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Abstract Motivated by the application of high-density data storage technologies, symbol-
pair codes are proposed to protect against pair-errors in symbol-pair channels, whose outputs
are overlappingpairs of symbols. The researchof symbol-pair codeswith the largestminimum
pair-distance is interesting since such codes have the best possible error-correcting capability.
A symbol-pair code attaining the maximal minimum pair-distance is called a maximum
distance separable (MDS) symbol-pair code. In this paper, we focus on constructing linear
MDS symbol-pair codes over the finite field Fq . We show that a linear MDS symbol-pair
code over Fq with pair-distance 5 exists if and only if the length n ranges from 5 to q2+q+1.
As for codes with pair-distance 6, length ranging from q + 2 to q2, we construct linear MDS
symbol-pair codes by using a configuration called ovoid in projective geometry. With the
help of elliptic curves, we present a construction of linear MDS symbol-pair codes for any
pair-distance d + 2 with length n satisfying 7 ≤ d + 2 ≤ n ≤ q + �2√q� + δ(q) − 3, where
δ(q) = 0 or 1.

Keywords Symbol-pair read channels · MDS symbol-pair codes · Projective geometry ·
Elliptic curves

Mathematics Subject Classification 94B25 · 94B60
1 Introduction

With the development of high-density data storage technologies, while the codes are defined
as usual over some discrete symbol alphabet, their reading from the channel is performed
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as overlapping pairs of symbols. A channel whose outputs are overlapping pairs of symbols
is called a symbol-pair channel. A pair-error is defined as a pair-read in which one or more
of the symbols are read in error. The design of codes to protect efficiently against a certain
number of pair-errors is significant.

Cassuto and Blaum first studied codes that protect against pair-errors in [2], as well as
pair-error correctability conditions, code construction and decoding, and lower and upper
bounds on code sizes. Later, Cassuto and Litsyn [3] gave algebraic cyclic code constructions
of symbol-pair codes and asymptotic bounds on code rates. They also showed the existence
of pair-error codes with rates strictly higher than those of the codes in the Hamming metric
with the same relative distance. Yaakobi et al. proposed efficient decoding algorithms for
cyclic symbol-pair codes in [14,15].

Chee et al. in [4] established a Singleton-type bound on symbol-pair codes and constructed
infinite families of symbol-pair codes that meet the Singleton-type bound, which are called
maximum distance separable symbol-pair codes or MDS symbol-pair codes for short. The
construction of MDS symbol-pair codes is interesting since the codes have the best pair-
error correcting capability for fixed length and dimension. The authors in [4] made use of
interleaving and graph theoretic concepts as well as combinatorial configurations to construct
MDS symbol-pair codes. Kai et al. [8] constructed MDS symbol-pair codes from cyclic and
constacyclic codes.

Classical MDS codes are MDS symbol-pair codes [4] and other known families of MDS
(n, d)q symbol-pair codes are shown in Table 1.

In this paper, we present new constructions of linear MDS symbol-pair codes over the
finite field Fq and obtain the following three new families:

1. there exists a linear MDS (n, 5)q symbol-pair code if and only if 5 ≤ n ≤ q2 + q + 1;
2. there exists a linearMDS (n, 6)q symbol-pair code forq ≥ 3andmax{6, q+2} ≤ n ≤ q2;
3. there exists a linear MDS (n, d + 2)q symbol-pair code for general n, d satisfying 7 ≤

d + 2 ≤ n ≤ q + �2√q� + δ(q) − 3, where

δ(q) =
{
0, if q = pa, a ≥ 3, a is odd and p | �2√q�;
1, otherwise.

Table 1 Known families of MDS symbol-pair codes

d q n Reference

2, 3 q ≥ 2 n ≥ 2 [4]

4 q ≥ 2 n ≥ 2 [4]

5 Even prime power n ≤ q + 2 [4]

Odd prime 5 ≤ n ≤ 2q + 3 [4]

Prime power n|q2 − 1, n > q + 1 [8]

Prime power n = q2 + q + 1 [8]

Prime power, q ≡ 1 (mod 3) n = q2+q+1
3 [8]

6 Prime power n = q2 + 1 [8]

Odd prime power n = q2+1
2 [8]

7 Odd prime n = 8 [4]
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New constructions of MDS symbol-pair codes 843

Compared with the knownMDS symbol-pair codes, theMDS symbol-pair codes constructed
in this paper provide a much larger range of parameters.

This paper is organized as follows. Basic notations and definitions are given in Sect. 2. In
Sect. 3, we construct MDS symbol-pair codes with pair-distance 5. And in Sect. 4 we derive
MDS symbol-pair codes with pair-distance 6 from projective geometry. In Sect. 5, by using
elliptic curves, we give the construction of MDS symbol-pair codes for any pair-distance
satisfying certain conditions. Section 6 concludes the paper.

2 Preliminaries

Let � be the alphabet consisting of q elements. Each element in � is called a symbol. For a
vector u = (u0, u1, . . . , un−1) in �n , we define the symbol-pair read vector of u as

π(u) = ((u0, u1), (u1, u2), . . . , (un−1, u0)).

Throughout this paper, let q be a prime power and Fq be the finite field containing q
elements. We will focus on vectors over Fq , so � = Fq . It is obvious that each vector u in
F
n
q has a unique symbol-pair read vector π(u) in (Fq ×Fq)

n . For two vectors u, v in Fn
q , the

pair-distance between u and v is defined as

dp(u, v) := |{0 ≤ i ≤ n − 1 : (ui , ui+1) �= (vi , vi+1)}|,
where the subscripts are reduced modulo n. For any vector u in F

n
q , the pair-weight of u is

defined as

wp(u) = |{0 ≤ i ≤ n − 1 : (ui , ui+1) �= (0, 0)}|,
where the subscripts are reduced modulo n.

The following relationship between the pair-distance and the Hamming distance was
shown in [2].

Proposition 2.1 Let u, v ∈ F
n
q be such that 0 < dH (u, v) < n, where dH denotes the

Hamming distance, we have

dH (u, v) + 1 ≤ dp(u, v) ≤ 2dH (u, v).

Meanwhile, the following relationship between the pair-distance and the pair-weight holds.

Proposition 2.2 For all u, v ∈ F
n
q , dp(u, v) = wp(u − v).

A code C over Fq of length n is a nonempty subset of Fn
q and the elements of C are called

codewords. The minimum pair-distance of C is defined as

dp(C) = min{dp(u, v) : u, v ∈ C,u �= v},
and the size of C is the number of codewords it contains. In general, a code C overFq of length
n, size M and minimum pair-distance d is called an (n, M, d)q symbol-pair code. Besides,
if C is a subspace of Fn

q , then C is called a linear symbol-pair code. When C is a linear code,
the minimum pair-distance of C is the smallest pair-weight of nonzero codewords of C. In
this paper we consider linear symbol-pair codes over Fq .

The minimum pair-distance d is an important parameter in determining the error-
correcting capability ofC. Thus it is significant to find symbol-pair codes of fixed length nwith
pair-distance d as large as possible. In [4], the authors proved the following Singleton-type
bound.
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844 B. Ding et al.

Theorem 2.3 (Singleton bound) Let q ≥ 2 and 2 ≤ d ≤ n. If C is an (n, M, d)q symbol-pair
code, then M ≤ qn−d+2.

A symbol-pair code achieving the Singleton bound is a maximum distance separable
(MDS) symbol-pair code. An MDS (n, M, d)q symbol-pair code is simply called an MDS
(n, d)q symbol-pair code. In [8], the authors presented the following theorem.

Theorem 2.4 Let C be an [n, n − dH , dH ] linear code over Fq . If the pair-distance d ≥
dH + 2, then C is an MDS (n, dH + 2)q symbol-pair code.

Now we are ready to give a sufficient condition for the existence of linear MDS symbol-
pair codes in the following theorem.

Theorem 2.5 There exists a linear MDS (n, dH + 2)q symbol-pair code C if there exists
a matrix with dH rows and n ≥ dH + 2 ≥ 4 columns over Fq , denoted by H =
[H0, H1, . . . , Hn−1], where Hi (0 ≤ i ≤ n − 1) is the i-th column of H, satisfying:

1. any dH − 1 columns of H are linearly independent;
2. any dH cyclically consecutive columns are linearly independent, i.e.,

Hi , Hi+1, . . . , Hi+dH−1 are linearly independent for 0 ≤ i ≤ n − 1, where the sub-
scripts are reduced modulo n.

Proof Let C be the linear code with parity check matrix H . The first condition indicates that
C is a linear code of length n, size qn−dH and minimum Hamming distance greater than or
equal to dH . If there exists a codeword c ∈ C with dH nonzero coordinates, then the second
condition ensures that the dH nonzero coordinates are not in cyclically consecutive positions.
Thus, from Propositions 2.1 and 2.2, we have wp(c) ≥ dH + 2. For any other codeword
c′ ∈ C with Hamming weight wH (c′) ≥ dH + 1, it is easy to see that wp(c′) ≥ dH + 2.
Hence the pair-distance d ≥ dH + 2 and C is an MDS (n, dH + 2)q symbol-pair code. ��

3 MDS symbol-pair codes with pair-distance 5

We first show a necessary condition for the existence of MDS (n, 5)q symbol-pair codes.

Lemma 3.1 A linear MDS (n, 5)q symbol-pair code, where q is a prime power, exists only
if the length n ranges from 5 to q2 + q + 1.

Proof The parity check matrix H of a linear MDS (n, 5)q symbol-pair code has three rows.
From Proposition 2.1, we know that a symbol-pair code with the minimum pair-distance
d = 5 must have the minimum Hamming distance dH ≥ 3. Therefore, any two columns
in H must be linearly independent. In Fq the largest set of mutually linearly independent
vectors of length three contains q2 + q + 1 vectors. ��

In this section we aim to show the existence of MDS (n, 5)q symbol-pair codes for every
5 ≤ n ≤ q2 + q + 1. According to Theorem 2.5, what we need is to construct a matrix H
with 3 rows and n columns over Fq satisfying the following conditions:

1. any two columns of H are linearly independent;
2. any three cyclically consecutive columns are linearly independent.

We first describe how to construct a full matrix H(q) of size 3 × (q2 + q + 1) and then
we mention how to adjust H(q) to get a matrix H(q; n) of size 3 × n for any n, 5 ≤ n ≤
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q2 + q + 1. Choose the column vectors of H(q) from the following q2 + q + 1 vectors:
{(0, 0, 1)T, (1, a, b)T, (0, 1, c)T : a, b, c ∈ Fq}. We need to order these vectors in a proper
way such that any three cyclically consecutive columns are linearly independent.

First we deal with the case when q is odd. Denote the elements in Fq in an arbitrary
order {x0, x1, . . . , xq−1}. As a preparatory step, we partition the q2 vectors of the form
{(1, a, b)T : a, b ∈ Fq} into q disjoint blocks Bi = {(1, a, a2+xi )T : a ∈ Fq} for 0 ≤ i < q .
We give an order of the vectors within Bi as follows, where subscripts are reduced modulo
q .

Bi =
⎡
⎣ 1 1 1 · · · 1

xi xi+1 xi+2 · · · xi+q−1

x2i + xi x2i+1 + xi x2i+2 + xi · · · x2i+q−1 + xi

⎤
⎦ .

Then we construct the matrix H(q) as follows. List all the blocks Bi defined above in
the reverse order of their subscripts: Bq−1, Bq−2, . . . , B1, B0. Between any pair of consec-
utive blocks Bi+1 and Bi , insert a vector (0, 1, 2xi )T. Note that the pair of B0 and Bq−1 is
also considered, and the vector (0, 1, 2xq−1)

T should be inserted between them, which is
further restricted to be the first column of H(q). Finally the vector (0, 0, 1)T could be placed
anywhere and we just set it as the last column. That is,

H(q) =
⎡
⎣ 0 0 0 . . . 0 · · · 0 0

1 Bq−1 1 Bq−2 1 Bq−3 . . . Bi+1 1 Bi · · · B1 1 B0 0
2xq−1 2xq−2 2xq−3 . . . 2xi · · · 2x0 1

⎤
⎦ .

Proposition 3.2 When q is odd, every three cyclically consecutive columns of the matrix
H(q) constructed above are linearly independent over Fq .

Proof This can be easily checked by computing the determinants of any three cyclically
consecutive columns. ��

We now focus on the case when q is even and q �= 2, 4. The general outline is sim-
ilar. Let ω be a primitive element in Fq . Denote the elements in Fq in an arbitrary order
{x0, x1, . . . , xq−1}, with the only constraint that the first several elements are preset to
be x0 = 0, x1 = 1, x2 = ω, x3 = ω2, x4 = ω + 1, x5 = ω2 + ω. First define
the blocks Bi in the same way as above and list all the blocks Bi in the reverse order
of their subscripts: Bq−1, Bq−2, . . . , B1, B0. Now we need to find out which vector of
the form (0, 1, y)T can be inserted between the blocks Bj+1 and Bj . We require that
vectors (0, 1, y)T, (1, x j , x2j + x j )T, (1, x j+1, x2j+1 + x j )T are linearly independent and

(0, 1, y)T, (1, x j , x2j + x j+1)
T, (1, x j−1, x2j−1 + x j+1)

T are linearly independent. It is easy
to see y could be any value except for x j + x j−1 and x j + x j+1.

Construct a bipartite graph. The left set of the vertices corresponds to Fq . The right set of
the vertices is {L j : 0 ≤ j < q}, where the symbol L j indicates the location between the
blocks Bj+1 and Bj . y ∈ Fq is connected to L j if and only if the vector (0, 1, y)T could be
inserted in the location L j , i.e. y �= x j + x j−1 and y �= x j + x j+1. A perfect matching in
this bipartite graph corresponds to a proper insertion scheme.

Following the analysis above, we can find that the degree of every vertex in the right part
is exactly q − 2. Recall that we have preset x0 = 0, x1 = 1, x2 = ω, x3 = ω2, x4 = ω + 1,
x5 = ω2 + ω. Thus we have:

• L1 is connected to every y ∈ Fq except for 1 and ω + 1;
• L2 is connected to every y ∈ Fq except for ω + 1 and ω2 + ω;
• L3 is connected to every y ∈ Fq except for ω2 + ω and ω2 + ω + 1; and
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• L4 is connected to every y ∈ Fq except for ω2 + ω + 1 and ω2 + 1.
So, even only among these four vertices, we can deduce that every y ∈ Fq is connected
to at least two of them. So we have

• the neighbourhood of every � ≤ q − 2 vertices from the right part is of size at least
q − 2 ≥ �, since each vertex in the right part has degree q − 2;

• the neighbourhood of every q − 1 or q vertices from the right part is of size q .

Therefore the famous Hall’s theorem [7] guarantees a perfect matching in this bipartite
graph, which corresponds to a proper insertion scheme.

However, the case q = 4 is listed as a separate case since the framework above using
Hall’s theorem would fail. To follow a similar framework, the order within a block needs
some slight modifications and then a proper insertion scheme comes along. We shall just list
the desired 3 × 21 matrix H(4) instead of tedious explanations.

H(4) =
⎡
⎣ 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
1 0 1 ω ω + 1 1 ω + 1 ω 1 0 1 0 ω + 1 ω 1 1 1 ω ω + 1 0 0
0 0 1 ω + 1 ω ω + 1 ω + 1 ω 0 1 ω ω 0 1 ω + 1 1 ω 0 1 ω + 1 1

⎤
⎦ .

Up till now we have constructed the matrix H(q) of size 3× (q2 +q +1) for every prime
power q ≥ 3. Next we discuss how to adjust H(q) to get a 3 × n matrix H(q; n) for every
n, 5 ≤ n ≤ q2 + q + 1. Denote n = α(q + 1) + β, where 0 ≤ β ≤ q . There are certainly
lots of methods to get such a desired matrix and we propose one as follows.

• If β �= 2, select the first n − 1 columns of H(q), then add the vector (0, 0, 1)T.
• If β = 2, select the first n − 1 columns of H(q), then insert the vector (0, 0, 1)T as the

new third column.

The case β = 2 is separated since if we still abide by the first rule thenwewill come across
a triple of the form {(0, 1, x)T, (0, 0, 1)T, (0, 1, y)T} which is certainly not independent.

The validity of the construction of the 3×n matrix can be easily inferred from Proposition
3.2 plus some further simple checks on those triples containing the vector (0, 0, 1)T, and the
two triples of the form {(0, 1, a)T, (0, 1, b)T, (1, c, d)T} (in the β = 2 case).

As illustrative examples, for q = 5 we list the following matrices: the full matrix H(5)
of size 3× 31, the adjusted matrix H(5; 13) (corresponding to β �= 2) and H(5; 14) (corre-
sponding to β = 2).

H(5) =
⎡
⎣ 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0
1 4 0 1 2 3 1 3 4 0 1 2 1 2 3 4 0 1 1 1 2 3 4 0 1 0 1 2 3 4 0
3 0 4 0 3 3 1 2 4 3 4 2 4 1 1 3 2 3 2 2 0 0 2 1 0 0 1 4 4 1 1

⎤
⎦ ,

H(5; 13) =
⎡
⎣ 0 1 1 1 1 1 0 1 1 1 1 1 0
1 4 0 1 2 3 1 3 4 0 1 2 0
3 0 4 0 3 3 1 2 4 3 4 2 1

⎤
⎦ , H(5; 14) =

⎡
⎣ 0 1 0 1 1 1 1 0 1 1 1 1 1 0
1 4 0 0 1 2 3 1 3 4 0 1 2 1
3 0 1 4 0 3 3 1 2 4 3 4 2 4

⎤
⎦ .

Finally, for the case q = 2, we list the matrices H(2), H(2; 5), H(2; 6) as follows.

H(2) =
⎡
⎣ 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤
⎦ , H(2; 5) =

⎡
⎣ 1 0 0 1 1
0 1 0 1 0
0 0 1 1 1

⎤
⎦ , H(2; 6) =

⎡
⎣ 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 1 1 1

⎤
⎦ .

So far we have finished the construction of MDS (n, 5)q symbol-pair codes for any prime
power q ≥ 2 and 5 ≤ n ≤ q2 + q + 1. The construction, together with Lemma 3.1, leads to
the following theorem.
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Theorem 3.3 There exists a linearMDS (n, 5)q symbol-pair code, where q is a prime power,
if and only if the length n ranges from 5 to q2 + q + 1.

4 MDS symbol-pair codes from projective geometry

Let V (r +1, q) be a vector space of rank r +1 over Fq . The projective space PG(r, q) is the
geometrywhose points, lines, planes, . . ., hyperplanes are the subspaces ofV (r+1, q) of rank
1, 2, 3, . . . , r , respectively. The dimension of a subspace of PG(r, q) is one less than the rank
of a subspace of V (r +1, q). We label each point as 〈(a0, a1, . . . , ar )〉, the subspace spanned
by a nonzero vector (a0, a1, . . . , ar ), where ai ∈ Fq for 0 ≤ i ≤ r . We refer to a0, a1, . . . , ar
as homogeneous coordinates for the point, since these coordinates are defined only up to
multiplication by a nonzero scalar λ ∈ Fq : here 〈(λa0, λa1, . . . , λar )〉 = 〈(a0, a1, . . . , ar )〉.
Thus, there are a total of (qr+1 − 1)/(q − 1) points in PG(r, q). For an integer r ≥ 2, if we
choose n ≥ r + 3 points in PG(r, q) and regard them as column vectors of a matrix H , then
from Theorem 2.5 we have the following theorem.

Theorem 4.1 There exists a linear MDS (n, r + 3)q symbol-pair code if there exists a set S
of n ≥ r + 3 ≥ 5 points of PG(r, q) satisfying the following conditions:

1. any r points from S generate a hyperplane in PG(r, q);
2. there exists a proper order P0,P1, . . . ,Pn−1, such that any r + 1 cyclically consecutive

points do not lie on a hyperplane, i.e., Pi ,Pi+1, . . . ,Pi+r , where the subscripts are
reduced modulo n, do not lie on a hyperplane for 0 ≤ i ≤ n − 1.

Here we consider the case when r = 3 since there is a nice structure, namely the ovoid,
in PG(3, q). We first give the definition of the ovoid.

Definition 4.1 A set O of points of PG(3, q) is called an ovoid if it satisfies the following
conditions:

1. each line meets O in at most two points;
2. each point ofO lies on exactly q + 1 tangent lines (a tangent line meetsO in exactly one

point), all of which lie on a plane.

The ovoid has been well studied and the following two lemmas can be found in [11].

Lemma 4.2 Each ovoid has q2 + 1 points.

Lemma 4.3 Each plane meets O either in one point or in q + 1 points.

We can also easily derive the following lemma.

Lemma 4.4 For an ovoid O in PG(3, q), there exist q + 1 planes, each of which contains
q + 1 points in O. Moreover, these planes intersect in a common line in O and cover all the
points of O.

Proof Fix two arbitrary points A, B ∈ O, and then choose a point P from O \ {A, B}. By
Lemma 4.3, the plane formed by A, B, P , which we denote by ABP , must meetO in q + 1
points. Next, choose a point Q ∈ O which is not on ABP . Then, again, we get a plane ABQ
which also meetsO in q +1 points. If we continue in this way, we can get q +1 planes, each
of which contains q + 1 points of O. These planes intersect in a common line which meets
O in the points A, B. ��
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α0 α1 α2 α3 α4 αq−1 αq

A B

P1

P2

Pq−4

Pq−3

Pq−2

Pq−1

Q1

Q2

Qq−4

Qq−3

Qq−2

Qq−1

R1

R2

Rq−4

Rq−3

Rq−2

Rq−1

S1

S2

Sq−4

Sq−3

Sq−2

Sq−1

T1

T2

Tq−4

Tq−3

Tq−2

Tq−1

U1

U2

Uq−4

Uq−3

Uq−2

Uq−1

V1

V2

Vq−4

Vq−3

Vq−2

Vq−1

Fig. 1 The ovoid in PG(3,q)

Let q ≥ 5 be a prime power. Suppose A and B are two points in the ovoid O, and planes
π0, π1, . . . , πq intersect in the line AB and cover all the points ofO. Denote the set of points
in πi \ {A, B} as αi for 0 ≤ i ≤ q , and there are q − 1 points in each set. We illustrate the
structure of the ovoid in Fig. 1.

Note that planes and hyperplanes are the same in PG(3, q) and the points in the ovoid
O satisfy the first condition in Theorem 4.1 inherently. Thus, in order to construct MDS
symbol-pair codes we only need to order the points of O and make sure that any four
cyclically consecutive points do not lie on a plane. In the rest of this section, we focus on the
problem of ordering points in O. Clearly, one can obtain the goal by many methods and we
only propose one of them as follows.

We always choose A, B and arbitrary points P1 ∈ α0, Q1 ∈ α1 to be the first four points.
It is obvious that the four points do not lie on a plane. Moreover, we always denote the last
three points as X, Y, Z . For four ordered points P, Q, R, S, we say S is a proper point if S
does not lie on the plane PQR. In other words, we say S is a proper point if S does not lie
on the plane formed by the three points ordered right ahead of it. We first order the points in
O and make sure that any four consecutive points do not lie on a plane. Then we ensure that
X, Y, Z , A do not lie on a plane, nor do Y, Z , A, B and nor do Z , A, B, P1.

We have the following observations that will be invoked multiple times in our proofs:

1. Two planes intersect in a line and a line meets O in at most two points. Therefore, two
planes have at most two common points in O.

2. Suppose we have ordered three points as P, Q, R, where P ∈ αi , Q ∈ α j , R ∈ αk (at
most two of i, j, k are equal), then the plane PQR intersects αi in at most two points
(one of which is P). If there are at least two points remaining in αi at this moment, then
we can always choose a proper point P ′ ∈ αi . The same conclusion also works for α j

and αk .
3. We can always take proper points from two sets αi and α j or three sets αi , α j and αk in

turn until only one point remains in each set.
This is an immediate conclusion from the last observation.

4. If exactly two of the three points X, Y, Z lie in the same set αi , then these two points,
together with A, form the planeπi which does not contain the remaining point. Therefore,
X, Y, Z , A do not lie on a plane.

5. If Y ∈ αi , Z ∈ α j , i �= j , then Y, A, B form the plane πi and Z , A, B form the plane
π j , and thus Y, Z , A, B do not lie on a plane.
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New constructions of MDS symbol-pair codes 849

6. If Z does not lie in the set α0, then A, B, P1 form a plane and A, B, Z form another, i.e.,
Z , A, B, P1 do not lie on a plane.

Now we are ready to order n points in O such that any four cyclically consecutive points
do not lie on a plane, and thus obtain MDS (n, 6)q symbol-pair codes. We restrict to the case
when q + 2 ≤ n ≤ q2 since MDS (n, 6)q symbol-pair codes have already been constructed
for n ≤ q + 1 [4] and n = q2 + 1 [8]. We consider the following two cases.

4.1 The case when q is odd

We give different strategies for the three cases when q + 2 ≤ n ≤ 2q , 2q < n ≤ q2 − q and
q2 − q < n ≤ q2.

Lemma 4.5 Let q ≥ 5 be an odd prime power. We can order n points such that any four
cyclically consecutive points do not lie on a plane for q + 2 ≤ n ≤ 2q.

Proof After choosing A, B, P1, Q1, we choose a proper point R1 ∈ α2 to be the fifth, and
a proper point S1 ∈ α3 to be the sixth. Take proper points from α2 and α3 in turn until we
have ordered n (q + 2 ≤ n ≤ 2q) points.

By now we have ordered n points such that any four consecutive points do not lie on a
plane. For the last three points X, Y, Z , we have X, Z lying in the same set αi , i = 2 or 3,
Y, Z lying in different sets and Z not lying in α0. Thus, any four cyclically consecutive points
do not lie on a plane. ��
Lemma 4.6 Let q ≥ 5 be an odd prime power. We can order n points such that any four
cyclically consecutive points do not lie on a plane for 2q < n ≤ q2 − q.

Proof After choosing A, B, P1, Q1, we take proper points from α0 and α1 in turn
until only one point remains in each set. Suppose that we have ordered the points as
A, B, P1, Q1, P2, Q2, . . . , Pq−2, Qq−2. Repeat the same process for α2 and α3, for α4 and
α5, . . .. The number of such sets (i.e., the sets α0, α1, . . . , αq ) is q+1, an even number. Thus,
we can always keep doing this until we have put n (2q < n ≤ q2 − q) points in order.

By now we have ordered n points such that any four consecutive points do not lie on a
plane. For the last three points X, Y, Z , we have Y, Z lying in different sets and Z not lying
in α0. Therefore, we only need to make sure that X, Y, Z , A do not lie on a plane. The only
special case is when the three points lie in three different sets αi , αi+1, αi+2 for some i . For
example, suppose we have ordered the points as A, B, P1, . . . , Sq−3, Rq−2, Sq−2, T1 and
Rq−2, Sq−2, T1 are the last three points. In this case, if Rq−2, Sq−2, T1, A lie on a plane, then
we find another point in α4, which does not lie on the planes Rq−2Sq−3Sq−2 and Rq−2Sq−2A,
to be the new last point. This can always succeed since the plane Rq−2Sq−3Sq−2 intersects α4

in at most two points, the plane Rq−2Sq−2A intersects α4 in the point T1 (this plane intersects
π4 in two points, one is the point A, another is the point T1) and there are q − 1 ≥ 4 points
in α4. Therefore, we can order n points such that any four cyclically consecutive points do
not lie on a plane. ��

When q2 − q < n ≤ q2, we need to put more points in order. For a pair of sets αi , αi+1,
i = 0, 2, 4, . . . , q − 3, we first take proper points from them alternatively until three points
remain in each set. Then we give a strategy to order the remaining six points. We repeat this
process until we have ordered all the points in α0, α1, . . . , αq−2. After that, we take proper
points from αq−1 and αq in turn until we have ordered enough points. In the following lemma,
we first restrict to the case when q2 −q < n < q2 and then we discuss the case when n = q2

separately.
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Lemma 4.7 Let q ≥ 5 be an odd prime power. We can order n points such that any four
cyclically consecutive points do not lie on a plane for q2 − q < n ≤ q2.

Proof After choosing A, B, P1, Q1, we take proper points from α0 and α1 in turn until three
points remain in each set. Suppose we have ordered the points as
A, B, P1, Q1, P2, Q2, . . . , Pq−5, Qq−5, Pq−4, Qq−4. Then we choose a proper point
Pq−3 ∈ α0, which can always succeed (from the second observation and we will use
this observation one more time in this proof), to be the next. After that, let the remain-
ing two points Pq−2, Pq−1 ∈ α0 and an arbitrary point Qq−3 ∈ α1 be the next three
points. Take a proper point Qq−2 ∈ α1, and then let the remaining point Qq−1 ∈ α1 be the
next. Let the order be A, B, . . . , Pq−4, Qq−4, Pq−3, Pq−2, Pq−1, Qq−3,Qq−2, Qq−1. Points
Pq−4, Qq−4, Pq−3, Pq−2 do not lie on a plane, since Pq−4, Pq−3, Pq−2 form the plane π0

while Qq−4 lies in π1. The same reason works for points Qq−4, Pq−3, Pq−2, Pq−1, points
Pq−3, Pq−2, Pq−1, Qq−3 and points Pq−1, Qq−3, Qq−2, Qq−1.

So far we have ordered all the points in α0 and α1 such that any four consecutive points
do not lie on a plane. Next, we take proper points from α2 and α3 in turn until three points
remain in each set and then order the remaining points in α2 and α3 in the same way. Repeat
the same process for α4 and α5, . . . , αq−3 and αq−2 until we have ordered all the points in
them. After that, we take proper points from αq−1 and αq in turn. We can always do this
until we have put n (q2 − q < n ≤ q2 − 1) points in order.

By now we have ordered n points such that any four consecutive points do not lie on a
plane. Note that there are totally q2 − 2q + 1 points in α0, α1, . . . , αq−2, n > q2 − q and
q ≥ 5. Therefore, for the last three points X, Y, Z , we have X, Z lying in the same set αi ,
i = q − 1 or q , Y, Z lying in different sets and Z not lying in α0. Thus, any four cyclically
consecutive points do not lie on a plane.

When n = q2 − 1, suppose we have ordered the points as A, B, P1, Q1, . . . ,Uq−4,

Vq−4,Uq−3, Vq−3,Uq−2,Vq−2. This indicates that Uq−4, Vq−4,Uq−3, Vq−3 do not lie
on a plane, nor do Uq−3, Vq−3,Uq−2, Vq−2. For the case when n = q2, we add one
more point Vq−1 and let the order be Uq−4, Vq−4,Uq−3, Vq−3, Vq−2,Uq−2, Vq−1. Clearly,
points Vq−4,Uq−3, Vq−3, Vq−2 do not lie on a plane, nor do Vq−3, Vq−2,Uq−2, Vq−1. And it
is easy to check that any four cyclically consecutive points do not lie on a plane by a similar
discussion. ��

We have ordered n points in O such that any four cyclically consecutive points do not lie
on a plane for q ≥ 5 and q + 2 ≤ n ≤ q2. Therefore we obtain MDS (n, 6)q symbol-pair
codes for all n, q + 2 ≤ n ≤ q2. We exclude the case when q = 3 since there are not
enough points on each plane πi . We give MDS symbol-pair codes for q = 3 in the following
example.

Example 4.8 There exists a linearMDS (n, 6)3 symbol-pair code, n ∈ {6, 7, 8, 9, 10}, whose
parity check matrix is formed by the first n columns of the matrix⎡

⎢⎢⎣
0 1 1 1 1 1 1 1 1 1
1 0 1 2 1 2 2 1 2 1
0 0 1 0 2 0 2 2 1 1
0 0 1 1 2 2 1 0 2 0

⎤
⎥⎥⎦ .

4.2 The case when q is even

The case when q is even is different from that when q is odd due to there being an odd number
of planes π0, π1, . . . , πq . For q + 2 ≤ n < q2 − q + 2, we can order n points on q planes
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π0, π1, . . . , πq−1 just as the case when q is odd. For q2 − q + 2 ≤ n ≤ q2, we first order
all the points in the first three sets α0, α1, α2 by a similar method as in Lemma 4.7, then we
can simply proceed as the case when q is odd since there are an even number of sets left.

Lemma 4.9 Let q ≥ 8 be an even prime power. We can order n points such that any four
cyclically consecutive points do not lie on a plane for q + 2 ≤ n ≤ q2.

Proof When q + 2 ≤ n < q2 − q + 2, we order n points on q planes π0, π1, . . . , πq−1 just
as the case when q is odd. For the case when q2 − q + 2 ≤ n ≤ q2, the key step is to order
all the points in α0, α1, α2.

Let a proper point R1 ∈ α2 be the fifth and take proper points from α0, α1, α2

in turn until three points remain in each set. Suppose we have ordered the points as
A, B, P1, Q1, R1, . . . , Pq−4, Qq−4, Rq−4. Choose a proper point Pq−3 ∈ α0 and a proper
point Pq−2 ∈ α0, which can always succeed (from the second observation, and we will
use this multiple times in this proof), to be the next two points. After that, let the remain-
ing point Pq−1 ∈ α0 and an arbitrary point Qq−3 ∈ α1 be the next two points. Choose a
proper point Qq−2 ∈ α1 to be the next, and then let the remaining point Qq−1 ∈ α1 and
an arbitrary point Rq−3 ∈ α2 be the next two points. Choose a proper point Rq−2 ∈ α2

and then let the remaining point Rq−1 ∈ α2 be the next. So far, We have ordered the points
as Pq−4, Qq−4, Rq−4, Pq−3, Pq−2, Pq−1, Qq−3, Qq−2, Qq−1, Rq−3, Rq−2, Rq−1. Clearly,
Rq−4, Pq−3, Pq−2, Pq−1 do not lie on a plane, nor do Pq−3, Pq−2, Pq−1, Qq−3, nor do
Pq−1, Qq−3, Qq−2, Qq−1, nor do Qq−3, Qq−2, Qq−1, Rq−3, and nor do Qq−1, Rq−3,

Rq−2, Rq−1.
By now we have ordered all the points in α0, α1 and α2, and any four consecutive points

do not lie on a plane. There are an even number of sets left. We then take proper points from
α3 and α4 in turn and proceed as in Lemma 4.7. ��

We give MDS symbol-pair codes for q = 4 in the following example.

Example 4.10 Denote the primitive element of F4 as w. Then there exists a linear MDS
(n, 6)4 symbol-pair code, n ∈ {6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}, and its parity check
matrix is formed by the first n columns of the matrix⎡
⎢⎢⎣
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 w 1 + w 1 w 1 + w w w 1 + w 1 w 1 1 + w 1 + w 1
0 0 1 0 w 0 1 + w 0 1 1 w w w + 1 w 1 + w 1 + w 1
0 0 0 1 0 w 0 1 + w 1 w 1 w w 1 + w 1 + w 1 1 + w

⎤
⎥⎥⎦ .

There exists a linear MDS (7, 6) symbol-pair code with parity check matrix⎡
⎢⎢⎣
0 1 1 1 1 1 1
1 0 1 w 1 + w 1 w

0 0 1 0 w 0 1
0 0 0 1 0 w w

⎤
⎥⎥⎦ .

Summing up the above, we can conclude the following theorem.

Theorem 4.11 For any prime power q, q ≥ 3, and any integer n, max{6, q + 2} ≤ n ≤ q2,
there exists a linear MDS (n, 6)q symbol-pair code.

Remark 4.1 Wecan also obtain linearMDS (n, 5)q symbol-pair codes for 5 ≤ n ≤ q2+q+1
by ordering points in PG(2, q) such that any three cyclically consecutive points do not lie on
a line. Thus, this method deserves further investigation, which may derive MDS symbol-pair
codes with larger pair-distance.
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5 MDS symbol-pair codes from elliptic curves

The previous two sections construct MDS symbol-pair codes with pair-distance 5 and 6. In
this section, we give a construction of MDS symbol-pair codes with general pair-distance
(≥7) from elliptic curve codes. We first briefly review some facts about elliptic curve codes.

Let E/Fq be an elliptic curve over Fq with function field Fq(E). Let E(Fq) be the set
of all Fq -rational points on E . Suppose D = {P1, P2, . . . , Pn} is a proper subset of rational
points E(Fq), and G is a divisor of degree k (0 < k < n) with Supp(G) ∩ D = ∅. Without
any confusion, we also write D = P1 + P2 +· · ·+ Pn . Denote byL (G) the Fq -vector space
of all rational functions f ∈ Fq(E) with the principal divisor div( f ) � −G, together with
the zero function (see [13]).

The functional AG code CL (D,G) is defined to be the image of the following evaluation
map:

ev : L (G) → F
n
q ; f �→ ( f (P1), f (P2), . . . , f (Pn)).

It is well-known that CL (D,G) is a linear code with parameters [n, k, dH ], where the
minimum Hamming distance dH has two choices:

dH = n − k, or dH = n − k + 1.

A linear [n, k, dH ] code is called an MDS code if dH = n − k + 1 and is called an almost
MDS code if dH = n − k.

Suppose O is one of theFq -rational points on E . The set of rational points E(Fq) forms an
abelian groupwith zero element O (for the definition of the sum of any two points, we refer to
[12]), and it is isomorphic to the Picard group divo(E)/Prin(Fq(E)), where Prin(Fq(E)) is
the subgroup consisting of all principal divisors. Denote by ⊕ and � the additive and minus
operator in the group E(Fq), respectively.

To readers who are not familiar with the above abstract language, an elliptic curve E over
Fq is defined by a non-singular Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, for some a1, a2, a3, a4, a6 ∈ Fq ,

together with an extra point O at infinity. The set E(Fq) of Fq -rational points on E is the
union of the infinity point O and solutions (called finite points) of the Weierstrass equation
over the finite field Fq . That is,

E(Fq) = {(x, y) ∈ F
2
q : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6} ∪ {O}.
It is easy to see that there are at most 3 intersection points of a line in the plane F

2
q with

the cubic curve y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 over Fq . Now, the above group
structure on E(Fq) can be defined as follows.

• The infinity point O is the zero element. That is, for any P ∈ E(Fq), set P ⊕ O = P .
• The opposite point �P of any finite point P ∈ E(Fq) is defined to be the finite point Q

such that the line PQ intersects the elliptic curve E in only two points P and Q counting
with multiplicity. If the two points coincide, then the line PQ is considered as the tangent
line of E at the point P . Moreover, the opposite of O is itself.

• The sum P⊕Q for any finite points P, Q ∈ E(Fq) is defined to be the point�R ∈ E(Fq)

where R is the third intersection point of the line PQ with the elliptic curve E . If the
two points P, Q coincide, then the line PQ is considered as the tangent line of E at the
point P .
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For simplicity but enough for our application, we take the divisor G = mO . Note that here
mO is only a formal sum of m O’s, but not the sum ⊕ defined above.

Proposition 5.1 ([5,16]) Let E be an elliptic curve over Fq with an Fq -rational point O,
D = {P1, P2, . . . , Pn} a subset of E(Fq) such that O /∈ D and let G = kO (0 < k < n).
Endow E(Fq) a group structure with the zero element O. Denote by

N (k, O, D) = |{S ⊂ D : |S| = k, ⊕P∈S P = O}|.
Then the AG code CL (D,G) has the minimum Hamming distance dH = n − k + 1 if and
only if

N (k, O, D) = 0.

And the minimum Hamming distance dH = n − k if and only if

N (k, O, D) > 0.

Proof We have already seen that the minimum distance of CL (D,G) has two choices:
n − k, n − k + 1. So CL (D,G) is not MDS, i.e., d = n − k if and only if there is a function
f ∈ L (G) such that the evaluation ev( f ) has weight n − k. This is equivalent to that f has
k zeros in D, say Pi1 , . . . , Pik . That is

div( f ) ≥ −(k − 1)O − P + (Pi1 + · · · + Pik ),

which is equivalent to

div( f ) = −(k − 1)O − P + (Pi1 + · · · + Pik ).

The existence of such an f is equivalent to saying

Pi1 ⊕ · · · ⊕ Pik = P.

Namely, N (k, P, D) > 0. It follows that theAGcodeCL (D,G) has theminimumHamming
distance n − k + 1 if and only if N (k, P, D) = 0. ��

We restrict to the case when n > q + 1, since for n ≤ q + 1, MDS symbol-pair codes of
length n can be constructed from Reed-Solomon codes. In this case, the minimum Hamming
distance dH of elliptic curve codes is related to the main conjecture of MDS codes which
was affirmed for elliptic curve codes [9,10].

Proposition 5.2 ([9,10])LetCL (D,G)be the elliptic curve code constructed inProposition
5.1 with length n > q + 1. Then the subset sum problem always has solutions, i.e.,

N (k, O, D) > 0.

And hence, elliptic curve codes with length n > q+1 have deterministic minimumHamming
distance dH = n − k.

That is, elliptic curve codes with length n > q + 1 are almost MDS codes. In order to
make an almost MDS code have maximal minimum pair-distance, we need to separate the
zeros in the minimal codewords. Thus, to construct MDS symbol-pair codes from elliptic
curves, it is sufficient to make sure that there are no k cyclically consecutive zeros in the
minimal codewords.

Lemma 5.3 Let CL (D,G) be the elliptic curve code constructed in Proposition 5.1 with
length n > q + 1. If there are no k cyclically consecutive zeros in any codeword, then the
code CL (D,G) attains the maximal minimum pair-distance n − k + 2.
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To obtain long codes from elliptic curves, we need the following two well-known results
of elliptic curves over finite fields.

Lemma 5.4 (Hasse-Weil Bound [12]) Let E be an elliptic curve over Fq . Then the number
of Fq -rational points on E is bounded by

|E(Fq)| ≤ q + �2√q� + 1.

Lemma 5.5 (Hasse-Deuring [6]) The maximal number N (Fq) of Fq -rational points on E,
where E runs over all elliptic curves over Fq , is

N (Fq) =
{
q + �2√q�, if q = pa, a ≥ 3, a is odd and p|�2√q�;
q + �2√q� + 1, otherwise.

Denote by

δ(q) =
{
0, if q = pa, a ≥ 3, a is odd and p | �2√q�;
1, otherwise.

To construct an MDS symbol-pair code from classical error-correcting codes with large
minimum Hamming distance, the key step is to find a way of ordering the coordinates. For
general codes, this step seems very difficult. In the rest of this paper, we deal with the case
of elliptic curve codes.

Theorem 5.6 Let N (Fq) = q + �2√q� + δ(q). Then for any 7 ≤ d + 2 ≤ n ≤ N (Fq) − 3,
there exist linear MDS symbol-pair codes over Fq with parameters (n, d + 2)q .

Proof The existence ofMDS symbol-pair codes with parameters d+2 = n follows from [4].
Below we only consider the case when 7 ≤ d + 2 < n ≤ N (Fq) − 3. By Lemma 5.5, take
E to be a maximal elliptic curve over Fq with an Fq -rational point O , i.e.,

|E(Fq)| = N (Fq).

Take divisor G = kO in the construction of elliptic curve codes.
Case (I): N = N (Fq) is odd, then there is no element of order 2 in E(Fq). Suppose

E(Fq) = {P1, P2, . . . , PN−2, PN−1, O},
where

P1 ⊕ P2 = P3 ⊕ P4 = · · · = PN−2 ⊕ PN−1 = O (1)

1. For odd d and even n : 7 ≤ d + 2 < n ≤ N − 1, in this case k = N − 1 − d is odd.
Take

D = {P1, P2, . . . , PN−2, PN−1}.
Then it is easy to see from Eq. (1) that there are no k cyclically consecutive points whose
sum is O . And hence, by Lemma 5.3 the elliptic curve code CL (D,G) is an MDS
symbol-pair code with parameters (N −1, d +2)q . By deleting pairs (P1, P2), (P3, P4),
etc., we can obtain MDS symbol-pair codes with parameters (n, d + 2)q , where n runs
over all even integers 7 ≤ d + 2 < n ≤ N − 1.

2. For even d and odd n : 7 ≤ d + 2 < n ≤ N − 2, in this case k = N − 2 − d is odd.
Take

D = {P1, P2, . . . , PN−2}.
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Then it is easy to see from Eq. (1) that there are no k cyclically consecutive points whose
sum is O . And hence, by Lemma 5.3 the elliptic curve code CL (D,G) is an MDS
symbol-pair code with parameters (N −2, d +2)q . By deleting pairs (P1, P2), (P3, P4),
etc., we can obtain MDS symbol-pair codes with parameters (n, d + 2)q where n runs
over all odd integers d + 2 < n ≤ N − 2.

3. For even d and even n : 7 ≤ d + 2 < n ≤ N − 3, in this case k = N − 3 − d is
even. Write N − 3 = (k + 1)s + r for some integers s ≥ 1 and 0 ≤ r ≤ k. Take the
pre-evaluation set

D0 = {P1, P2, . . . , PN−5, PN−4, PN−2}
and arrange it by the following algorithm:
Step 1. For the set {P1, P2, . . . , Psk+r−2, Psk+r−1}, we insert PN−i−4 between Pik−1

and Pik for 1 ≤ i ≤ s − 1, insert PN−4 between Psk−1 and Psk , and insert PN−2 behind
Psk+r−1. In other words, we arrange D0 as follows

D1 = {P1, . . . , Pk−1, PN−5, Pk, . . . , P(s−1)k−1, PN−3−s, P(s−1)k,

· · · , Psk−1, PN−4, Psk, Psk+1, . . . , Psk+r−1, PN−2}.
After this step, there are no k consecutive points whose sum is O in the sequence

P1, . . . , Pk−1, PN−5, Pk, . . . , P(s−1)k−1, PN−3−s, P(s−1)k, . . . , Psk−1, PN−4,

Psk, Psk+1, . . . , Psk+r−1.

One can verify this exhaustively, for instance, P1+· · ·+Pk−1+PN−5 = Pk−1+PN−5 �=
O since Pk−1+Pk = O and Pk �= PN−5.And Pk+Pk+1+· · ·+P2k−1 = Pk+P2k−1 �= O
since P2k−1 + P2k = O and Pk �= P2k .
But theremaybe some k cyclically consecutive pointswhose sum isO in the tail sequence

P(s−1)k+r+1, . . . , Psk−1, PN−4, Psk, Psk+1, . . . , Psk+r−1, PN−2, P1, . . . , Pk−r−1.

For instance, k = 6, N = 19, by Step 1, we get

D1 = P1, . . . , P5, P14, P6, . . . , P11, P15, P12, P13, P17.

There are no 6 consecutive points whose sum is O in the sequence

P1, . . . , P5, P14, P6, . . . , P11, P15, P12, P13.

But theremaybe some6 cyclically consecutive pointswhose sum isO in the tail sequence

P10, P11, P15, P12, P13, P17, P1, P2.

Step 2. In the case that r is even. It is easy to see that at most one of the following two
equalities holds:

P(s−1)k+r+2 ⊕ · · · ⊕ PN−4 ⊕ · · · ⊕ PN−2 = P(s−1)k+r+2 ⊕ PN−4 ⊕ Psk+r−1 ⊕ PN−2

= O,

and

P(s−1)k+r+3 ⊕ · · · ⊕ PN−4 ⊕ · · · ⊕ PN−2 ⊕ P1 = PN−4 ⊕ Psk+r−1 ⊕ PN−2 ⊕ P1 = O.

If the first one holds, then SWITCH P(s−1)k+r+1 and P(s−1)k+r+2; if the second one
holds, then SWITCH P1 and P2; if neither of the two holds, then do nothing.
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For any i = 1, . . . , k−r−2
2 , similarly at most one of the following two equalities holds:

P(s−1)k+r+2i+2 ⊕ · · · ⊕ PN−4 ⊕ · · · ⊕ PN−2 ⊕ P1 ⊕ · · · ⊕ P2i

= P(s−1)k+r+2i+2 ⊕ PN−4 ⊕ Psk+r−1 ⊕ PN−2 = O,

and

P(s−1)k+r+2i+1 ⊕ · · · ⊕ PN−4 ⊕ · · · ⊕ PN−2 ⊕ P1 ⊕ · · · ⊕ P2i−1

= PN−4 ⊕ Psk+r−1 ⊕ PN−2 ⊕ P2i+1 = O.

If the first one holds, then SWITCH P(s−1)k+r+2i+1 and P(s−1)k+r+2i+2; if the second
one holds, then SWITCH P2i+1 and P2i+2; if neither of the two holds, then do nothing.
In the case that r is odd, the algorithm is the same as the even case, check the sum of k
cyclically consecutive points and do the corresponding SWITCH operation.
Continue the above example, if

P10 ⊕ P11 ⊕ P15 ⊕ P12 ⊕ P13 ⊕ P17 = P10 ⊕ P15 ⊕ P13 ⊕ P17 = O,

then SWITCH P9 and P10; and in this case, it is immediate that

P11 ⊕ P15 ⊕ P12 ⊕ P13 ⊕ P17 ⊕ P1 = P15 ⊕ P13 ⊕ P17 ⊕ P1 �= O,

so we do not need to reorder P1 and P2, and so on.
Using the above algorithm to rearrange the evaluation set to get a newly arranged eval-
uation set D, finally there are no k cyclically consecutive points whose sum is O . And
hence, by Lemma 5.3 the elliptic curve code CL (D,G) is an MDS symbol-pair code
with parameters (N − 3, d + 2)q . So, similarly as above, by deleting pairs from the
pre-evaluation set, we can obtain MDS symbol-pair codes with parameters (n, d + 2)q
where n runs over all even integers d + 2 < n ≤ N − 3.

4. For odd d and odd n : 7 ≤ d+2 < n ≤ N −2, in this case k = N −2−d is even. Write
N − 2 = (k + 1)s + r for some integers s ≥ 1 and 0 ≤ r ≤ k. Take the pre-evaluation
set

D0 = {P1, P2, . . . , PN−3, PN−2}
and arrange it as follows

D = {P1, . . . , Pk−1, PN−3, Pk, . . . , P(s−1)k−1, PN−1−s,

P(s−1)k, . . . , Psk−1, PN−2, Psk, Psk+1, . . . , Psk+r }.
If r is even. Moreover, if r = k, then replace Psk+r by PN−1 in D, otherwise, keep the
above D, then it is easy to see that there are no k cyclically consecutive points whose
sum is O .
If r is odd, then similarly as the case when d and n are even, there may be some k
cyclically consecutive points whose sum is O in the tail sequence. In this case, we just
need process the same algorithm in the case 3 to obtain a rearranged evaluation set D
such that there are no k cyclically consecutive points whose sum is O .
And hence, by Lemma 5.3 the elliptic curve code CL (D,G) is an MDS symbol-pair
code with parameters (N − 2, d + 2)q . So, similarly as above, by deleting pairs from the
pre-evaluation set, we can obtain MDS symbol-pair codes with parameters (n, d + 2)q
where n runs over all odd integers 7 ≤ d + 2 < n ≤ N − 2.
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In conclusion, in the case that N = N (Fq) is odd, for any 7 ≤ d + 2 ≤ n ≤ N (Fq) − 3,
no matter whether d is odd or even, there exists an MDS symbol-pair code with parameters
(n, d + 2)q .

Case (II): N = N (Fq) is even. The proof is the same. Note that there are one or three
non-zero elements of order 2 in the group E(Fq). Using these elements in the setting of the
pre-evaluation set, the remainder of the argument is analogous. We omit the details here.

So, by the discussion above, we complete the proof of the theorem. ��

Remark 5.1 From the proof, we see that in some cases, the length of the MDS symbol-pair
code constructed from elliptic curve can attain N (Fq) − 2 or N (Fq) − 1. We omit the detail
of the statements in the theorem to get a clear description of our result. Also, note that
there are other works devoted to constructing almost MDS codes using curves [1] besides
elliptic curves. The advantage of construction upon elliptic curves is that we can translate the
combinatorial problem on elliptic curve codes to that on a geometric object which becomes
easier to deal with. To construct MDS symbol-pair codes using other almost MDS codes,
how to arrange the evaluation set becomes the difficult step. We leave it as an open problem.

We finish this section by a toy example illustrating the above algorithm and the above
remark.

Example 5.7 Let E be an elliptic curve over the finite field F13 defined by the equation

y2 = x3 + 9.

Using the software MAGMA or by direct computation, one can verify the elliptic curve E
has N = 21 F13-rational points. They are P1 = (0, 3), P2 = (0, 10), P3 = (1, 6), P4 =
(1, 7), P5 = (2, 2), P6 = (2, 11), P7 = (3, 6), P8 = (3, 7), P9 = (5, 2), P10 =
(5, 11), P11 = (6, 2), P12 = (6, 11), P13 = (7, 1), P14 = (7, 12), P15 = (8, 1), P16 =
(8, 12), P17 = (9, 6), P18 = (9, 7), P19 = (11, 1), P20 = (11, 12) and the infinity point
P21 = O . So it achieves the Hasse-Weil bound.

1. A construction of MDS (20, 18)13 symbol-pair code.
In this case, n = 20, d = 16, k = 4 are even, so it belongs to the case when d, n are
even. The arranged evaluation set

D1 = {P1, P2, P3, P19, P4, P5, P6, P7, P18, P8, P9, P10, P11, P17, P12, P13, P14, P15, P20, P16}

satisfies the property that any 4 cyclically consecutive points have nonzero sum. By
Lemma 5.3 the elliptic curve code CL (D1, 4O) is an MDS symbol-pair code with
parameters (20, 18)13.

2. A construction of MDS (19, 17)13 symbol-pair code.
In this case, n = 19, d = 15 are odd, and k = 4 is even, so it belongs to the case when
d, n are odd. The arranged evaluation set D is

{P1, P2, P3, P18, P4, P5, P6, P7, P17, P8, P9, P10, P11, P19, P12, P13, P14, P15, P16}.
As r = k, in this case, we replace P16 by P20. So we obtain the final evaluation set

D′ = {P1, P2, P3, P18, P4, P5, P6, P7, P17, P8, P9, P10, P11, P19, P12, P13, P14, P15, P20}
which satisfies the cyclically consecutive nonzero-sum property. By Lemma 5.3 the
elliptic curve codeCL (D′, 4O) is anMDS symbol-pair codewith parameters (19, 17)13.
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6 Conclusion

In this paper, we first give a sufficient condition for the existence of linear MDS symbol-pair
codes over Fq . On this basis, we show that a linear MDS (n, 5)q symbol-pair code over
Fq exists if and only if the length n ranges from 5 to q2 + q + 1. Next, we introduce a
special configuration in projective geometry called ovoid, which allows us to derive q-ary
linear MDS symbol-pair codes with d = 6 and length ranging from q + 2 to q2. This is
an interesting method and deserves further investigation since it works well for both d = 5
and d = 6, and it may work for larger pair-distance. With the help of elliptic curves, we
show that we can construct linear MDS (n, d +2)q symbol-pair codes for any n, d satisfying
7 ≤ d + 2 ≤ n ≤ q + �2√q� + δ(q) − 3. Compared with the results listed in Table 1, our
results provide a much larger range of parameters.
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