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Abstract We give a classification of four-circulant singly even self-dual [60, 30, d] codes for
d = 10 and 12. These codes are used to construct extremal singly even self-dual [60, 30, 12]
codes with weight enumerator for which no extremal singly even self-dual code was pre-
viously known to exist. From extremal singly even self-dual [60, 30, 12] codes, we also
construct optimal singly even self-dual [58, 29, 10] codes with weight enumerator for which
no optimal singly even self-dual code was previously known to exist. Finally, we give some
restriction on the possible weight enumerators of certain singly even self-dual codes with
shadow of minimum weight 1.
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1 Introduction

Let C be a (binary) singly even self-dual code. All codes in this note are binary. Let Cy denote
the subcode of C consisting of codewords having weight = 0 (mod 4). The shadow S of C
is defined to be C d‘ \ C. Shadows for self-dual codes were introduced by Conway and Sloane
[3] in order to derive new upper bounds for the minimum weight of singly even self-dual
codes, and to provide restrictions on the weight enumerators of singly even self-dual codes.
In addition, Rains [11] showed that the minimum weight d of a self-dual code C of length
n is bounded by d < 4[n/24] + 4 unless n = 22 (mod 24) when d < 4|n/24] + 6 by
considering the shadows. A self-dual code meeting the upper bound is called extremal. We
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say that a self-dual code is optimal if it has the largest minimum weight among all self-dual
codes of that length.

The possible weight enumerators of singly even self-dual codes with the largest possible
minimum weights given in [3, Table I] are given in [3] for lengths up to 64 and length 72
(see also [7] for length 60). It is a fundamental problem to find which weight enumerators
actually occur for the possible weight enumerators (see [3]). The possible weight enumerators
of extremal singly even self-dual [60, 30, 12] codes are known as follows:

Weo,1 = 1 + (2555 + 648)y'? + (33600 — 384p)y™ + - -,
Weo2 = 1 +3451y'2 +24128y" + . |

where B is an integer. If there is an extremal singly even self-dual [60, 30, 12] code with
weight enumerator Weg, 1, then B € {0,1,2,...,8,10} [8]. For 8 = 0,1,5,7 and 10, an
extremal singly even self-dual code with weight enumerator Wegp 1 was found in [13,2,14,5]
and [7], respectively. An extremal singly even self-dual code with weight enumerator We 2
was found in [3].

One of the main aims of this note is to show the following:

Proposition 1 There is an extremal singly even self-dual [60, 30, 12] code with weight enu-
merator Weo,| for B =2, 6.

These codes are constructed from four-circulant singly even self-dual [60, 30, d] codes
for d = 10 and 12 by considering self-dual neighbors. It remains to determine whether
there is an extremal singly even self-dual [60, 30, 12] code with weight enumerator Wep 1
for 8 =3,4,8.

The largest minimum weight among singly even self-dual codes of length 58 is 10 [3]. The
possible weight enumerators of optimal singly even self-dual [58, 29, 10] codes are known
as follows:

Wss,1 = 1+ (165 = 2y)y'% + (5078 + 2y)y" + -,

Wsgo = 14 (319 — 248 — 2)y'0 + 3132+ 1528 + 2y)y 2 + - -+,
where f, y are integers [3]. If there is an optimal singly even self-dual [58, 29, 10] code with
weight enumerator Wsg 2, then 8 € {0, 1, 2} [8]. An optimal singly even self-dual code with

weight enumerator Wsg 1 is known for y = 55 [12]. An optimal singly even self-dual code
with weight enumerator Wsg > is known for

B=0andy e {2m |m=0,1,5,6,8,9,10, 11, 13,...,65, 68,71, 79},
B=1landy € 2m | m =13, 14,16, ...,58, 63},
B=2andy € {2m |m =0, 16,...,50,55}

(see [9,10,14)).
The following proposition is one of the main results of this note.

Proposition 2 There is an optimal singly even self-dual [58, 29, 10] code with weight enu-
merator Wsg o for

B=0andy € 2m |m=2,3,4,7,12},
B=1landy € 2m |m =28,9,10, 11, 12, 15},
B=2andy € 2m|m=4,6,7,8,9,10, 11, 12, 13, 14, 15, 51, 52, 53, 54}.
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These codes are constructed from extremal singly even self-dual [60, 30, 12] codes con-
structed in this note by subtracting and their self-dual neighbors. Finally, we give some
restriction on the possible weight enumerators of certain singly even self-dual codes with
shadow of minimum weight 1 (Proposition 5). As a consequence, it is shown that y = 55
for the possible weight enumerator Wsg 1 (Corollary 6). All self-dual codes in this note are
singly even. From now on, we omit the term singly even.

All computer calculations in this note were done with the help of MAGMA [1].

2 Extremal four-circulant self-dual [60, 30, 12] codes

An n x n circulant matrix has the following form:
ro ryrcccrp—l
n—1 7071 - Tp-2

rrr3--- 1o
so that each successive row is a cyclic shift of the previous one. Let A and B be n x n circulant
matrices. Let C be a [4n, 2n] code with generator matrix of the following form:

(2 gr ) M

where I,, denotes the identity matrix of order n and AT denotes the transpose of A. It is easy
to see that C is self-dual if AAT + BBT = I,. The codes with generator matrices of the
form (1) are called four-circulant.

In this section, we give a classification of extremal four-circulant self-dual [60, 30, 12]
codes. Two codes are equivalent if one can be obtained from the other by a permutation
of coordinates. Our exhaustive search found all distinct extremal four-circulant self-dual
[60, 30, 12] codes, which must be checked further for equivalence to complete the classifica-
tion. This was done by considering all pairs of 15 x 15 circulant matrices A and B satisfying
the condition that AAT + BBT = I5, the sum of the weights of the first rows of A and B
is congruent to 1 (mod 4) and the sum of the weights is greater than or equal to 13. Since
a cyclic shift of the first rows gives an equivalent code, we may assume without loss of
generality that the last entry of the first row of B is 1. Then our computer search shows that
the above distinct extremal four-circulant self-dual [60, 30, 12] codes are divided into 13
inequivalent codes.

Proposition 3 Up to equivalence, there are 13 extremal four-circulant self-dual [60, 30, 12]
codes.

We denote the 13 codes by Cep,; (i = 1,2,...,13). For the 13 codes Cgp; (i =
1,2,...,13), the first rows r4 (resp. rp) of the circulant matrices A (resp. B) in genera-
tor matrices (1) are listed in Table 1. We verified that the codes Cgp,; have weight enumerator
Weo.1, where B are also listed in Table 1.

3 Extremal self-dual [60, 30, 12] neighbors

Two self-dual codes C and C’ of length n are said to be neighbors if dim(CNC') =n/2 —1.
Any self-dual code of length n can be reached from any other by taking successive neighbors
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Table 1 Extremal four-circulant self-dual [60, 30, 12] codes Cg ;

Code rA rp B
Ce0,1 (1,0,1,1,1,0,0,0,0,1,1,1,0,1, 1) 0,0,0,0,0,0,1,0,1,0,0,1,0,0, 1) 0
Ce0,2 ©,1,1,1,1,0,0,1,1,1,1,1, 1,1, 0) ,1,0,0,1,0,0,0,0,0,0,1,1,1, 1) 0
Ce0,3 (1,1,0,0,1,0,0,1,0,1,1,0,1,1, 1) 0,0,0,0,1,0,0,0,0,0,0,1,1,0, 1) 0
Ce0.4 (1,1,1,0,0,1,0,1,0,1,0,0,1, 1, 1) (1,0,1,1,1,1,0,0,0,0,0,1,1,0, 1) 0
Ce0,5 (1,1,1,1,0,1,1,0,1,1,1,0,1, 1, 0) (1,1,0,1,0,1,1,1,0,0,0,1,1,1, 1) 0
Ce0,6 (1,1,1,1,1,1,1,1,0,1,1,1, 1, 1, 0) ,1,0,1,1,1,0,0,0,0,0,1,1,1, 1) 0
Ce0,7 ,1,1,0,0,1,1,1,0,1,1,0, 1,1, 1) 0,1,0,0,1,1,0,0,0,0,0,1,1,1, 1) 0
Ce0,8 0,0,1,1,0,0,1,0,1,1,0,0,1,1, 1) ,1,0,1,1,1,1,0,0,0,0, 1, 1,1, 1) 0
Ce0,9 ©,1,1,0,1,0,0,1,0,0,1,0,1,1,0) (1,0,1,0,0,0,0,0,0,0,0,1,1,1, 1) 10
Ce0.10 0,1,1,1,0,1,0,1,1,1,1,0, 1, 1, 0) 0,1,0,1,0,1,1,0,0,0,0,1,1,0, 1) 10
Ce0,11 0,0,1,1,1,1,1,1,1,1,0,0, 1, 1, 0) 0,1,0,1,0,1,1,0,0,0,0,1,1,0, 1) 10
Ce0,12 (1,1,0,0,1,0,0,0,0,1,1,0,1, 1, 1) 0,0,0,0,0,1,0,0,0,0,0,1,1,1,1) 10
Ce0,13 (1,1,1,1,1,1,0,1,1,0,1,0, 1, 1,0) 0,0,1,0,0,1,0,0,0,0,0,1,1,1,1) 10

(see [3]). It is known that a self-dual code C of length 1 has 2(2"/2~! — 1) self-dual neighbors.
These neighbors are constructed by finding 2"/>~! — 1 subcodes of codimension 1 in C
containing the all-one vector. A computer program written in MAGMA, which was used to
find self-dual neighbors, can be obtained electronically from http://www.math.is.tohoku.ac.
jp/~mharada/Paper/neighbor.txt. In this section, we construct extremal self-dual [60, 30, 12]
codes by considering self-dual neighbors.

Fori = 1,2,...,13, by finding all 2(229 — 1) self-dual neighbors of Cgp ;, we deter-
mined the equivalence classes among extremal self-dual neighbors of Cep ;. Our computer
search shows that the code Cg ; has n; inequivalent extremal self-dual neighbors, which are
equivalent to none of the 13 codes Cgp, j, where n; are given by

3 if i=1,
if i =2,4,10,12,

0  otherwise.

n; = 1

We denote the 7 extremal self-dual codes by Deo; (i = 1,2, ...,7). These codes C = Degp ;
are constructed as

(DN (x)5), x),

where D and the support supp(x) of x are listed in Table 2. We verified that the codes Dgy ;
have weight enumerator Wego 1, where W in Table 2 indicates the values B in the weight
enumerator Weo 1. The code Dgp 3 has the following weight enumerator:

1+ 2683y'2 4 32832y +280017y'° + 1719808 y'® + 7800120y%°
+ 26380032y2% + 67167368y>* + 130134528y + 19318526728
+ 220336512y + ... 4 90,

We verified that there is no pair of equivalent codes among the 13 codes Cgp,; and the 7 codes
Deg,; -
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Table 2 Extremal self-dual [60, 30, 12] neighbors Dg ;

C D supp(x) w
Deo,1 Ce0,1 {1,31,32,38,42,43,46,47, 48,50, 51, 55} B=0
Deo 2 Ce0,1 {2, 3,8, 33, 35,39, 40, 41, 46, 50, 54, 59} B=0
De.3 Ce0,1 {4,8,9,32,42,43, 48,51, 53, 54, 56, 60} =2
Deo 4 Ce0,2 {2,32, 34, 38,40, 43,49, 52, 54, 55,57, 59} =0
Dgp,5 Ce0.4 {1,31, 35,39, 40,41, 42, 43, 50, 52, 54, 55} =0
Deo,6 Ce0,10 {2,32,38,41,43,49, 51,52, 54, 55, 56, 60} B =10
Deo,7 Ce0,12 {3,7, 10, 32, 35, 36, 38, 46, 53, 55, 58, 60} B =10
Table 3 Extremal self-dual [60, 30, 12] neighbors Egq ; and Fgo

c D supp(x) w
Eeo,1 Dgp.2 {2,3,6,31,32,37, 39,40, 46,47, 54, 57} B=0
E60.2 Deo,6 {1,2,5,7,8,40,43, 46,47, 50, 51, 60} =10
Ee0,3 Deo,6 {1,4,5,8,36,38,39, 40,48, 53, 55, 60} B=10
E60,4 Deo.6 {3, 32, 33,34,37, 46, 48, 52, 56, 57, 58, 60} B =10
Feo Ee0,3 {1,2,5,35,37, 40,45, 49, 50, 55, 57, 59} B =10

‘We continue the search to find extremal self-dual codes by considering self-dual neighbors.
We found all inequivalent extremal self-dual neighbors E¢ ;, of Deo,;,, which are equivalent
to none of the extremal self-dual codes previously obtained in this note. For the codes E¢p ;, =
(DN (x)Y), x), D and supp(x) are listed in Table 3. In the table, W indicates the values
B in the weight enumerator Wep ;. By continuing this process, we found all inequivalent
extremal self-dual neighbors of E¢q ;, which are equivalent to none of the extremal self-dual
codes previously obtained in this note. Finally, we verified that there is no extremal self-dual
neighbor of Fgp, which are equivalent to none of the extremal self-dual codes previously
obtained in this note.

4 Extremal four-circulant self-dual [60, 30, 10] codes and self-dual
neighbors

Using an approach similar to that given in Sect. 2, our exhaustive search found all distinct
four-circulant self-dual [60, 30, 10] codes. Then our computer search shows that the distinct
four-circulant self-dual [60, 30, 10] codes are divided into 113 inequivalent codes.

Proposition 4 Up to equivalence, there are 113 four-circulant self-dual [60, 30, 10] codes.

We denote the 113 codes by Geo,; (i = 1,2,...,113). For the 13 codes Ggp,; (i =
1,2,...,13), the first rows r4 (resp. rp) of the circulant matrices A (resp. B) in generator
matrices (1) are listed in Table 4. The first rows for the all codes can be obtained from http://
www.math.is.tohoku.ac.jp/~mharada/Paper/60-4cir-d10.txt.

In addition, we found extremal self-dual [60, 30, 12] codes by considering self-dual neigh-
bors of Ggp; (i = 1,2, ...,113). Using a method similar to that given in [4], we completed
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Table 4 Four-circulant self-dual [60, 30, 10] codes G ;

Code raA B
Geo,1 0,1,1,1,0,1,0,0,0,0,0,0,0,0, 1) (1,1,0,0,1,0,0,1,1,1,0,1,0,0, 1)
Ge0,2 (0,0,0,1,0,0,0,1,1,1,1,0,0,0, 1) (0,0,0,0,0,1,0,1,1,1,0,1,0,1, 1)
Ge0.3 (1,1,1,1,1,0,0,1,0,1,0,1,0,0,0) ©,1,1,0,1,1,0,1,1,1,0,1,0,0, 1)
Ge0.4 (1,1,1,1,1,1,0,0,1,0,1,0, 1,0, 0) (1,1,1,0,1,1,1,1,1,1,0,1,0, 1, 1)
Geo,5 0,0,0,1,0,0,0,1,1,1,1,0,0,0, 1) ©,1,1,0,1,1,1,1,1,1,0, 1,0, 1, 1)
Ge0,6 0,0,1,1,0,1,1,0,1,0,0, 1,0,0,0) 1,1,1,1,1,0,1,1,1,1,0,1,0,0, 1)
Ge0,7 0,0,1,1,0,0,1,1,0,0,1, 1,0,0,0) 0,0,1,0,1,0,1,0,1,1,0,1,0,0, 1)
Ge0,8 (0,0,0,0,0,0,1,1,1,1,0, 1,0,0,0) 0,1,1,1,0,1,0,0,0,1,0,1,0,1, 1)
G60,9 0,1,1,0,1,0,0,0,0,0,0,0,0,0, 1) (1,0,1,1,1,1,0,0,0,1,0,1,0,1, 1)
G60.10 0,0,0,1,1,0,1,0,1,0,1,1,0,0,0) (1,0,1,0,0,0,1,0,1,1,0,1,0,0, 1)
Geo,11 (1,0,1,0,1,0,1,1,1,0,0,0,0,0, 1) 0,0,1,0,0,0,1,0,1,1,0,1,0,0, 1)
Ge0,12 (1,1,1,1,1,0,0,1,0,1,0,1,0,0, 1) (1,0,1,0,0,1,0,1,1,1,0,1,0,0, 1)
G60,13 0,0,1,0,0,0,0,0,0,1,0,1,0,0,0) (0,0,0,0,0,0,1,1,0,1,0,1,0,1, 1)

the classification of extremal self-dual [60, 30, 12] neighbors of Gep; (i = 1,2, ..., 113).
Our computer search shows that there is an extremal self-dual [60, 30, 12] neighbor Hg ;
fori = 1,2,...,13 and that there is no extremal self-dual [60, 30, 12] neighbor for i =
14,15, ..., 113. The codes Hegp ; are constructed as ((D N (x)l), x), where D and supp(x)
are listed in Table 5 and W indicates the values g in the weight enumerator Weg, ;. We verified
that there are the following equivalent codes among Ce0 i, , De0.ir> £60,i5» F60, He0,is:

Heo2 = Co0,4, Heo,5 = Ce0,1,  Heo,6 = Co0,3, He0,7 = Co0,8, He0,8 = Ce0,7,
He0,9 = Ce0,2, Heo,11 = He0,3, He0,12 = He0,10, He0,13 = He0,4, He0,10 = De0,2,

where C = D means that C and D are equivalent.

Similar to Sect. 3, by continuing this process, we completed a classification of extremal
self-dual neighbors Jeo,; (resp. Keo,i» Leo,;), which are equivalent to none of the extremal
self-dual codes previously obtained in this note, of Heq,; (resp. Jeo,;, Koo, ;). Finally, we
verified that there is no extremal self-dual neighbor of Leo; (i = 1, 2), which are equivalent
to none of the 37 codes in Tables 1, 2, 3 and 5. We remark that there is no pair of equivalent
codes among the following 37 codes:

Ceo,i (i =1,2,...,13), Deo; i =1,2,...,7), Ee,; (i=1,2,3,4), Fe,
Heoi i =1,3,4), Jeoi (i =1,2,3,4,5), Keo; (i =1,2), Leo,; (i=1,2).

The codes Dgp 3 and Jgp 5 (see Tables 2, 5) establish Proposition 1. The code Jgp 5 has
the following weight enumerator:

1 +2939y'% 4+ 31296y'% + 282321y'° + 1723904y'® + 7784760y
+26386176y?% + 67197064y** + 130097664y° + 193168371y
+ 2203928320 4 .. 4y,
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Table 5 Extremal self-dual [60, 30, 12] neighbors Hg ;, Je0,i» K6o,i and L, ;

C D supp(x) w
Heo,1 Geo,1 {4, 30, 32, 36, 37, 40, 42, 43,47, 51, 52, 54, 57, 58} B =10
Hego,2 Ge0,2 {1,2,4,32,36, 39,40, 42, 49, 50, 55, 56, 57, 58} p=0
Hego 3 G603 {1,2,32,33,34,35,37,44, 45,48, 51, 54, 55, 59} p=0
Heo 4 Ge60,4 {2, 30, 32, 34, 36, 37, 40, 44, 48, 52, 55, 56, 58, 60} B=0
He,5 Geo.5 {1,31,32,33,35,36, 37,42, 43, 44, 46, 49, 56, 58} B=0
Heo,6 Ge0,6 {1,31, 32, 35,38, 40, 41, 43, 44, 45, 51, 56, 58, 59} p=0
Heo,7 Ge0,7 {1,3,5,32,37,38,41, 42,50, 51, 53, 56, 57, 59} B=0
He,8 Ge0.8 {1,2,3,5,6,33,34, 35, 36, 38,42, 55, 56, 57} p=0
Heo,9 G60,9 {1,2,6,33,35,39,41,42,43, 44, 46, 47,55, 56} p=0
Hego,10 G60.10 {2, 30, 32,33, 36,41, 43, 44, 48,49, 51, 56, 59, 60} B=0
Heo, 11 Geo,11 {2,3,32,39,40,42,43,44,45,48, 51, 52, 56, 60} B=0
Heo,12 Ge0,12 {2, 3, 32, 33,34, 35, 36, 38, 45,47, 51, 55, 56, 60} =0
Heo,13 Ge0,13 {1, 30, 35,37,41, 43,44, 45, 46, 47, 48, 50, 54, 56} p=0
J60,1 Hep, 1 {4,6,36,41, 43,48, 49, 51, 53, 55, 56, 59} B =10
Jeo,2 Heo 3 {1,3,4,30,32,36,37,38,51, 52, 55, 56} p=0
J60,3 Hego 3 {1,31, 34,36, 39, 40, 41, 44, 45, 55, 56, 59} B=0
J60,4 Heo,4 {2,5,33,34,37, 38, 39,42, 44, 50, 57, 59} B=0
J60,5 Heo 4 {3,6,7,30,34, 36, 39,42, 48, 50, 53, 58} B=6
Ke0,1 J60,1 {1,3,4,6,36,40,41, 46, 47,51, 54, 57} B =10
Ke0,2 J60,4 {5,7,34,36,37,40,41, 42,47, 49, 50, 60} B=6
Leo,1 Ke0,1 {2,3,32,33,37, 38,41, 46,51, 52,57, 58} B =10
Leo,2 Ke0,2 {2,3,32,34,37,38,41, 44,47, 51, 53, 58} p=6

5 Optimal self-dual [58, 29, 10] codes

An extremal self-dual [60, 30, 12] code gives an optimal self-dual [58, 29, 10] code by sub-
tracting two coordinates. We found all the optimal self-dual [58, 29, 10] codes by subtracting
from the 37 inequivalent extremal self-dual [60, 30, 12] codes given in Sects. 2, 3 and 4. The
only extremal self-dual [60, 30, 12] code Dgp 3 gives 18 optimal self-dual [58, 29, 10] codes
Csgi (i = 1,2,...,18) with weight enumerator for which no optimal self-dual code was
previously known to exist. More precisely, the codes by subtracting i and j have weight
enumerator Wsg » for 8 = 2 and y = 104, where (i, j) are listed in Table 6. We verified that
there are the following equivalent codes:

Csg1 =Csg,; (i =2,4,5,7,8,11, 12,14, 15,17, 18),
Csg3 =Csg,; (i =6,9, 10, 13, 16),
where Csg 1 and Csg 3 are inequivalent.
Similar to Sects. 3 and 4, we continue the search to find optimal self-dual [58, 29, 10]
codes with weight enumerator for which no optimal self-dual code was previously known

to exist, by considering self-dual neighbors of Csg; (i = 1, 3). These codes C = Dsg; are
constructed as

(DN (x)h), x),
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Table 6 Optimal self-dual

(58, 29, 10] codes Css.; Code @, J) Code @, j) Code @, Jj)
Csg.1 (2,36) Css,7 (12,31) Css.13 (22,41)
Csgn (2,41 Csg8 (12, 36) Csg14 (22, 48)
Csg.3 (2,58) Csg.9 (12,53) Csg.15 (22,58)

Csg.4 (7,3 Css.10 (17,36) Css.16 (27,31)
Csg.5 (7,41) Csg.11 (17, 53) Csg8.17 (27,48)
Css,6 (7,48) Css.12 (17, 58) Csg.18 (27,53)

Table 7 Optimal self-dual [58, 29, 10] neighbors

C D supp(x) w

Dsg 1 Csg.1 {3,4,28,30,33,41, 43, 44,52, 53, 55, 56} (2,102)
Dsg 2 Csg.1 {2,3,5,28,33,34,35,41, 42, 44, 45, 50} (2,108)
Dsg 3 Cs3.3 {1,4,6,7,8,39,40,41, 42, 43,47, 52} (2,28)
Esg | Dsg o {1,3,6,7,34,35,40,47,49, 51} (2, 106)
Esg o Dsg 3 {1,6, 10,28, 31, 32, 33, 40, 53, 54} (0,24)
Esg 3 Dsg 3 {2,6,7,8,31,34,38,45,51, 57} (1,24)
Esg 4 Dsg 3 {6, 8,28, 30, 39, 40, 41, 46, 57, 58} (1,30)
Esg s Dsg 3 {6,32,33,38,41, 42, 44, 46,47, 57} (2,16)
Esg 6 Dsg 3 {2,5,6,33,36,39,42,52, 53, 56} (2,20)
Esg7 Dsg 3 {5.6,8,36,38,41, 48,51, 52,55} (2,24)
Esg g Dsg 3 {3.6,7,12,32,33,34,43,47, 54} (2,26)
Esg 9 Dsg 3 {1,8,13,35,36,44,47, 50, 53, 55} (2,30)
Fsg.1 Esg 6 {1,4,36,38,39,41,43, 45,49, 58} 0, 14)
Fsg0 Esg s {1,5,6,7,8,11,29,31, 44, 46} (1, 16)
Fsg3 Esg s {1,2, 30,32, 35,44, 46, 47, 53, 58} (1,18)
Fsg4 Esg s {4,6,9,34,41,42, 45,50, 51, 56} (1,20)
Fsg 5 Esg s {4,5,37,41, 47, 49, 50, 55, 56, 58} (1,22)
Fs3.6 Esg 5 {1,4,6,7,8,35,39,41, 42, 43} (2,8)
Fsg8.7 Esg 5 {6,7,12,15,41,43,46,47, 49, 56} (2,12)
Fsg.8 Esg 5 {1,6,8,29,34,39,47, 50, 54, 55} (2,18)
Fsg.9 Esg s {3, 35, 36, 38, 39, 42, 47, 49, 50, 56} (2,22)
Gsg1 Fsg.1 {2,7,11,29,31, 32, 33, 48, 49, 52} 0,8)
Gsg2 Fsg.7 {3,9, 32, 38,47, 48,49, 51, 52, 55} 0,4)
Gsg3 Fs58.7 {1,8, 12,30, 33, 40, 42, 49, 50, 55} (2,14)
Hsg Gsg2 {5.6,7,9,32,44,46,47, 49, 58} (0, 6)

where D and supp(x) are listed in Table 7. We verified that the codes Dsg; have weight
enumerator Wsg >, where W in Table 7 indicates the values (B, y) in the weight enumerator
Wsg 2. By continuing this process, we found more optimal self-dual [58, 29, 10] codes with
weight enumerator for which no optimal self-dual code was previously known to exist. The
results are listed in Table 7. From Tables 6 and 7, we have Proposition 2.
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6 Weight enumerator Wsg 1

In this section, we give a remark on the possible weight enumerator Wsg 1. First, we discuss
a general case including Wsg 1.

Proposition S Let C be a self-dual [n,n/2, d] code with shadow S of minimum weight 1.
Let A; and B; denote the numbers of vectors of weight i in C and S, respectively. Suppose
thatn =2 (mod 8) andd =2 (mod 4). Then By_; = Ay.

Proof Let x be the vector of weight 1 and let y be a vector of weight d — 1 in S. Since
x+y e C,x + yhas weightd. Thus, By_1 < Ay.

Now let ¢ be a codeword of weight d in C and let x be the vector of weight 1 in S. Then we
have x + ¢ € S. From the assumption that » = 2 (mod 8), the weight of x + ¢ is congruent
to 1 (mod 4) by Theorem 5 in [3]. Hence, from the assumption thatd =2 (mod 4), x + ¢
has weight d — 1. Thus, By_1 > A,. The result follows. ]

For example, Proposition 5 can be applied to the following parameters:
(n,d) = (58, 10), (74, 14) and (98, 18).

e (n,d) = (58, 10):
The possible weight enumerator of the shadow of an optimal self-dual [58, 29, 10] code
with weight enumerator Wsg ; is as follows [3]:

v+ yy° + (23918 — 10y)y + .-+ .
By Proposition 5, we have
165 =2y = y.

Since there is an optimal self-dual [58, 29, 10] code with weight enumerator Wsg | for
y = 55 [12], we have the following:

Corollary 6 There is an optimal self-dual [58, 29, 10] code with weight enumerator Wsg |
if and only if y = 55.

e (n,d) = (74, 14):
The largest minimum weight among self-dual codes of length 74 is at most 14 [6].
The weight enumerator W> in [6, p. 2039] is the possible weight enumerator of a self-
dual [74, 37, 14] code with shadow of minimum weight 1. By Proposition 5, we have
o = —135 for W, in [6, p. 2039]. The weight enumerators of such a code and its shadow
are as follows:

1 +2044y' + 159067y'0 + 520782y'8 + ... |
y +2044y"3 + 679849y'7 + 44010824y + - - - |

respectively. Itis still unknown whether there is a self-dual [74, 37, 14] code (with shadow
of minimum weight 1).

e (n,d)= (98, 18):
The largest minimum weight among self-dual codes of length 98 is at most 18 [6]. The
weight enumerator W3 in [6, p. 2041] is the unique weight enumerator for a self-dual
[98, 49, 18] code with shadow of minimum weight 1. The weight enumerators of such a
code and its shadow are as follows:
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1+22116y"8 +2016048y%° + 7181104y + - - -,
y 4 22116y'7 + 9197152y + 964758896y% + - - - |

respectively. Itis still unknown whether there is a self-dual [98, 49, 18] code (with shadow
of minimum weight 1).
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