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Abstract Brualdi’s introduction to the concept of poset metric on codes over Fq paved a
way for studying various metrics on F

n
q . As the support of vector x in F

n
q is a set and hence

induces order ideals and metrics on F
n
q , the poset metric codes could not accommodate Lee

metric structure due to the fact that the support of a vector with respect to Lee weight is not a
set but rather a multiset. This leads the authors to generalize the poset metric structure on to
a pomset (partially ordered multiset) metric structure. This paper introduces pomset metric
and initializes the study of codes equipped with pomset metric. The concept of order ideals
is enhanced and pomset metric is defined. Construction of pomset codes are obtained and
their metric properties like minimum distance and covering radius are determined.
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1 Introduction

In 1995, Brualdi [2] introduced the concept of poset metric codes over Fq by imposing a
partial order relation on the set [n] = {1, 2, . . . , n} of coordinates of a vector in F

n
q . Thus,

if P([n],≤) is a poset on [n], a subset I ⊆ [n] is called an order ideal of P if i ∈ I , j ≤ i
imply that j ∈ I . For a subset A of P , the smallest order ideal containing A is denoted as
〈A〉. Given a vector x = (x1, x2, . . . , xn) ∈ F

n
q , the support of x is supp(x) = {i : xi �= 0}.
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The poset weightwP (x) of x is defined aswP (x) = |〈supp(x)〉| and dP (x, y) = wP (x − y)
is a well defined metric on Fn

q . Thus, by varying posets one gets different metrics on Fn
q like

Rosenbloom–Tsfasman (RT)-metric if P is a chain, Hamming metric if P is an antichain and
so on. Moreover, many results that hold for the Hamming metric, may fail for a particular
poset metric. For instance, the well-known equation ρ = � d−1

2 	, which relates the minimum
distance d of a code with its packing radius ρ, is not valid for general posets [4]. Thus,
extension of coding theory to poset metric spaces is interesting and has been the subject of
study for over two decades [7,8].

Note that the support of x which is defined as supp(x) = {i : xi �= 0} is a set and hence
does not accommodate Lee metric by considering any particular poset. Moreover, the Lee
weight of an element l ∈ Zm is defined as wL(l) = min{l,m − l} whereas the Hamming
weight of any l �= 0 is 1. Also the Hamming weight of x = (x1, x2, . . . , xn) ∈ Z

n
m is sum of

the weights of the non-zero coordinates, so that it counts the number of non-zero positions
whereas Lee weight adds the Lee weights of non-zero coordinates in x . Thus, the support of
x ∈ Z

n
m with respect to Leeweight is to be defined as suppL (x) = {k/ i : k = wL(xi ), k �= 0}

which is a multiset (Here, k/ i stands for the notation that the position i is counted k times in
the multiset). This motivates us in finding a partial order-like relations on multisets.

1.1 On multisets and relations

Unlike in set theory which is well established, the research in multiset theory is in its initial
stages. In this subsection, a brief review of basic definitions and notations of multisets and
relations on multisets, introduced by Girish and John [5,6], are presented which will be
needed for our investigation and findings.

Definition 1 A collection of elements which may contain duplicates is called a multiset
(in short, mset). Formally, if X is a set of elements, a multiset M drawn from the set X is
represented by a function count CM : X → W where W represents the set of non-negative
integers. For each a ∈ X , CM (a) indicates the number of occurrences of the element a in M .

a ∈ X appearing n times in M is denoted by a ∈n M or n/a ∈ M . The mset M drawn
from the set X is represented as M = {k1/a1, k2/a2, . . . , kn/an}. If CM (ai ) = ki then we
can say ri/ai ∈ M ∀ 1 ≤ ri ≤ ki . An mset is called regular or constant if all its objects
occur with the same multiplicity and the common multiplicity is called its height.

A domain is defined as a set X of elements from which msets are constructed. The
cardinality of an mset M drawn from its domain X is |M | = ∑

a∈X CM (a). The support
set of M denoted by M∗ is a subset of X and M∗ = {a ∈ X : CM (a) > 0}, i.e., M∗ is an
ordinary set. M∗ is also called the root set of M .

Definition 2 LetM1 andM2 be twomsets drawn froma set X . ThenM1 is called a submultiset
(in short, a submset) of M2 (M1 ⊆ M2) if CM1(a) ≤ CM2(a) for all a ∈ X . M1 is a proper
submset of M2 (M1 ⊂ M2) if CM1(a) ≤ CM2(a) for all a ∈ X and there exists at least
one a ∈ X such that CM1(a) < CM2(a). Two msets M1 and M2 are equal (M1 = M2) if
M1 ⊆ M2 and M2 ⊆ M1.

Let M be an mset and A be a submset of M . An element a ∈ A∗ is said to have full count
with respect to M if CA(a) = CM (a). If CA(a) = CM (a) ∀a ∈ A∗, then A is said to have
full count with respect to M .

Analogous to the union, intersection and symmetric difference of sets, these operations are
also defined in multiset theory [3], in addition to the operations called as sum and subtraction
of msets:
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Let M1 and M2 be two msets with domain X . Addition (sum) of M1 and M2 is a new
mset M = M1 ⊕ M2 such that for all a ∈ X,CM (a) = CM1(a) + CM2(a). Subtraction
(difference) of M2 from M1 is an mset M = M1 � M2 such that for all a ∈ X , CM (a) =
max{CM1(a)−CM2(a), 0}. The union of M1 and M2 is an mset M denoted by M = M1∪M2

such that for alla ∈ X ,CM (a) = max{CM1(a),CM2(a)}. The intersection ofM1 andM2 is an
mset M denoted by M = M1∩M2 such that for all a ∈ X,CM (a) = min{CM1(a),CM2(a)}.
The symmetric difference of M1 and M2 is an mset M denoted by M = M1ΔM2 such that
for all a ∈ X,CM (a) = |CM1(a) − CM2(a)|.
Definition 3 Themset space [X ]m is the set of all msets drawn from X such that no element
in an mset occurs more than m times.

Thus, if M1, M2 ∈ [X ]m , the mset sum can be modified as follows:

CM1⊕M2(a) = min{m,CM1(a) + CM2(a)} for all a ∈ X.

And for any mset M ∈ [X ]m , the complement Mc of M in [X ]m is an element of [X ]m such
that CMc (a) = m − CM (a) for all a ∈ X .

Notation 1 In [5], while defining the cartesian product of two msets M1 and M2, the authors
introduced the notation (m/a, n/b)/k which means that a is repeated m times, b is repeated
n times and the pair (a, b) is repeated k times. From this, the count of the pair is k. Actually,
an element a which is repeated k times is denoted by k/a. To avoid confusion and have
coherence, we modified the notation (m/a, n/b)/k to k/(m/a, n/b) which gives the same
meaning. In fact k/(m/a, n/b) and k/(a, b) are one and the same except the fact that the
former gives an additional information about the counts of a and b. C1(a, b) denotes the
count of the first coordinate in the ordered pair (a, b) and C2(a, b) denotes the count of the
second coordinate in the ordered pair (a, b).

Definition 4 Let M1 and M2 be two msets drawn from a set X ; then the cartesian product
of M1 and M2 is defined as

M1 × M2 = {mn/(m/a, n/b) : m/a ∈ M1, n/b ∈ M2}.
Example 1 Consider an mset M = {4/a, 2/b}. Then M × M = {16/(4/a, 4/a),
8/(4/a, 2/b), 8/(2/b, 4/a), 4/(2/b, 2/b)}.
Definition 5 A submset R of M × M is said to be an mset relation on M if every member
(m/a, n/b) of R has count C1(a, b) · C2(a, b).

Thus, if (m/a, n/b) ∈ R we say “m/a is R-related to n/b” and write “m/a R n/b”.
Moreover, if m/a R n/b then we can say r/a R s/b ∀ r ≤ m, s ≤ n.

Example 2 For the mset M given in Example 1, S = {5/(4/a, 2/a), 8/(4/a, 2/b)}
is a submset of M × M but not an mset relation as 5 �= 4 × 2 whereas R =
{4/(2/a, 2/b), 6/(2/b, 3/a)} is an mset relation on M .

Definition 6 An mset relation R on an mset M is

(i) reflexive iff m/a R m/a for all m/a in M .
(ii) antisymmetric iff m/a R n/b and n/b R m/a imply m = n and a = b.
(iii) transitive iff m/a R n/b, n/b R k/c imply m/a R k/c.
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Definition 7 Let R be an mset relation on an mset M in [X ]m . Then R is called a partially
ordered mset relation (or pomset relation) if it is reflexive, antisymmetric and transitive. The
pair (M, R) is known as a partially ordered multiset (pomset) and it is denoted by P.

Let P = (M, R) be a pomset and p = CM (a), q = CM (b). Suppose that for a �= b,
(p/a, q/b) /∈ R but (m/a, n/b) ∈ R where either m < p or n < q or both. By reflexive
property, p/a R p/a, q/b R q/b. As p/a R m/a, n/b R q/b, it follows by transitive
property that (p/a, q/b) is an element of R, which is not true. So, in P, if (p/a, q/b) /∈ R
then we cannot say (m/a, n/b) ∈ R for any m < p or n < q . Thus, every member of a
pomset relation R has full count with respect to M × M .

Example 3 Consider an mset M = {3/1, 3/2, 3/3, 3/4} where M∗ = {1, 2, 3, 4}.
Then R = {9/(3/1, 3/1), 9/(3/2, 3/2), 9/(3/3, 3/3), 9/(3/4, 3/4), 9/(3/2, 3/1),
9/(3/3, 3/4)} is a pomset relation on M and P = (M, R) is a pomset whereas Q =
{9/(3/1, 3/1), 9/(3/2, 3/2), 9/(3/3, 3/3), 9/(3/4, 3/4), 4/(2/2, 2/1)} is not a pomset
relation on M .

Definition 8 Let P = (M, R) and m/a ∈ M . Then m/a is a maximal element of P if there
exists no n/b ∈ M (b �= a) such that m/a R n/b; m/a is a minimal element of P if there
exists no n/b ∈ M (b �= a) such that n/b R m/a.

Definition 9 A submset structure C = (C ⊆ M, R) of P = (M, R) is a chain in P if every
distinct pair of points from C is comparable in P, i.e., ∀ m/a, n/b (a �= b) in C , either
m/a R n/b or n/b R m/a in P.

A pomset P = (M, R) itself is called a chain if every distinct pair of points from M is
comparable in P. When P is a chain, we call P a linear mset order (also a total mset order)
on M .

Definition 10 A submset structure A = (A ⊆ M, R) of P = (M, R) is an antichain in P

if every distinct pair of points from A is incomparable in P, i.e., ∀ m/a, n/b (a �= b) in A,
neither m/a R n/b nor n/b R m/a in P.

A pomset P = (M, R) itself is called an antichain if every distinct pair of points from M
is incomparable in P.

Now we have enough armour into our fold to define order ideals in pomsets which will
pave a way for introducing pomset metric on Zn

m . We will do this in the next section.
In the remaining part of this paper, we will study various constructions of pomset codes

and their metric properties. To study the properties of new codes, especially, their minimum
distance and covering radius in terms of the constituent codes, suitable pomset structure
is to be imposed on new codes. As far as posets are concerned, there are several ways to
create new posets from given posets as in [1,9]. In this paper, we extended these operations
on pomsets, that is, we define new pomsets through direct sum of pomsets, ordinal sum of
pomsets, puncturing a pomset, extending a pomset and so on (which are dealt with in Sect. 3).

Thus, we could impose a new pomset structure to the codes constructed which enables
us to study minimum distance and covering radius. We obtain these parameters for codes
constructed through direct sum of codes whereas for codes constructed through (u, u +
v)-construction, puncturing codes and extension of codes, bounds on these parameters are
established. For product codes, we obtain the bounds on the minimum distance and the
covering radius by taking constituent pomsets to be combinations of chain and antichain.
These form the content of Sects. 4 and 5.
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Codes with a pomset metric and constructions 879

2 Ideals and pomset metric

2.1 Ideals in pomsets

By adopting Definition 37 in [5] and slightly modifying the definition of pre-class of M given
in [6], we introduce the definition of order ideal and the order ideal generated by a submset
in a pomset. Let P = (M, R) be a pomset. A submset I of M is called an order ideal (or
simply an ideal) of P if m/a ∈ I and n/b R k/a (b �= a) for some k > 0 imply n/b ∈ I . An
ideal generated by an element m/a in M is defined by

〈m/a〉 = {m/a} ∪ {n/b ∈ M : n/b R k/a for some k > 0 and b �= a}.
More precisely, n must be equal to CM (b) in the light of the discussion followed by Defini-
tion 7.

An ideal generated by a submset S of M is defined by 〈S〉 = ⋃

m/a∈S
〈m/a〉. By I(P) (resp.

Ir (P)) we mean the set of all ideals of P (resp. of cardinality r ).

Remark 1 In the definition of an ideal I of P, n/b is not a maximal element and the count of
b in I is same as that in M . Hence, in an ideal of P = (M, R), non-maximal elements have
full count with respect to M .

Example 4 Consider S = {1/1, 2/3} ⊆ M from Example 3. Now 〈S〉 = 〈1/1〉 ∪ 〈2/3〉 =
{1/1, 3/2, 2/3} as 3/2 R 3/1 implies 3/2 R 1/1. In this ideal, 1/1 and 2/3 are maximal
elements; 3/2 is not a maximal element and so, the count of 2 is same as that in M .

Based on the above definitions, the following results are straightforward consequences:

Proposition 1 Let M ∈ [X ]n be an mset defined over X and P = (M, R) be a pomset. If A
and B are any two order ideals in P, then the following holds:

(a) A ∩ B is an ideal.
(b) A ∪ B is an ideal.
(c) A ⊕ B is an ideal if M is a regular mset with height n.
(d) A ⊕ A = A if A is a submset of a regular mset M with height n such that CA(a) =

CM (a) ∀a ∈ A∗.

Proposition 2 Let M ∈ [X ]n be an mset defined over X and P = (M, R) be a pomset. If A
and B are any two submets of M, then the following holds:

(a) 〈A ∩ B〉 ⊆ 〈A〉 ∩ 〈B〉.
(b) 〈A ∪ B〉 = 〈A〉 ∪ 〈B〉.
(c) 〈A ⊕ B〉 ⊆ 〈A〉 ⊕ 〈B〉 if M is a regular mset with height n.
(d) 〈A〉Δ〈B〉 ⊆ 〈AΔB〉 ⊆ 〈A ∪ B〉.
The following propositions are straightforward and show that every pomset has a good

stock of order ideals.

Proposition 3 Let P = (M, R) be a pomset. Let 0 ≤ s ≤ r ≤ |M | and I ∈ Ir (P). Then
there exists J ∈ Is(P) such that J ⊆ I .

Proposition 4 Let P = (M, R) be a pomset. Let 0 ≤ r ≤ s ≤ |M | and I ∈ Ir (P). Then
there exists J ∈ Is(P) such that I ⊆ J .
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2.2 Pomset metric on Z
n
m

Consider the space Zn
m and the set X = {1, 2, . . . , n}. Consider a regular mset M of height

�m
2 	 drawn from X , i.e., M = {�m

2 	/1, �m
2 	/2, �m

2 	/3, . . . , �m
2 	/n} ∈ [X ]�m

2 	. Let P =
(M, R) be a pomset. Let x = (x1, x2, . . . , xn) be an n tuple in Zn

m . We define the support of
x with respect to Lee weight as

suppL (x) = {k/ i | k = wL(xi ), k �= 0}
where wL(xi ) = min{xi ,m − xi } is the Lee weight of xi in Zm .

We define the pomset weight of x to be the cardinality of the ideal generated by suppL (x),
that is,

wPm(x) = |〈suppL (x)〉|.
The pomset distance between two vectors x, y in Z

n
m is defined as

dPm(x, y) = wPm(x − y).

The pomset weight of a vector depends on the non-zero coordinate positions, elements in
those positions and the pomset structure that is considered. If the pomset is an antichain, then
the pomset weight and pomset distance are Lee weight and Lee distance respectively. Here,
|suppL (x)∗| is the Hamming weight of x and |〈suppL (x)〉∗| is the poset weight of x .

Now we prove that the above pomset distance is indeed a metric on Zn
m .

Theorem 1 If P is a pomset on a regular mset M = {�m
2 	/1, �m

2 	/2, . . . , �m
2 	/n}, then the

pomset distance dPm(., .) is a metric on Zn
m.

Proof Clearly dPm(u, v) ≥ 0, and dPm(u, v) = 0 iff u = v. Let u, v ∈ Z
n
m . As wL(a) =

wL(−a) for any a ∈ Zm , suppL (u−v) = suppL (v−u). HencewPm(u−v) = wPm(v−u).
Thus dPm(u, v) = dPm(v, u). As dPm(u, v) = wPm(u − v) = wPm(u − w + w − v), to
prove the triangle inequality, it suffices to show that the pomset weight satisfies the inequality
wPm(x + y) ≤ wPm(x) + wPm(y) for all x, y ∈ Z

n
m . Clearly suppL (x + y) ⊆ suppL (x) ⊕

suppL (y). Since 〈suppL (x+y)〉 ⊆ 〈suppL (x)⊕suppL (y)〉, fromProposition 2 (c), we have
wPm(x + y) ≤ |〈suppL (x)⊕ suppL (y)〉| ≤ |〈suppL (x)〉⊕ 〈suppL (y)〉| ≤ |〈suppL (x)〉|+
|〈suppL (y)〉|. ��

We call the metric dPm(., .) on Z
n
m as pomset metric. If Zn

m is endowed with a pomset
metric, then we call a subset C of Zn

m a pomset code of length n. A linear pomset code C
of length n is a submodule of Zn

m . If the pomset metric corresponds to a pomset P, then C
is called a P-code. Minimum pomset distance dPm(C) of a P-code C is the smallest pomset
distance between distinct codewords of C. We denote pomset code C of length n, cardinality
K and minimum distance dPm(C) by (n, K , dPm).

Example 5 Let C={(0, 0, 0, 0), (1, 3, 0, 2), (2, 0, 0, 4), (3, 3, 0, 0), (4, 0, 0, 2),(5, 3, 0, 4)}
⊂ Z

4
6 be a P-code for the pomset P given in Example 3. The support of u =

(5, 3, 0, 4) with respect to Lee weight is suppL (u) = {1/1, 3/2, 2/4} and 〈suppL (u)〉 =
{1/1, 3/2, 3/3, 2/4}. Thus, wPm(u) = 9, dPm = 6.

Let u be a vector in Z
n
m and r be a non-negative integer. The pomset ball with center u and

radius r is the set

Br (u) = {v ∈ Z
n
m : dPm(u, v) ≤ r}

of all vectors in Zn
m whose pomset distance to u is less than or equal to r .
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Codes with a pomset metric and constructions 881

In Sects. 4 and 5, it is necessary to specify the parameters of code C ⊆ Z
n
m with respect to

Hamming and RTmetrics as well. Note that the Hamming weight of x ,wH (x), is the number
of non-zero coordinate positions in x and the RT weight of x , wρ(x), is the maximum
coordinate position that is non-zero in x . dH (x, y) = wH (x − y) and dρ(x, y) = wρ(x − y)
are the Hamming and RT distances between two vectors x and y. We use the notations
dH (C) and dρ(C) to denote the minimum Hamming distance and the minimum RT distance
of C respectively and DH (C) and Dρ(C) to denote the maximum Hamming distance and
the maximum RT distance of C respectively. The maximum weight of a code C, denoted by
W (C), is the maximum of weights of all codewords of C. The maximum distance of a code
C, denoted by D(C), is the greatest distance between codewords of C. For linear codes, D(C)

is the same as W (C).

3 Construction of pomsets

For a given pomset P = (M, R), we define a pomset P̃ = (M, R̃) as follows:

P and P̃ have the same underlying mset

and

m/a R̃ n/b in P̃ if and only if n/b R m/a in P.

The pomset P̃ is called the dual pomset of P. If P is a chain or an antichain then P̃ is also a
chain or an antichain respectively. Moreover, it is obvious to see that the order ideals of P̃
are precisely the complements of the order ideals of P, i.e., I (̃P) = {I c|I ∈ I(P)}.
Remark 2 For all practical purposes and foregoing discussions, whenever we consider a
chain pomset P = (M, R), we regard the elements of M in such a manner that p/ i R q/j
for i < j .

Pomsets beget pomsets Given any two pomsets, one can construct a new pomset by what
we call as direct sum, ordinal sum, direct product and ordinal product of pomsets. In what
follows, we describe how we achieve them.
(a) Direct sum of pomsets Let P1 = (M1, R1) and P2 = (M2, R2) be two pomsets with
M∗

1 = [n1] and M∗
2 = [n2] respectively. Now consider an mset M with M∗ = [n1 +n2] and

CM (i) =
{
CM1(i) if i ≤ n1,
CM2(i − n1) if i > n1.

Define an mset relation R on M in the following way. Given p/ i, q/j ∈ M , we say

p/ i R q/j ⇐⇒
{
i, j ≤ n1 and p/ i R1 q/j or
i, j > n1 and p/(i − n1) R2 q/( j − n1).

We can easily see that P = (M, R) is a pomset and term it as the direct sum of P1 and P2

denoted by P1 ⊕ P2.
If the constituent pomsets P1 and P2 are chains then P is not a chain but it is a disjoint

union of two chains of sizes |M1| and |M2| respectively. In fact, P can never be a chain by
its construction. But if P1 and P2 are antichains then P is also an antichain.
(b) Ordinal sum of pomsets Let P1 = (M1, R1) and P2 = (M2, R2) be two pomsets with
M∗

1 = [n1] and M∗
2 = [n2] respectively. Now consider an mset M with M∗ = [n1 +n2] and

CM (i) =
{
CM1(i) if i ≤ n1,
CM2(i − n1) if i > n1.
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882 I. Gnana Sudha, R. S. Selvaraj

Define an mset relation R on M in the following way. Given p/ i, q/j ∈ M , we say

p/ i R q/j ⇐⇒
⎧
⎨

⎩

i, j ≤ n1 and p/ i R1 q/j or
i, j > n1 and p/(i − n1) R2 q/( j − n1) or
i ≤ n1 < j.

Clearly, P = (M, R) is a pomset and we term it as the ordinal sum of P1 and P2 denoted by
P1 + P2.

From this construction, we can observe that P can never be an antichain. If P1 and P2 are
chains then P must be a chain.
(c) Direct product of pomsets Let P1 = (M1, R1) and P2 = (M2, R2) be two pomsets with
M∗

1 = [n1] and M∗
2 = [n2] respectively. Now consider an mset M as M1 × M2. Given

k1/(p/ i1, q/j1), k2/(r/ i2, s/j2) ∈ M1 × M2, define an mset relation R on M as:

k1/(p/ i1, q/j1) R k2/(r/ i2, s/j2) ⇐⇒ p/ i1 R1 r/ i2 and q/j1 R2 s/j2.

One can easily show that P = (M, R) is a pomset and is called as the direct product of P1

and P2 denoted by P1 ⊗ P2.
(d) Ordinal product of pomsets Let P1 = (M1, R1) and P2 = (M2, R2) be two pomsets
with M∗

1 = [n1] and M∗
2 = [n2] respectively. Now consider an mset M as M1 × M2. Given

k1/(p/ i1, q/j1), k2/(r/ i2, s/j2) ∈ M1 × M2, define an mset relation R on M as:

k1/(p/ i1, q/j1) R k2/(r/ i2, s/j2) ⇐⇒
{
i1 = i2 and q/j1 R2 s/j2 or
p/ i1 R1 r/ i2 where i1 �= i2.

Similarly, it is easy to show that P = (M, R) is a pomset and is called as the ordinal product
of P1 and P2 denoted by P1 × P2.

Observe that, if S is a submset of M , then R is a pomset relation on S.
If P is either the direct or the ordinal product of P1 and P2, its structure depends up on

the constituent pomsets. By considering P1 and P2 as combinations of chain and antichain,
for example, and by representing M by n1 × n2 matrix, we shall analyse the structure of P,
as follows:

Let k1/a, k2/b ∈ M where a = (p/ i1, q/j1) and b = (r/ i2, s/j2). Consider P1 to be
an antichain. If P2 is also an antichain then, for both P = P1 ⊗ P2 and P = P1 × P2, the
elements k1/a, k2/b are not comparable in P unless i1 = i2 and j1 = j2 as p/ i1 (q/j1) and
r/ i2 (s/j2) are not comparable in P1 (P2) for i1 �= i2 ( j1 �= j2). If P2 is a chain then q/j1
and s/j2 are comparable for any j1, j2. Moreover, p/ i1 and r/ i2 are comparable for i1 = i2
but not for i1 �= i2. Hence, any two elements in M are comparable only if they are from the
same row. This is true for both direct and ordinal product of pomsets.

Now, consider P1 to be a chain. Let P2 be taken as an antichain. Since the roles of P1 and
P2 are interchanged when compared to the previous case, P1 ⊗ P2 must be a disjoint union
of n2 chains. When P = P1 × P2, it is obvious to see that each row in M is an antichain
and each column is a chain. Moreover, if k′

1/c ∈ M where c = (p′/ i, q ′/j), then for any
k′
2/d ∈ M with d = (r ′/k, s′/ l) such that k �= i , p′/ i and r ′/k are comparable with respect
to P1 and thus, k′

1/c and k
′
2/d are comparable.

Now, letting P2 also to be a chain, each row and each column in M will be a chain when
P = P1 ⊗ P2. Moreover, let k′

1/c ∈ M where c = (p′/ i, q ′/j). Then, for any element
k′
2/d ∈ M where d = (r ′/k, s′/ l) in the (k, l)-cell, k′

1/c and k
′
2/d are not comparable when

k > i but l < j ; they are not comparable when k < i but l > j too. This ensures that each
element in the cells (k, l) is related to the element in the cell (i, j) if k ≤ i and l ≤ j ; and the
element in the (i, j) cell is related to each element in the cells (k, l) if k ≥ i and l ≥ j . Now,
in the case of the ordinal product, any two elements in M are comparable by definition.

123



Codes with a pomset metric and constructions 883

Table 1 Product of pomsets

P1 P2 P1 ⊗ P2 P1 × P2

Antichain Antichain Antichain Antichain

Chain Disjoint union of n1 chains Disjoint union of n1 chains

Chain Antichain Disjoint union of n2 chains �1

Chain �2 Chain

�1 Each row is an antichain and each column is a chain such that the element in the (i, j) cell is comparable
with all the elements in the cells (k, l) such that k �= i
�2 Each row and each column is a chain such that the element in the (i, j) cell is not comparable with any of
the elements in the cells (k, l) for which k > i but l < j and k < i but l > j

We summarize the above results as Table 1.

Example 6 Let M1 be a regular mset with M∗
1 = [2] = {1, 2} and height 2 and M2 be a

regular mset with M∗
2 = [3] = {1′, 2′, 3′} and height 2. Define R1 = {2/(2/ i, 2/ i)}i∈M∗

1
∪

{2/(2/1, 2/2)} and R2 = {2/(2/ i, 2/ i)}i∈M∗
2
as pomset relations on M1 and M2 respec-

tively. Here,P1 = (M1, R1) is a chain andP2 = (M2, R2) is an antichain. Consider a submset
M ⊆ M1 × M2 given in matrix representation as follows:

M =
(
2/(2/1, 2/1′) 2/(2/1, 2/2′) 2/(2/1, 2/3′)
2/(2/2, 2/1′) 2/(2/2, 2/2′) 2/(2/2, 2/3′)

)

=
(
2/1 2/2 2/3
2/4 2/5 2/6

)

, say.

If P = P1 ⊗ P2 on M , then one can easily see that it is a disjoint union of 3 chains (which
are columns of M).

Given any pomset P, one can puncture it or extend it to obtain another pomset as described
below.
(e) Puncturing pomsets Let P = (M1, R1) be a pomset with M∗

1 = [n]. Now construct a new
mset M by deleting the i th element from M1. Consider M such that M∗ = [n − 1] and

CM ( j) =
{
CM1( j) for j < i,
CM1( j + 1) for j ≥ i.

Given p/j, q/ l ∈ M , define an mset relation R on M as follows:

p/j R q/ l ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

j, l < i and p/j R1 q/ l or
j, l ≥ i and p/( j + 1) R1 q/(l + 1) or
j < i, l ≥ i and p/j R1 q/(l + 1) or
j ≥ i, l < i and p/( j + 1) R1 q/ l.

P
◦ = (M, R) is a pomset. If P is a chain (antichain) then P◦ is also a chain (antichain).

(f) Extending pomsets Let P = (M1, R1) be a pomset with M∗
1 = [n]. Now construct a new

mset M with M∗ = [n + 1] from M1 by inserting an element with count k > 0 either in
the beginning or at the end or in the interior of M1. If the new element of M is k/ i , then the
count function on M is defined as

CM ( j) =
⎧
⎨

⎩

CM1( j) for j < i,
k > 0 for j = i,
CM1( j − 1) for j > i.
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Define an mset relation R on M in the following way. Given p/j, q/ l ∈ M , we say

p/j R q/ l ⇐⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

j, l < i and p/j R1 q/ l or
j, l > i and p/( j − 1) R1 q/(l − 1) or
j < i, l > i and p/j R1 q/(l − 1) or
j > i, l < i and p/( j − 1) R1 q/ l or
j = l = i.

It is easy to see that P̂ = (M, R) is a pomset.

4 Construction of codes in pomset metric

In this section, we combine any two P-codes by direct sum construction, (u|u + v)-
construction and as product codes. Later, discussion on codes arrived through puncturing
and extension is given. The pomset structure that could be imposed on the resultant codes
will have its effect on the minimum distance and covering radius.

(A) Direct sum of codes For i ∈ {1, 2}, let Ci be an (ni , Ki , dPim) Pi -code over the ring Zm .
Then the direct sum of C1 and C2 is defined as

C1 ⊕ C2 = {(u, v)|u ∈ C1, v ∈ C2}
and is a pomset code of length n1 + n2 and cardinality K1K2.

Proposition 5 Let C1 be an (n1, K1, dP1m) P1-code and C2 be an (n2, K2, dP2m) P2-code
both over the ringZm. Then their direct sum C = C1⊕C2 is an (n1+n2, K1K2, dPm) P-code
for some pomset P. If P is a direct sum of P1 and P2 then dPm = min{dP1m, dP2m}. If P is an
ordinal sum of P1 and P2 then dPm = dP1m.

Proof Let x, y ∈ C. Then x = (u, v) and y = (u′, v′) for some u, u′ ∈ C1 and v, v′ ∈ C2.
If P is a direct sum of P1 and P2, then dPm(x, y) = wPm(x − y) = wP1m(u − u′) +
wP2m(v − v′) and it is wP1m(u − u′) when v = v′ or wP2m(v − v′) when u = u′. Thus,
dPm = min{dP1m, dP2m}. If P is an ordinal sum, then wPm(x − y) = n1�m

2 	 + dP2m when
v �= v′ and hence dPm = dP1m . ��
(B) (u|u + v)-construction of codes For i ∈ {1, 2}, let Ci be an (n, Ki , dPim) Pi -code over
the ring Zm . The (u|u + v)-construction produces the code

C = {(u, u + v)|u ∈ C1, v ∈ C2}
of length 2n and cardinality K1K2.

Proposition 6 Let C1 and C2 be any two P1- and P2-codes of same length with parameters
(n, K1, dP1m) and (n, K2, dP2m) respectively over the ring Zm. Then (u|u + v)-construction
produces a (2n, K1K2, dPm) P-code for some pomset P. If P is a direct sum of P1 and P2

then either dPm ≥ min{dP1m, dP2m} or dPm ≥ min{dP2m, dP1m +d3, dP1m +d4}, whereas, if
P is an ordinal sum then either dPm ≥ dP1m or dPm = n�m

2 	 + min{dP2m, d3, d4}. Here, d3
and d4 are minimum P2-distances respectively of the codes C1 and {u + v|u ∈ C1, v ∈ C2}.
Proof Let x = (u, u + v), y = (u′, u′ + v′) ∈ C be such that x �= y for some u, u′ ∈ C1 and
v, v′ ∈ C2. Then x − y = (u − u′, u − u′ + v − v′). If P is a a direct sum of P1 and P2, then
dPm(x, y) = wP1m(u−u′)+wP2m(u−u′ +v −v′). Thus, dPm(x, y) = dP2m when u = u′,
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dPm(x, y) ≥ dP1m +d3 when v = v′ and dPm(x, y) ≥ dP1m +d4 when u−u′ + v − v′ �= 0.
But, only if u − u′ + v − v′ = 0 dPm(x, y) ≥ dP1m . As the last case is not guaranteed, either
dPm ≥ min{dP1m, dP2m} or dPm ≥ min{dP2m, dP1m + d3, dP1m + d4}. If P is an ordinal sum
of P1 and P2, then dPm(x, y) = n�m

2 	 + dP2m when u = u′, dPm(x, y) = n�m
2 	 + d3 when

v = v′ and dPm(x, y) = n�m
2 	 + d4 when u − u′ + v − v′ �= 0. But dPm(x, y) ≥ dP1m only

if u − u′ + v − v′ = 0. Thus, either dPm ≥ dP1m or dPm = n�m
2 	 + min{dP2m, d3, d4}. ��

(C) Product codes For i ∈ {1, 2}, let Ci be an (ni , Ki , dPim) Pi -code over the ring Zm . The
product of C1 and C2 is defined as

C1
⊗

C2 = {c = u ⊗ v|u ∈ C1, v ∈ C2}
where u ⊗ v = (uiv j |1 ≤ i ≤ n1, 1 ≤ j ≤ n2) and is a code of length n1n2. The codewords
of product code can be represented by n1 × n2 matrices: if u = (u1, u2, . . . , un1) and
v = (v1, v2, . . . , vn2) then

u ⊗ v =

⎛

⎜
⎜
⎜
⎝

u1v1 u1v2 · · · u1vn2
u2v1 u2v2 · · · u2vn2

...
... · · · ...

un1v1 un1v2 · · · un1vn2

⎞

⎟
⎟
⎟
⎠

.

Note that, if one of the constituent code is {0} then C is also {0}. In this paper, we consider
only the codes Ci �= {0} for i = 1, 2. Observe also that C2

⊗ C1 = {cT : c ∈ C1
⊗ C2}.

Moreover, C = C1
⊗ C2 is a P-code for some pomset P.

Example 7 Let C1 and C2 be two codes over the field Z5 generated by matrices G1 = [2 3]
and G2 = [1 0 2] respectively. Consider C1 and C2 with respect to the pomsets P1 and P2

given in Example 4 respectively. Then

C=C1
⊗

C2=
{(

0 0 0
0 0 0

)

,

(
1 0 2
4 0 3

)

,

(
2 0 4
3 0 1

)

,

(
3 0 1
2 0 4

)

,

(
4 0 3
1 0 2

)}

is a P-code. Let c =
(
3 0 1
2 0 4

)

. Then suppL (c) = {2/1, 1/3, 2/4, 1/6}. If P = P1 ⊗ P2

then 〈suppL (c)〉 = {2/1, 2/3, 2/4, 1/6} andwPm(c) = 7. IfP = P1×P2 then 〈suppL (c)〉 =
{2/1, 2/2, 2/3, 2/4, 1/6} and wPm(c) = 9.

Let P1 and P2 be pomsets on M1 = {�m
2 	/1, �m

2 	/2, . . . , �m
2 	/n1} and M2 =

{�m
2 	/1, �m

2 	/2, . . . , �m
2 	/n2} respectively. Let M be a regular submset of M1 × M2 of

height �m
2 	 such that M∗ = (M1 × M2)

∗. Then the mset relation R defined as in direct
product and ordinal product in Sect. 3 is a pomset relation on M .

Let’s first consider the case where P is a direct product of P1 and P2 on M . To illustrate,
if we take P1 to be a chain and P2 as an antichain then by Table 1, P is a disjoint union of n2
chains. Thus the ideal generated by an element in the (i, j) cell is the union of that element
and the mset of the elements in the cells (k, l) where k < i and l = j . Similarly, if P1 and
P2 both are chains, the ideal generated by an element in the (i, j) cell is the union of that
element and the mset of the elements in the cells (k, l) in M where k < i and l < j ; k = i
and l < j ; k < i and l = j .

With similar arguments, we established bounds for minimum distance of product codes
in the following proposition:
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Proposition 7 Let C1 ⊆ Z
n1
m and C2 ⊆ Z

n2
m be two linear P1- and P2-codes of minimum

distance dP1m(C1) and dP2m(C2) respectively (where m is prime). Then the product code
C = C1

⊗ C2 is a P-code for some pomset P, with minimum distance dPm(C). If P is a direct
product of P1 and P2 then the following hold:

(a) If P1 and P2 are antichains then dH (C1)dH (C2) ≤ dPm(C) ≤ dH (C1)dH (C2)�m
2 	.

(b) If P1 is an antichain and P2 is a chain then dH (C1)(dρ(C2) − 1)�m
2 	 + dP1m(C1) ≤

dPm(C) ≤ dH (C1)dρ(C2)�m
2 	.

(c) If P1 is a chain and P2 is an antichain then dH (C2)(dρ(C1) − 1)�m
2 	 + dP2m(C2) ≤

dPm(C) ≤ dρ(C1)dH (C2)�m
2 	.

(d) If P1 and P2 are chains then dPm(C) = (dP1m(C1) − 1)dρ(C2) + dP2m(C2).
Proof Let c ∈ C. Then c = u ⊗ v, u ∈ C1 and v ∈ C2.
(a) Since P is an antichain, the proof is obvious.
(b) Since P is a disjoint union of n1 chains, to find the pomset weight of c, we need the

number of non-zero rows in c and RT weight of each such row. From this, the proof
follows.

(c) The Table 1 and the discussion preceding this proposition complete the proof.
(d) Now P is such that each row and each column is a chain. Thus, to find the pomset weight

of c in C, we need a cell (i, j) that has non-zero entry such that entries in the cells (k, l)
are all zero for k = i , l > j and k ≥ i + 1 (when i �= n1), l ≥ 1. We obtain it by RT
weight of constituent codewords of c. Hence proved. ��

Now, let’s consider the case where P is an ordinal product of P1 and P2 on M . If P1 is a
chain and P2 is an antichain then from the Table 1, the ideal generated by an element in the
(i, j) cell is the union of that element and the mset of all the elements in the cells (k, l) in M
for which k < i but for every l.

From the Table 1, for some cases, the ordinal product coincides with the direct product.
From this and the above discussion, we proved the following proposition:

Proposition 8 Let C1 ⊆ Z
n1
m and C2 ⊆ Z

n2
m be two linear P1- and P2-codes of minimum

distance dP1m(C1) and dP2m(C2) respectively (where m is prime). Then the product code
C = C1

⊗ C2 is a P-code for some pomset P, with minimum distance dPm(C). If P is an
ordinal product of P1 and P2 then the following hold:

(a) If P1 and P2 are antichains then dH (C1)dH (C2) ≤ dPm(C) ≤ dH (C1)dH (C2)�m
2 	.

(b) If P1 is an antichain and P2 is a chain then dH (C1)(dρ(C2) − 1)�m
2 	 + dP1m(C1) ≤

dPm(C) ≤ dH (C1)dρ(C2)�m
2 	.

(c) If P1 is a chain and P2 is an antichain then dPm(C) = (dP1m(C1) − 1)n2 + dP2m(C2).
(d) If P1 and P2 are chains then dPm(C) = (dP1m(C1) − 1)n2 + dP2m(C2).
(D) Puncturing codes Let C be an (n, K , dPm) P-code over the ring Zm . We can puncture C
by deleting the coordinate i from each codeword. Puncturing of C is defined as

C◦ = {(u1, u2, . . . , ui−1, ui+1, . . . , un) ∈ Z
n−1
m |(u1, u2, . . . , un) ∈ C}

and is a code of length n − 1 and cardinality K
′
. If there exists pair of codewords of C that

coincide in all positions except at i th position then K
′
< K ; otherwise K

′ = K .

Proposition 9 Let C be an (n, K , dPm) P-code over the ring Zm. Then the punctured code
C◦ is an (n − 1, K

′
, dP◦m) P

◦-code for some pomset P◦. If P◦ is a punctured pomset of P
then dP◦m ≤ dPm.
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Proof Let C◦ be obtained by deleting the coordinate i from each codeword of C. Let
c◦
1, c

◦
2 be any two distinct codewords of C◦ obtained by puncturing c1, c2 ∈ C respec-

tively. Let u◦ = c◦
1 − c◦

2 where u = c1 − c2 = (u1, u2, . . . , un), say. Suppose that
ui = 0. Then k/ i /∈ suppL (u) for all 1 ≤ k ≤ �m

2 	. If �m
2 	/ i is related to some ele-

ment of suppL (u) then �m
2 	/ i ∈ 〈suppL (u)〉; otherwise �m

2 	/ i /∈ 〈suppL (u)〉. Thus,
wP◦m(u◦) = wPm(u) − �m

2 	 or wP◦m(u◦) = wPm(u). On the other hand, if ui �= 0
then k/ i ∈ suppL (u) where 1 ≤ wL(ui ) = k ≤ �m

2 	. If k/ i is not a maximal element in
〈suppL (u)〉, then �m

2 	/ i ∈ 〈suppL (u)〉 and hence, wP◦m(u◦) = wPm(u) − �m
2 	. If k/ i is a

maximal element in 〈suppL (u)〉 then wP◦m(u◦) ≤ wPm(u) − k < wPm(u). ��
(E) Extending codes Let C be an (n, K , dPm) P-code over the ring Zm . We can create longer
codes by adding a coordinate. Extension of C is defined as

Ĉ = {(u1, u2, . . . , un, un+1) ∈ Z
n+1
m |(u1, u2, . . . , un) ∈ C}

and is a code of length n+1. Extension of C can also be obtained by adding an overall parity
check and is given by

C̃ = {(u1, u2, . . . , un, un+1) ∈ Z
n+1
m |(u1, u2, . . . , un) ∈ C with

u1 + u2 + · · · + un+1 = 0}.
Proposition 10 L et C be an (n, K , dPm) P-code over the ringZm. Then the extended code Ĉ
(C̃) is an (n+1,mK , dP̂m) ((n+1, K , dP̂m)) P̂-code for some pomset P̂. If P̂ is an extended
pomset of P then

dP̂m =
{
dPm if 0̄ /∈ C;
1 if 0̄ ∈ C.

(In case of C̃, dPm ≤ dP̂m ≤ dPm + �m
2 	).

Proof Let û ∈ Ĉ be obtained by adding a coordinate un+1 ∈ Zm to u ∈ C. Then wP̂m (̂u) =
wPm(u)+wL (un+1),wP̂m (̂u) = 1. If u = 0̄, choose un+1 = 1; otherwise, choose un+1 = 0.
The result follows. If ũ ∈ C̃ is obtained by adding an overall parity un+1 to u ∈ C, and since
wP̂m (̃u) = wPm(u) + wL(un+1), it follows that dPm ≤ dP̂m ≤ dPm + �m

2 	. ��

5 Covering radius

This section deals with the study of covering radius of pomset codes constructed in the last
section.

Definition 11 Let C be a pomset code of length n over the ring Zm . Then the covering radius
of C is the maximum pomset distance of any word in Zn

m from the code C. Mathematically it
can be expressed as

ρ(C) = max
x∈Zn

m

{dPm(x, C)} = max
x∈Zn

m

{min{dPm(x, c)|c ∈ C}}

so that for each x ∈ Z
n
m , there exists a c ∈ C such that x ∈ Bρ(C)(c).

If C is any linear code of length n over Zm and u is in Z
n
m , the coset of C determined by

u and denoted by u + C, is {u + c : c ∈ C}. The weight of the coset u + C is the minimum
of weights of all elements in it. We know that in coding theory, a coset leader is a word of
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minimumweight in any particular coset. Thus, the weight of a coset is the weight of the coset
leader in that coset. Moreover, it is well-known that ρ(C) is the largest value of the weights
of all cosets of C.

The following result is concerned with the direct sum of linear codes and its coset leaders.

Proposition 11 Let C1 and C2 be two linear pomset codes of length n1 and n2 respectively
over the ring Zm. If u and v are coset leaders of some cosets of C1 and C2 respectively, then
(u, v) is a coset leader of some coset of the direct sum code C = C1 ⊕ C2 in Z

n1+n2
m .

Proof Let w = (u, v). Then w ∈ x + C for some x ∈ Z
n1+n2
m . Let y ∈ x + C. Since C is

linear, y = w + c for some c = (c1, c2) ∈ C. Now, y = (u + c1, v + c2). If we consider
C with respect to direct sum of pomsets then wPm(y) = wP1m(u + c1) + wP2m(v + c2) ≥
wP1m(u)+wP2m(v) = wPm(w). On the other hand, if C is considered with respect to ordinal
sum of pomsets, then the following two cases arises:

Case 1 Suppose v �= 0̄. HerewPm(w) = n1�m
2 	+wP2m(v). SincewP2m(v+c) ≥ wP2m(v)

for all c ∈ C2, v + c �= 0̄. Hence, wPm(y) = n1�m
2 	 + wP2m(v + c2) ≥ n1�m

2 	 +
wP2m(v) = wPm(w).

Case 2 Suppose v = 0̄. Then wPm(w) = wP1m(u). If v + c2 �= 0̄ then wPm(y) =
n1�m

2 	 + wP2m(v + c2) > wP1m(u) = wPm(w); otherwise wPm(y) = wP1m(u +
c1) ≥ wP1m(u) = wPm(w).

Thus, wPm(y) ≥ wPm(w) for all y ∈ x + C. Hence proved. ��
Theorem 2 Let C1 and C2 be two linear P1- and P2-codes of length n1 and n2 respectively
over the ring Zm. Let C = C1 ⊕ C2 be a P-code.
(a) If P is a direct sum of P1 and P2 then ρ(C) = ρ(C1) + ρ(C2).
(b) If P is an ordinal sum of P1 and P2 then ρ(C) = n1�m

2 	 + ρ(C2).

Proof (a) Let y = (y1, y2) ∈ Z
n1+n2
m where y1 ∈ Z

n1
m and y2 ∈ Z

n2
m . Then y1 = x1 + c1 for

some c1 ∈ C1 and y2 = x2 + c2 for some c2 ∈ C2 such that x1 and x2 are respective coset
leaders. Now y = x + c where x = (x1, x2) ∈ Z

n1+n2
m , c = (c1, c2) ∈ C so that

dPm(y, c) = wPm(y − c) = wPm(x) ≤ ρ(C1) + ρ(C2). (1)

Thus, for each vector y ∈ Z
n1+n2
m , one can find at least one codeword c in C such that

dPm(y, c) ≤ ρ(C1) + ρ(C2). If u and v are the coset leaders of largest weight in Zn1
m and

Z
n2
m respectively, then the vector w = (w1, w2) where w1 = u + c1, w2 = v + c2 for

some c1 ∈ C1 and c2 ∈ C2 will be such that dPm(w, c′) = wPm(w−c′) = wPm((u, v)+
(c1, c2) − c′) ≥ wPm(u, v) = ρ(C1) + ρ(C2) for any c′ ∈ C (due to Proposition 11). In
fact, for this w, the codeword c = (c1, c2) is closest at pomset distance ρ(C1) + ρ(C2).
Hence, ρ(C) = ρ(C1) + ρ(C2).

(b) If P is an ordinal sum of P1 and P2 then inequality (1) becomes dPm(y, c) ≤ n1�m
2 	 +

ρ(C2). Similar arguments like those in (a), will yield the desired result. ��
Corollary 1 If C2 = Z

n2
m then ρ(C) = ρ(C1) irrespective of whether P being direct sum or

ordinal sum of P1 and P2.

Thus, in case of direct sum of codes, we could determine its covering radius in terms
of that of the constituent codes. In what follows, for the pomset codes obtained through
(u, u + v)-construction, puncturing and extension, we will establish upper bounds on their
covering radius.
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Theorem 3 For i ∈ {1, 2}, let Ci be a linear Pi -code of length n over the ring Zm. Let
C = {(u, u + v)|u ∈ C1, v ∈ C2} be a P-code.
(a) If P is a direct sum of P1 and P2 then ρ(C) ≤ ρ(C1) + ρ(C2).
(b) If P is an ordinal sum of P1 and P2 then ρ(C) ≤ n1�m

2 	 + ρ(C2).

Proof (a) Let y = (y1, y2) ∈ Z
2n
m where y1, y2 ∈ Z

n
m . Then y1 = x1+c1 and y2 = x2+c2 for

some c1, c2 ∈ C1 such that x1 and x2 are coset leaders. Since C1 is linear, c2 − c1 = c3 ∈
C1.Now y = (y1, y2) = (x1+c1, x2+c2) = (x1+c1, x2+c1+c3). Let x3 = x2+c3.Now
x3 must be in some coset of C2 with coset leader x4. So, x3 = x4 + c4 for some c4 ∈ C2
and y = (x1 + c1, x4 + c4 + c1) = (x1, x4) + (c1, c1 + c4) = x + c, x ∈ Z

2n
m and c ∈ C.

Now dPm(y, c) = wPm(x) = wP1m(x1) + wP2m(x4) ≤ ρ(C1) + ρ(C2). Thus, for each
y ∈ Z

2n
m , one can find at least one codeword c in C such that dPm(y, c) ≤ ρ(C1)+ρ(C2).

(b) The proof follows easily. ��
Corollary 2 If C1 ⊆ C2 then the following hold:

(a) If P is a direct sum of P1 and P2 then ρ(C) = ρ(C1) + ρ(C2).
(b) LetP be an ordinal sum ofP1 andP2. If C2 �= Z

n
m then ρ(C) = n�m

2 	+ρ(C2); otherwise,
ρ(C) = ρ(C1).

Theorem 4 Let C◦ be a punctured P
◦-code of a linear P-code C ⊆ Z

n
m where P

◦ is a
punctured pomset of P. Then ρ(C◦) ≤ ρ(C).

Proof Let y ∈ Z
n
m . y must be in some coset of C and hence y = x + c for some c ∈ C

such that x is a coset leader. Now, puncture the vectors x and c on i th coordinate and denote
the resultant vectors by x◦ and c◦ respectively. Clearly, x◦ ∈ Z

n−1
m and c◦ ∈ C◦. Then

y◦ = x◦ + c◦ ∈ Z
n−1
m and dP◦m(y◦, c◦) = wP◦m(x◦) ≤ wPm(x) ≤ ρ(C). As y and hence

y◦ are arbitrary, ρ(C◦) ≤ ρ(C). ��
Theorem 5 Let Ĉ (C̃) be an extended P̂-code of a linear P-code C ⊆ Z

n
m where P̂ is an

extended pomset of P. Then ρ(Ĉ) ≤ ρ(C). (In case of C̃, ρ(C) ≤ ρ(C̃) ≤ ρ(C) + �m
2 	).

Proof Let y′ = (y, yn+1) ∈ Z
n+1
m where y ∈ Z

n
m . y must be in some coset of C with coset

leader x . So, y = x + c for some c ∈ C. y′ = (x + c, yn+1) = (x, 0) + (c, yn+1) = x ′ + ĉ,
where x ′ = (x, 0) ∈ Z

n+1
m and ĉ = (c, yn+1) ∈ Ĉ. dP̂m(y′, ĉ) = wP̂m(x ′) = wP̂m(x, 0) =

wPm(x) ≤ ρ(C). Thus, for each y′ ∈ Z
n+1
m , one can find at least one codeword ĉ in Ĉ such

that dP̂m(y′, ĉ) ≤ ρ(C) and hence ρ(Ĉ) ≤ ρ(C). For the case of C̃, let c̃ = (c, cn+1) be the
extended codeword of c in C̃ where dPm(y, c) ≤ ρ(C). As, dP̂m(y′, c̃) = wP̂m(y′ − c̃) =
wP̂m(y − c, yn+1 − cn+1) = wPm(y − c)+wL (yn+1 − cn+1), ρ(C) ≤ ρ(C̃) ≤ ρ(C)+�m

2 	.
��

In the following, lower and upper bounds for covering radius of product code are established
with respect to the pomsetPwhereP is either direct or ordinal product of constituent pomsets.
The bounds are arrived at in terms of some of the fundamental parameters of the constituent
codes and by considering the codes with respect to combinations of chain and antichain
pomsets.

Theorem 6 Let C1 and C2 be two linear P1- and P2-codes of length n1 and n2 respectively
over the field Zm (where m is prime). Let C be a product code of C1 and C2 with respect to a
pomset P. If P is a direct product of P1 and P2 then the following hold:
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(a) If P1 is a chain and P2 is an antichain then

(i) ρ(C) ≥
{

(dρ(C1) − 1)dH (C2)�m
2 	 + dP2m(C2) if dρ(C1) �= 1,

ρ(C2) if dρ(C1) = 1.

(ii) ρ(C) ≤
{

(n1 − 1)n2�m
2 	 + ρ(C2) if Dρ(C1) = n1,

n1n2�m
2 	 if Dρ(C1) �= n1.

(b) If P1 and P2 are chains then

(i) ρ(C) ≥
{

(dρ(C1) − 1)dρ(C2)�m
2 	 + dP2m(C2) if dρ(C1) �= 1,

ρ(C2) if dρ(C1) = 1.

(ii) ρ(C) ≤
{

(n1 − 1)�m
2 	R + ρ(C2) if Dρ(C1) = n1,

n1n2�m
2 	 if Dρ(C1) �= n1.

Here, R is the covering radius of C2 with respect to RT-metric.

(c) If P1 and P2 are antichains then

ρ(C) ≥ max{(dH (C1) − 1)dP2m(C2), (dH (C2) − 1)dP1m(C1)}.
(d) If P1 is an antichain and P2 is a chain then

(i) ρ(C) ≥
{

(dρ(C2) − 1)dH (C1)�m
2 	 + dP1m(C1) if dρ(C2) �= 1,

ρ(C1) if dρ(C2) = 1.

(ii) ρ(C) ≤
{

(n2 − 1)n1�m
2 	 + ρ(C1) if Dρ(C2) = n2,

n1n2�m
2 	 if Dρ(C2) �= n2.

Proof (a) Now the pomset P is a disjoint union of n2 chains from Table 1. Let Z =
(Z1, Z2, . . . , Zn1)

T ∈ Z
n1×n2
m where Zi ∈ Z

n2
m . For each Zi ∈ Z

n2
m , there exists a

codeword Vi in C2 such that dP2m(Zi , Vi ) ≤ ρ(C2). Let u = (u1, u2, . . . , un1) be
a codeword in C1. Then, we have codewords ci = (u1Vi , u2Vi , . . . , un1Vi )

T in C
for each i . (i) Suppose that Z1 �= 0, Zi = 0 for 2 ≤ i ≤ n1. Let u be a mini-
mum RT weight codeword with RT-weight wρ(u) = s. If s �= 1 then dPm(Z , c1) =
(s − 1)wH (usV1)�m

2 	 + wP2m(usV1) ≥ (dρ(C1) − 1)dH (C2)�m
2 	 + dP2m(C2). Other-

wise, dPm(Z , c1) = wP2m(Z1 − u1V1) ≥ ρ(C2). (ii) Now suppose that Zn1 �= 0 and
u be a codeword with maximum RT weight. If wρ(u) = n1 then we have a codeword
c′ in C as (u1Vn1 , u2Vn1 , . . . , Vn1)

T and dPm(Z , c′) = (n1 − 1)wH (Zn1 − Vn1)�m
2 	 +

dP2m(Zn1 , Vn1) ≤ (n1−1)n2�m
2 	+ρ(C2). Ifwρ(u) �= n1 thendPm(Z , cn1) ≤ n1n2�m

2 	.
(b) Now P is such that each row and each column is a chain. But the process of the proof is

same as that in (a) and hence the desired bounds are achieved.
(c) Let u = (u1, u2, . . . , un1) be a codeword in C1 of minimum Hamming weight such

that ui �= for an i . Then, we have a codeword c in C as (u1v, u2v, . . . , un1v)T where
0 �= v ∈ C2. There exists a Z = (Z1, Z2, . . . , Zn1)

T in Zn1×n2
m such that Zi = uiv �= 0

and Z j = 0 for all j �= i . Now dPm(Z , c) ≥ (dH (C1) − 1)dP2m(C2). Now choose
a codeword y from C2 of minimum Hamming weight such that y j �= 0 for a j . Now
we have a codeword c′ in C as x ⊗ y where 0 �= x ∈ C1. There exists a Z ′ in Z

n1×n2
m

such that its j th column is same as that in c′ and the remaining columns are zero. Then
dPm(Z ′, c′) ≥ (dH (C2) − 1)dP1m(C1).

(d) Since P is a disjoint union of n1 chains row-wise, the proof is similar to the case (a). ��
Now the corresponding bounds for the case where P is an ordinal product of P1 and P2

are given as the following theorem whose proof we omit due to similarity with Theorem 6.
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Theorem 7 Let C1 and C2 be two linear P1- and P2-codes of length n1 and n2 respectively
over the field Zm (where m is prime). Let C be a product code of C1 and C2 with respect to a
pomset P. If P is an ordinal product of P1 and P2 then the following hold:

(a) If P1 is a chain and P2 is an antichain then

(i) ρ(C) ≥
{

(dρ(C1) − 1)n2�m
2 	 + dP2m(C2) if dρ(C2) �= 1,

ρ(C2) if dρ(C2) = 1.

(ii) ρ(C) ≤
{

(n1 − 1)n2�m
2 	 + ρ(C2) if Dρ(C1) = n1,

n1n2�m
2 	 if Dρ(C1) �= n1.

(b) If P1 and P2 are chains then

(i) ρ(C) ≥
{

(dρ(C1) − 1)n2�m
2 	 + dP2m(C2) if dρ(C2) �= 1,

ρ(C2) if dρ(C2) = 1.

(ii) ρ(C) ≤
{

(n1 − 1)n2�m
2 	 + ρ(C2) if Dρ(C1) = n1,

n1n2�m
2 	 if Dρ(C1) �= n1.

(c) If P1 and P2 are antichains then

ρ(C) ≥ max{(dH (C1) − 1)dP2m(C2), (dH (C2) − 1)dP1m(C1)}.
(d) If P1 is an antichain and P2 is a chain then

(i) ρ(C) ≥
{

(dρ(C2) − 1)dH (C1)�m
2 	 + dP1m(C1) if dρ(C2) �= 1,

ρ(C1) if dρ(C2) = 1.

(ii) ρ(C) ≤
{

(n2 − 1)n1�m
2 	 + ρ(C1) if Dρ(C2) = n2,

n1n2�m
2 	 if Dρ(C2) �= n2.

6 Conclusion

The poset weight of a vector x defined as the cardinality of the ideal generated by the support
of x is a generalization to weights such as Hamming weight and RT weight. As the poset
weight of x does not accommodate Lee weight, the support of the vector with respect to Lee
weight (which is a multiset) is defined in this work. By defining order ideal in pomsets, a new
metric called pomset metric is introduced which generalizes posets in general and gives rise
to Lee metric if the underlying pomset is an antichain. The construction methods in posets
are extended to arrive at new pomsets which are subsequently imposed upon the constructed
pomset codes obtained through direct sum, (u, u + v)-construction, puncturing, extension
and direct product of codes. Basic parameters such as minimum distance and covering radius
are studied, and bounds are established upon the new pomset codes. Moreover, bounds for
minimum distance and covering radius of product codes are established by considering the
constituent codes with respect to various combinations of chain and antichain pomsets.
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