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Abstract This paper presents four classes of linear codes from coset representatives of
subgroups and cyclotomic coset families of certain finite field, and determines their weight
enumerators. These linear codes may have applications in consumer electronics, communi-
cations and secret sharing schemes.

Keywords Linear code · Cyclic code · Weight distribution · Gauss sum

Mathematics Subject Classification 11T71 · 94B15

1 Introduction

Let q be a power of a prime p and Fq be a finite field of size q . An [n, k, d] linear code
C over Fq is a k-dimensional subspace of Fn

q with minimum distance d . Let Ai denote the
number of codewords with Hamming weight i in C. The weight enumerator of C is defined
by 1 + A1x + A2x2 + · · · + Anxn . The weight distribution of a code not only gives the
error correcting ability of the code, but also allows the computation of the probability of
error detection and correction [12]. So the study of the weight distributions of linear codes
is important in both theory and applications.
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Let Fqm be a finite field with qm elements. Note that Fqm is the unique degreem extension

ofFq . Let Tr
qm
q be the trace function fromFqm ontoFq . Froma subset D = {d1, d2, . . . , dn} ⊂

Fqm , we define a class of generic linear code of length n = |D| over Fq as follows:

CD =
{
cy =

(
Trq

m

q (yd1),Tr
qm
q (yd2), . . . ,Tr

qm
q (ydn)

)
: y ∈ Fqm

}
. (1)

The dimension of CD equals the dimension of the vector space VD generated by
d1, d2, . . . , dn ∈ Fqm over Fq [5]. If e = dimFq VD < m, then CD has repeated code-
words and each codeword repeats qm−e times. If e = m then each codeword occurs once.
Onemay get different codes CD from different orderings of the elements of D, but these codes
are permutation equivalent and have the same lengths, dimensions and weight distributions.
Hence, the orderings of the elements of D will not affect the results in this correspondence.

Let ζp be a primitive p-th root of an unity, and let

χm(y) = ζ
Trq

m
p (y)

p and χ(y) = ζ
Trqp(y)
p

be canonical additive characters over Fqm and Fq , respectively. For a codeword cy in CD , its
Hamming weight is equal to

wt (cy) = n − |{1 ≤ i ≤ n : Trq
m

q (ydi ) = 0}|
= n − 1

q

∑
d∈D

∑
z∈Fq

χ
(
zTrq

m

q (dy)
)

= (q − 1)n

q
− 1

q

∑
d∈D

∑
z∈F∗

q

χm (zdy) . (2)

From (2) the weight distribution of CD is directly derived from the value distribution of the
exponential sum over the subsets F∗

q Dy of F∗
qm for y ∈ Fqm . If the set D is well chosen, CD

may have good parameters. This construction technique was employed in [5,7] for obtaining
linear codes with only a few weights. Following this generic construction, in the past three
years, many authors present works [2–4,9–11,14,15,20,21,24] on constructions of linear
codes with few weights. Along this line we will give four classes of linear codes with a
defining set from representatives of coset decomposition of subgroups or cyclotomic cosets
families of some finite fields. By using some combinatorial techniques and Gauss sums with
index 2 case, we determine the weight distributions of these linear codes.

The rest of the paper is organized as follows. Section 2 recalls the theory of Gauss sums
over finite fields. Section 3 presents a class of linear codes from coset representatives of some
subgroup of F∗

q , and determines their weight distributions. In Sect. 4 we give three classes
of cyclic codes from cyclotomic cosets and determine their weight distributions. Section 5
concludes this paper.

2 Gauss sums

Let Fqm be a finite field with qm elements, where q is a power of a prime p. The canonical
additive character χm over Fqm is defined by

χm(y) = ζ
Trq

m
p (y)

p ,
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Four classes of linear codes from cyclotomic cosets 1009

where ζp is a primitive p-th root of an unity and Trq
m

p (·) is the trace function from Fqm to
Fp . As m = 1 the χ1 is the canonical additive character over Fq , and we denote it by χ for
short. The additive characters have the following orthogonal property,

∑
y∈Fq

χ(ay) =
{
q, if a = 0,
0, otherwise.

Let ψ be a multiplicative character of F∗
q . The Gauss sum over Fq is defined by

g(ψ) =
∑
y∈F∗

q

ψ(y)χ(y).

Gauss sums can be viewed as the Fourier coefficients in the Fourier expansion of ψ |F∗
q
in

terms of the multiplicative characters of F∗
q .

Lemma 1 (see [16]) Let q be a prime power, χ the canonical additive character of Fq is

defined by χ(y) = ζ
Trqp(y)
p , where y ∈ Fq . And let ψ be a multiplicative character of Fq .

Then, for every y ∈ F
∗
q ,

χ(y) = 1

q − 1

∑

ψ∈F̂∗
q

g(ψ̄)ψ(y),

where ψ̄ = ψ−1 and F̂∗
q denotes the character group of F∗

q .

In general, the explicit evaluation of Gauss sums is very difficult. There are only a few
cases where the Gauss sums have been evaluated [13,17,18]. We state here some results in
the index 2 case which will be used in our constructions. Below we use φ(N ) to denote the
number of integers k with 0 < k ≤ N such that gcd(k, N ) = 1 and ordN (p) to denote the
order of p modulo N , which is the smallest positive integer f such that p f ≡ 1 (mod N ).

Lemma 2 ([22], Theorem 4.12) Let N = 2pm1 , where m is a positive integer, and p1 > 3 is
a prime such that p1 ≡ 3 (mod 4). Assume that p is a prime such that [Z∗

N : 〈p〉] = 2. Let
f = φ(N )/2, q = p f , and let ψ be a multiplicative character of order N of Fq . Then for
0 ≤ t < m we have

g(ψ pt1) =
⎧⎨
⎩

(−1)
p−1
2 (m−1) p

f −1
2 −hpt1

√
p∗( b+c

√−p1
2 )2p

t
1 , if p1 ≡ 3 (mod 8),

(−1)
p−1
2 m p

f −1
2

√
p∗, if p1 ≡ 7 (mod 8).

g(ψ2pt1) = p
f −pt1h

2
( b+c

√−p1
2

)pt1;
g(ψ pm1 ) = (−1)

p−1
2

f −1
2 p

f −1
2

√
p∗,

where p∗ = (−1)
p−1
2 p, and h is the class number of Q(

√−p1), and b, c are integers

determined by 4ph = b2 + p1c2 and bp
f −h
2 ≡ −2 (mod p1).

Lemma 3 ([22], Theorem 4.10) Let N = pm1
1 pm2

2 , where m1,m2 are positive integers,
p1, p2 are primes such that p1 ≡ 3 (mod 4) and p2 ≡ 1 (mod 4). Assume that p is a
prime such that [Z∗

N : 〈p〉] = 2, ordpm1
1

(p) = φ(pm1
1 ) and ordpm2

2
(p) = φ(pm2

2 ). Let
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1010 D. Zheng, J. Bao

f = φ(N )/2, q = p f , and ψ be a multiplicative character of order N of Fq . Then for
0 ≤ s < m1 and 0 ≤ t < m2, we have

g(ψ ps1 p
t
2) = p

1
2 ( f −h12 ps1 p

t
2)

(
b + c

√−p1 p2
2

)ps1 p
t
2

,

g(ψ p
m1
1 pt2) = p

f
2 ;

g(ψ ps1 p
m2
2 ) = −p

f
2 ,

where h12 is the class number of Q(
√−p1 p2), and b, c are integers determined by b, c 
≡ 0

(mod p), 4ph12 = b2 + p1 p2c2 and b ≡ 2p
1
2 h12 (mod p1).

Lemma 4 ([22], Theorem 4.14) Let N = 4pm1 , where m is a positive integer, and p1 is
a prime such that p1 ≡ 1 (mod 4). Assume that p is a prime such that p ≡ 3 (mod 4),
[Z∗

N : 〈p〉] = 2 and ordpm1 (p) = φ(pm1 ). Let f = φ(N )/2, q = p f , and let ψ be a
multiplicative character of order N of Fq . Then for 0 ≤ s < m we have

g(ψ ps1) = p
f
4 (b + c

√
p1)

ps1 ,

g(ψ pm1 ) = g(ψ2ps1) = g(ψ2pm1 ) = −p
f
2 ;

g(ψ4ps1) = p
f
2 ,

where b, c are integers determined by p
f
2 = b2 + p1c2 and b ≡ −p

f
4 (mod p1).

3 A class of linear codes from coset representatives of some subgroup of F∗
q

Let G be a subgroup of F∗
q with order λ. Then λ|(q −1) and λ|(qm −1). Let α be a primitive

element of Fqm , then β = α
qm−1
q−1 is a primitive element of Fq . It is clear that F∗

qm has the
following coset decomposition,

F
∗
qm =

qm−q
q−1∪
i=0

αi
F

∗
q =

qm−q
q−1∪
i=0

q−λ−1
λ∪

j=0
αiβ j G. (3)

In this section we will study a class of linear codes over Fq as follows,

CD =
{
cy = (Trq

m

q (yd1),Tr
qm
q (yd2), . . . ,Tr

qm
q (ydn)) : y ∈ Fqm

}
, (4)

where D = {d1, d2, . . . , dn} ⊂ Fqm is a defining set.By choosingproper coset representatives
in (3) as the defining set D, we can obtain linear codes CD with only few weights. To this
end, we introduce some preliminary lemmas.

Lemma 5 Let k be a positive integer with k ≤ m, and let α1, α2, . . . , αk ∈ Fqm be linearly
independent over Fq . Denote by

Vi = {y ∈ Fqm | Trqmq (αi y) = 0}, i = 1, 2, . . . , k.

Let I and J be subsets of {1, 2, . . . , k} such that I ∩ J = ∅ and I ∪ J = {1, 2, . . . , k}. Let
SI = ∩

i∈I
Vi and S∅ = Fqm . Then

| SI \( ∪
j∈J

Vj ) |= qm−k(q − 1)k−|I |.
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Four classes of linear codes from cyclotomic cosets 1011

Proof It is clear that |I | + |J | = k, and |SI | = qm−|I |. Let A j = SI ∩ Vj for j ∈ J .

| SI \( ∪
j∈J

Vj ) |=| SI | − | ∪
j∈J

A j |

= qm−|I | −
⎛
⎝∑

j∈J

|A j | −
∑
j1< j2

|A j1 ∩ A j2 | + · · · + (−1)|J |−1| ∩
j∈J

A j |
⎞
⎠

= qm−|I | −
(|J |

1

)
qm−|I |−1 +

(|J |
2

)
qm−|I |−2 + · · · + (−1)|J |

(|J |
|J |

)
qm−|I |−|J |

= qm−k(q − 1)|J | = qm−k(q − 1)k−|I |.

��
Lemma 6 Let Dk be a set with k elements in Fqm which are linearly independent over Fq .
Let χm be the canonical additive character over Fqm . For y running through Fqm , the value
distribution of the exponential sum

SDk (y) =
∑
d∈Dk

∑
z∈F∗

q

χm(zdy)

is as follows,

Values Frequency

iq − k qm−k(k
i
)
(q − 1)k−i , i = 0, 1, . . . , k

Proof It is clear that

SDk (y) =
∑
d∈Dk

∑
z∈F∗

q

χm(dzy)

=
∑
d∈Dk

∑
z∈F∗

q

χ
(
Trq

m

q (dy)z
)

,

where χ is the canonical additive character on Fq . With notations introduced in Lemma 5
we set ΔI J = SI \(∪ j∈J Vj ). If y ∈ ΔI J with |I | = i , then

SDk (y) = i(q − 1) − (k − i) = iq − k.

Moreover, the number of such y is
(k
i

)|ΔI J | for |I | = i , andbyLemma5 it equals
(k
i

)
qm−k(q−

1)k−i . ��

Let α and β be as in (3), and T = {β j , β jα, . . . , β jα
qm−q
q−1 } for some j with 0 ≤ j ≤

q−1
λ

− 1. Let Dn with 1 ≤ n ≤ m be a n-subset of T , and elements in Dn are linearly
independent over Fq .

Theorem 1 With notations as above, we have

(1) If D = T , then CD is a one-weight code with parameters [ qm−1
q−1 ,m, qm−1].

(2) If D = Dn, then CD is an [n, n, 1] code with the weight enumerator as follows,

n∑
i=0

(
n

i

)
(q − 1)n−i xn−i .
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1012 D. Zheng, J. Bao

(3) If D = T \Dn and qm > 4, then CD is a [ qm−1
q−1 − n,m, qm−1 − n] code with the weight

enumerator as follows,

1 +
n−1∑
i=0

qm−n
(
n

i

)
(q − 1)n−i xq

m−1+i−n + (qm−n − 1)xq
m−1

.

Proof (1) When D = {β j , β jα, . . . , β jα
qm−q
q−1 }, we have F∗

qm = DF
∗
q . For y ∈ F

∗
qm ,

SD(y) =
∑
d∈D

∑
z∈Fq∗

χ(dzy) =
∑

z′∈F∗
qm

χ(z′y) = −1.

It is clear that the dimension of CD is m and it has a constant weight qm−1 from equa-
tion (2).

(2) When D = Dn , from equation (2) and Lemma 6we can easily get theweight enumerator.
Since n elements in D are linearly independent over Fq we know that the dimension of
CD is n.

(3) When D = T \Dn , for y ∈ F
∗
qm we have

SD(y) =
∑
d∈D

∑
z∈Fq∗

χm(dzy)

=
∑

z′∈F∗
qm

χm(z′y) −
∑
d∈Dn

∑
z∈Fq∗

χ
(
Trq

m

q (dzy)
)

= −1 − SDn (y).

By (2) and Lemma 6 we get the weight enumerator of CD .
Remark 1 Let E be a subset of F∗

q , and ED = {ed | e ∈ E, d ∈ D} where D is introduced
in Theorem 1. For each case in Theorem 1, if choose ED as a new defining set we get new
linear codes with longer codewords. This result also can be derived from Theorem 1 in [21].

Remark 2 When |Dn | is small, and D = T \Dn , from (3) of Theorem 1 we get linear codes
CD with only few weights. Moreover, the code constructed in (3) of Theorem 1 has minimum
nonzero weight wmin = qm−1 − n and maximum weight wmax = qm−1, and so it satisfies
that wmin/wmax >

q−1
q whenever n < qm−2. Thus the code can be employed to obtain

secret sharing schemes with interesting access structures using the framework in [23].

Example 1 Using the primitive polynomial f (x) = x3 + x2 − x + 1 ∈ F3[x], we construct
the F33 as F3[α] where f (α) = 0. Let D = {1, α} be a defining set. Then each codeword in
CD repeats once and its weight enumerator of the irreducible cyclic code CD defined by (4)
is

1 + 4x1 + 4x2.

This is confirmed by Magma.

4 Three classes of linear codes from cyclotomic cosets

In this section, we investigate the weight distribution of linear codes with a defining set from
some cyclotomic cosets, and their Hamming weights of the codewords can be expressed by
Gauss sums with index 2 case.

123



Four classes of linear codes from cyclotomic cosets 1013

Let N be a divisor of q−1 and β a fixed primitive element of Fq . DefineC
(N ,q)
i = β i 〈βN 〉

for i = 0, 1, . . . , N −1, where 〈βN 〉 is a subgroup of F∗
q generated by βN . Let CD be a linear

code as follows,

CD = {
cx = (Trqp(xd1),Tr

q
p(xd2), . . . ,Tr

q
p(xdn)), x ∈ Fq

}
(5)

with a defining set

D = {d1, d2, . . . , dn} = C (N ,q)
0 = {βN j : 0 ≤ j < n}, (6)

where n = q−1
N . It is known that CD is an irreducible cyclic code. When gcd( q−1

p−1 , N ) is
small or N is small, Ding and Yang in [6] studied the weight distribution of CD by some
known Gauss sums and Gauss periods. In this paper, we will use Gauss sum of index 2 case
to determine Hamming weight of the codeword in CD . To this end, we firstly introduce some
preliminary lemmas.

Lemma 7 Let q be a prime power and let s be an integer such that s | (q − 1). Let τ be a
multiplicative character of F∗

q with order s and x ∈ Fq , then

∑
0<i<s

τ i (x) =
{
s − 1, if x ∈ C (s,q)

0 ,

−1, if x /∈ C (s,q)
0 ∪ {0}.

Lemma 8 Let q be a prime power and let p′ be an odd prime such that p′|(q − 1). Let τ be
a multiplicative character of F∗

q defined by τ(β) = ζp′ , where β is a primitive element of Fq

and ζp′ is a primitive p′-th root of an unity. Then

∑
0<s<p′

(
s
p′

)
τ s(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if x ∈ C (p′,q)
0 ,

(
i
p′

) √
(−1)

p′−1
2 p′, if x ∈ C (p′,q)

i and i 
= 0,

where
( ·
p′

)
is the Legendre symbol.

Proof If τ(x) = 1, we have
∑

0<s<p′

(
s
p′

)
τ s(x) = ∑

0<s<p′

(
s
p′

)
= 0. Since τ(β) = ζp′ ,

x ∈ C (p′,q)
i and i 
= 0, we have τ(x) = τ i (β) = ζ ip′ . It follows that

∑
0<s<p′

(
s

p′

)
τ s(x) =

∑
0<s<p′

(
s

p′

)
τ is(β)

=
(

i

p′

) ∑
0<s<p′

(
s

p′

)
ζ s
p′ =

(
i

p′

) √
(−1)

p′−1
2 p′.

This completes the proof. ��
In order to determine Hamming weight of the codeword cx in (5) we need to calculate the

following number.

SD(x) = | {d ∈ D | Trqp(xd) = 0
} | = n

p
+ 1

p

∑
z∈F∗

p

∑
d∈D

χ(zxd). (7)

123



1014 D. Zheng, J. Bao

Let ϕ be a multiplicative character of F∗
q of order q − 1 and F̂∗

q = {ϕ j : 0 ≤ j < q − 1}. By
Fourier expansion formula, Lemma 1 and Lemma 7,

SD(x) = n

p
+ 1

p(q − 1)

∑
z∈F∗

p

∑
d∈D

∑

ψ∈F̂∗
q

g(ψ̄)ψ(zxd)

= n

p
+ 1

p(q − 1)

∑
0≤ j<q−1

g(ϕ̄ j )ϕ j (x)
∑
z∈F∗

p

ϕ j (z)
∑
d∈D

ϕ j (d)

= n

p
+ 1

pN

∑
0≤ j<N

g(ϕ̄nj )ϕnj (x)
∑
z∈F∗

p

ϕnj (z)

= n

p
+ p − 1

pN

∑
0≤ j<N ,

(p−1)|nj

g(ϕ̄nj )ϕnj (x)

= n

p
+ p − 1

pN

∑
0≤ j<N ,

l| j

g(ϕ̄nj )ϕnj (x)

= n

p
+ p − 1

pN

∑

0≤ j< N
l

g(ϕ̄nl j )ϕnl j (x), (8)

where l = p−1
gcd(n,p−1) . From q − 1 = n · N we know that l | N .

Nextwewill construct three classes of irreducible cyclic codes as in (5) and (6) by choosing
a proper defining set D, and determine their weight distributions.

Theorem 2 Let N = 2p1, where p1 > 3 is a prime such that p1 ≡ 3 (mod 4). Assume that
p is a prime such that [Z∗

N : 〈p〉] = 2. Let f = φ(N )/2 and q = p f . Let h be the class

number ofQ(
√−p1), and b, c be integers determined by 4ph = b2+ p1c2 and bp

f −h
2 ≡ −2

(mod p1). Let CD be a linear code defined in (5) and (6), then the weight enumerator of CD
is as follows:

1 + q − 1

p1
x

p−1
pN

(
q− b(p1−1)

2 p
f −h
2

)

+ (q − 1) (p1 − 1)

2p1
x

p−1
pN

(
q+ b+cp1

2 p
f −h
2

)

+ (q − 1) (p1 − 1)

2p1
x

p−1
pN

(
q+ b−cp1

2 p
f −h
2

)

. (9)

Proof Since p1 is a prime with p1 ≡ 3 (mod 4), we have that f = p1−1
2 is odd, and

q−1
p−1 = p f −1 + · · · + 1 ≡ 1 (mod 2). Since p1 > 3 and [Z∗

N : 〈p〉] = 2, we know that

p 
≡ 1 (mod p1). Since N = 2p1 | (q − 1), we have l = p−1
gcd(n,p−1) = (p−1)2p1

gcd(q−1,(p−1)2p1)
=

2p1
gcd( q−1

p−1 ,2p1)
= 2.

Letψ be a multiplicative character of F∗
q defined byψ(β) = ζ2p1 . By Lemma 2, we have

g(ψ̄2) = p
f −h
2

b + c
√−p1
2

,

whereh is the class number ofQ(
√−p1), andb, c are integers determinedby4ph = b2+p1c2

and bp
f −h
2 ≡ −2 (mod p1). By the same argument as in Theorem 5.1 of [8] we have
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Four classes of linear codes from cyclotomic cosets 1015

g(ψ̄2s) = 1

2
p

f −h
2

(
b +

(
s

p1

)
c
√−p1

)
, (10)

where 0 < s < p1 and ( ·
p1

) is the Legendre symbol.

Let τ = ϕ2n in (8). Since l = 2 and N = 2p1, by (8) the Hamming weight of codeword
cx equals

wt (cx ) = n − SD(x) = (p − 1)n

p
− p − 1

pN

∑

0≤ j< N
l

g(τ̄ j )τ j (x)

= (p − 1)q

pN
− p − 1

pN

∑

0< j< N
l

g(τ̄ j )τ j (x)

= (p − 1)q

pN
− p − 1

pN

∑
0< j<p1

g(τ̄ j )τ j (x). (11)

By (10) it is followed that

∑
0< j<p1

g(τ̄ j )τ j (x) =
∑

0<s<p1

1

2
p

f −h
2

(
b +

(
s

p1

)
c
√−p1

)
τ s(x)

= b

2
p

f −h
2

∑
0<s<p1

τ s(x) + c

2

√−p1 p
f −h
2

∑
0<s<p1

(
s

p1

)
τ s(x). (12)

By Lemma 7 and Lemma 8, we have

∑
0< j<p1

g(τ̄ j )τ j (x) =
⎧⎨
⎩

b(p1−1)
2 p

f −h
2 , x ∈ C (p1,q)

0 ,

−
(
b
2 + cp1

2

(
i
p1

))
p

f −h
2 , x ∈ C (p1,q)

i and i 
= 0.
(13)

Hence, we obtain

wt (cx ) =

⎧⎪⎨
⎪⎩

p−1
pN

(
q − b(p1−1)

2 p
f −h
2

)
, if x ∈ C (p1,q)

0 ,

p−1
pN

(
q + b

2 p
f −h
2 + cp1

2

(
i
p1

)
p

f −h
2

)
, if x ∈ C (p1,q)

i and i 
= 0.
(14)

Frequency of each Hamming weight is derived from (14) directly. So we get the weight
enumerator of CD as in (9). ��
Remark 3 When b, c ∈ {−1, 1}, the obtained codes are two-weighted.

Example 2 Let p = 11, p1 = 7 and N = 14. Then f = 3 and q = 113. The class number

h of Q(
√−7) is equal to 1 (see [19]). Since 4ph = b2 + p1c2 and bp

f −h
2 ≡ −2 (mod p1),

we have c2 = 4 and b = −4. By Theorem 2, the weight enumerator of the irreducible cyclic
code CD defined by (5) is

1 + 190x95 + 570x90 + 570x80.

This is confirmed by Magma.

Example 3 Let p = 3, p1 = 11 and N = 22. Then f = 5 and q = 35. The class number h

of Q(
√−11) is equal to 1 (see [19]). Since 4ph = b2 + p1c2 and bp

f −h
2 ≡ −2 (mod p1),
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we have c2 = 1 and b = 1. By Theorem 2, the weight enumerator of the irreducible cyclic
code CD defined by (5) is

1 + 132x6 + 110x9.

This is confirmed by Magma.

Theorem 3 Let N = p1 p2, where p1, p2 are primes such that p1 ≡ 3 (mod 4) and p2 ≡ 1
(mod 4). Assume that p is a prime such that [Z∗

N : 〈p〉] = 2, ordp1(p) = φ(p1) and
ordp2(p) = φ(p2). Let f = φ(N )/2, q = p f . Let h12 be the class number ofQ(

√−p1 p2),
and let b, c be integers determined by b, c 
≡ 0 (mod p), 4ph12 = b2 + p1 p2c2 and

b ≡ 2p
1
2 h12 (mod p1). Let h = 1

2 ( f − h12) and CD be a linear code defined in (5) and (6),
then the weight enumerator of the linear code CD is as follows:

1 + q − 1

p1 p2
x

p−1
pN (q− b

2 p
h(p1−1)(p2−1)−p

f
2 (p2−p1))

+ (q − 1)(p2 − 1)

p1 p2
x

p−1
pN (q+ b

2 p
h(p1−1)+p

f
2 p1) + (q − 1)(p1 − 1)

p1 p2
x

p−1
pN (q+ b

2 p
h(p2−1)−p

f
2 p2)

+ (q − 1)(p1 − 1)(p2 − 1)

2p1 p2

(
x

p−1
pN (q− b

2 p
h+ cp1 p2

2 ph) + x
p−1
pN (q− b

2 p
h− cp1 p2

2 ph)
)

. (15)

Proof Since p1, p2 are primes, ordp1(p) = φ(p1) and ordp2(p) = φ(p2), we have p 
≡ 1
(mod p1) and p 
≡ 1 (mod p2). Since N = p1 p2 | (q − 1), we have p1 p2| q−1

p−1 and l =
p−1

gcd(n,p−1) = (p−1)p1 p2
gcd(q−1,(p−1)p1 p2)

= p1 p2
gcd( q−1

p−1 ,p1 p2)
= 1.

Let τ1 be a multiplicative character of F∗
q defined by τ1(β) = ζp1 and let τ2 be a multi-

plicative character of F∗
q defined by τ2(β) = ζp2 . By Lemma 3, we have

g(τ̄1τ̄2) = ph
b + c

√−p1 p2
2

, g(τ̄2) = p
f
2 , g(τ̄1) = −p

f
2 ,

where h12 is the class number of Q(
√−p1 p2), h = 1

2 ( f − h12) and b, c are integers

determined by b, c 
≡ 0 (mod p), 4ph12 = b2 + p1 p2c2 and b ≡ 2p
1
2 h12 (mod p1). Every

multiplicative character of F∗
q with order p1 p2 is of the form τ s1 τ t2, where s ∈ Z

∗
p1 and

t ∈ Z
∗
p2 . By the same argument as in Theorem 5.1 in [8], we have

g(τ̄ s1 τ̄ t2) = ph

2

(
b + c

(
s

p1

) (
t

p2

) √−p1 p2

)
, g(τ̄ t2) = p

f
2 , g(τ̄ s1 ) = −p

f
2 , (16)

where ( .
p1

) is the Legendre symbol.
Let τ = ϕn in (8). Since l = 1 and N = p1 p2, from (8) we have

wt (cx ) = n − SD(x) = (p − 1)n

p
− p − 1

pN

∑

0≤ j< N
l

g(τ̄ j )τ j (x)

= (p − 1)q

pN
− p − 1

pN

∑

0< j< N
l

g(τ̄ j )τ j (x)

= (p − 1)q

pN
− p − 1

pN

∑
0< j<N

g(τ̄ j )τ j (x). (17)
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Since τ is a character with order N , we get

∑
0< j<N

g(τ̄ j )τ j (x) =
∑

0< j<N ,

gcd( j,N )=1

g(τ̄ j )τ j (x) +
∑

0< j<N ,

gcd( j,N )=p2

g(τ̄ j )τ j (x)

+
∑

0< j<N ,

gcd( j,N )=p1

g(τ̄ j )τ j (x). (18)

Below we will compute each sum individually. By (16) and Lemma 7 and Lemma 8,

∑
0< j<N ,

gcd( j,N )=1

g(τ̄ j )τ j (x) =
∑

0<s<p1,
0<t<p2

g(τ̄ s1 τ̄ t2)τ
s
1 τ t2(x)

=
∑

0<s<p1,
0<t<p2

ph

2

(
b + c

(
s

p1

) (
t

p2

) √−p1 p2

)
τ s1 τ t2(x)

= bph

2

∑
0<s<p1,
0<t<p2

τ s1 τ t2(x) + cph
√−p1 p2
2

∑
0<s<p1

(
s

p1

)
τ s1 (x)

∑
0<t<p2

(
t

p2

)
τ t2(x)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b
2 p

h(p1 − 1)(p2 − 1), if x ∈ C (p1 p2,q)
0 ,

− b
2 p

h(p1 − 1), if x ∈ C (p1,q)
0 and x /∈ C (p2,q)

0 ,

− b
2 p

h(p2 − 1), if x /∈ C (p1,q)
0 and x ∈ C (p2,q)

0 ,

b
2 p

h − cp1 p2 ph

2

(
i
p1

) (
j
p2

)
, if x ∈ C (p1,q)

i , x ∈ C (p2,q)
j and i j 
= 0.

(19)

From (16) and Lemma 7 we have

∑
0< j<N ,

gcd( j,N )=p2

g(τ̄ j )τ j (x) =
∑

0<i<p1

g(τ̄ i1)τ
i
1(x) = −p

f
2

∑
0<i<p1

τ i1(x)

=
⎧⎨
⎩

−p
f
2 (p1 − 1), if x ∈ C (p1,q)

0 ,

p
f
2 , if x /∈ C (p1,q)

0 ∪ {0},
(20)

and

∑
0< j<N ,

gcd( j,N )=p1

g(τ̄ j )τ j (x) =
∑

0<i<p2

g(τ̄ i2)τ
i
2(x) = p

f
2

∑
0<i<p2

τ i2(x)

=
⎧⎨
⎩

p
f
2 (p2 − 1), if x ∈ C (p2,q)

0 ,

−p
f
2 , if x /∈ C (p2,q)

0 ∪ {0}.
(21)
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Combing (17), (18), (19), (20) and (21) we obtain

wt (cx ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p−1
pN

(
q − b

2 p
h(p1 − 1)(p2 − 1) − p

f
2 (p2 − p1)

)
, if x ∈ C (p1 p2,q)

0 ,

p−1
pN

(
q + b

2 p
h(p1 − 1) + p

f
2 p1

)
, if x ∈ C (p1,q)

0 and x /∈ C (p2,q)
0 ,

p−1
pN

(
q + b

2 p
h(p2 − 1) − p

f
2 p2

)
, if x /∈ C (p1,q)

0 and x ∈ C (p2,q)
0 ,

p−1
pN

(
q − b

2 p
h + cp1 p2

2 ph
(

i
p1

) (
j
p2

))
, if x ∈ C p1

i , x ∈ C p2
j and i j 
= 0.

(22)
Frequency of each Hamming weight is derived from equation (22) directly. So we get the
weight enumerator of CD as in (15). ��

Remark 4 When c2 = 1, b = p2−p1
2 and p

h12
2 = p1+p2

4 , the obtained codes are three-
weighted.

Example 4 Let p = 2, p1 = 3, p2 = 13 and N = 39. Then f = 12 and q = 212. The
class number h12 of Q(

√−39) is equal to 4 (see [1]). Since b2 + p1 p2c2 = 4ph12 and

b ≡ 2p
h12
2 (mod p1), we have c2 = 1 and b = 5. By Theorem 3, the weight enumerator of

the irreducible cyclic code CD defined by (5) is

1 + 212 − 1

39
x32 + 8(212 − 1)

13
x56 + 14(212 − 1)

39
x48.

This weight enumerator coincides with that computed by Magma.

Example 5 Let p = 2, p1 = 11, p2 = 5 and N = 55. Then f = 20 and q = 220. The

class number h12 ofQ(
√−55) is equal to 4 ([1]). Since b2 + p1 p2c2 = 4ph and b ≡ 2p

h12
2

(mod p1), we have c2 = 1 and b = −3. By Theorem 3, the complete weight enumerator of
the irreducible cyclic code CD defined by (5) is

1 + 220 − 1

55
x9728 + 24(220 − 1)

55
x9600 + 30(220 − 1)

55
x9472,

This weight enumerator coincides with that computed by Magma.

Theorem 4 Let N = 4p1, where p1 is prime such that p1 ≡ 1 (mod 4). Assume that
p is a prime such that p ≡ 3 (mod 4), [Z∗

N : 〈p〉] = 2 and ordp1(p) = φ(p1). Let

f = φ(N )/2, q = p f , and b, c be integers determined by p
f
2 = b2 + p1c2 and b ≡ −p

f
4

(mod p1). Let CD be a linear code defined in (5) and (6), then the weight enumerator of CD
is as follows:

1 + q − 1

4p1
x

(p−1)
pN

(
q+3p

f
2 −2b(p1−1)p

f
4

)

+ q − 1

2p1
x

(p−1)
pN

(
q−(2p1−1)p

f
2

)

+q − 1

4p1
x

(p−1)
pN

(
q+2b(p1−1)p

f
4 −p

f
2

)

+ (q − 1) (p1 − 1)

4p1
x

(p−1)
pN

(
q+3p

f
2 +2bp

f
4

)

+ (q − 1) (p1 − 1)

4p1
x

(p−1)
pN

(
q+p

f
2 +2cp1 p

f
4

)

+ (q − 1) (p1 − 1)

4p1
x

(p−1)
pN

(
q−p

f
2 −2bp

f
4

)

+ (q − 1) (p1 − 1)

4p1
x

(p−1)
pN

(
q+p

f
2 −2cp1 p

f
4

)

. (23)
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Proof Since p1 is a prime, and ordp1(p) = φ(p1), we have p 
≡ 1 (mod p1). Since 4 | f =
p1 − 1 and p ≡ 3 (mod 4), it follows that q−1

p−1 = p f −1 + p f −2 + · · · + 1 ≡ 0 (mod 4).

Since N = 4p1 | (q − 1), we imply that 4p1| q−1
p−1 and l = p−1

gcd(n,p−1) = (p−1)4p1
gcd(q−1,(p−1)4p1)

=
4p1

gcd( q−1
p−1 ,4p1)

= 1.

Let τ1 be the multiplicative character of F∗
q defined by τ1(β) = ζp1 and let τ2 be the

character of F∗
q defined by τ2(β) = ζ4. By Lemma 4, we know that

g(τ̄1τ̄2) = p
f
4 (b + c

√−p1), g(τ̄1) = p
f
2 , g(τ̄2) = g(τ̄ 22 ) = g(τ̄1τ̄

2
2 ) = −p

f
2 ,

where b, c are integers determined by p
f
2 = b2 + p1c2 and b ≡ −p

f
4 (mod p1). Every

multiplicative character of F∗
q with order 4p1 is of the form τ s1 τ t2, where s ∈ Z

∗
p1 and t ∈ Z

∗
4.

It follows that for any s ∈ Z
∗
p1 and t ∈ Z

∗
4,

g(τ̄ s1 τ̄2) = p
f
4 (b + c

(
s

p1

) √−p1), g(τ̄ s1 τ̄ 32 ) = p
f
4 (b − c

(
s

p1

) √−p1),

g(τ̄ t2) = g(τ̄ 2t2 ) = g(τ̄ s1 τ̄ 2t2 ) = −p
f
2 , g(τ̄ s1 ) = p

f
2 , (24)

where
(

.
p1

)
is the Legendre symbol.

Let τ = ϕn in (8). Since l = 1 and N = 4p1, by (8) the Hamming weight of codeword
cx equals

wt (cx ) = n − SD(x) = (p − 1)n

p
− p − 1

pN

∑

0≤ j< N
l

g(τ̄ j )τ j (x)

= (p − 1)q

pN
− p − 1

pN

∑

0< j< N
l

g(τ̄ j )τ j (x)

= (p − 1)q

pN
− p − 1

pN

∑
0< j<N

g(τ̄ j )τ j (x). (25)

Since τ is a character with order N , it follows that every multiplicative character of F∗
q with

order 4p1 is of the form τ s1 τ t2, where s ∈ Z
∗
p1 and t ∈ Z

∗
4. By (24) we have

∑
0< j<N

g(τ̄ j )τ j (x) =
∑

τ,o(τ )=2

g(τ̄ )τ (x) +
∑

τ,o(τ )=4

g(τ̄ )τ (x) +
∑

τ,o(τ )=p1

g(τ̄ )τ (x)

+
∑

τ,o(τ )=2p1

g(τ̄ )τ (x) +
∑

τ,o(τ )=4p1

g(τ̄ )τ (x)

= g(τ̄2
2)τ 22 (x) + (

g(τ̄2)τ2(x) + g(τ̄2
3)τ 32 (x)

) +
∑

0<s<p1

g(τ̄1
s)τ s1 (x)

+
∑

0<s<p1

g(τ̄1
s τ̄2

2)τ s1 τ 22 (x) +
∑

0<s<p1

(
g(τ̄1

s τ̄2)τ
s
1 τ2(x) + g(τ̄1

s τ̄2
3)τ s1 τ 32 (x)

)

= −p
f
2

(
τ2(x) + τ 22 (x) + τ 32 (x)

) + p
f
2

∑
0<s<p1

τ s1 (x) − p
f
2 τ 22 (x)

∑
0<s<p1

τ s1 (x)

+
∑

0<s<p1

p
f
4

(
b + c

(
s

p1

)√−p1

)
τ s1 τ2(x) +

∑
0<s<p1

p
f
4

(
b − c

(
s

p1

)√−p1

)
τ s1 τ 32 (x)
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= −p
f
2

(
τ2(x) + τ 22 (x) + τ 32 (x)

) +
(
p

f
2 (1 − τ 22 (x)) + bp

f
4 (τ2(x) + τ 32 (x))

) ∑
0<s<p1

τ s1 (x)

+cp
f
4 (τ2(x) − τ 32 (x))

√−p1
∑

0<s<p1

(
s

p1

)
τ s1 (x), (26)

where o(τ ) denotes the order of the character τ . Next we evaluate above sum according to x .
If x ∈ C (p1,q)

0 and x ∈ C (4,q)
0 from (26) we have

∑
0< j<N

g(τ̄ j )τ j (x) = −3p
f
2 + 2b(p1 − 1)p

f
4 .

If x ∈ C (p1,q)
0 and x ∈ C (4,q)

1 from (26) we get

∑
0< j<N

g(τ̄ j )τ j (x) = (2p1 − 1)p
f
2 .

If x ∈ C (p1,q)
0 and x ∈ C (4,q)

2 from (26) we obtain

∑
0< j<N

g(τ̄ j )τ j (x) = p
f
2 − 2b(p1 − 1)p

f
4 .

If x ∈ C (p1,q)
0 and x ∈ C (4,q)

3 from (26) we imply

∑
0< j<N

g(τ̄ j )τ j (x) = (2p1 − 1)p
f
2 .

If x ∈ C (p1,q)
i , i 
= 0 and x ∈ C (4,q)

0 from (26) we have

∑
0< j<N

g(τ̄ j )τ j (x) = −3p
f
2 − 2bp

f
4 .

If x ∈ C (p1,q)
i , i 
= 0 and x ∈ C (4,q)

1 from (26) we get

∑
0< j<N

g(τ̄ j )τ j (x) = −p
f
2 + 2cp1 p

f
4

(
i

p1

)
.

If x ∈ C (p1,q)
i , i 
= 0 and x ∈ C (4,q)

2 from (26) we obtain

∑
0< j<N

g(τ̄ j )τ j (x) = p
f
2 + 2bp

f
4 .

If x ∈ C (p1,q)
i , i 
= 0 and x ∈ C (4,q)

3 from (26) we imply

∑
0< j<N

g(τ̄ j )τ j (x) = −p
f
2 − 2cp1 p

f
4

(
i

p1

)
.

123



Four classes of linear codes from cyclotomic cosets 1021

Combing (25), (26) and above discussions, we obtain

wt (cx ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p−1)
pN (q + 3p

f
2 − 2b(p1 − 1)p

f
4 ), if x ∈ C (p1,q)

0 ∩ C (4,q)
0 ,

(p−1)
pN (q − (2p1 − 1)p

f
2 ), if x ∈ C (p1,q)

0 ∩ (C (4,q)
1 ∪ C (4,q)

3 ),

(p−1)
pN (q + 2b(p1 − 1)p

f
4 − p

f
2 ), if x ∈ C (p1,q)

0 ∩ C (4,q)
2 ,

(p−1)
pN (q + 3p

f
2 + 2bp

f
4 ), if x ∈ C (p1,q)

i ∩ C (4,q)
0 , i 
= 0,

(p−1)
pN

(
q + p

f
2 − 2cp1 p

f
4

(
i
p1

))
, if x ∈ C (p1,q)

i ∩ C (4,q)
1 , i 
= 0,

(p−1)
pN (q − p

f
2 − 2bp

f
4 ), if x ∈ C (p1,q)

i ∩ C (4,q)
2 , i 
= 0,

(p−1)
pN

(
q + p

f
2 + 2cp1 p

f
4

(
i
p1

))
, if x ∈ C (p1,q)

i ∩ C (4,q)
3 , i 
= 0.

(27)

Frequency of each Hamming weight is derived from (27) directly. So we get the weight
enumerator of CD as in (23).

Example 6 Let p = 3, p1 = 5 and N = 20. Then f = 4 and q = 34. Since b2+ p1c2 = p
f
2

and b ≡ −p
f
4 (mod p1), we have c2 = 1 and b = 2. By Theorem 4, the weight enumerator

of CD defined by (5) is

1 + 4x2 + 4x4.

This result is confirmed byMagma, and shows that CD has dimension 2. In fact, the dimension
of the vector space generated by {1, α20, α40, α60} is 2 for some primitive element α ∈ F34 ,
which is equal to the dimension of the code CD by Theorem 6 in [5].

Example 7 Let p = 3, p1 = 17 and N = 68. Then f = 16 and q = 316. Since b2 + p1c2 =
p

f
2 and b ≡ −p

f
4 (mod p1), we have c2 = 81 and b = 72. By Theorem 4, the weight

enumerator of the irreducible cyclic code CD defined by (5) is

1 + 316 − 1

34
x419904 + 316 − 1

68
x420390 + 8(316 − 1)

17
x421848 +

8(316 − 1)

17
x422334 + 316 − 1

68
x423792.

This weight enumerator coincides with that computed by Magma.

5 Concluding remark

In this paper we present four classes of linear codes from coset decomposition of subgroups
and cyclotomic coset families of certain finite field, and determine their weight distributions
by Gauss sums with index 2 cases. Many other similar linear codes maybe constructed and
their corresponding weight distributions maybe determined by Gauss sums with other index
2 cases.
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