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Abstract We prove that the class of Z2Z2[u]-linear codes is exactly the class of Z2-linear
codes with automorphism group of even order. Using this characterization, we give examples
of known codes, e.g. perfect codes, which have a nontrivial Z2Z2[u] structure. Moreover, we
exhibit some examples of Z2-linear codes which are not Z2Z2[u]-linear. Also, we state that
the duality of Z2Z2[u]-linear codes is the same as the duality of Z2-linear codes. Finally, we
prove that the class of Z2Z4-linear codes which are also Z2-linear is strictly contained in the
class of Z2Z2[u]-linear codes.
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1 Introduction

A Z2Z4-linear code C is a binary image of a Z2Z4-additive code C that is an additive
subgroup of Zα

2 × Z
β
4 . We say that C (and also C) has parameters (α, β). Z2Z4-linear codes

were first introduced in [15] as abelian translation-invariant propelinear codes. Later, in [5],
a comprehensive description of Z2Z4-linear codes appeared. In [5], the duality of such codes
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was studied, an appropriate inner product was defined and it was stated that the Z2Z4-dual
code is not the same as the standard orthogonal code, that is, using the standard inner product
of binary vectors.

Recently, Z2Z2[u]-linear codes with parameters (α, β) have been introduced in [3]. They
are binary images ofZ2Z2[u]-additive codes, which are submodules of the ringZα

2 ×Z2[u]β ,
where u2 = 0. These codes have some similarities with Z2Z4-linear codes. However, there
is a key difference: every Z2Z2[u]-linear code is also Z2-linear, which is not true, in general,
for Z2Z4-linear codes. In this paper, when we refer to the parameters of a Z2Z2[u]-linear or
Z2Z4-linear code, we mean the values of (α, β).

The aim of this paper is to clarify the relation among all these classes. Specifically, we
prove that a Z2-linear code is Z2Z2[u]-linear if and only if its automorphism group has even
order. We also show that for a Z2Z2[u]-linear code, its Z2Z2[u]-dual code is exactly its
Z2-dual code, that is, its standard binary dual code. This, in turn, implies directly that the
dual weight distributions are related by the MacWilliams identity. This fact was proved in
[3]. By using these properties, we find Z2Z2[u] structures for all binary linear perfect codes.
In particular, for any binary linear perfect code C , we compute the possible values of α and
β such that C is a Z2Z2[u]-linear code with parameters (α, β). We also show that in the case
of a binary Hamming code, its extended code, its dual code (that is a simplex code) and the
dual of its extended code (that is a Hadamard code) are alsoZ2Z2[u]-linear codes. All binary
perfect codes are optimal codes since they have the maximum possible number of codewords
for their length and minimum distance. Therefore, we have a family of Z2Z2[u]-linear codes
that are optimal. Computationally, and considering the characterization of Z2Z2[u]-linear
codes given in this paper, a large number of the best known linear codes of length n and
dimension k in the database of Magma [7], CB(n, k), are also Z2Z2[u]-linear codes. We also
give some examples of codes CB(n, k) that are not Z2Z2[u]-linear codes.

If C is a Z2Z4-linear code with parameters (α, β) which is also Z2-linear, then we prove
that C has a Z2Z2[u] structure with the same parameters (α, β). In addition, we give an
example showing that there are Z2Z2[u]-linear codes which are not Z2Z4-linear.

The paper is organized as follows. In the next section, we give basic definitions and
concepts. In Sect. 3, we prove that for a given Z2Z2[u]-linear code C , its Z2Z2[u]-dual code
is exactly C⊥, i.e. the standard binary orthogonal code. In Sect. 4, we study the conditions
for a Z2-linear code to be Z2Z2[u]-linear. Moreover, we characterize Z2Z2[u]-linear codes
as Z2-linear codes with automorphism group of even order. In Sect. 5, we prove that all Z2-
linear perfect codes are Z2Z2[u]-linear with parameters (α, β), where β > 0. In addition,
we compute the possible values of α and β. In Sect. 6, we analyze the relation to Z2Z4-
linear codes. In particular, we prove that if C is Z2-linear and Z2Z4-linear with parameters
(α, β), then C is also a Z2Z2[u]-linear code with the same parameters (α, β). We note that
the converse statement is not true. Finally, in Sect. 7, we give some conclusions about the
meaningfulness of Z2Z2[u]-linear codes and we point out some possible further research on
the topic.

2 Preliminaries

Denote by Z2 and Z4 the rings of integers modulo 2 and modulo 4, respectively. A binary
code of length n is any non-empty subset C of Zn

2. If that subset is a vector space then we
say that it is a Z2-linear code (or binary linear code). Any non-empty subset C of Zn

4 is a
quaternary code of length n, and an additive subgroup of Zn

4 is called a quaternary linear
code. The elements of a code are called codewords.
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A characterization of Z2Z2[u]-linear codes 1379

For any binary code C , an automorphism of C is a coordinate permutation that leaves C
invariant. The automorphism group ofC , denoted Aut (C), is the group of all automorphisms
of C .

The classical Gray map φ : Z4 −→ Z
2
2 is defined by

φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0).

If a = (a1, . . . , am) ∈ Z
m
4 , then the Gray map of a is the coordinate-wise extended map

φ(a) = (φ(a1), . . . , φ(am)). We naturally extend the Gray map for vectors x = (x | x ′) ∈
Z

α
2 × Z

β
4 so that Φ(x) = (x | φ(x ′)).

Denote by wtH (x) the Hamming weight of x ∈ Z
α
2 and by wtL(x ′) the Lee weight of

x ′ ∈ Z
β
4 . For a vector x = (x | x ′) ∈ Z

α
2 × Z

β
4 , define the weight of x, denoted by wt (x), as

wtH (x) + wtL(x ′). Clearly, wt (x) = wtH (Φ(x)).

Definition 1 A Z2Z4-additive code C with parameters (α, β) is an additive subgroup of
Z

α
2 × Z

β
4 .

Such codes are extensively studied in [5]. Alternatively, we can define a Z2Z4-additive
code as a Z4-submodule of Zα

2 ×Z
β
4 , where the scalar product λx , for λ ∈ Z4, x ∈ Z

α
2 ×Z

β
4 ,

is defined as x + · · · + x, λ times (of course, if λ = 0, then λx = 0).
If C is a Z2Z4-additive code with parameters (α, β), then the binary image C = Φ(C)

is called a Z2Z4-linear code with parameters (α, β). Note that C is a binary code of length
n = α +2β but C is not Z2-linear, in general [5]. If α = 0, then C is called a Z4-linear code.
If β = 0, then C is simply a Z2-linear code.

The standard inner product in Zα
2 × Z

β
4 , defined in [5], can be written as

u · v = 2

(
α∑

i=1

uivi

)
+

β∑
j=1

u′
jv

′
j ∈ Z4,

where the computations are made taking the zeros and ones in the α binary coordinates as
quaternary zeros and ones, respectively. The dual code of a Z2Z4-additive code C is defined
in the standard way by

C⊥ = {v ∈ Z
α
2 × Z

β
4 | u · v = 0, for all u ∈ C}.

The Z2Z4-dual of C = Φ(C) is the code Φ(C⊥).
Consider the ring Z2[u] = Z2 + uZ2 = {0, 1, u, 1 + u}, where u2 = 0. Note that

(Z2[u],+) is group-isomorphic to the Klein group (Z2
2,+). With the product operation,

(Z2[u], ·) is monoid-isomorphic to (Z4, ·). Define the map π : Z2[u] −→ Z2, such that
π(0) = π(u) = 0 and π(1) = π(1 + u) = 1. Then, for λ ∈ Z2[u] and x = (x1, . . . , xα |
x ′
1, . . . , x

′
β) ∈ Z

α
2 × Z2[u]β , we can consider the scalar product

λx = (π(λ)x1, . . . , π(λ)xα | λx ′
1, . . . , λx

′
β) ∈ Z

α
2 × Z2[u]β .

With this operation, Zα
2 ×Z2[u]β is a Z2[u]-module. Note that, a Z2[u]-submodule of Zα

2 ×
Z2[u]β is not the same as a subgroup of Zα

2 × Z2[u]β .
Definition 2 ([3]) A Z2Z2[u]-additive code C with parameters (α, β) is a Z2[u]-submodule
of Zα

2 × Z2[u]β .
The following straightforward equivalence can be used as an alternative definition.
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1380 J. Borges, C. Fernández-Córdoba

Lemma 1 A code C ⊆ Z
α
2 × Z2[u]β is Z2Z2[u]-additive if and only if

uz ∈ C ∀z ∈ C, and

x + y ∈ C ∀x, y ∈ C.

As for Zα
2 ×Z

β
4 , we can also define a Gray-like map. Let ψ : Z2[u] −→ Z

2
2 be defined

as

ψ(0) = (0, 0), ψ(1) = (0, 1), ψ(u) = (1, 1), ψ(1 + u) = (1, 0).

If a = (a1, . . . , am) ∈ Z2[u]m , then the coordinate-wise extension of ψ is ψ(a) =
(ψ(a1), . . . , ψ(am)). Now, we define the Gray-like map for elements x = (x | x ′) ∈
Z

α
2 × Z2[u]β so that Ψ (x) = (x | ψ(x ′)).
The Lee weight of the elements 0, 1, u, 1+ u ∈ Z2[u] are 0, 1, 2, 1, respectively. Denote

by wtL(x ′) the Lee weight of x ′ ∈ Z2[u]β , which is the rational sum of the Lee weights of
the coordinates of x ′. For a vector x = (x | x ′) ∈ Z

α
2 × Z2[u]β , define the weight of x as

wt (x) = wtH (x) + wtL(x ′). Clearly, wt (x) = wtH (Ψ (x)).
If C is a Z2Z2[u]-additive code with parameters (α, β), then the binary image C = Ψ (C)

is called a Z2Z2[u]-linear code with parameters (α, β). Note that, unlike for Z2Z4-linear
codes, C is a Z2-linear code of length n = α + 2β. This fact is clear since for any pair of
elements x, y ∈ Z

α
2 × Z2[u]β , we have that Ψ (x) + Ψ (y) = Ψ (x + y).

The inner product in Zα
2 × Z2[u]β , defined in [3], can be written as

u · v = u

(
α∑

i=1

uivi

)
+

β∑
j=1

u′
jv

′
j ∈ Z2[u],

where the computations are made taking the zeros and ones in the α binary coordinates as
zeros and ones in Z2[u], respectively. The dual code of a Z2Z2[u]-additive code C is defined
in the standard way by

C⊥={v∈Zα
2 × Z2[u]β | u · v = 0, for all u ∈ C}.

The Z2Z2[u]-dual code of C = Ψ (C) is the code Ψ (C⊥).
The weight distributions of a binary linear code C and its dual C⊥ are related to each

other by the MacWilliams identity [14]. If C and D are two binary codes, not necessarily
linear, such that their weight enumerators are related by the MacWilliams identity, then we
say that C and D are formally dual.

If C is a Z2Z4-additive code, then the codes Φ(C) and Φ(C⊥) are not necessarily linear,
so they are not dual in the binary linear sense, in general. However, the weight enumerator
polynomial of Φ(C⊥) is the MacWilliams transform of the weight enumerator polynomial
of Φ(C) [9] and therefore they are formally dual. We will see in the following section that a
Z2Z2[u]-linear code Ψ (C) and its Z2Z2[u]-dual code Ψ (C⊥) are not only formally dual, as
it was proved in [3], but also dual in the binary usual sense, i.e. Ψ (C)⊥ = Ψ (C⊥).

3 Duality of Z2Z2[u]-linear codes

It is readily verified that if a, b ∈ Z2[u], then ψ(a) · ψ(b) = 1 if and only if ab ∈ {1, u}.
This property can be easily generalized for elements in Z2[u]β .
Lemma 2 If x ′, y′ ∈ Z2[u]β , then ψ(x ′) · ψ(y′) = 1 if and only if x ′ · y′ ∈ {1, u}.

123



A characterization of Z2Z2[u]-linear codes 1381

Proof We have that x ′ · y′ = ∑β
i=1 x

′
i y

′
i . Therefore, in order to calculate x

′ · y′ we can omit all
addends such that x ′

i y
′
i = 0 that also impliesψ(x ′

i ) ·ψ(y′
i ) = 0.Moreover, if x ′

i y
′
i = x ′

j y
′
j , for

some i �= j , then x ′
i y

′
i+x ′

j y
′
j = 0 and it is easy to check thatψ(x ′

i )·ψ(y′
i )+ψ(x ′

j )·ψ(y′
j ) = 0.

Hence, we can cancel pairs of addends that are equal in x · y. With these reductions, we have
that the set S of the remaining addends in x ′ · y′ is
(i) S = {1, u, 1 + u} or S = ∅, if x ′ · y′ = 0.
(ii) S = {1} or S={u, 1 + u}, if x ′ · y′ = 1.
(iii) S = {u} or S = {1, 1 + u}, if x ′ · y′ = u.
(iv) S = {1 + u} or S = {1, u}, if x ′ · y′ = 1 + u.

Since ψ(x ′
i ) · ψ(y′

i ) = 1 if and only if x ′
i y

′
i ∈ {1, u}, we only have to consider the elements

1 and u in each possible set S. Clearly, cases (i) and (iv) give ψ(x ′) · ψ(y′) = 0, whereas
cases (ii) and (iii) give ψ(x ′) · ψ(y′) = 1. 
�
Proposition 1 Let x, y ∈ Z

α
2 × Z2[u]β .

(i) If x · y = 0, then Ψ (x) · Ψ (y) = 0.
(ii) If x · y �= 0 and Ψ (x) · Ψ (y) = 0, then Ψ (x) · Ψ ((1 + u)y) = 1.

Proof Let x = (x | x ′) and y = (y | y′) be elements in Zα
2 ×Z2[u]β . We can write the inner

product of x and y as x · y = u(x · y) + (x ′ · y′).

(i) If x · y = 0, then either (a) x · y = x ′ · y′ = 0, or (b) x · y = 1 and x ′ · y′ = u.

(a) By Lemma 2, we have that ψ(x ′) · ψ(y′) = 0 and hence Ψ (x) · Ψ (y) = 0.
(b) Again, by Lemma 2, we obtain ψ(x ′) · ψ(y′) = 1 and then Ψ (x) · Ψ (y) = 0.

(ii) If x · y �= 0, then either (a) x · y = 0 and x ′ · y′ �= 0, or (b) x · y = 1 and x ′ · y′ �= u.

(a) In this case x ′ · y′ ∈ {1, u, 1 + u}. Since x · y = 0 and Ψ (x) · Ψ (y) = 0, we
have that ψ(x ′) · ψ(y′) = 0 and hence, by Lemma 2, the only possible case is that
x ′ · y′ = 1+ u. Therefore, x ′ · ((1+ u)y′) = 1 and ψ(x ′) · ψ((1+ u)y′) = 1, again
by Lemma 2. Thus, Ψ (x) · Ψ ((1 + u)y) = 1.

(b) We have x ′ · y′ ∈ {0, 1, 1 + u}. Since x · y = 1 and Ψ (x) · Ψ (y) = 0, we obtain
ψ(x ′) · ψ(y′) = 1. By Lemma 2, the only possibility is x ′ · y′ = 1. Hence, x ′ · ((1+
u)y′) = 1+ u and ψ(x ′) · ψ((1+ u)y′) = 0. We conclude Ψ (x) · Ψ ((1+ u)y) = 1.


�
Theorem 1 Let C be a Z2Z2[u]-additive code and let C = Ψ (C) be the corresponding
binary Z2Z2[u]-linear code. Then, Ψ (C⊥) = C⊥.

Proof If x ∈ C⊥, then x · c = 0, for all c ∈ C. Hence, by Proposition 1(i), we have that
Ψ (x) · Ψ (c) = 0, for all c ∈ C, implying that Ψ (x) ∈ C⊥. We have proved Ψ (C⊥) ⊆ C⊥.

If x /∈ C⊥, then x · c �= 0, for some c ∈ C. Now, by Proposition 1(ii), we have that
Ψ (x) · Ψ (c) �= 0 or Ψ (x) · Ψ ((1 + u)c) �= 0. It follows that Ψ (x) /∈ C⊥ and therefore
C⊥ ⊆ Ψ (C⊥). 
�

Let C be a Z2Z2[u]-additive code. Then, the following diagram commutes:

C Ψ−−−−→ C

⊥
⏐⏐� ⊥

⏐⏐�
C⊥ Ψ−−−−→ C⊥
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1382 J. Borges, C. Fernández-Córdoba

Obviously, this immediately implies that the weight distributions of C and C⊥ are related
by the MacWilliams relations, as it was proved in [3].

To finish this section, we prove that the dual of a Z2Z2[u]-linear code is also Z2Z2[u]-
linear with the same parameters (α, β).

Proposition 2 A binary code C is Z2Z2[u]-linear with parameters (α, β) if and only if C⊥
is Z2Z2[u]-linear with the same parameters (α, β).

Proof Assume that C is a Z2Z2[u]-linear code with parameters (α, β). Let C⊥ = Ψ −1(C⊥).
By linearity of C⊥ and Lemma 1, we only need to proof that uΨ −1(c) ∈ C⊥, for all c ∈ C⊥.
For any codeword x ∈ C, we have (

uΨ −1(c)
) ·x = u

(
Ψ −1(c) · x

) = u0 = 0, which implies
uΨ −1(c) ∈ C⊥. The converse follows from the fact that (C⊥)⊥ = C . 
�

4 Characterization of Z2Z2[u]-linear codes

Given a Z2-linear code C of length n, a natural question is if we can choose a set of β pairs
of coordinates such that C is a Z2Z2[u]-linear code with parameters (n − 2β, β). The next
lemma and corollary show us that it is enough to answer the question for a generator matrix
of C .

Lemma 3 Let S = {x1, . . . , xr } ⊂ Z
α
2 × Z2[u]β and let C be the Z2-linear code generated

by the binary image vectors of S, C = 〈Ψ (S)〉. Then, C is a Z2Z2[u]-linear code with
parameters (α, β) if and only if Ψ (uxi ) ∈ C, for all i ∈ {1, . . . , r}.
Proof Let C = Ψ −1(C) ⊂ Z

α
2 × Z2[u]β . Then, C is Z2Z2[u]-linear if and only if C is

Z2Z2[u]-additive. Clearly, for all x, y ∈ C, Ψ (x + y) = Ψ (x) + Ψ (y) ∈ C and hence
x + y ∈ C. Therefore, applying Lemma 1, we have that C is a Z2Z2[u]-additive code if and
only ux ∈ C, for all x ∈ C. For x ∈ C, we have thatΨ (x) = ∑r

i=1 λiΨ (xi ) = Ψ (
∑r

i=1 λixi ),
for some λ1, . . . , λr ∈ Z2. Thus x = ∑r

i=1 λixi and ux = ∑r
i=1 λi uxi . Hence, ux ∈ C, for

all x ∈ C, if and only if uxi ∈ C, for all i = 1, . . . , r . 
�
Corollary 1 Let C be a Z2-linear code of length n = α + 2β, for some α ≥ 0 and β > 0.
Let

G =
⎛
⎜⎝

v1
...

vr

⎞
⎟⎠

be a generator matrix of C. Then, C is a Z2Z2[u]-linear code with parameters (α, β) if and
only if Ψ

(
uΨ −1(vi )

) ∈ C for all i = 1, . . . , r .

Now, we give a necessary and sufficient condition for a Z2-linear code to be Z2Z2[u]-
linear.

Proposition 3 Let C be a Z2-linear code. Then, C is permutation-equivalent to a Z2Z2[u]-
linear code with parameters (α, β), where β > 0, if and only if there exists an involution
σ ∈ Aut (C) fixing α coordinates.

Proof Assume that C is a Z2Z2[u]-linear code with β > 0 and let C = Ψ −1(C). For
any codeword x = (x1, . . . , xα | x ′

1, . . . , x
′
β) ∈ C, we write its binary image as x =
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A characterization of Z2Z2[u]-linear codes 1383

(x1, . . . , xα | y1, . . . , y2β), where ψ(x ′
i ) = (y2i−1, y2i ), for i = 1, . . . , β. Let σ be the

involution that transposes y2i−1 and y2i , for all i = 1, . . . , β. Clearly, Ψ ((1 + u)x) = σ(x).
Since (1 + u)x ∈ C, we have that σ ∈ Aut (C).

Conversely, if σ ∈ Aut (C) has order 2, then σ is a product of disjoint transpositions. We
can assume that theα coordinates fixed by σ are the first ones, and the pairs of coordinates that
σ transposes are consecutive. Then, considering the pairs of coordinates that σ transposes
as the images of Z2[u] coordinates, we obtain that σ(x) = Ψ

(
(1 + u)Ψ −1(x)

)
, for any

codeword x ∈ C . Since σ(x) ∈ C , we have that (1 + u)x ∈ C = Ψ −1(C), for any x ∈ C.
But this condition implies that C is a Z2Z2[u]-additive code since (1 + u)x = x + ux and
thus ux ∈ C. For all x, y ∈ C, Ψ (x + y) = Ψ (x) + Ψ (y) ∈ C and hence x + y ∈ C. Then,
the result follows applying Lemma 1. 
�
Theorem 2 A Z2-linear code C is Z2Z2[u]-linear with parameters (α, β), where β > 0, if
and only if Aut (C) has even order.

Proof FromSylow theorems, the group Aut (C) has even order if and only if Aut (C) contains
an involution. The statement then follows by Proposition 3. 
�
Remark 1 Note that for different involutions in Aut (C), we have differentZ2Z2[u] structures
and, possibly, with different parameters. Moreover, according to Proposition 3, for each
σi ∈ Aut (C) fixing αi coordinates, we have a Z2Z2[u] structure of C with parameters
(αi , βi ), where αi + 2βi is the length of C .

Example 1 Consider the code C with generator matrix⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0
1 0 0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

As it is pointed out in [14, Problem (32), p. 230], Aut (C) is trivial, i.e. it only contains the
identity permutation. Therefore, C is not Z2Z2[u]-linear for β > 0.

It is natural to ask if there are interesting linear codes which are not Z2Z2[u]-linear
codes and whether the automorphism group is always trivial or not in these cases. Denote
by CB(n, k) the best known linear code of length n and dimension k in the database of
Magma [7]. The automorphism group of these codes can be obtained using Magma software
and a large number of linear codes have automorphism group of even order and, therefore,
they are Z2Z2[u]-linear. However, several best known linear codes have been found with
automorphism group of odd order. We have obtained some linear codes with trivial automor-
phism group, for example, CB(20, 10), CB(32, 12), CB(135, 38), etc., and also other codes
with nontrivial and odd order automorphism group, for example, CB(78, 8), CB(81, 20),
CB(128, 14) or CB(89, 11) with automorphism groups of order 3, 27, 889 and 979, respec-
tively.

In the next section we see several examples of well-known codes with aZ2Z2[u] structure.

5 Z2Z2[u]-linear perfect codes

A binary repetition code C = {(0, . . . , 0), (1, . . . , 1)} of odd length n is a trivial perfect
code. Its dual code is the even code which contains all vectors of length n and even weight
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1384 J. Borges, C. Fernández-Córdoba

(i.e. with an even number of nonzero coordinates). Clearly, these codes can be considered as
Z2Z2[u]-linear codes with parameters (n − 2β, β), for all β ∈ {0, . . . , (n − 1)/2}.

It is well known that the binary linear perfect codes with more than two codewords are:

(1) The binary Hamming 1-perfect codes of length n = 2t − 1 (t ≥ 3), dimension k =
2t − t − 1 and minimum distance d = 3.

(2) The binary Golay 3-perfect code of length n = 23, dimension k = 12 and minimum
distance d = 7.

In this section we prove that all binary linear perfect codes are Z2Z2[u]-linear codes.
Let Ht be a Hamming code of length n = 2t −1, where t ≥ 3. The dual code H⊥

t is known
as the simplex code. It is a constant-weight code with all nonzero codewords of weight 2t−1.
A parity-check matrix Mt for Ht (which is a generator matrix for H⊥

t ) contains all nonzero
column vectors of length t .

Theorem 3 Let Ht be a Hamming code of length n = 2t − 1. Then, Ht is a Z2Z2[u]-linear
code with parameters (2r − 1, 2t−1 − 2r−1), for all r such that t/2 ≤ r ≤ t .

Proof The case r = t corresponds to the trivial case (α, β)=(n, 0). In [10], it is shown that
Aut (Ht ) contains involutions fixing 2r − 1 points for t/2 ≤ r ≤ t . Thus, the statement
follows by Proposition 3. 
�
Example 2 A parity-check matrix for H3 is

M3 =
⎛
⎝ 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞
⎠ .

We can take the pairs of coordinates (4, 5) and (6, 7) as Z2[u] coordinates and consider
the Z2Z2[u]-additive code C generated by

G3 =
⎛
⎝ 0 0 0 u u
0 1 1 0 u
1 0 1 1 1

⎞
⎠ .

Note that multiplying any row in G3 by u we obtain a vector inΨ −1(H⊥
3 ). By Corollary 1

and Proposition 2, H3 is a Z2Z2[u]-linear code with parameters (3, 2). We remark that H3 is
also aZ2Z4-linear code with the same parameters but, according to [6], Ht is notZ2Z4-linear
for β > 0 and t > 3.

Example 3 Consider the parity-check matrix for H4

M4 =

⎛
⎜⎜⎝
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 0 0 0 1 1 1 1

⎞
⎟⎟⎠ .

Again, we can take the pairs of coordinates (8, 9), (10, 11), (12, 13) and (14, 15) asZ2[u]
coordinates. Let C be the Z2Z2[u]-additive code generated by

G4 =

⎛
⎜⎜⎝
0 0 0 0 0 0 0 u u u u
0 0 0 1 1 1 1 0 u 0 u
0 1 1 0 0 1 1 1 1 1 1
1 0 1 0 1 0 1 0 0 u u

⎞
⎟⎟⎠ .
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Multiplying any row in G4 by u we obtain a vector in Ψ −1(H⊥
4 ). By Corollary 1 and

Proposition 2, H4 is a Z2Z2[u]-linear code with parameters (7, 4). Note that, taking the
same pairs of coordinates as quaternary coordinates, it is also true that H⊥

4 is a Z2Z4-
linear code, but the Z2Z4-dual code is not a Hamming code. For example, the vector v =
(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) is not orthogonal to the third row of M4. However, v
is in the Z2Z4-dual of H⊥

4 .
After a permutation of columns, the matrix M4 can be written as⎛

⎜⎜⎝
1 1 0 0 1 0 1 1 1 1 0 0 1 0 0
0 1 1 0 0 0 1 0 1 1 1 1 0 0 1
1 1 0 1 0 1 0 1 1 0 1 1 0 0 0
1 0 1 0 0 1 0 0 1 1 1 0 1 1 0

⎞
⎟⎟⎠ .

Now, taking the pairs of coordinates (i, i + 1) for i = 4, . . . , 14 as Z2[u] coordinates, we
also have that H⊥

4 is the binary image of the code generated by⎛
⎜⎜⎝
1 1 0 1 1 u 1 + u 1 0
0 1 1 0 1 1 u 1 + u 1
1 1 0 1 + u 1 + u u 1 1 + u 0
1 0 1 0 1 + u 1 u 1 1 + u

⎞
⎟⎟⎠ .

Therefore, H4 is also a Z2Z2[u]-linear code with parameters (3, 6).

Corollary 2 Let t ≥ 3. The extended Hamming code H ′
t , the dual of a Hamming code H⊥

t
(simplex code), and the dual of an extended Hamming code (H ′

t )
⊥ (linear Hadamard code)

are Z2Z2[u]-linear codes with parameters (2r , 2t−1 − 2r−1), (2r − 1, 2t−1 − 2r−1), and
(2r , 2t−1 − 2r−1), respectively, for all r such that t/2 ≤ r ≤ t .

Proof On the one hand, extending a Z2Z2[u]-linear code with parameters (α, β) trivially
results in a Z2Z2[u]-linear code with parameters (α + 1, β). Thus, by Theorem 3, H ′

t is a
Z2Z2[u]-linear code with parameters (2r , 2t−1 − 2r−1).

On the other hand, by Proposition 2, the dual code has the same parameters. Therefore, H⊥
t

is aZ2Z2[u]-linear code with parameters (2r −1, 2t−1−2r−1) and (H ′
t )

⊥ is aZ2Z2[u]-linear
code with parameters (2r , 2t−1 − 2r−1). 
�
Theorem 4 The binary Golay code G23 and the extended binary Golay code G24 are
Z2Z2[u]-linear codes with parameters (α, β). For β > 0, the parameters are:

(i) (0, 12) or (8, 8), for G24.
(ii) (7, 8), for G23.

Proof It is well known that the automorphism groups of G23 and G24 are the Mathieu
groups M23 and M24, respectively [14]. According to [8], the number of fixed points by the
involutions of M24 is 0 or 8. For M23 we have that all involutions fix 7 points. Therefore, the
result holds by Proposition 3. 
�
Remark 2 In [12], it is stated that M24 has 43470 fixed-point-free involutions. The remaining
involutions of M24 are 11,385 involutions fixing 8 points. Therefore, by Proposition 3, G24

has 43,470 Z2Z2[u] different structures with parameters (0, 12) and 11,385 with parameters
(8, 8). For the case of M23, it has 3795 involutions, all of them fixing 7 points. Therefore,
G23 has 3795 Z2Z2[u] structures with parameters (7, 8).
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6 Z2Z2[u]-linear and Z2Z4-linear codes

In this section, we prove that any Z2Z4-linear code with parameters (α, β) which is also
Z2-linear has a Z2Z2[u] structure with the same parameters. It is not difficult to see this
property using Theorem 2. However, we give here an independent proof in order to better
clarify the relation between both classes of codes.

The following propertywas stated in [13] for vectors overZ4. Its generalization for vectors
over Z2 × Z4 is easy and it was established in [11].

Lemma 4 Let x, y ∈ Z
α
2 × Z

β
4 . The following identity holds:

Φ(x) + Φ(y) = Φ(x + y) + Φ (2(x � y)) ,

where � stands for the coordinate-wise product.

The next lemma [11] is a direct consequence.

Lemma 5 If C is a Z2Z4-additive code, then its binary image C = Φ(C) is Z2-linear if and
only if 2(x � y) ∈ C, for all x, y ∈ C.

Define themap θ : Z
α
2 ×Z

β
4 −→ Z

α
2 ×Z2[u]β such that, for every element (x1, . . . , xα |

y1, . . . , yβ) ∈ Z
α
2 × Z

β
4 ,

θ(x1, . . . , xα | y1, . . . , yβ) = (x1, . . . , xα | ϑ(y1), . . . , ϑ(yβ)),

where ϑ(0) = 0; ϑ(1) = 1; ϑ(2) = u; ϑ(3) = 1 + u. Note that θ = Ψ −1Φ.

Theorem 5 If C ⊆ Z
α
2 × Z

β
4 is a Z2Z4-additive code such that Φ(C) is Z2-linear, then

C′ = θ(C) ⊆ Z
α
2 × Z2[u]β is a Z2Z2[u]-additive code.

Proof We use the characterization of Lemma 1 to prove the statement.
First, given x ∈ C′, we need to prove that ux ∈ C′. Note that ux = θ(2θ−1(x)) which is

in C′.
Next, we want to prove that x + y ∈ C′, for all x, y ∈ C′. Clearly,

x + y = Ψ −1 (Ψ (x) + Ψ (y)) . (1)

By Lemma 4, we have

Ψ (x) + Ψ (y) = Φ
(
Φ−1 (Ψ (x)) + Φ−1 (Ψ (y)) + 2

(
Φ−1 (Ψ (x)) � Φ−1 (Ψ (y))

))
. (2)

Combining Eqs. (1) and (2), we obtain

x + y = θ
(
θ−1(x) + θ−1(y) + 2(θ−1(x) � θ−1(y))

)
.

Since Φ(C) is Z2-linear, we have that 2
(
θ−1(x) � θ−1(y)

) ∈ C, by Lemma 5. It follows that
x + y ∈ C′. 
�

The following corollary gives the minimum Z2Z2[u]-additive code containing the image
under the map θ of a fixed Z2Z4-additive code.

Corollary 3 Let C be a Z2Z4-additive code and let G be a generator matrix of C. Let
{ui }γi=1 be the rows of order two and {v j }δj=1 the rows of order four in G. Then, the code

C′ generated by {θ(ui )}γi=1, {θ(v j ), θ(2v j )}δj=1 and {θ(2v j ∗ vk)}1≤ j<k≤δ is the minimum
Z2Z2[u]-additive code containing θ(C).
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Proof By [11], we have that the minimum Z2-linear code containing Φ(C) is 〈Φ(C)〉 that is
generated by {Φ(ui )}γi=1, {Φ(v j ),Φ(2v j )}δj=1 and {Φ(2v j ∗vk)}1≤ j<k≤δ . Since θ = Ψ −1Φ,

C′ = 〈{θ(ui )}γi=1, {θ(v j ), θ(2v j )}δj=1, {θ(2v j ∗ vk)}1≤ j<k≤δ〉 is the minimum Z2Z2[u]-
additive code containing θ(C). 
�

Let C be a Z2Z4-additive code and let C′ = θ(C). We have that for all x ∈ C′, ux =
θ(θ−1(ux)) = θ(2θ−1(x)) ∈ C because 2θ−1(x) ∈ C. Therefore, for any Z2Z4-additive
code C and C′ = θ(C) the first condition of Lemma 1 is always satisfied. From the last
theorem, if Φ(C) is Z2-linear, then θ(C) is a Z2Z2[u]-additive code. However, it is not true
whenΦ(C) is notZ2-linear.Hence, the second condition ofLemma1 is satisfied forC′ = θ(C)

if and only if Φ(C) is Z2-linear. The next example will show that the second condition is not
satisfied in C′ = θ(C) for a Z2Z4-additive code C whose image is not linear under the Gray
map.

Example 4 Let C be a Z2Z4-additive code generated by⎛
⎜⎜⎝
1 0 1 0 0 0 0
0 1 1 0 2 0 0
0 0 0 1 0 1 0
0 0 1 1 0 0 1

⎞
⎟⎟⎠ .

Note thatΦ(C) is notZ2-linear byLemma5 due to the fact that 2(0, 0, 0 | 1, 0, 1, 0)�(0, 0, 1 |
1, 0, 0, 1) = (0, 0, 0 | 2, 0, 0, 0) which is not in C.

Now, θ(0, 0, 0 | 1, 0, 1, 0) + θ(0, 0, 1 | 1, 0, 0, 1) = (0, 0, 1 | 0, 0, 1, 1) /∈ C′ because
θ−1(0, 0, 1 | 0, 0, 1, 1) = (0, 0, 1 | 0, 0, 1, 1) /∈ C. Hence the second condition of Lemma 1
is not satisfied.

There are Z2Z2[u]-linear codes which are not Z2Z4-linear, as we can see in the following
example.

Example 5 Let D ⊂ Z2[u]4 be the code generated by x = (1, 1, 1, u) and y = (1, u, 1, 1).
We can see that

θ
(
θ−1(x) + θ−1(y)

) = θ(2, 3, 2, 3) = (u, 1 + u, u, 1 + u).

It is easy to check that the equation λx + μy = (u, 1 + u, u, 1 + u) has no solution for
λ,μ ∈ Z2[u]. Therefore C = θ−1(D) is not a Z2Z4-additive code.

Remark 3 Note that Proposition 3 and Theorem 2 apply also toZ2Z4-linear codes but only in
one direction. I.e., if C is a Z2Z4-linear code, then Aut (C) has even order. But the converse
is not true, in general. In the previous example, the code D = Ψ (D) is Z2Z2[u]-linear and
hence Aut (D) is of even order, but D is not Z2Z4-linear.

It is worth noting that if C is a Z2Z4-additive code such that Φ(C) is Z2-linear, it is not
yet true that Φ(C⊥) = Φ(C)⊥ as we can see in the next example.

Example 6 Let C ⊂ Z
3
4 be the code generated by x = (1, 1, 1) and y = (0, 2, 3). It can be

easily verified thatΦ(C) isZ2-linear. However, we have that (1, 1, 2) ∈ C⊥, butΦ(1, 1, 2) =
(0, 1, 0, 1, 1, 1) /∈ Φ(C)⊥.

Therefore, we have that if C is a Z2Z4-additive code, whose binary image is Z2-linear,
and C′ = θ(C), then Φ(C) and Φ(C⊥) are formally dual whereas Ψ (C) and Ψ (C⊥) are dual
(Theorem 1). The relations among these codes are illustrated in Fig. 1.
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Fig. 1 Relations among Z2Z4-additive codes (whose binary images are Z2-linear), Z2Z2[u]-additive codes,
their binary images and their duals

7 Conclusions

From Theorem 2, Z2Z4-linear codes form a wide class of Z2-linear codes. Moreover, the
equivalence between Z2Z2[u]-duality and Z2-duality (Theorem 1), suggests that Z2Z2[u]-
linear codes have no meaningful additional properties to those of Z2-linear codes. However,
the partition of the coordinate set into two subsets (the Z2 and the Z2[u] coordinates) like
in the case of Z2Z4-linear codes, open some possible lines of research. In particular, cyclic
Z2Z2[u]-linear codes are studied in [2,16] as well as cyclic Z2Z4-linear codes were studied
in [1,4].

Acknowledgements The authors thank Prof. Josep Rifà for valuable comments on automorphism groups of
linear codes.
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