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Abstract Let M(n, d) be the maximum size of a permutation array on n symbols with
pairwiseHamming distance at least d .We use various combinatorial, algebraic, and computa-
tional methods to improve lower bounds for M(n, d). We compute the Hamming distances of
affine semilinear groups and projective semilinear groups, and unions of cosets of AGL(1, q)

and PGL(2, q) with Frobenius maps to obtain new, improved lower bounds for M(n, d).
We give new randomized algorithms. We give better lower bounds for M(n, d) also using
new theorems concerning the contraction operation. For example, we prove a quadratic lower
bound for M(n, n − 2) for all n ≡ 2 (mod 3) such that n + 1 is a prime power.
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1 Introduction

Two permutations π and σ on n symbols have Hamming distance hd(π, σ ) = d if, for
exactly d distinct elements x , π(x) �= σ(x). The Hamming distance of a permutation array
A (PA), denoted by hd(A), is the minimum hd(π, σ ) for all permutations π �= σ in A.
Arrays of permutations on n symbols and with Hamming distance at least d between any two
permutations in the array have been used for error correcting codes in communication over
very noisy power line channels [13,19]. For positive integers n and d , with d ≤ n, denote by
M(n, d) the maximum size of such an array. Constructing maximum size permutation arrays
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is difficult and, except for special cases of n and d , work has generally been limited to finding
good upper and lower bounds. It is known that sharply k-transitive groups G of permutations
on n symbols form a maximum size permutation array for pairwise Hamming distance d =
n−k+1 [10]. Except for the exceptional case, i.e. 4- and 5-transitiveMathieu groups [4,7,8],
sharply k-transitive permutation groups on n symbols are only known for k = 2 and k = 3 and
for n a power of a prime and onemore than a power of a prime, respectively, [18]. Furthermore,
it is known that sharply k-transitive groups do not exist otherwise. Combinatorial arguments
[5,11,24] are known, which give upper and lower bounds for M(n, d), for all n and d . There
are also computational approaches that have been used to construct good permutation arrays
for small values of n. Due to the growth rate of n!, computational approaches are limited
to small values of n. The use of automorphism groups enables one to factor the set of all
permutations into a smaller space and hence extend the range of computational processes
[5,14,21]. It is also known that M(n, n − 1) ≥ kn, where k is the number of mutually
orthogonal latin squares (MOLS) of order n [6], which means computing large collections of
MOLS is related to searching for large permutation arrays. Other techniques that have been
used include permutation polynomials [5], and special groups, such as the Mathieu groups
M22, M23 and M24 [4].

Let n be a positive integer and Zn = {0, 1, 2, . . . , n−1}. Let Sn be the symmetric group on
Zn with composition defined by (πσ)(i) = σ(π(i)). IfG is a group, thenGσ = {gσ | g ∈ G}
and σG = {σg | g ∈ G} are called a right coset of G and a left coset of G, respectively, with
the representative σ [12].

Our results, giving infinitely many improved lower bounds are obtained by describing col-
lections of cosets of groups. For example, we use the affine general linear groups AGL(1, n)

and the projective general groups PGL(2, n) (for prime powers n) that are sharply t-transitive
for t = 2 and t = 3, respectively. It is well known that, every sharply t-transitive per-
mutation group in Sn has Hamming distance n − t + 1 [3,5,10]. We show that groups
A�L(1, n = pk) and P�L(2, n = pk), where p is prime, obtained from AGL(1, n) and
PGL(2, n) by adding k Frobenius endomorphisms, both have pairwise Hamming distance
n − pk

∗
, where k∗ denotes the largest proper1 factor of k. For example, A�L(1, n = 2k),

when k is prime, consists of kn(n−1) permutations on n symbols and has pairwise Hamming
distance 2k − 2, so M(n, n − 2) ≥ kn(n − 1), P�L(2, n = 2k), when k is prime, consists
of k(n + 1)n(n − 1) permutations on n + 1 symbols and has pairwise Hamming distance
2k − 2, so M(n + 1, n − 2) ≥ k(n + 1)n(n − 1). We also show that the groups AGL(1, n)

and PGL(2, n), where n = pk , together with the coset defined by the single Frobenius
endomorphism f (x) = x p , has pairwise Hamming distance n − p.

Using a coset technique and computations involving random choices, we give several
improved lower bounds for M(n, d), For example, we show that M(13, 5) ≥ 6, 639, 048
and M(14, 5) ≥ 58, 227, 624, which improve previous lower bounds.

2 New theoretical bounds

In this section we use group-theoretic techniques to obtain lower bounds on the sizes of
permutation arrays with relatively large Hamming distance. First we consider permutation
arrays obtained from semilinear groups over finite fields. Then we investigate a general
procedure of modifying permutation arrays called contraction, and prove sharp Hamming
distance bounds which involve the cycle structure of permutations in the permutation array.

1 A factor of k is proper if it is smaller than k.
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Constructing permutation arrays from groups 1097

Let Fn be a field of order n. Then n = pk , where p is a prime number throughout the
remainder of the paper. A polynomial f (x) ∈ Fn[x] is called a permutation polynomial if it
is injective. In this case, f permutes the elements of Fn .

We consider the affine general semilinear group A�L(1, n) and the projective general
semilinear group P�L(2, n). These groups are described in the appendix. It is well known
that, for any permutations τ, σ, ρ ∈ Sn , hd(στ, σρ) = hd(τ, ρ).

The following lemma shows that computing the Hamming distance of a group G does
not require computing the Hamming distance between all the pairs of element in G. It shows
that the computation time is O(|G|) rather than O(|G|2). For PA’s A and B, hd(A, B) =
min{hd(α, β) | α ∈ A, β ∈ B}. If A consists of one permutation α we use hd(α, B) =
hd(A, B).

Lemma 1 Let G be a group of permutations G ⊆ Sn with |G| > 1. The Hamming distance
of G, i.e. hd(G), equals hd(e,G \ {e}), where e is the identity permutation.
Proof Pick any two distinct permutations a, b ∈ G. Then, hd(a, b) = hd(e, a−1b). Since
a−1b is in G and is not the identity, the result follows. 	

Lemma 2 Let G and H be subgroups of Sn, such that G = ∪0≤i≤r ai H, for some r > 0,
where a0 = e. Then,

hd(G) = min({hd(ai , H) | 0 < i ≤ r}, hd(e, H \ {e})).
Proof Observe that, since G = ∪0≤i≤r ai H , then G = ∪0≤i≤r Ha−1

i . Indeed, if g ∈ G, then
g = ai h for some 0 ≤ i ≤ r and h ∈ H . Then g−1 ∈ G and g−1 = h−1a−1

i ∈ Ha−1
i . So,

hd(G) = min({hd(e, ai H) | 0 < i ≤ r}, hd(e, H \ {e}))
= min({hd(e, Ha−1

i ) | 0 < i ≤ r}, hd(e, H \ {e}))
= min({hd(ai , H) | 0 < i ≤ r}, hd(e, H \ {e})).

	

Theorem 1 The Hamming distance of A�L(1, n) is n − pk

∗
, where n = pk and k∗ denotes

the largest proper factor of k.

Before we give a proof of Theorem 1, we show some of its applications. Since A�L(1, n)

contains kn(n − 1) elements, we conclude the following.

Corollary 1 Let n = pk and let k∗ be the largest proper factor of k ≥ 1. Then M(n, n −
pk

∗
) ≥ kn(n − 1). In particular,

M(n, n − 2) ≥ kn(n − 1), n = 2k,

where k is prime. For example, M(2048, 2046) ≥ 11 · 2048 · 2047 = 46114816.

Corollary 2 Let n = pk for any k ≥ 1. Let s be the smallest prime factor of k. Then
M(n, n − p) ≥ s · n(n − 1). For example,

M(16, 14) ≥ 2 · 16 · 15 = 480

M(64, 62) ≥ 2 · 64 · 63 = 8064

M(81, 78) ≥ 2 · 81 · 80 = 12960

M(256, 254) ≥ 2 · 256 · 255 = 130560

M(512, 510) ≥ 3 · 512 · 511 = 784896.
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1098 S. Bereg et al.

Using the following lemma, one can compute the Hamming distance simply by counting
roots of polynomials.

For any polynomial f with coefficients over a finite field Fn , let r( f ) denote the number
of roots of f in Fn . If f and g are polynomials2 that define permutations on Fn , then the
Hamming distance between the permutations f and g is equal to n minus the number of roots
in the polynomial f − g, i.e. hd( f, g) = n − r( f − g). This is easily seen by observing that
f (x) = g(x) is equivalent to f (x) − g(x) = 0; in other words, x is a root of the polynomial
f − g.

Lemma 3 For any distinct polynomials f, g ∈ Fn[x] we have
hd( f, g) = n − r( f − g).

The number of roots of polynomials of AGL(1, n) and Frobenius mappings is well known
but we give a proof for completeness.

Proof of Theorem 1 Let H = AGL(1, n). Since A�L(1, n) = ∪0≤i<k x pi H and hd(H) =
n − 1, by Lemma 2 it suffices to prove hd(x pi , H) ≥ n − pk

∗
for all 1 ≤ i < k. By Lemma

3, it suffices to prove r(x pi + ax + b) ≤ pk
∗
for any 1 ≤ i < k, and a �= 0, b ∈ Fn . Fix

a �= 0, b ∈ Fn . We show that

r(ta,b(x)) ≤ r(ta(x)) ≤ r(t (x)), (1)

where ta,b(x) = x pi + ax + b, ta(x) = x pi + ax , and t (x) = x pi − x .
If ta,b(x) has no root in Fn , then clearly r(ta,b(x)) ≤ r(ta(x)). Suppose that ta,b(x) has

a root, say y0. For any root y of ta,b(x), we have ta(y − y0) = (y − y0)p
i + a(y − y0) =

y p
i − y p

i

0 + ay − ay0 = ta,b(y) − ta,b(y0) = 0, where the second equality follows from the
property (a + b)p = a p + bp of Frobenius endomorphisms [4]. Thus, y − y0 is a root of ta .
Since the mapping y → (y − y0) is an injection, the first inequality of (1) follows.

We prove the second inequality of (1), by showing r(sa(x)) ≤ r(s(x)), where sa(x) =
ta(x)/x = x pi−1 + a, and s(x) = t (x)/x = x pi−1 − 1. Suppose that a = 0. Then 0 is the
only root of sa(x). Since s(x) also has the root 1, the inequality is trivially true. So, assume
that a �= 0. Then 0 is not a root of sa(x). We may also assume that sa(x) has at least one
root; otherwise, the inequality is trivially true. Let z0 be a root of sa(x). As z ranges over all
roots of sa(x), map z to z/z0. Observe that:

s

(
z

z 0

)
=

(
z

z 0

)pi−1

− 1 = z p
i−1

z p
i−1

0

− 1 = −a

−a
− 1 = 0.

So, z/z0 is a root of s(x). Since the map is injective, it follows that r(ta(x)) ≤ r(t (x)).
Let S be the set of all roots of t (x) = x pi − x . Observe that S forms a finite field, since the

set of roots are closed under the operations of addition, multiplication, and division. Thus, S
is a subfield of Fn , and hence the cardinality of S divides the cardinality of Fn , which is pk .
So, |S| = p j , for some j , where j | k. Now consider the extension of t (x) = x pi − x into
its splitting field [9,16]. In this field, the expanded root set forms Fpi . So, S is a subfield of

Fpi , and so j | i . Thus, j divides both i and k, i.e. j = r(t (x)) ≤ pgcd(i,k) ≤ pk
∗
. 	


Theorem 2 The Hamming distance of P�L(2, n) is n − pk
∗
, where k∗ denotes the largest

proper factor of k.

2 Since f and g are bijections, they correspond to permutations.
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Constructing permutation arrays from groups 1099

Proof From the definition of P�L(2, n) we have

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ax pi +b
cx pi +d

if x ∈ Fn and cx pi + d �= 0,

∞ if x ∈ Fn, cx pi + d = 0 and ax pi + b �= 0,
a/c if x = ∞ and c �= 0,
∞ if x = ∞, c = 0 and a �= 0.

It follows that S = StabilizerP�L(2,n)(∞) is isomorphic to A�L(1, n).3 So, hd(S) =
hd(A�L(1, n)) = n − pk

∗
by Theorem 1. Observe that P�L(2, n) = ∪n−1

k=0πk S, where
πk (1 ≤ k < n) is a permutation in P�L(2, n) that maps k to ∞, and π0 is the identity
permutation. (Such permutations are in P�L(2, n), because it is sharply 3-transitive and
hence 2-transitive.) By Lemma 2,

hd(P�L(2, n)) = min({hd(πi , S) | 1 ≤ i < n}, {hd(e, S − {e})).
As hd(πi , S) = hd(S) = hd(A�L(1, n)) ≥ n − pk

∗
, the result follows. 	


Since P�L(2, n) contains k(n + 1)n(n − 1) elements, we conclude the following.

Corollary 3 Let n = pk for any k ≥ 1. Let k∗ be the largest proper factor of k. Then
M(n+1, n− pk

∗
) ≥ k(n+1)n(n−1). In particular when n = 2p, we have M(n+1, n−2) ≥

p(n + 1)n(n − 1) and therefore

M(9, 6) ≥ 3 · 9 · 8 · 7 = 1512

M(17, 14) ≥ 2 · 17 · 16 · 15 = 8160

M(28, 24) ≥ 3 · 28 · 27 · 26 = 58968

M(33, 30) ≥ 5 · 33 · 32 · 31 = 163680.

2.1 Contraction

In this section we describe a general method of modifying a permutation array called con-
traction. Contraction allows one to transfer a permutation array from Sn to Sn−m without
affecting the Hamming distance by too much. First, we explain the idea of contraction for
m = 1.

The contraction of a permutation σ on Sn , denoted by σCT , is the permutation on Sn−1

defined by the following, where 0 ≤ x ≤ n − 2:

σCT (x) =
{

σ(x) if σ(x) �= n − 1, and

σ(n − 1) if σ(x) = n − 1.
(2)

That is, the contraction σCT of σ is formed by substituting σ(n−1) for n−1 and deleting
the symbol n−1 altogether. For instance, if σ(n−1) = n−1, then σCT is formed by simply
deleting the symbol n − 1. For a PA A on Sn , let ACT = {σCT | σ ∈ A}. In general, as
the contraction operation leaves most of any permutations values untouched, the Hamming
distance of ACT (as we shall see) is at least as large as three less than the Hamming distance
of A itself (see also [23]). Specifically, a decrease of three in the Hamming distance between
two permutations ρ and σ occurs if and only if, for some integers i, j < n − 1, and symbols
r, s < n − 1: (a) ρ(i) = n − 1 and σ(i) = r , (b) ρ( j) = s and σ( j) = n − 1, and (c)

3 Recall that, for a permutation groupG on a set X , the stabilizer of an element x ∈ X is the set of permutations
{g ∈ G : g(x) = x}.
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1100 S. Bereg et al.

ρ(n − 1) = r and σ(n − 1) = s. This is illustrated in Fig. 1. It follows that there is a
decrease of three in the Hamming distance between ρ and σ if and only if the permutation
ρ−1σ contains the cycle (n − 1 r s) of length 3. If A is a group, since the order of a 3-cycle
is three, the order of the group must be divisible by 3 (by Lagrange’s theorem [4]). So, if
A is a group whose order is not divisible by 3, there can be no 3-cycle and, therefore, the
contraction operation decreases the Hamming distance by at most 2.

Of course the contraction operation can be applied iteratively. One can first contract to a
permutation on Sn−1, then Sn−2, then Sn−3, . . . We investigate conditions on the group A
that is contracted in order to understand the number of times successive contractions decrease
the Hamming distance by 2.

Lemma 4 Let σ and τ be two permutations in Sn. If hd(σCT , τCT ) = hd(σ, τ )− 2 then (i)
n − 1 is in a cycle C of length at least two in the cycle decomposition of σ−1τ , and (ii) the
cycle decomposition of (σCT )−1τCT is the same except that the length of C is decreased by
two by removing n − 1 and either the next or the previous element in C.

Proof (i) follows from the fact that, if σ and τ have n − 1 in the same position, then
hd(σCT , τCT ) = hd(σ, τ ).
(ii) Consider Fig. 2. If one of the permutations, say σ , has n − 1 in position n − 1, then
σ(i) = τ(n−1)where i is the position of n−1 in τ (because hd(σCT , τCT ) = hd(σ, τ )−2).
Then C = (σ (i) n − 1) and it is deleted in the cycle decomposition of (σCT )−1τCT .
Suppose that σ(n − 1) �= n − 1 �= τ(n − 1) as shown in Fig. 3.
Since hd(σCT , τCT ) = hd(σ, τ ) − 2, either b = c or a = d . Then the cycle C containing
n − 1 is (a n − 1 b d . . . ) or (b a n − 1 c . . . ) respectively. The corresponding cycles in
(σCT )−1τCT are C − {n − 1, b} and C − {a, n − 1}. The lemma follows. 	


Theorem 3 Suppose a permutation array P ⊂ Sn has Hamming distance d. Let Q ⊆ Sn−2

denote the permutation array obtained from P by applying the contraction operation two
times.

(a) The Hamming distance of Q is at least d − 6.
(b) Suppose, for any σ, τ ∈ P, the cycle decomposition of σ−1τ contains no 3-cycle and no

5-cycle. Then the Hamming distance of Q is at least d − 4.

Fig. 1 Illustration of contraction
operation making two new
agreements

positions . . . i . . . j . . . n − 1
ρ = . . . n − 1 . . . s . . . r
σ = . . . r . . . n − 1 . . . s

Fig. 2 Two permutations where
hd(σCT , τCT ) = hd(σ, τ ) − 2
and σ(n − 1) = n − 1

positions . . . i . . . n − 1
σ = . . . s . . . n − 1
τ = . . . n − 1 . . . s

Fig. 3 Two permutations where
hd(σCT , τCT ) = hd(σ, τ ) − 2
and
σ(n − 1) �= n − 1 �= τ(n − 1)

positions . . . i . . . j . . . n − 1
σ = . . . n − 1 . . . a . . . b
τ = . . . c . . . n − 1 . . . d
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Constructing permutation arrays from groups 1101

Fig. 4 Two permutations where
(σ ′)−1τ ′ contains a 3-cycle positions . . . i . . . j . . . n − 2

σ′ = . . . b . . . n − 2 . . . a
τ ′ = . . . n − 2 . . . a . . . b

Proof The part (a) follows form the fact that the Hamming distance decreases by at most
three for each contraction operation.

We prove part (b). Suppose to the contrary that hd(Q) ≤ d − 5. Let σ and τ be two
permutations of P such that hd(σ ′′, τ ′′) ≤ d−5 where σ ′′ = (σ ′)CT , τ ′′ = (τ ′)CT and σ ′ =
σCT , τ ′ = τCT . Since σ−1τ contains no 3-cycle, hd(σ ′, τ ′) = d − 2. Then the contraction
operation on σ ′ and τ ′ decreases the Hamming distance by exactly three. Therefore (σ ′)−1τ ′
contains a 3-cycle as shown in Fig. 4.

Since σ−1τ contains no 3-cycle and hd(σ ′, τ ′) = d − 2, by Lemma 4, σ−1τ contains a
5-cycle. This is a contradiction. 	

Corollary 4 (Contraction of AGL(1, n))

(i) For each prime power n such that 3 � (n − 1),

M(n − 1, n − 3) ≥ n(n − 1).

(ii) For each prime power n such that n ≡ 2 (mod 3) and n �≡ 0, 1 (mod 5),

M(n − 2, n − 5) ≥ n(n − 1).

Proof The bounds can be obtained by applying the contraction operation on the affine general
linear group AGL(1, n). Let σ and τ be any two distinct permutations from AGL(1, n).
Suppose that n ≡ 2 (mod 3). Since σ−1τ ∈ AGL(1, n) and the order of AGL(1, n) is not
a multiple of 3, the bound of (i) follows. If n ≡ 0 (mod 3), then suppose σ and τ are such
that hd(σ, τ ) = n. If hd(σCT , τCT ) = hd(σ, τ ) − 3, then hd(σCT , τCT ) ≥ n − 3 and the
Hamming distance bound for (i) is satisfied. Since hd(AGL(1, n)) ≥ n−1, the other case is
that σ and τ are such that hd(σ, τ ) = n − 1. In this case σ and τ have one agreement, say at
position i . Then στ−1 ∈ Stabilizeri (AGL(1, n)), which is a cyclic groupC of order n−1.
If 3 � (n−1), then there can be no 3-cycle inC and, hence, (στ−1)−1 = τσ−1 has no 3-cycle.
So, hd(σCT , τCT ) = hd(τCT , σCT ) ≥ hd(σ, τ )−2. It follows that hd(σCT , τCT ) ≥ n−3.

The bound of (ii) follows from Theorem 3(b) and the fact that the order of AGL(1, n) is
not a multiple of 3 and 5. 	


Infinitely many new bounds can be obtained from Corollary 4. We show some examples.

M(31, 29) ≥ 32 · 31 = 992 for n = 32,

M(40, 38) ≥ 41 · 40 = 1640 for n = 41,

M(46, 44) ≥ 47 · 46 = 2162 for n = 47.

Previously, the best lower bounds for these examples were

• M(31, 29) ≥ 930, which was derived from |AGL(1, 31)| ≥ 930 and M(n, d − 1) ≥
M(n, d) [5],

• M(40, 38) ≥ 280, since M(40, 39) ≥ 280, as there are 7 MOLS for n = 40 [6],
• M(46, 44) ≥ 270, since M(46, 45) ≥ 270, as there are 6 MOLS for n = 35 [6],

Theorem 4 For each prime power q such that 3 � (q − 1),

M(q, q − 3) ≥ (q + 1)q(q − 1).
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1102 S. Bereg et al.

Proof Let Aq = (PGL(2, q+1))CT . It suffices to show that hd(Aq) ≥ q−3. Consider two
permutations σ and τ from PGL(2, q+1). If hd(σ, τ ) = q+1 then hd(σCT , τCT ) ≥ q−2.
Suppose that hd(σ, τ ) ≤ q . Then σ−1τ has a fixed point k. A point stabilizer of PGL(2, n)

is isomorphic to the affine general linear group AGL(1, q). Since 3 � (q − 1), by Corollary
4, hd(σCT , τCT ) ≥ q − 3 and the claim follows. 	


Examples

(1) M(32, 29) ≥ 32736, since M(33, 31) ≥ 32736, using PGL(2, 25).
(2) M(29, 26) ≥ 24360, since M(30, 28) ≥ 24360, using PGL(2, 29).
(3) M(41, 38) ≥ 68880, since M(42, 40) ≥ 68880, using PGL(2, 41).

Previously, the best lower bounds for these examples were

(1) M(32, 29) ≥ 29760, since M(32, 30) ≥ 29760, using PGL(2, 31).
(2) M(29, 26) ≥ 19656, since M(28, 26) ≥ 19656, using PGL(2, 33).
(3) M(41, 38) ≥ 1640, since M(41, 40) ≥ 1640, using AGL(1, 41).

The following is an improvement on Corollary 4.

Corollary 5 For each prime power n such that 3 � (n − 1),

M(n − 1, n − 3) ≥ n2 − 1.

Proof By Theorem 4, M(n, n− 3) ≥ (n+ 1)n(n− 1). By the combinatorial theorem [5] for
all d , M(n − 1, d) ≥ M(n, d)/n. So, M(n − 1, n − 3) ≥ (n + 1)n(n − 1)/n = n2 − 1. 	


Examples.

(1) M(31, 29) ≥ 1056,
(2) M(40, 28) ≥ 1680, and
(3) M(46, 44) ≥ 2208.

3 Experimental results

Computer searches for arrays of permutations on Zn with pairwise Hamming distance d
are difficult. The number of all permutations, namely n!, is large, even for small values of
n. Many previous search methods have used automorphism groups to factor the space of all
permutations into collections of sets of permutationswith considerably smaller cardinality [5,
14,21].With this smaller cardinality, one constructs a graphG(n, d), whose nodes correspond
to sets of permutations, with an edge between two sets S1 and S2 if the Hamming distance
between permutations in the sets is at least d [5,14,21]. One then uses a program to find a
large clique in G(n, d).

We give a different type of algorithm. We call it the coset method. We start with a group
G that forms a good PA for M(n, d ′), where d ′ > d . As exact values for M(q, q − 1) arise
from sharply 2-transitive groups AGL(1, q), and exact values of M(q +1, q −1) arise from
sharply 3-transitive groups PGL(2, q), where q is a power of a prime, one easily finds a
group with which to start. Also, the exact value of M(n, n), for all n, arises from a cyclic
group of order n. So, in fact, there is always a group with which to start. We search for a
permutation, say π , at Hamming distance at least d from G. It follows that the entire coset
πG is at distance at least d from G. That is,
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Constructing permutation arrays from groups 1103

hd(πG,G) = max{hd(πg1, g2) | g1, g2 ∈ G}
= max{hd(π, g2g

−1
1 | g1, g2 ∈ G}

= max{hd(π, g) | g ∈ G},
since g2g

−1
1 ∈ G by properties of a group. So, one has a PA of cardinality 2 · |G|, by finding

a single permutation π . Moreover, recording the coset representative π is sufficient, as all
other permutations in the coset are obtained from the group G and π .

The process can be iterated. Suppose we have found k coset representatives π0,

π1, . . . , πk−1, where π0 is the identity permutation, so π0G is the group G and the collection
of all such cosets is a PA of cardinality k · |G|. One can continue by finding a permutation
πk such that hd(πk, πi G) ≥ d , for all 0 ≤ i < k. Such a permutation gives us a new coset,
namely πkG, and a PA of cardinality (k + 1) · |G|.

One implementation of this method guesses a new permutation πk randomly and then
checks (1) that hd(πk, πi G) ≥ d , for all 0 ≤ i < k, and (2) hd(πk, πi G) = d , for some i
(0 ≤ i < k). The second condition may need explanation. Recall the combinatorial Gilbert-
Varshimov (GV) lower bound [10,17,20] for M(n, d), namely NGV (n, d), where NGV (n, d)

is given by:

NGV (n, d) = n!
V (n, d − 1)

, (3)

where V (n, d − 1), the number of permutations that are at distance less than d from a given
permutation, e.g. the identity, is V (n, d − 1) = ∑d−1

k=0

(n
k

)
Dk , where Dk is the number of

derangements on k symbols. Note that the ratio given in (3) is a lower bound for the number
of times one can select another permutation without choosing two with Hamming distance
less than d . It is calculated with the assumption that all sets of permutations too close to
different permutations are disjoint. (It should be noted that one can often get far more than
NGV (n, d) permutations in a PA, because the assumption that the spheres are disjoint is not
required. In fact, this combinatorial lower bound has recently been improved, see [11] and
[24].) Of course, such sets need not be disjoint and one can choose a larger set of permutations
by eliminating this condition. We do this by requiring each new permutation selected is at
distance exactly d to one chosen before.

This simple technique makes it feasible to compute and verify large PA’s. Previously,
the implicit algorithm justifying the GV lower bound was not considered practical, due to
large space requirements for keeping track of permutations already chosen and the large
time needed for computing Hamming distances. As we have seen in Lemma 1, when the
PA is a group and some of its cosets, one need not check the distance between every pair
of permutations and one can store the set of coset representatives instead of the set of all
permutations. It is worth noting that in [5], the authors computed a PA of size 58,322 for
M(16, 9) and stated that this lower bound is not as good as what is given by the GV lower
bound.4 They stated, “. . . However, the GV lower bound is not constructive.” On the other
hand, the coset method starting with the group G = AGL(1, 16) found 5, 739 cosets of G
for Hamming distance 9 and, hence, obtained a lower bound of 1, 377, 360 for M(16, 9).

Also, in [21] the authors computed a PA of size 20, 908, 800 for M(12, 4) and then
stated “. . . it is too large to check fully, but has been extensively checked.” In contrast, the
coset method starting with the Mathieu group G of order 12 [4,7,8] found 638 cosets of G
for Hamming distance 4 and, hence, obtained a lower bound of 60, 635, 520 for M(12, 4).
Furthermore, since testing of correctness of G and its cosets takes far less time using group-
theoretic properties, verification was done in a few minutes using a computer.

4 Note that NGV (16, 9) = 97, 579.
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Verifying the Hamming distance of a PA A on Zn of size N generally involves computing(N
2

)
pairs of permutations of n symbols, which is O(N 2n) time. When A is a group, using

Lemma 1, one only need compute the distance between the identity and the other N − 1
elements, so O(Nn) time. In fact, if A is a group consisting of the identity permutation and
its cyclic shifts or A consists of this cyclic group and, say, k of its cosets, the computation
time is reduced to O(N ) and O(kN ), respectively.We discuss testing algorithms in Sect. 3.1.

The coset method has been used to obtain several new lower bounds. Many of the new
lower bounds are given in Tables 1 and 2. The PA’s that justify the lower bounds are available
at our web site [22]. Sometimes finding a suitable coset representative takes considerable
computation time and, hence, when found it should be recorded. For example, when started
with the group G = PGL(2, 19) the coset method with difficulty found one coset of G for
Hamming distance 16. It can be described by one of its representatives, for example:

0, 1, 2, 3, 5, 7, 14, 4, 18, 17, 9, 6, 16, 15, 11, 19, 8, 10, 12, 13,

where 19 represents∞. Thus, M(20, 16) ≥ 13, 680. Some other lower bounds obtained are:

M(13, 5) ≥ 10, 454, 400

M(13, 6) ≥ 1, 805, 760

M(13, 7) ≥ 380, 160

M(14, 5) ≥ 60, 445, 440

M(14, 6) ≥ 10, 834, 560

M(14, 7) ≥ 1, 900, 800

M(14, 8) ≥ 380, 160

M(14, 9) ≥ 21, 840

M(15, 6) ≥ 58, 734, 720

M(15, 7) ≥ 15, 491, 520

M(15, 8) ≥ 1, 900, 800

M(15, 9) ≥ 181, 272

M(15, 10) ≥ 32, 760

M(16, 7) ≥ 70, 709, 760

M(16, 8) ≥ 16, 061, 760

M(16, 9) ≥ 1, 377, 360

M(16, 10) ≥ 164, 880.

Others can be found in Tables 1 and 2 and at the website.

3.1 Efficient testing of a new permutation

Suppose that we have a permutation array P consisting of k left cosets of a group G, i.e.
P = ∪k

i=1Pi . The critical step of our randomized construction is the computation of distance
hd(π, P)whereπ is a random permutation. The definition of Hamming distance suggests the
computation hd(π, P) = minσ∈P hd(π, σ ). Then the running time is O(n|P|) = O(nk|G|).
We show that, if G is cyclic or has the cyclic subgroup, the algorithm for testing π can be
improved. Let Cn denote the cyclic group, i.e.,

Cn = {g j | g j = ( j, j + 1, . . . , n − 1, 0, 1, . . . , j − 1), j ∈ Zn}.
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Lemma 5 The Hamming distance from a permutation π ∈ Sn to Cn can be computed in
O(n) time.

Proof The Hamming distance hd(π,Cn) can be computed as

hd(π,Cn) = min
0≤ j≤n−1

{hd(π, g j )}.

The straightforward computation of hd(π, g j ) takes O(n) time. We show that it can be
computed in O(1) amortized time.

Let D[0..n − 1] be an array and we store a tentative distance of hd(π, g j ) in D[ j]. The
algorithm has 2 steps.

1. We initialize D[ j] = n for all j ∈ Zn .
2. For each m ∈ Zn , subtract one from D[ j] where j ≡ (π(m) − m) mod n.

Clearly, the running time is O(n). We show that the algorithm is correct. If D[ j] decreases
for some m, then the m-th element of π is j + m(mod n). Thus, π and g j have matching
elements in m-th position. In the end, D[ j] is equal to n − n′ where n′ is the number of
matching elements of π and g j . The claim follows since hd(π, g j ) = n − n′. 	


Lemma 6 Suppose that G = Cn and letπi , (i = 1, 2, . . . , k) be a representative of the coset
Pi , i.e. Pi = πiCn. Then, for any permutation π ∈ Sn, the Hamming distance hd(π, P) can
be computed in O(kn) time.

Proof The Hamming distance hd(π, P) can be computed as

hd(π, P) = hd

(
π, ∪

1≤i≤k
Pi

)
= min

1≤i≤k
{hd(π, Pi }.

It suffices to show that di = hd(π, Pi ) can be computed in O(n) time, for any i . Since
Pi = πiCn and di = hd(π−1

i π,Cn), we first compute σ = π−1
i π and then hd(σ,Cn) using

the algorithm from Lemma 5. 	


We generalize Lemma 6 as follows.

Theorem 5 If Cn is a subgroup of G then the Hamming distance hd(π, P) can be computed
in O(k|G|) time for any permutation π ∈ Sn.

Proof Let G/Cn = {σCn | σ ∈ G} be the set of left cosets of Cn in G. Let σ1, σ2, . . . , σm
be representatives of these cosets. The Hamming distance hd(π, P) can be computed as

hd(π, P) = hd

⎛
⎝π,

⋃
1≤i≤k

πi G

⎞
⎠ = hd

⎛
⎜⎜⎝π,

⋃
1≤i≤k
1≤t≤m

πiσtCn

⎞
⎟⎟⎠

= min
1≤i≤k
1≤t≤m

{hd(π, πiσtCn)}.

Since hd(π, πiσtCn) = hd(α,Cn)whereα = (πiσt )
−1π . TheHamming distance hd(α,Cn)

can be computed in O(n) time using the algorithm from Lemma 5. The total time for com-
puting hd(π, P) is O(kmn). It can be written as O(k|G|) since |G| = mn. 	
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4 New tables and conclusions

We give in Tables 1 and 2 an updated partial list of lower bounds for M(n, d), with n ≥ 9 and
d ≥ 4. We also created a webpage [22] that allows one to obtain the PA’s, or coded versions
of them, for verification. Not all of our new results appear in the table, many are described
by theorems in Sect. 2.

We use the following notation in the table to describe how the results are obtained:

a - a bound derived from M(n, d − 1) ≥ M(n, d).
b - a bound derived from M(n + 1, d) ≥ M(n, d).
d - a bound derived from M(n − 1, d) ≥ M(n, d)/n. For example, we have M(15, 12) ≥

2520, because M(16, 12) ≥ 40320.
t - the Gilbert-Varshamov lower bound [10,17,20].
g - a lower bound based on known permutation groups. This includes the Mathieu groups

M11, M12, M22, M23, M24 and groups AGL(1, n) or AGL(2, n), which are sharply 2-
transitive and sharply 3-transitive, respectively.

m - a bound derived from mutually orthogonal Latin squares [6].
u - a result obtained by partitioning and extending, which is contained in [2].
r - a result obtained by the coset method using random search. Our improved lower bounds
are in bold. The previous lower bounds are given at the bottom of the cell. When a lower
bound is obtained by the coset technique, the number of cosets is given at the top of the
cell.

c - a result obtained by contraction, which is an improvement of the M(n − 1, d − 3) ≥
M(n, d) result, described in [23]. For example, M(23, 20) ≥ 12144 comes from
M(24, 22) ≥ 12144.

We use capital letters for the following references: A - [5], B - [11], C - [14], D - [15], E -
[21], F - [23], G - [1].

We note that M(9, 6) ≥ 1512 and M(17, 14) ≥ 8160 follow from Corollaries 1 and 2.

Appendix

Finite Fields Let n = pk be a prime power. There is a field Fn with n elements, unique up to
isomorphism. We consider groups over the field Fn .

Groups The group AGL(1, n) consists of the affine linear transformations

AGL(1, n) = {ax + b|a, b ∈ Fn, a �= 0},
where the group operation is function composition. This group is sharply 2−transitive and
has n(n − 1) elements.

Denote the symbols of Zn+1 by 0, 1, 2, . . . , n−1,∞. The permutations of PGL(2, n) are
g : x → ax+b

cx+d on Zn+1 such that a, b, c, d ∈ GF(n), ad �= bc, g(∞) = a/c, g(−d/c) =
∞ if c �= 0 and g(∞) = ∞ if c = 0. Then |PGL(2, n)| = (n + 1)n(n − 1).

Recall that n = pk . The group of affine semilinear polynomials A�L(1, n) arises as a
semidirect product of AGL(1, n) with a cyclic group of order k. It is generated by iteratively
composing the Frobenius automorphism x p with the elements of AGL(1, n). Equivalently,

A�L(1, n) = {ax pi + b | a, b ∈ Fn, a �= 0, 0 ≤ i < k}
This group has kn(n − 1) elements.

123



Constructing permutation arrays from groups 1111

The group of projective semilinear polynomials P�L(2, n) arises as a semidirect product
of PGL(2, n)with a cyclic group of order k generated by the Frobenius automorphism. This
group has k(n + 1)n(n − 1) elements.
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