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Abstract A classification that shows explicitly all possible weight enumerator polynomials
for every irreducible cyclic code of length n over a finite fieldFq , in the particular case where
each prime divisor of n is also a divisor of q − 1, was recently given in Brochero Martínez
and Giraldo Vergara (Des Codes Cryptogr 78:703–712, 2016). However, as we will see next,
such classification is incomplete. Thus, the purpose of this work is to use an already known
identity among the weight enumerator polynomials, in order to complete such classification.
As we will see later, by means of this identity, we not only complete, in an easier way,
this classification, but we also find out the nature of the weight distributions of the class of
irreducible cyclic codes studied in Brochero Martínez and Giraldo Vergara (2016).
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1 Introduction

LetF9 = F3(γ ), where γ 2 + γ + 2 = 0. Since h(x) = x2 + x + 2 is a primitive polynomial
overF3, it should be clear that h(x) is also the parity-check polynomial of a one-weight irre-
ducible cyclic code over F3, of length n = 8, and dimension two, whose weight enumerator
polynomial is 1 + 8z6. Now, it is quite clear that each prime divisor of n is also a divisor of
q − 1, where q = 3. However, it is also easy to check that the previous weight enumerator
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polynomial was excluded from the classification of the weight enumerator polynomials that
correspond to the class of irreducible cyclic codes that were recently studied in [1]. In conse-
quence, our counterexample shows that such classification is incomplete. Thus, the purpose
of this work is to use an already known identity among the weight enumerator polynomials
(see, for example, [3] and [4]), in order to complete such classification. As we will see later,
by means of this identity we not only complete, in an easier way, this classification, but we
also find out the nature of the weight distributions of the class of irreducible cyclic codes
studied in [1].

2 Definitions, notations and preliminary results

First of all, we set, for the rest of this work, the following:
Notation By using p, t , q , n and k, we will denote five positive integers such that p is a
prime number, q = pt , gcd(q, n) = 1 and k = ordn(q), where, as usual, ordn(q) denotes the
multiplicative order of q modulo n. From now on γ will denote a fixed primitive element of
Fqk , and for any integer a, the polynomial ha(x) ∈ Fq [x]will denote theminimal polynomial
of γ −a . For any integer y, rad(y) will denote the radical of y, that is, if y = pe11 · pe22 · · · pell
is the factorization of y in prime factors, then rad(y) = p1 · p2 · · · pl .

We now recall the following basic definition (see for example [5]).

Definition 1 Let h(x) ∈ Fq [x], be a nonzero polynomial, such that h(0) �= 0. Then, the
least positive integer e for which h(x) divides xe−1 is called the order of h(x) and is denoted
by ord(h(x)).

Remark 1 Note that thanks to Part (vi) of Theorem 3.33 in [5], we have that ord(ha(x)) =
n

gcd(n,a)
, for any integer a, such that ord(ha(x))|n.

The following simple result will be useful later.

Lemma 1 With our current notation, let u, f and s be positive integers such that u ≥ 2,
u|(q +1), f = ordu(p), and s = (2t)/ f . Then f is even and p f/2 ≡ −1 (mod u), if u > 2.
In addition, we also have that s is even if and only if u = 2.

Proof If u = 2, clearly f = 1, and hence, s is even. Suppose now that u > 2. Since
q = pt ≡ −1 (mod u), we take v to be the smallest positive integer such that pv ≡ −1
(mod u). Consequently, f = 2v and t = vw for some odd integer w. Therefore f is even,
p f/2 ≡ −1 (mod u), and s = w. ��

As we will see later, the weight distribution of an irreducible cyclic code, that belongs to
the family of codes studied here, can be determined either through the weight distribution
of a one-weight irreducible cyclic code or through the weight distribution of a semiprimitive
two-weight irreducible cyclic code. Therefore the following characterizations, for those two
types of irreducible cyclic codes, are important for this work (see [6,7]):

Theorem 1 With our current notation, let a be any integer. Also let k, Δ, u and n be positive

integers in such a way that Δ = qk−1
q−1 , u = gcd(Δ, a) and n = qk−1

gcd(qk−1,a)
. Assume

that deg(ha(x)) = k. Then, ha(x) is the parity-check polynomial of an [n, k] one-weight
irreducible cyclic code, over Fq , whose nonzero weight is

n
Δ
qk−1, if and only if u = 1.
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Table 1 Weight distribution of a
semiprimitive two-weight code C.
Here s = (kt)/ f , where
f = ordu(p) and u = gcd(Δ, a).

Weight Frequency

0 1

nqk/2−1

Δ
(qk/2 − (−1)s ) (qk−1)(u−1)

u

nqk/2−1

Δ
(qk/2 + (−1)s (u − 1)) (qk−1)

u

Theorem 2 Consider the same notation and assumption as in Theorem 1. Define f =
ordu(p) (observe that gcd(p, u) = 1). Then ha(x) is the parity-check polynomial of a
semiprimitive two-weight irreducible cyclic code, C, if and only if u = 2 or u > 2, f is even
and p f/2 ≡ −1 (mod u). In addition, if C is a semiprimitive two-weight irreducible cyclic
code, then C is an [n, k] cyclic code over Fq , with the weight distribution given in Table 1.

It is already known an identity that relates the weight distributions of some cyclic codes
through the powers of their corresponding weight enumerator polynomials. An initial version
of this identity was presented in [4] and in [3] (see particularly Lemma 4.5 and Theorem 5.1
in [3]). Since this identity is of main importance for this work, we now recall such a result
by means of the following:

Theorem 3 For suitable integers n, k and d, let C be an [n, k, d] cyclic code, over Fq , with
parity-check polynomial h(x), and whose weight enumerator polynomial is A(z). Let also r
be any positive integer, such that gcd(q, r) = 1. Then, the polynomial h(xr ) is the parity-
check polynomial of an [nr, kr, d] cyclic code, whose weight enumerator polynomial, B(z),
is B(z) = A(z)r .

Now, by considering the previous theorem, and Theorem 3.35 in [5], we now present a new
version of the identity in Theorem 3 that considers only the weight enumerator polynomials
among irreducible cyclic codes.

Theorem 4 For suitable integers n, k and d, let C be an [n, k, d] irreducible cyclic code,
over Fq , with parity-check polynomial h(x), and whose weight enumerator polynomial is
given by A(z). Suppose that h(x) has order e, and let r ≥ 2 be an integer whose prime
factors divide e but not (qk − 1)/e. Assume also that qk ≡ 1 (mod 4), if 4|r . Then h(xr )
will be the parity-check polynomial of an [nr, kr, d] irreducible cyclic code, whose weight
enumerator polynomial, B(z), is B(z) = A(z)r .

3 The weight distribution of some irreducible cyclic codes with a
particular type of length

In this section we are going to use the characterizations in Theorems 1 and 2, and also the
identity in Theorem 4, in order to give the full weight distribution for the class of irreducible
cyclic codes, overFq , whose length n satisfies rad(n)|(q−1). As wewill see later, our results
in this section not only correct the incomplete classification in [1], but also offer a shorter
proof for such results which allows us to find out the nature of the weight distributions of the
class of irreducible cyclic codes studied in [1]. Thus, we begin our study with the following
result that was originally presented in [1] (see Theorem 1 therein).
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Theorem 5 With our current notation, suppose that rad(n)|(q − 1). Thus, if 8 � n or q �≡ 3
(mod 4), then every irreducible cyclic code of length n over Fq is an [n, r, n

r ] code where r
divides n

gcd(n,q−1) and its weight enumerator polynomial is (1 + (q − 1)z
n
r )r .

Proof LetC be an irreducible cyclic code of lengthn. Thus, thanks toDelsarte’sTheorem (see,
for example, [2]), there must exist an integer a such that ha(x) is the parity-check polynomial
of C, and, owing to Remark 1, we have in addition that ϕ := ord(ha(x)) = n

gcd(n,a)
. If we

take C′ to be the irreducible cyclic code of length ϕ whose parity check polynomial is also
ha(x), then note that the Hamming weights of the codewords of C and C′ differ just by the
constant factor n

ϕ
. Let e = gcd(ϕ, q−1) and r = ϕ

e = n
gcd(n,(q−1) gcd(n,a))

; thus, r | n
gcd(n,q−1) .

Since gcd(r, q−1
e ) = 1 and rad(ϕ)|(q − 1), observe that if r ≥ 2 then the prime factors of r

divide e but not (q − 1)/e. In addition, observe that if 8 � n, then 4 � r . On the other hand,
since e|(q − 1), we necessarily have orde(q) = 1. Therefore all the irreducible polynomials,
over Fq , of order e, must have degree equal to one (see, for example, [5, Theorem 3.5]).
Consequently, owing to Theorem 3.35 in [5], there must exist an irreducible polynomial
h(x) ∈ Fq [x] of degree one and order e, such that ha(x) = h(xr ), and this means that
deg(ha(x)) = r . Furthermore, thanks to Theorem 1, we can be sure now that h(x) is the
parity-check polynomial of an [e, 1, e] one-weight irreducible cyclic code over Fq , whose
weight enumerator polynomial is 1 + (q − 1)ze (in fact, such irreducible cyclic code is
equivalent to the repetition code of length e). Now, as a direct application of Theorem 4, C′ is
an [er, r, e] irreducible cyclic code, whose weight enumerator polynomial is (1+(q−1)ze)r .
But we already said that the Hamming weights of the codewords of C and C′ differ just by the
constant factor n

er , therefore C is an [n, r, n
r ] irreducible cyclic codewhoseweight enumerator

polynomial is (1 + (q − 1)z
n
r )r . ��

The case in which 8|n and q ≡ 3 (mod 4) is not covered in Theorem 5, and this is so
because this case is somewhat a little more complicated, as we will see below.

Theorem 6 With our current notation suppose that rad(n)|(q−1). In addition, suppose that
C is an irreducible cyclic code of length n, whose parity check polynomial is ha(x) for some
suitable integer a. Let ϕ := ord(ha(x)) = n

gcd(n,a)
, e = gcd(ϕ, q2 − 1) and r = ϕ

e . If 8 � e,

then define b = 2 if 4|e, and b = 1 otherwise. If 8|e, define u = gcd(q + 1, q2−1
e ). Thus, if

8|n and q ≡ 3 (mod 4), then the following conditional statements are true:

(A) If 8 � e, then C is an [n, rb, n
rb ] irreducible cyclic code whose weight enumerator

polynomial is (1 + (q − 1)z
n
rb )rb.

(B) If 8|e and u = 1, then C is an [n, 2r, qn
(q+1)r ] irreducible cyclic code whose weight

enumerator polynomial is (1 + (q2 − 1)z
qn

(q+1)r )r .
(C) If 8|e and u ≥ 2, then C is an [n, 2r, n

r
q+1−u
q+1 ] irreducible cyclic code whose weight

enumerator polynomial is:(
1 + (q2 − 1)

u
z
n
r
q+1−u
q+1 + (q2 − 1)(u − 1)

u
z
n
r

)r

. (1)

Proof First, we take C′ to be as in the proof of Theorem 5.
Part (A): Let e′ = e/b and note that e′ = gcd(ϕ, q−1) and rb = ϕ

e′ . Since gcd(rb,
q−1
e′ ) =

1 and rad(ϕ)|(q − 1), observe that if rb ≥ 2 then the prime factors of rb divide e′, but not
(q − 1)/e′. In addition, since 8 � e and 8|(q2 − 1), we have 4 � (rb). Now, by following the
same arguments as in the proof of Theorem 5, we have that C′ is an [e′rb, rb, e′] irreducible
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cyclic code whose weight enumerator polynomial is (1 + (q − 1)ze
′
)rb. But the codewords

of C and C′ differ just by the constant factor n
e′rb , therefore C is an [n, rb, n

rb ] irreducible
cyclic code whose weight enumerator polynomial is (1 + (q − 1)z

n
rb )rb.

Part (B): Since gcd(r, q2−1
e ) = 1 and rad(ϕ)|(q2−1), observe that if r ≥ 2 then the prime

factors of r divide e, but not (q2−1)/e. In addition, observe thatq2 ≡ 1 (mod 4).On the other
hand, since e � (q − 1) but e|(q2 − 1), we have orde(q) = 2. Therefore all the irreducible
polynomials over Fq of order e must have degree equal to two. Consequently, owing to
Theorem 3.35 in [5], there must exist an irreducible polynomial h(x) ∈ Fq [x] of degree two
and order e, such that ha(x) = h(xr ), and this means that deg(ha(x)) = 2r . If γ is a primitive
elementFq2 , then, since h(x) has order e, theremust exist an integer a′ such that γ −a′

is a root

of h(x) and gcd(q2 − 1, a′) = q2−1
e . That is, gcd( q

2−1
q−1 , a′) = gcd(q + 1, q2−1

e ) = u = 1.
Now, thanks to Theorem 1, we can be sure that h(x) is the parity-check polynomial of an
[e, 2, qe

q+1 ] one-weight irreducible cyclic code overFq , whoseweight enumerator polynomial

is 1+ (q − 1)z
qe
q+1 . Thus, owing to Theorem 4, C′ is an [er, 2r, qe

q+1 ] irreducible cyclic code
whose weight enumerator polynomial is (1+(q−1)z

qe
q+1 )r . But the Hamming weights of the

codewords of C and C′ differ just by the constant factor n
er , therefore C is an [n, 2r, qn

(q+1)r ]
irreducible cyclic code whose weight enumerator polynomial is (1 + (q2 − 1)z

qn
(q+1)r )r .

Part (C): By following the same arguments as before, we have that there must exist an inte-
ger a′ and a polynomial h(x) ∈ Fq [x] of degree two and order e, such that ha(x) = h(xr ),

γ −a′
is a root of h(x), and gcd( q

2−1
q−1 , a′) = u ≥ 2. Now, thanks to Lemma 1, and owing to

Theorem 2, we know that h(x) is the parity-check polynomial of an [e, 2, e q+1−u
q+1 ] semiprim-

itive two-weight irreducible cyclic code over Fq , whose weight enumerator polynomial is

1 + (q2−1)
u ze

q+1−u
q+1 + (q2−1)(u−1)

u ze. Finally, by employing again the same arguments as

before, we can conclude that C is an [n, 2r, n
r
q+1−u
q+1 ] irreducible cyclic code whose weight

enumerator polynomial is given by (1). ��

Example 1 Let C be a cyclic code over F7 of length n = 576 = 2632. Suppose that ϕ =
n/2 = 288 = 2532, thus, since q2 − 1 = 48 = 243, we have that e = 48, r = 6, 8|e and
u = 1. Then, owing to Part (B) of previous theorem, we can be sure that C is a [576, 12, 84]
irreducible cyclic code whose weight enumerator polynomial is (1 + 48z84)6.

4 Conclusion

In the light of the proofs of Theorems 5 and 6, it should be now clear that the nature of
the weight distributions of the codes studied here, is such that these distributions are always
obtained through an application of Theorem 4 over a very particular family of irreducible
cyclic codes of dimension one or two, and whose length e divides either q − 1 (Theorem 5),
or q2 − 1 (Theorem 6). In fact, in the cases of Theorem 5, and Part (A) of Theorem 6, such
a family is equivalent to the set of repetition codes, while this family corresponds to the set
of one-weight irreducible cyclic codes of dimension two, in the case of Part (B), and will
corresponds to the set of semiprimitive two-weight irreducible cyclic codes of dimension
two, in the case of Part (C). Thus, on the basis of the above, it seems that the family of
one-weight irreducible cyclic codes, and the family of semiprimitive two-weight irreducible
cyclic codes, are probably a little more important than previously thought.
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