](#page-4-0)i), we have that $\Psi(\mathbf{x}) \cdot \Psi(\mathbf{c}) = 0$, for all $\mathbf{c} \in \mathcal{C}$, implying that $\Psi(\mathbf{x}) \in C^{\perp}$. We have proved $\Psi(\mathcal{C}^{\perp}) \subseteq C^{\perp}$.

If $\mathbf{x} \notin C^{\perp}$, then $\mathbf{x} \cdot \mathbf{c} \neq 0$, for some $\mathbf{c} \in C$. Now, by Proposition [1\(](#page-4-0)ii), we have that $\Psi(\mathbf{x}) \cdot \Psi(\mathbf{c}) \neq 0$ or $\Psi(\mathbf{x}) \cdot \Psi((1+u)\mathbf{c}) \neq 0$. It follows that $\Psi(\mathbf{x}) \notin C^{\perp}$ and therefore $C^{\perp} \subset \Psi(C^{\perp})$. $C^{\perp} \subseteq \Psi(\mathcal{C}^{\perp}).$ \Box

Let C be a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive code. Then, the following diagram commutes:

$$
\begin{array}{ccc}\nC & \xrightarrow{\Psi} & C \\
\downarrow \downarrow & & \downarrow \downarrow \\
C^{\perp} & \xrightarrow{\Psi} & C^{\perp}\n\end{array}
$$

 \mathcal{L} Springer

$$
\Box
$$

Obviously, this immediately implies that the weight distributions of C and C^{\perp} are related by the MacWilliams relations, as it was proved in [\[3\]](#page-11-1).

To finish this section, we prove that the dual of a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code is also $\mathbb{Z}_2\mathbb{Z}_2[u]$ linear with the same parameters (α, β) .

Proposition 2 *A binary code C is* $\mathbb{Z}_2\mathbb{Z}_2[u]$ *-linear with parameters* (α, β) *if and only if* C^{\perp} *is* $\mathbb{Z}_2\mathbb{Z}_2[u]$ *-linear with the same parameters* (α, β) *.*

Proof Assume that *C* is a $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear code with parameters (α, β) . Let $C^{\perp} = \Psi^{-1}(C^{\perp})$. By linearity of C^{\perp} and Lemma [1,](#page-2-0) we only need to proof that $u\Psi^{-1}(c) \in C^{\perp}$, for all $c \in C^{\perp}$. For any codeword $\mathbf{x} \in C$, we have $(u\Psi^{-1}(c)) \cdot \mathbf{x} = u(\Psi^{-1}(c) \cdot \mathbf{x}) = u0 = 0$, which implies $u\Psi^{-1}(c) \in C^{\perp}$. The converse follows from the fact that $(C^{\perp})^{\perp} = C$. \Box

4 Characterization of $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear codes

Given a \mathbb{Z}_2 -linear code *C* of length *n*, a natural question is if we can choose a set of β pairs of coordinates such that *C* is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code with parameters $(n - 2\beta, \beta)$. The next lemma and corollary show us that it is enough to answer the question for a generator matrix of *C*.

Lemma 3 *Let* $S = {\mathbf{x}_1, ..., \mathbf{x}_r} \subset \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$ *and let* C *be the* \mathbb{Z}_2 *-linear code generated by the binary image vectors of S,* $C = \langle \Psi(S) \rangle$ *. Then, C is a* $\mathbb{Z}_2 \mathbb{Z}_2[u]$ *<i>-linear code with parameters* (α, β) *if and only if* $\Psi(u\mathbf{x}_i) \in C$ *, for all i* $\in \{1, \ldots, r\}$ *.*

Proof Let $C = \Psi^{-1}(C) \subset \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$. Then, *C* is $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear if and only if *C* is $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive. Clearly, for all **x**, $\mathbf{y} \in \mathcal{C}$, $\Psi(\mathbf{x} + \mathbf{y}) = \Psi(\mathbf{x}) + \Psi(\mathbf{y}) \in \mathcal{C}$ and hence $\mathbf{x} + \mathbf{y} \in \mathcal{C}$. Therefore, applying Lemma [1,](#page-2-0) we have that *C* is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive code if and only $u\mathbf{x} \in \mathcal{C}$, for all $\mathbf{x} \in \mathcal{C}$. For $\mathbf{x} \in \mathcal{C}$, we have that $\Psi(\mathbf{x}) = \sum_{i=1}^r \lambda_i \Psi(\mathbf{x}_i) = \Psi(\sum_{i=1}^r \lambda_i \mathbf{x}_i)$, for some $\lambda_1, \ldots, \lambda_r \in \mathbb{Z}_2$. Thus $\mathbf{x} = \sum_{i=1}^r \lambda_i \mathbf{x}_i$ and $u\mathbf{x} = \sum_{i=1}^r \lambda_i u\mathbf{x}_i$. Hence, $u\mathbf{x} \in \mathcal{C}$, for all $\mathbf{x} \in \mathcal{C}$, if and only if $u\mathbf{x_i} \in \mathcal{C}$, for all $i = 1, \ldots, r$. Ч

Corollary 1 *Let C be a* \mathbb{Z}_2 *-linear code of length n* = $\alpha + 2\beta$ *, for some* $\alpha \ge 0$ *and* $\beta > 0$ *. Let*

$$
G = \begin{pmatrix} v_1 \\ \vdots \\ v_r \end{pmatrix}
$$

be a generator matrix of C. Then, C is a $\mathbb{Z}_2 \mathbb{Z}_2[u]$ *-linear code with parameters* (α, β) *if and* $only if \Psi(u\Psi^{-1}(v_i)) \in C \text{ for all } i = 1, \ldots, r.$

Now, we give a necessary and sufficient condition for a \mathbb{Z}_2 -linear code to be $\mathbb{Z}_2\mathbb{Z}_2[u]$ linear.

Proposition 3 Let C be a \mathbb{Z}_2 -linear code. Then, C is permutation-equivalent to a $\mathbb{Z}_2\mathbb{Z}_2[u]$ *linear code with parameters* (α, β) *, where* $\beta > 0$ *, if and only if there exists an involution* $\sigma \in Aut(C)$ *fixing* α *coordinates.*

Proof Assume that *C* is a $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear code with $\beta > 0$ and let $C = \Psi^{-1}(C)$. For any codeword $\mathbf{x} = (x_1, \ldots, x_\alpha \mid x'_1, \ldots, x'_\beta) \in C$, we write its binary image as $x =$

 $(x_1, \ldots, x_\alpha \mid y_1, \ldots, y_{2\beta})$, where $\psi(x'_i) = (y_{2i-1}, y_{2i})$, for $i = 1, \ldots, \beta$. Let σ be the involution that transposes y_{2i-1} and y_{2i} , for all $i = 1, \ldots, \beta$. Clearly, $\Psi((1 + u)\mathbf{x}) = \sigma(x)$. Since $(1 + u)\mathbf{x} \in \mathcal{C}$, we have that $\sigma \in Aut(C)$.

Conversely, if $\sigma \in Aut(C)$ has order 2, then σ is a product of disjoint transpositions. We can assume that the α coordinates fixed by σ are the first ones, and the pairs of coordinates that σ transposes are consecutive. Then, considering the pairs of coordinates that σ transposes as the images of $\mathbb{Z}_2[u]$ coordinates, we obtain that $\sigma(x) = \Psi((1+u)\Psi^{-1}(x))$, for any codeword $x \in C$. Since $\sigma(x) \in C$, we have that $(1 + u)\mathbf{x} \in C = \Psi^{-1}(C)$, for any $\mathbf{x} \in C$. But this condition implies that *C* is a $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -additive code since $(1 + u)\mathbf{x} = \mathbf{x} + u\mathbf{x}$ and thus $u\mathbf{x} \in \mathcal{C}$. For all $\mathbf{x}, \mathbf{y} \in \mathcal{C}$, $\Psi(\mathbf{x} + \mathbf{y}) = \Psi(\mathbf{x}) + \Psi(\mathbf{y}) \in \mathcal{C}$ and hence $\mathbf{x} + \mathbf{y} \in \mathcal{C}$. Then, the result follows applying Lemma [1.](#page-2-0) \Box

Theorem 2 *A* \mathbb{Z}_2 -linear code C is $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear with parameters (α, β) , where $\beta > 0$, if *and only if Aut*(*C*) *has even order.*

Proof From Sylow theorems, the group *Aut*(*C*) has even order if and only if *Aut*(*C*) contains an involution. The statement then follows by Proposition [3.](#page-5-1) \Box

Remark 1 Note that for different involutions in $Aut(C)$, we have different $\mathbb{Z}_2\mathbb{Z}_2[u]$ structures and, possibly, with different parameters. Moreover, according to Proposition [3,](#page-5-1) for each $\sigma_i \in Aut(C)$ fixing α_i coordinates, we have a $\mathbb{Z}_2\mathbb{Z}_2[u]$ structure of *C* with parameters (α_i, β_i) , where $\alpha_i + 2\beta_i$ is the length of *C*.

Example 1 Consider the code *C* with generator matrix

$$
\begin{pmatrix}\n1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1\n\end{pmatrix}.
$$

As it is pointed out in [\[14](#page-12-1), Problem (32), p. 230], *Aut*(*C*) is trivial, i.e. it only contains the identity permutation. Therefore, *C* is not $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear for $\beta > 0$.

It is natural to ask if there are interesting linear codes which are not $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes and whether the automorphism group is always trivial or not in these cases. Denote by $C_B(n, k)$ the best known linear code of length *n* and dimension *k* in the database of Magma [\[7](#page-11-2)]. The automorphism group of these codes can be obtained using Magma software and a large number of linear codes have automorphism group of even order and, therefore, they are $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear. However, several best known linear codes have been found with automorphism group of odd order. We have obtained some linear codes with trivial automorphism group, for example, $C_B(20, 10)$, $C_B(32, 12)$, $C_B(135, 38)$, etc., and also other codes with nontrivial and odd order automorphism group, for example, $C_B(78, 8)$, $C_B(81, 20)$, $C_B(128, 14)$ or $C_B(89, 11)$ with automorphism groups of order 3, 27, 889 and 979, respectively.

In the next section we see several examples of well-known codes with a $\mathbb{Z}_2\mathbb{Z}_2[u]$ structure.

 $5 \mathbb{Z}_2 \mathbb{Z}_2 [u]$ -linear perfect codes

A binary repetition code $C = \{(0, \ldots, 0), (1, \ldots, 1)\}\$ of odd length *n* is a trivial perfect code. Its dual code is the *even* code which contains all vectors of length *n* and even weight (i.e. with an even number of nonzero coordinates). Clearly, these codes can be considered as $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes with parameters $(n-2\beta, \beta)$, for all $\beta \in \{0, ..., (n-1)/2\}$.

It is well known that the binary linear perfect codes with more than two codewords are:

- (1) The binary *Hamming* 1-perfect codes of length $n = 2^t 1$ ($t \ge 3$), dimension $k =$ $2^t - t - 1$ and minimum distance $d = 3$.
- (2) The binary *Golay* 3-perfect code of length $n = 23$, dimension $k = 12$ and minimum distance $d = 7$.

In this section we prove that all binary linear perfect codes are $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes.

Let *H_t* be a Hamming code of length $n = 2^t - 1$, where $t \ge 3$. The dual code H_t^{\perp} is known as the *simplex* code. It is a constant-weight code with all nonzero codewords of weight 2*t*−1. A parity-check matrix M_t for H_t (which is a generator matrix for H_t^{\perp}) contains all nonzero column vectors of length *t*.

Theorem 3 *Let H_t be a Hamming code of length n* = 2^t − 1*. Then, H_t is a* $\mathbb{Z}_2\mathbb{Z}_2[u]$ *-linear code with parameters* $(2^{r} - 1, 2^{t-1} - 2^{r-1})$ *, for all r such that t* $/2 \le r \le t$ *.*

Proof The case $r = t$ corresponds to the trivial case $(\alpha, \beta)=(n, 0)$. In [\[10](#page-12-2)], it is shown that *Aut*(H_t) contains involutions fixing $2^r - 1$ points for $t/2 \le r \le t$. Thus, the statement follows by Proposition [3.](#page-5-1) \Box

Example 2 A parity-check matrix for H_3 is

$$
M_3 = \left(\begin{array}{rrrrr} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right).
$$

We can take the pairs of coordinates $(4, 5)$ and $(6, 7)$ as $\mathbb{Z}_2[u]$ coordinates and consider the $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -additive code C generated by

$$
G_3 = \begin{pmatrix} 0 & 0 & 0 | u & u \\ 0 & 1 & 1 | 0 & u \\ 1 & 0 & 1 | 1 & 1 \end{pmatrix}.
$$

Note that multiplying any row in G_3 by *u* we obtain a vector in $\Psi^{-1}(H_3^{\perp})$ $\Psi^{-1}(H_3^{\perp})$ $\Psi^{-1}(H_3^{\perp})$. By Corollary 1 and Proposition [2,](#page-5-3) H_3 is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code with parameters (3, 2). We remark that H_3 is also a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code with the same parameters but, according to [\[6\]](#page-11-5), H_t is not $\mathbb{Z}_2\mathbb{Z}_4$ -linear for $\beta > 0$ and $t > 3$.

Example 3 Consider the parity-check matrix for *H*⁴

$$
M_4 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.
$$

Again, we can take the pairs of coordinates $(8, 9)$, $(10, 11)$, $(12, 13)$ and $(14, 15)$ as $\mathbb{Z}_2[u]$ coordinates. Let C be the $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -additive code generated by

$$
G_4 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & u & u & u & u \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & u & 0 & u \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & u & u \end{pmatrix}.
$$

 \circledcirc Springer

Multiplying any row in G_4 by *u* we obtain a vector in $\Psi^{-1}(H_4^{\perp})$ $\Psi^{-1}(H_4^{\perp})$ $\Psi^{-1}(H_4^{\perp})$. By Corollary 1 and Proposition [2,](#page-5-3) H_4 is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code with parameters (7, 4). Note that, taking the same pairs of coordinates as quaternary coordinates, it is also true that H_4^{\perp} is a $\mathbb{Z}_2\mathbb{Z}_4$ linear code, but the $\mathbb{Z}_2\mathbb{Z}_4$ -dual code is not a Hamming code. For example, the vector $v =$ (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) is not orthogonal to the third row of *M*4. However, v is in the $\mathbb{Z}_2\mathbb{Z}_4$ -dual of H_4^{\perp} .

After a permutation of columns, the matrix M_4 can be written as

Now, taking the pairs of coordinates $(i, i + 1)$ for $i = 4, \ldots, 14$ as $\mathbb{Z}_2[u]$ coordinates, we also have that H_4^{\perp} is the binary image of the code generated by

Therefore, H_4 is also a $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear code with parameters (3, 6).

Corollary 2 Let $t \geq 3$. The extended Hamming code H'_t , the dual of a Hamming code H_t^{\perp} (simplex code) *, and the dual of an extended Hamming code* $(H_t')^{\perp}$ *(linear Hadamard code) are* $\mathbb{Z}_2 \mathbb{Z}_2 [u]$ *-linear codes with parameters* $(2^r, 2^{t-1} - 2^{r-1})$ *,* $(2^r - 1, 2^{t-1} - 2^{r-1})$ *, and* $(2^r, 2^{t-1} - 2^{r-1})$ *, respectively, for all r such that t* $/2 \le r \le t$ *.*

Proof On the one hand, extending a $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear code with parameters (α, β) trivially results in a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code with parameters $(\alpha + 1, \beta)$. Thus, by Theorem [3,](#page-7-0) H'_t is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code with parameters $(2^r, 2^{t-1} - 2^{r-1})$.

On the other hand, by Proposition [2,](#page-5-3) the dual code has the same parameters. Therefore, H_t^{\perp} is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code with parameters $(2^r - 1, 2^{t-1} - 2^{r-1})$ and $(H'_t)^\perp$ is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code with parameters $(2^r, 2^{t-1} - 2^{r-1})$. \Box

Theorem 4 *The binary Golay code G*²³ *and the extended binary Golay code G*²⁴ *are* $\mathbb{Z}_2\mathbb{Z}_2[u]$ *-linear codes with parameters* (α , β)*. For* $\beta > 0$ *, the parameters are:*

(i) (0, 12) *or* (8, 8)*, for G*24*.* (ii) (7, 8)*, for G*23*.*

Proof It is well known that the automorphism groups of *G*²³ and *G*²⁴ are the Mathieu groups *M*²³ and *M*24, respectively [\[14](#page-12-1)]. According to [\[8](#page-11-6)], the number of fixed points by the involutions of *M*²⁴ is 0 or 8. For *M*²³ we have that all involutions fix 7 points. Therefore, the result holds by Proposition [3.](#page-5-1) \Box

Remark 2 In [\[12\]](#page-12-3), it is stated that *M*²⁴ has 43470 fixed-point-free involutions. The remaining involutions of M_{24} are 11,385 involutions fixing 8 points. Therefore, by Proposition [3,](#page-5-1) G_{24} has $43,470 \mathbb{Z}_2\mathbb{Z}_2[u]$ different structures with parameters $(0, 12)$ and $11,385$ with parameters $(8, 8)$. For the case of M_{23} , it has 3795 involutions, all of them fixing 7 points. Therefore, G_{23} has 3795 $\mathbb{Z}_2\mathbb{Z}_2[u]$ structures with parameters (7, 8).

 $6 \mathbb{Z}_2 \mathbb{Z}_2$ [*u*]-linear and $\mathbb{Z}_2 \mathbb{Z}_4$ -linear codes

In this section, we prove that any $\mathbb{Z}_2\mathbb{Z}_4$ -linear code with parameters (α, β) which is also \mathbb{Z}_2 -linear has a $\mathbb{Z}_2\mathbb{Z}_2[u]$ structure with the same parameters. It is not difficult to see this property using Theorem [2.](#page-6-1) However, we give here an independent proof in order to better clarify the relation between both classes of codes.

The following property was stated in [\[13](#page-12-4)] for vectors over \mathbb{Z}_4 . Its generalization for vectors over $\mathbb{Z}_2 \times \mathbb{Z}_4$ is easy and it was established in [\[11](#page-12-5)].

Lemma 4 *Let* **x**, $y \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ *. The following identity holds:*

 $\Phi(\mathbf{x}) + \Phi(\mathbf{y}) = \Phi(\mathbf{x} + \mathbf{y}) + \Phi(2(\mathbf{x} \star \mathbf{y})),$

where stands for the coordinate-wise product.

The next lemma [\[11\]](#page-12-5) is a direct consequence.

Lemma 5 If C is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, then its binary image $C = \Phi(C)$ is \mathbb{Z}_2 -linear if and *only if* $2(x \star y) \in C$ *, for all* $x, y \in C$ *.*

Define the map θ : $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta} \longrightarrow \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[u]^{\beta}$ such that, for every element $(x_1, \ldots, x_{\alpha})$ $y_1, \ldots, y_\beta \in \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta,$

$$
\theta(x_1,\ldots,x_\alpha\mid y_1,\ldots,y_\beta)=(x_1,\ldots,x_\alpha\mid \vartheta(y_1),\ldots,\vartheta(y_\beta)),
$$

where $\vartheta(0) = 0$; $\vartheta(1) = 1$; $\vartheta(2) = u$; $\vartheta(3) = 1 + u$. Note that $\theta = \Psi^{-1}\Phi$.

Theorem 5 If $C \subseteq \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code such that $\Phi(C)$ is \mathbb{Z}_2 -linear, then $\mathcal{C}' = \theta(\mathcal{C}) \subseteq \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_2[\bar{u}]^{\beta}$ *is a* $\mathbb{Z}_2\mathbb{Z}_2[u]$ *-additive code.*

Proof We use the characterization of Lemma [1](#page-2-0) to prove the statement.

First, given $\mathbf{x} \in \mathcal{C}$, we need to prove that $u\mathbf{x} \in \mathcal{C}$. Note that $u\mathbf{x} = \theta(2\theta^{-1}(\mathbf{x}))$ which is in *C* .

Next, we want to prove that $\mathbf{x} + \mathbf{y} \in \mathcal{C}'$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}'$. Clearly,

$$
\mathbf{x} + \mathbf{y} = \Psi^{-1} \left(\Psi(\mathbf{x}) + \Psi(\mathbf{y}) \right). \tag{1}
$$

By Lemma [4,](#page-9-1) we have

$$
\Psi(\mathbf{x}) + \Psi(\mathbf{y}) = \Phi\left(\Phi^{-1}\left(\Psi(\mathbf{x})\right) + \Phi^{-1}\left(\Psi(\mathbf{y})\right) + 2\left(\Phi^{-1}\left(\Psi(\mathbf{x})\right) \star \Phi^{-1}\left(\Psi(\mathbf{y})\right)\right)\right). \tag{2}
$$

Combining Eqs. (1) and (2) , we obtain

$$
\mathbf{x} + \mathbf{y} = \theta \left(\theta^{-1}(\mathbf{x}) + \theta^{-1}(\mathbf{y}) + 2(\theta^{-1}(\mathbf{x}) \star \theta^{-1}(\mathbf{y})) \right).
$$

Since Φ (*C*) is \mathbb{Z}_2 -linear, we have that $2(\theta^{-1}(\mathbf{x}) \star \theta^{-1}(\mathbf{y})) \in C$, by Lemma [5.](#page-9-4) It follows that $\mathbf{x} + \mathbf{y} \in \mathcal{C}'$. . In the contract of the contra
In the contract of the contrac \Box

The following corollary gives the minimum $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive code containing the image under the map θ of a fixed $\mathbb{Z}_2\mathbb{Z}_4$ -additive code.

Corollary 3 Let C be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code and let G be a generator matrix of C. Let ${u_i}_{i=1}^{\gamma}$ *be the rows of order two and* ${v_j}_{j=1}^{\delta}$ *the rows of order four in G. Then, the code* C' *generated by* $\{\theta(u_i)\}_{i=1}^{\gamma}$, $\{\theta(v_j), \theta(2v_j)\}_{j=1}^{\delta}$ *and* $\{\theta(2v_j * v_k)\}_{1 \leq j < k \leq \delta}$ *is the minimum* $\mathbb{Z}_2\mathbb{Z}_2[u]$ *-additive code containing* $\theta(\mathcal{C})$ *.*

Proof By [\[11](#page-12-5)], we have that the minimum \mathbb{Z}_2 -linear code containing $\Phi(\mathcal{C})$ is $\langle \Phi(\mathcal{C}) \rangle$ that is generated by ${\{\phi(u_i)\}}_{i=1}^{\gamma}, {\{\phi(v_j), \phi(2v_j)\}}_{j=1}^{\delta}$ and ${\{\phi(2v_j * v_k)\}}_{1 \leq j < k \leq \delta}$. Since $\theta = \Psi^{-1}\phi$, $\mathcal{C}' = \left\{\left\{\theta(u_i)\right\}_{i=1}^{\gamma}, \left\{\theta(v_j), \theta(2v_j)\right\}_{j=1}^{\delta}, \left\{\theta(2v_j * v_k)\right\}_{1 \leq j < k \leq \delta} \right\}$ is the minimum $\mathbb{Z}_2 \mathbb{Z}_2[u]$ additive code containing $\theta(C)$. Ч

Let *C* be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code and let $C' = \theta(C)$. We have that for all $\mathbf{x} \in C'$, $u\mathbf{x} =$ $\theta(\theta^{-1}(u\mathbf{x})) = \theta(2\theta^{-1}(\mathbf{x})) \in \mathcal{C}$ because $2\theta^{-1}(\mathbf{x}) \in \mathcal{C}$. Therefore, for any Z₂Z₄-additive code *C* and $C' = \theta(C)$ the first condition of Lemma [1](#page-2-0) is always satisfied. From the last theorem, if $\Phi(C)$ is \mathbb{Z}_2 -linear, then $\theta(C)$ is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive code. However, it is not true when $\Phi(C)$ is not \mathbb{Z}_2 -linear. Hence, the second condition of Lemma [1](#page-2-0) is satisfied for $C' = \theta(C)$ if and only if $\Phi(\mathcal{C})$ is \mathbb{Z}_2 -linear. The next example will show that the second condition is not satisfied in $C' = \theta(C)$ for a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code C whose image is not linear under the Gray map.

Example 4 Let C be a $\mathbb{Z}_2 \mathbb{Z}_4$ -additive code generated by

$$
\begin{pmatrix}\n1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1\n\end{pmatrix}.
$$

Note that $\Phi(\mathcal{C})$ is not \mathbb{Z}_2 -linear by Lemma [5](#page-9-4) due to the fact that $2(0, 0, 0 \mid 1, 0, 1, 0) \star (0, 0, 1 \mid$ $1, 0, 0, 1) = (0, 0, 0 \mid 2, 0, 0, 0)$ which is not in *C*.

Now, $\theta(0, 0, 0 \mid 1, 0, 1, 0) + \theta(0, 0, 1 \mid 1, 0, 0, 1) = (0, 0, 1 \mid 0, 0, 1, 1) \notin \mathcal{C}'$ because $\theta^{-1}(0, 0, 1 \mid 0, 0, 1, 1) = (0, 0, 1 \mid 0, 0, 1, 1) \notin \mathcal{C}$ $\theta^{-1}(0, 0, 1 \mid 0, 0, 1, 1) = (0, 0, 1 \mid 0, 0, 1, 1) \notin \mathcal{C}$ $\theta^{-1}(0, 0, 1 \mid 0, 0, 1, 1) = (0, 0, 1 \mid 0, 0, 1, 1) \notin \mathcal{C}$. Hence the second condition of Lemma 1 is not satisfied.

There are $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes which are not $\mathbb{Z}_2\mathbb{Z}_4$ -linear, as we can see in the following example.

Example 5 Let $D \subset \mathbb{Z}_2[u]^4$ be the code generated by $\mathbf{x} = (1, 1, 1, u)$ and $\mathbf{y} = (1, u, 1, 1)$. We can see that

$$
\theta\left(\theta^{-1}(\mathbf{x}) + \theta^{-1}(\mathbf{y})\right) = \theta(2, 3, 2, 3) = (u, 1 + u, u, 1 + u).
$$

It is easy to check that the equation $\lambda x + \mu y = (u, 1 + u, u, 1 + u)$ has no solution for $\lambda, \mu \in \mathbb{Z}_2[u]$. Therefore $\mathcal{C} = \theta^{-1}(\mathcal{D})$ is not a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code.

Remark [3](#page-5-1) Note that Proposition 3 and Theorem [2](#page-6-1) apply also to $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes but only in one direction. I.e., if *C* is a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code, then $Aut(C)$ has even order. But the converse is not true, in general. In the previous example, the code $D = \Psi(\mathcal{D})$ is $\mathbb{Z}_2 \mathbb{Z}_2[u]$ -linear and hence $Aut(D)$ is of even order, but *D* is not $\mathbb{Z}_2\mathbb{Z}_4$ -linear.

It is worth noting that if *C* is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code such that $\Phi(\mathcal{C})$ is \mathbb{Z}_2 -linear, it is not yet true that $\Phi(\mathcal{C}^{\perp}) = \Phi(\mathcal{C})^{\perp}$ as we can see in the next example.

Example 6 Let $C \subset \mathbb{Z}_4^3$ be the code generated by $\mathbf{x} = (1, 1, 1)$ and $\mathbf{y} = (0, 2, 3)$. It can be easily verified that $\Phi(C)$ is \mathbb{Z}_2 -linear. However, we have that $(1, 1, 2) \in C^{\perp}$, but $\Phi(1, 1, 2) =$ $(0, 1, 0, 1, 1, 1) \notin \Phi(\mathcal{C})^{\perp}.$

Therefore, we have that if *C* is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, whose binary image is \mathbb{Z}_2 -linear, and $C' = \theta(C)$, then $\Phi(C)$ and $\Phi(C^{\perp})$ are formally dual whereas $\Psi(C)$ and $\Psi(C^{\perp})$ are dual (Theorem [1\)](#page-4-1). The relations among these codes are illustrated in Fig. [1.](#page-11-7)

Fig. 1 Relations among $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes (whose binary images are \mathbb{Z}_2 -linear), $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive codes, their binary images and their duals

7 Conclusions

From Theorem [2,](#page-6-1) $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes form a wide class of \mathbb{Z}_2 -linear codes. Moreover, the equivalence between $\mathbb{Z}_2\mathbb{Z}_2[u]$ -duality and \mathbb{Z}_2 -duality (Theorem [1\)](#page-4-1), suggests that $\mathbb{Z}_2\mathbb{Z}_2[u]$ linear codes have no meaningful additional properties to those of \mathbb{Z}_2 -linear codes. However, the partition of the coordinate set into two subsets (the \mathbb{Z}_2 and the $\mathbb{Z}_2[u]$ coordinates) like in the case of $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes, open some possible lines of research. In particular, cyclic $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes are studied in [\[2,](#page-11-8)[16](#page-12-6)] as well as cyclic $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes were studied in [\[1,](#page-11-9)[4\]](#page-11-10).

Acknowledgements The authors thank Prof. Josep Rifà for valuable comments on automorphism groups of linear codes.

References

- 1. Abualrub T., Siap I., Aydin H.: Z2Z4-additive cyclic codes. IEEE Trans. Inf. Theory **60**, 1508–1514 (2014).
- 2. Abualrub T., Siap I., Aydogdu I.: $\mathbb{Z}_2(\mathbb{Z}_2 + u\mathbb{Z}_2)$ -linear cycliccodes. In: Proceedings of the International MultiConference ofEngineers and Computing Scientists. Vol. II (2014)
- 3. Aydogdu I., Abualrub T., Siap I.: On ^Z2Z2[*u*]-additive codes. Int. J. Comput. Math. **⁹²**, 1806–1814 (2015).
- 4. Borges J., Fernández-Córdoba C., Ten-Valls R.: $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inf. Theory **62**, 6348–6354 (2016).
- 5. Borges J., Fernández-Córdoba C., Pujol J., Rifà J., Villanueva M.: $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes: generator matrices and duality. Des. Codes Cryptogr. **54**, 167–179 (2010).
- 6. Borges J., Rifà J.: A characterization of 1-perfect additive codes. IEEE Trans. Inf. Theory **45**, 1688–1697 (1999).
- 7. Bosma W., Cannon J., Playoust C.: The MAGMA algebra system. I: the user language. J. Symb. Comput. **24**(3–4), 235265 (1997).
- 8. Conway J., Curtis R., Norton S., Parker R., Wilson R.: ATLAS of Finite Groups. Oxford University Press, Oxford (1985).
- 9. Delsarte P., Levenshtein V.: Asociation schemes and coding theory. IEEE Trans. Inf. Theory **44**, 2477– 2504 (1998).
- 10. Fernández-Córdoba C., Phelps K., Villanueva M.: Involutions in binary perfect codes. IEEE Trans. Inf. Theory **57**, 5926–5932 (2011).
- 11. Fernández-Córdoba C., Pujol J., Villanueva M.: Z₂Z₄-linear codes: rank and kernel. Des. Codes Cryptogr. **56**, 43–59 (2010).
- 12. Fraser R.E.J.: The involutions of the Mathieu groups. MA Thesis, University of British Columbia (1966).
- 13. Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The *Z*4-linearity of kerdock, preparata, goethals and related codes. IEEE Trans. Inf. Theory **40**, 301–319 (1994).
- 14. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).
- 15. Pujol J., Rifà J.: Translation-invariant propelinear codes. IEEE Trans. Inf. Theory **43**, 590–598 (1997).
- 16. Srinivasulu B., Bhaintwal M.: $\mathbb{Z}_2(\mathbb{Z}_2+u\mathbb{Z}_2)$ -additivecyclic codes and their duals. Discr. Math. Algorithms Appl. **8**, 19 (2016).