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Abstract In this paper, we show that partial geometric designs can be constructed from
certain three-weight linear codes, almost bent functions and ternary weakly regular bent
functions. In particular, we show that existence of a family of partial geometric difference
sets is equivalent to existence of a certain family of three-weight linear codes.We also provide
a link between ternary weakly regular bent functions, three-weight linear codes and partial
geometric difference sets.
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1 Introduction

Links between linear codes, non-linear functions from cryptography, graphs and combinato-
rial designs have attracted the attention of many researchers [1,2,5,10,13,14,17,18,27,28].
Exploring these links are fruitful to each subject so that results from one area can be applied
into the others. This paper is devoted to explore such links between partial geometric designs,
three-weight codes and a family of graphs with four distinct eigenvalues.

Let p be a prime and n be a positive integer. An [n, k, d] p-ary linear code C is a k-
dimensional subspace of Fn

p with Hamming distance d . Let Ai be number of codewords with
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Hammingweight i ≥ 1 and t be the number of non-zero Ai ’s ofC . Then,C is called a t-weight
code. The construction of t-weight codes with small t value is an important research area
due to their applications in the engineering problems such as communication, cryptography,
data storage systems, and secret sharing schemes [12,20,29,30,32,33].

Construction of many linear codes benefited from other areas of combinatorics including
graph theory, cryptography and design theory. For example, binary two-weight and three-
weight codes can be obtained from highly non-linear Boolean functions [16]. Highly non-
linear Boolean functions such as bent, semi-bent and plateaued functions have provided
suitable candidates that can be used in cryptosystems [6,7,9,31]. Fourier spectrum of a
Boolean function plays an important role in analyzing its properties. A Boolean function f
from F

n
2 to F2 with Fourier spectrum {±2n/2} is called a bent function. Plateaued functions

are introduced as functions which either are bent or have a Fourier spectrumwith three values
0 and ±2t for some integer t . We will show that three-weight codes can be obtained from
plateaued functions and their associated designs.

Almost bent functions are another family of functions that attract the attention of
researchers in the field of cryptography. An almost bent function is a function f from F

n
2 into

F
n
2 which achieves the highest possible nonlinearity. We will show that permutation almost

bent functions can be used to construct partial geometric designs and three-weight codes.
In this paper, one of our interest lies in the link between ternary weakly bent functions

and graphs. A function from F
n
p to Fp is called a p-ary bent function if Walsh coefficients

have absolute value p
n
2 . A p-ary bent function is called a weakly regular bent function if the

Walsh coefficients take just the values μpn/2ζ ip , where ζp = e2π i/p is a complex p-th root
of unity andμ is a complex number of absolute value 1. Tan et al. provided a characterisation
of ternary weakly regular bent functions via strongly regular graphs when n is even [28]. It
is natural to search for a characterisation of ternary weakly regular bent functions via graphs
when n is odd. We will provide such a characterisation via certain graphs with four distinct
eigenvalues. Our characterisation also provides a method to construct three-weight codes.

A (block) design is a pair (P,B) consisting of a finite set P of points and a finite collection
B of nonempty subsets of P called blocks. It is often convenient to represent a combinatorial
design with an incidence matrix. A point-block incidence matrix N of a block design (P,B)

with |P| = v and |B| = b is a v × b {0, 1}-matrix such that the entry in row i and column
j is 1 if the i-th point is incident to the j-th block. N can be viewed as a matrix over Fp ,
the columns of N span a code of length v. Difference set method can be used to construct
designs and codes. For instance, two-weight and three-weight codes can be obtained from
almost difference sets and difference sets [17]. For more information on designs, difference
sets and codes, we refer the books [1] and [14].

In this paper, we will show that existence of certain partial geometric designs is equivalent
to existence of some families of three-weight codes. The notion of partial geometric design
is introduced by Bose, Shrikhande and Singhi [3]. This family of designs is also studied
independently under the notion of 1 1

2 -designs by Neumaier [22]. Links between directed
strongly regular graphs, plateaued functions and partial geometric designs are examined in
the references [4] and [26]. The author also studied partial geometric difference sets and
families as a construction method of partial geometric designs [23,25].

The organization of the paper is as follows. In the following section, we recall some
results concerning partial geometric difference sets and main tools that will be needed later.
In Sect. 3, we provide results concerning three-weight codes with non-zero weights w1 =
w,w2 = w − m and w3 = w + m for some integer m and partial geometric designs. In
Sect. 4, we introduce a family of graphs related to a family of three-weight codes and study its
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Combinatorial designs and three-weight linear codes 819

properties. We also provide a classification of Cayley graphs obtained from partial geometric
difference sets and weakly regular bent functions from F

n
3 to F3 when n is odd.

2 Preliminaries

Here we recall some basic facts about block designs, difference sets, group characters and
group rings. We also set the notation that will be used throughout the paper.

2.1 Block designs

Designs and their algebraic properties can be classified by their incidence matrix. This is
usually done by conveying the combinatorial properties of the given block design into a
matrix equation. For example, a design (P,B) is called a 1-design (or a tactical configuration)
with parameters (v, b, k, r) if its v × b incidence matrix N satisfies the equations:

N J = r J and J N = k J (1)

for some integer k and r where J denotes the all-ones matrix. Equation (1), implies that a
1-design with parameters (v, b, k, r) is a block design with |P| = v and |B| = b such that
each block consists of k points and each point belongs to r blocks.

A well-studied example of 1-designs is known as 2-designs. A 1-design with parame-
ters (v, b, k, r) is called a 2-design (or 2 − (v, k, λ)-design) with parameters (v, k, λ) if its
incidence matrix N satisfies the equation:

NNt = (r − λ)I + λJ (2)

where I denotes the identity matrix. Equation (2), combinatorially conveys that every pair
of distinct points in a 2-design is contained in exactly λ blocks.

Another well-known family of 1-designs are studied under the notion of partial geo-
metric designs. The incidence matrix N of a partial geometric design with parameters
(v, b, k, r;α, β) satisfies

J N = k J, N J = r J, NNT N = (β − α)N + α J (3)

for certain integers k, r, α, and β.
Let s(x, B) denote the number of flags (y,C) such that y ∈ B and x ∈ C .1 Equation (3),

combinatorially conveys that in a partial geometric design the number s(x, B) depends only
on whether (x, B) is a flag or not. In other words, for given a partial geometric design with
parameters (v, b, k, r;α, β):

s(x, B) =
{

α if x /∈ B,

β if x ∈ B,
∀(x, B) ∈ P × B.

By examining the Eq. (2), one can conclude that a 2-(v, k, λ)-design is a partial geometric

design with parameters (v, b = vr

k
, k, r = λ(v − 1)

k − 1
;α = λk, β = r +λ(k −1)). Through-

out this paper, we are only interested in the partial geometric designs with α, β > 0 which
are not 2−designs, unless otherwise stated.

1 A point-block pair (x, B) is called a flag if x ∈ B; otherwise, it is called an antiflag.
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2.2 Difference sets

In this section, we will introduce the notion of difference sets, partial geometric difference
sets and relative difference sets.

Let G be a finite group of order v written multiplicatively. Let S be a subset of G and

�(S) := [s1s−1
2 : s1, s2 ∈ S, s1 �= s2].

Definition 2.1 Let k and λ be integers such that v > k > 2. A (v, k, λ)-difference set D is
a k-subset of a group G such that every non-identity element of G appears in �(D) exactly
λ times.

Definition 2.2 Let G be a group of order mn containing a subgroup N of order n. An
(m, n, k, λ) relative difference set R in G relative to subgroup N is a k-subset of G such
that each element in G \ N appears in �(R) exactly λ times and �(R) does not contain the
elements of N .

Given a k-element subset S of a groupG, for each element z ∈ G, we define themultiplicity
of z in �(S) by

δ(z) :=
∣∣∣∣{(s, t) ∈ S × S : z = st−1}∣∣∣∣.

Definition 2.3 Let v and k be integers with v > k > 2. Let G be a group of order v. A
k-subset S of G is called a partial geometric difference set in G with parameters (v, k;α, β)

if there exist constants α and β such that, for each x ∈ G,

∑
y∈S

δ(xy−1) =
{

α if x /∈ S,

β if x ∈ S

The notion of partial geometric difference sets is introduced by the author and studied also
under the name of 1 1

2 -difference sets. Let S be a subset of a groupG. For any element g ∈ G,
we define the translate of S by g as Sg := {xg : x ∈ S}. We define Dev(S) := [Sg : g ∈ G]
to be the collection of all translates of S. Dev(S) is often called the development of S. If S
is a partial geometric difference set with parameters (v, k;α, β) in G, then (G, Dev(S)) is a
partial geometric design with parameters (v, b = v, k, r = k;α, β) [25].

2.3 Group characters and group ring

The group character values and group ring equations provide us with tools to investigate
block designs which are obtained from difference set methods.

Let sG be a finite abelian group and let ZG be the group ring of G. By the definition, ZG
is the ring of formal polynomials

ZG =
⎧⎨
⎩

∑
g∈G

agg : ag ∈ Z

⎫⎬
⎭

where each g denotes the indeterminate corresponding to g. We will use calligraphic letters to
denote elements of ZG. The ring ZG has the operation of addition and multiplication given
by
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Combinatorial designs and three-weight linear codes 821

∑
g∈G

agg + ∑
g∈G

bgg = ∑
g∈G

(ag + bg)g( ∑
g∈G

agg

) ( ∑
g∈G

bgg

)
= ∑

g∈G

( ∑
h∈G

ahbh−1g

)
g

For any element g in G and any nonempty subset S of G, the corresponding group ring
elements g and

∑
s∈S

s are called simple quantities in ZG. We denote
∑
s∈S

s by S, and denote

the simple quantity for the set S−1 = {s−1 : s ∈ S} by S−1, so that S−1 =
∑
s∈S

s−1.

Let eG denote the simple quantity corresponding to the identity element (eG ) of G. It is
easy to observe that a k-subset S of G is a (v, k, λ)-difference set if and only if the equation

SS−1 = (k − λ)eG + λG (4)

holds in the group ring ZG. Similarly one can obtain that S is a partial geometric difference
set with parameters (v, k;α, β) in G if and only if the equation

SS−1S = (β − α)S + αG (5)

holds in ZG.
A character χ of a finite abelian group G is a homomorphism from G to the multiplicative

group of the nonzero complex numbers. The character χ of G such that χ(g) = 1 for every
g ∈ G, is called the principal character of G. We can reformulate the group ring equation by
using characters of the group.The following result can be found in [25].

Lemma 2.4 A k-subset S of an abelian group G is a partial geometric difference set in
G with parameters (v, k;α, β) if and only if |χ(S)| = √

β − α or χ(S) = 0 for every
non-principal character χ of G.

3 Partial geometric difference sets from three-weight codes

Let p be a prime and let n be a positive integer. LetFn
p denote n-dimensional vector space over

the finite field Fp . The dot product of two codewords x, y ∈ F
n
p is given by x · y =

n∑
i=1

xi yi .

The weightwt (x) of a codeword x ∈ F
n
p is the number of non-zero entries. Distance between

two codewords x and y is defined by d(x, y) = wt (x − y). The minimum distance of a code
is the minimum weight among all non-zero codewords. An [n, k, d] code C over Fp is a
k-dimensional subspace of Fn

p with minimum distance d . One of the objective of this paper
is to explore the connections between the following code construction which is introduced
by Ding and Niederreiter [15] and partial geometric designs.

Construction 3.1 Let S = {s1, s2, . . . , sn} be a set of n vectors of Fk
p. We will be interested

in the following code construction.

CS =
{
(x · s1, x · s2, . . . , x · sn) : x ∈ F

k
p

}
.

Let x be a non-zero vector in F
k
p and cx = (x · s1, x · s2, . . . , x · sn). Then,

wt (cx ) = n − |{i : x · si = 0, i = 1, 2, ..., n}|.
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822 O. Olmez

Let G be the additive group of Fk
p and χ be non-principal character of G. Then, for u in F

k
p

the character χu(v) is defined by χ(u · v) for all v ∈ F
k
p . One can observe that

wt (cx ) =
(p − 1)n − ∑n

i=1
∑

α∈F∗
p
χx (αsi )

p
. (6)

Wemay replace Fk
p by Fpk and the dot product x · y by the absolute trace function Tr(xy).

In this case, our results will still hold.

Theorem 3.2 Let p be a prime and let m, n and k > 1 be positive integers. Suppose S is
a n-subset of G satisfying S = −S, eG /∈ S and n

p is an integer. S is a partial geometric

difference set with parameters (pk, n;α, β) such that p2m2 = β − α if and only if CS is
a three-weight p-ary code with non-zero weights w1 = (p−1)n

p , w2 = w1 − m(p − 1) and
w3 = w1 + m(p − 1).

Proof First suppose S is a partial geometric difference set with parameters (pk, n;α, β) such
that p2m2 = β − α for some integer m. For any non-principal character χx

χx (S) =
∑
s∈S

χx (s)

can only take values ±pm and 0. Also note that

χx (S) =
∑
s∈S
x ·s=0

χx (s) +
∑
s∈S
x ·s=1

∑
γ∈F∗

p

χx (γ s).

Hence,

(p − 1)χx (S) =
∑
s∈S

∑
γ∈F∗

p

χx (γ s) =
n∑

i=1

∑
γ∈F∗

p

χx (γ si ).

Now by applying Eq. (6), we can get the equation

wt (cx ) = (p − 1)(n − χx (S))

p
. (7)

The last equation implies that CS is a three-weight code with non-zero weights

w1 = (p − 1)n

p
,

w2 = (p − 1)(n − pm)

p

and

w3 = (p − 1)(n + pm)

p
.

Now suppose CS is a three-weight code with non-zero weights w1 = (p−1)n
p , w2 = w1 −

m(p − 1), and w3 = w1 + m(p − 1). For a codeword cx the following equation holds:
n∑

i=1

∑
γ∈F∗

p

χx (γ si ) = (p − 1)n − pwt (cx ).

Therefore, χx (S) takes only the values ±pm or 0. �	
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Combinatorial designs and three-weight linear codes 823

Suppose S is a partial geometric difference set with parameters (pk, n = pr;α, β) with
S = −S, eG /∈ S and no two elements of S are depended such that p2m2 = β − α for some
integer m. In this case, note that the minimum weight of the dual code of CS is at least 3. We
will apply the well-known Pless power moments identities to get the weight distribution of
CS .

3∑
i=1

Awi = pk − 1

3∑
i=1

i Awi = pk−1(pn − n)

3∑
i=1

i2Awi = pk−2((p − 1)n(pn − n + 1))

Hence, we will get

Aw1 = −m2 p2 − m2 p − (
p2 − p

)
r2 − (

m2 p2 − m2 p
)
pk + pkr

m2 p2 − m2 p
,

Aw2 = −
(
p2 − p

)
r2 − (

mp2 − mp + pk
)
r

2
(
m2 p2 − m2 p

) ,

Aw3 = −
(
p2 − p

)
r2 + (

mp2 − mp + pk
)
r

2
(
m2 p2 − m2 p

) .

(8)

Corollary 3.3 Let p be a prime and let m, t and k > 1 be positive integers. Suppose � is a
(pt)-subset of G satisfying eG /∈ � and no two elements of � are depended. C� is a three-
weight codewith non-zeroweightsw1 = (p−1)t, w2 = w1−m andw3 = w1+m if and only
if S = ⋃

γ∈F∗
p
γ� is a partial geometric difference set with parameters (pk, pt (p−1);α, β)

such that p2m2 = β − α.

The weight distribution of the code C� presented in Corollary 3.3, is provided in the
following equations:

Aw1 = m2 pk+1 − m2 p − (p − 1)pkt + (
p3 − 2 p2 + p

)
t2

m2 p
,

Aw2 = −
(
p3 − 2 p2 + p

)
t2 + (

mp2 − mp − (p − 1)pk
)
t

2m2 p
,

Aw3 = −
(
p3 − 2 p2 + p

)
t2 − (

mp2 − mp + (p − 1)pk
)
t

2m2 p
.

(9)

For S = ⋃
γ∈F∗

p
γ�, the code CS has the same weight distribution as the code C� with

non-zero weights w1 = t (p − 1)2, w2 = w1 − m(p − 1) and w3 = w1 + m(p − 1).

Theorem 3.4 Let p be a prime and let m, n and k > 1 be positive integers. Suppose S =
�∪{eG} is a (n+1)-subset of G with n+1

p is an integer and S = −S. S is a partial geometric

difference set with parameters (pk, n + 1;α, β) such that p2m2 = β − α if and only if C�

is a three-weight p-ary code with non-zero weights w1 = (p−1)(n+1)
p , w2 = w1 −m(p − 1)

and w3 = w1 + m(p − 1).
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Proof First suppose S is a partial geometric difference set with parameters (pk, n + 1;α, β)

such that p2m2 = β − α for some integer m. For any non-principal character χx

(p − 1)(χx (S) − 1) =
∑
s∈�

∑
γ∈F∗

p

χx (γ s)

Now by applying Eq. (6), we can get the equation

wt (cx ) = (p − 1)(n − χx (S) + 1)

p
. (10)

The last equation implies that C� is a three-weight code with non-zero weights

w1 = (p − 1)(n + 1)

p
,

w2 = (p − 1)(n − pm + 1)

p

and

w3 = (p − 1)(n + pm + 1)

p
.

Now suppose C� is a three-weight code with non-zero weights w1 = (p−1)(n+1)
p , w2 =

w1 −m(p − 1) and w3 = w1 +m(p − 1). For a codeword cx the following equation holds:

n∑
i=1

∑
γ∈F∗

p

χx (γ si ) = (p − 1)n − pwt (cx ).

Therefore, χx (S) takes only the values ±pm or 0. �	

If no two vectors in� are dependent then theweight distribution of the codeC� is provided
in the following equations:

Aw1 = −
m2 p3 − m2 p2 + n2 −

(
m2 p3 − m2 p2 − n − p + 1

)
pk −

(
n2 + 2 n + 1

)
p + 2 n + 1

m2 p3 − m2 p2
,

Aw2 = −
(mn + m)p2 − n2 −

(
mp2 − (m − 1)p + n − 1

)
pk −

(
(m − 2)n − n2 + m − 1

)
p − 2 n − 1

2
(
m2 p3 − m2 p2

) ,

Aw3 =
(mn + m)p2 + n2 −

(
mp2 − (m + 1)p − n + 1

)
pk −

(
(m + 2)n + n2 + m + 1

)
p + 2 n + 1

2
(
m2 p3 − m2 p2

) .

(11)

Corollary 3.5 Let p be a prime and let m, r and k > 1 be positive integers. Let � be a
r-subset of G such that eG /∈ �, t = r(p−1)+1

p is an integer and no two elements of � are
depended. C� is a three-weight p-ary code with non-zero weights w1 = t, w2 = w1 − m,

and w3 = w1 + m if and only if S =
(⋃

γ∈F∗
p
γ�

) ⋃{eG} is a partial geometric difference
set with parameters

(
pk, r(p − 1) + 1;α, β

)
with p2m2 = β − α.
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Theweight distribution of the codeC� presented in Corollary 3.5, is given in the following
equations:

Aw1 = m2 pk+1 − m2 p + pt2 − pkt

m2 p
,

Aw2 = − pt2 − mpk + (
mp − pk

)
t

2m2 p
,

Aw3 = − pt2 + mpk − (
mp + pk

)
t

2m2 p
.

(12)

Let S = ⋃
γ∈F∗

p
γ�. The code CS has the same weight distribution as the code C� with

non-zero weights w1 = (p − 1)t, w2 = w1 − m(p − 1) and w3 = w1 + m(p − 1).

Example 3.6 Let p be an odd prime and k > 1 be an odd integer and

S =
{
x ∈ F

∗
pk : Tr(x2) = 0

}
.

CS is a three-weight code of length pk−1−1with non-zero weightsw1 = (p−1)pk−2, w2 =
(p − 1)

(
pk−2 − p

k−3
2

)
, and w3 = (p − 1)

(
pk−2 + p

k−3
2

)
. Let � be the largest subset of

F
∗
pk

satisfying x/y /∈ F
∗
p for any x, y ∈ �. Then,

S =
⋃

γ∈F∗
p

γ�.

The code C� is a three-weight code of length pk−1−1
p−1 with non-zero weights w1 =

pk−2, w2 = pk−2 − p
k−3
2 , and w3 = pk−2 + p

k−3
2 . This family of three-weight codes

were first observed in the work of [19]. Since x/y /∈ F
∗
p for any x, y ∈ �, no two elements

of � are depended. By applying Eq. (12), the weight distribution of the code CS and C� can
be calculated as

Aw1 = pk−1 − 1,

Aw2 = p − 1

2

(
pk−1 − p

k−1
2

)
,

Aw3 = p − 1

2

(
pk−1 + p

k−1
2

)
.

Corollary 3.5 implies that the set D =
(⋃

γ∈F∗
p
γ�

)⋃{eG} is a partial geometric difference

set with parameters
(
pk, pk−1;α, β

)
such that pk−1 = β − α. By applying the principal

character to Eq. (5), we can get the following equation:

p3k−3 = p2k−2 + αpk .

Hence,

α = p2k−3 − pk−2

and

β = p2k−3 − pk−2 + pk−1.
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826 O. Olmez

3.1 Some families of binary three-weight codes

In this section, we provide some examples of binary three-weight codes. One of our con-
struction is associated with the plateaued functions and the other construction is obtained
from almost bent functions.

Let V be the (s + 1)-dimensional vector space over F2 and G be the additive group of V .
Let us denote the identity element of eG by 0. Let f be a function from V to F2 and F be
the function (−1) f from V to the set {−1, 1}. The Fourier transform of F is defined by

F̂(x) =
∑

y∈Vs+1

(−1)x ·y F(x)

for all a ∈ V . We are interested in the set Spec = {
F̂(x) : x ∈ V

}
of distinct values which

we will call the Fourier spectrum of F .

Definition 3.7 f is called a plateaued function if the Fourier spectrum of F = (−1) f is
{0,±2t } for some integer t ≥ s+1

2 .

In the work of [26], the author showed that the existence of a plateaued function f from V to
F2 with Fourier spectrum {0,±2t } is equivalent to existence of a partial geometric difference
set inGwith parameters

(
v = 2s+1, k;α, β

)
satisfyingβ−α = 22t−2 and k ∈ {2s, 2s±2t−1}.

Corollary 3.8 Let f be a plateaued function from V toF2 satisfying f (0) = 1. Let S = {x ∈
V : f (x) = 0}. The code CS is a three-weight code whose non-zero weights are provided in
the Table 1.

Example 3.9 Let s + 1 be an odd integer. A plateaued function f with Fourier spectrum of

{0,±2
s+2
2 } is called a semi-bent function. Let f be a semi-bent function satisfying f (0) = 1

and F̂(0) = 0. By applying the Corollary 3.8, we observe that the code CS is a three-weight

binary code with non-zero weights w1 = 2s−1, 2s−1 − 2
s−2
2 and 2s−1 + 2

s+2
2 . The weight

distribution of this code can be obtained by applying the Eq. (8). Hence we get

Aw1 = 2s − 1,

Aw2 = 2s−1 − 2
s−2
2

and

Aw3 = 2s−1 + 2
s−2
2 .

Our results on three-weight codes and semi-bent functions coincide with the results of Ding
[16].

Table 1 Non-zero weights of the
code CS

F̂(0) w1 w2 w3

F̂(0) = 0 2s−1 2s−1 − 2t−2 2s−1 + 2t−2

F̂(0) = 2t 2s−1 − 2t−2 2s−1 − 2t−1 2s−1

F̂(0) = −2t 2s−1 + 2t−2 2s−1 2s−1 + 2t−1
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Next we introduce functions of our second interest. Let f : Fs
2 → F

s
2 be any function.

The Walsh transform W f : Fs
2 × F

s
2 → R defined by

W f (a, b) =
∑
x∈Fs2

(−1)a·x (−1)b· f (x).

Definition 3.10 A function f from F
s
2 to F

s
2 is called an almost bent if W f (a, b) ∈{

±2
s+1
2 , 0

}
for all (a, b) �= (0, 0).

The following characterisation is provided in [11]. A function f is almost bent if and only if
the system of equations

x + y + z = a

f (x) + f (y) + f (z) = b

has 2s −2 or 3 ·2s −2 solutions (x, y, z) for every (a, b). If so, then the system has 3 ·2s −2
solutions if b = f (a), and 2s − 2 solutions otherwise.

Next, we will provide a link between partial geometric designs and almost bent functions.

Theorem 3.11 Let f be a permutation on F
s
2. S = {

(x, f (x)) : x ∈ F
s
2

}
is a partial geo-

metric difference set with parameters
(
v = 22s, k = 2s;α, β

)
satisfying β −α = 2s+1 in the

additive group of Fs
2 × F

s
2 if and only if f is an almost bent function.

Proof Suppose S = {(x, f (x)) : x ∈ F
s
2} is an partial geometric difference set with param-

eters v = 22s and k = 2s and β − α = 2s+1 in the additive group of Fs
2 × F

s
2. For any

non-principal character χ of Fs
2 × F

s
2 we have either χ(S) = ±√

β − α or χ(S) = 0. Here,
any non-principal character χ can be written as a product of characters θa and θb of the
additive group of Fs

2 for some a, b ∈ F
s
2. Note that if one of a or b is 0 then χ(S) = 0. Note

also that if both a and b are non-zero vectors

χ(S) =
∑
x∈Fs2

θa(x)θb( f (x))

=
∑
x∈Fs2

(−1)a·x (−1)b· f (x)

= W f (a, b)

Therefore, f is an almost bent function. Now assume f is an almost bent function. Thus,

|{((x, f (x)), (y, f (y)), (z, f (z))) ∈ S × S × S : (a, b)

= (x + y + z, f (x) + f (y) + f (z))}|
is 3 ·2s −2 when (a, b) ∈ S, 2s −2 otherwise. This implies S is a partial geometric difference
set with parameters v = 22s and k = 2s and β − α = 2s+1 in F

s
2 × F

s
2. �	

Corollary 3.12 Let s be a positive odd integer and f be an almost bent function from F
s
2 to

F
s
2 which is a permutation on F

s
2 satisfying f (0) = 0. Let� be the set

{
(x, f (x)) : x ∈ F

s
2

}\
{(0, 0)}. Then,C� is a three-weight codewith non-zeroweightsw1 = 2s−1, w2 = 2s−1−2

s−1
2

and w3 = 2s−1 + 2
s−1
2 .
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Example 3.13 Let s be a positive odd integer. It was first observed in [8], that permutations
f (x) = x2

i+1 of F2s is almost bent for any i such that i is co-prime with s. For example,
let s = 5 and f (x) = x3. The set S = {

(x, x3) : x ∈ F25
}
is a partial geometric difference

set in the additive group G of F25 × F25 with parameters v = 210, k = 25 β − α = 26.
By Corollary 3.12, the code C� is a three-weight code of length 31 with non-zero weights
w1 = 16, w2 = 12 and w3 = 20. By applying Eq. (11), we can get the weight distribution
of the code C� as Aw1 = 527, Aw2 = 310 and Aw3 = 186.

4 Graphs associated with partial geometric designs

In this section, we are interested in the graphs associated with the three-weight codes and
partial geometric difference sets (which are not difference sets) presented in the previous
section.

An undirected graph is an ordered pair
 = (V, E), comprising a set V of vertices together
with a set E of edges, which are 2-element subsets of V . A graph is said to be connected if
there is a path from a vertex to any other vertex. The adjacency matrix A of 
 is the square
matrix of order |V |, whose entries are ai j = 1 or 0 according as the i-th vertex and j-th
vertex are adjacent or not. A graph is k-regular if there is a positive integer k such hat the
adjacency matrix satisfies the equations

AJ = J A = k J.

In this section, we are interested in k-regular connected graphs.
Let S be a partial geometric difference set with parameters (v, k;α, β) in an additive group

G satisfying S = −S and eG /∈ S, Cayley graph of G with respect to the set S, denoted
Cay(G, S), is the graph with vertex set G where the vertices v andw are adjacent if and only
if w − v ∈ S. The following equation holds in the group ring:

S3 = (β − α)S + αG. (13)

The coefficient of g in S3 counts the number of paths of length 3 from eG to g in Cay(G, S).
Thus, the number of paths of length 3 between two vertices depends only on whether the
vertices are adjacent or not. Equation (13), implies that the adjacency matrix A ofCay(G, S)

satisfies the equation:

A3 = (β − α)A + α J. (14)

Here, note that if adjacency matrix of an undirected graph satisfies the Eq. (14), then there
exists a partial geometric designwith v = b. This is done by considering the adjacencymatrix
of the graph
 = (V, E) as the incidence matrix of a design. The set of points P of the design
is the set of vertices V and B = {Bx : x ∈ V } where Bx = {y : axy = 1}. In the reference
number [24], the author, Nowak and Song search for such graphs to generate new examples of
partial geometric designs. Their search revealed that certain three-class association schemes
are good sources of these graphs. Next wewill introduce the certain graphs that are associated
with three-weight codes and ternary weakly regular bent functions.

Definition 4.1 A k-regular undirected graph with v vertices is called a (v, k;α, β)-graph if
its adjacency matrix satisfies the equation

A3 = (β − α)A + α J

for some integers β > α > 0.
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We note that notion of (v, k;α, β)-graphs are a natural generalization of strongly regular
graphs.

Proposition 4.2 Let 
 be a (v, k;α, β)-graph. Parameters k, α and β satisfy the equation

β − α < k2.

Lemma 4.3 Let A be the adjacency matrix of (v, k;α, β). Then, the matrix A2 has eigen-

values k2, β − α and 0, with multiplicities 1,
vk − k2

β − α
and v − 1 − vk − k2

β − α
, respectively.

Proof Since A satisfies the Eq. (14), the following equation holds:

A2A2 = (β − α)A2 + αk J.

Note that A2 is a symmetricmatrix and commutes the all-onesmatrix J . Thus, the eigenvalues
of A2 are k2, β − α and 0. Let m1, m2 and m3 be the multiplicities of eigenvalues k2, β − α

and 0, respectively. Then, it is clear that m1 = 1. Since trace(A2) = vk, we have

vk = 1 · k2 + m2 · (β − α).

Hence, m2 = vk − k2

β − α
and m3 = v − 1 − vk − k2

β − α
. �	

Corollary 4.4 If 
 is a (v, k, α, β)-graph which is neither a strongly regular graph nor a
complete graph, then 
 has 4 distinct eigenvalues.

Proof Let A be the adjacency matrix of 
. The eigenvalues k2, β −α and 0 of the matrix A2

must be the squares of eigenvalues of A. Hence, possible eigenvalues of A are±k,±√
β − α

and 0. Since β − α < k2 and β > 0, 
 cannot be a bipartite graph. Thus −k is not an
eigenvalue of 
. Also note that since 
 is not a strongly regular graph or a complete graph,
it cannot have 2 or 3 distinct eigenvalues. This completes the proof. �	
Corollary 4.5 Let p be a prime and let m, n and k > 1 be positive integers. Let G be the
additive group of Fn

p. Suppose S is a k-subset of G satisfying S = −S, eG /∈ S . If CS is

a three-weight p-ary code with non-zero weights w1 = (p−1)k
p , w2 = w1 − m(p − 1) and

w3 = w1 + m(p − 1) then Cay(G, S) is a (pn, k;α, β)-graph with 4 distinct eigenvalues.

Proof Let G = {v1, v2, . . . , vpn } and A be the adjacency matrix of Cay(G, S). For each
w ∈ G let χw be the associated group character. We define a vector (Xw)i = χw(vi ). Then,

(AXw) j =
∑
i

ai jχw(vi ) =
∑

v j−vi∈S
χw(vi ) =

∑
s∈S

χw(s + v j ) =
(∑

s∈S
χw(s)

)
(Xw) j .

Therefore,we have the complete set of eigenvectors associatedwith eigenvalues k,
√

β − α, 0
and −√

β − α. �	
Proposition 4.6 Let 
 be a connected k-regular graph with v vertices. If 
 has 4 distinct
eigenvalues k, ±√

β − α and 0 for some integers β > α > 0, then 
 is a (v, k, α, β)-graph.

Proof Let A be the adjacency matrix of 
. Define

M = A
(
A2 − (β − α)I

)
k

(
k2 − β + α

) .

Observe that eigenvalues of M are either 0 or 1 , sum of entries in each row of M is 1 and
rank of M is 1. Hence, M = 1

v
J . This implies A3 is a linear combination of A and J . �	
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4.1 A construction from ternary bent functions

For a prime p, we define a primitive complex p-th root of unity ζp = e
2π
p . Let f be a function

from the field Fpn to Fp . The Walsh transform of f is defined as follows:

W f (μ) =
∑
x∈Fpn

ζ
f (x)+Tr(μx)
p , μ ∈ Fpn

where Tr is the absolute trace function from Fpn to Fp . A function from Fpn to Fp is called
a p-ary bent function if every Walsh coefficient has magnitude p

n
2 .

Lemma 4.7 Let f be a function from the field Fpn to Fpn . R = {(x, f (x)) : x ∈ Fpn } is a
(pn, p, pn, pn−1)-relative difference set in H = Fpn × Fp if and only if f is p-ary bent.

Remark 4.8 Any non-principal character χ of the additive group of Fpn × Fp satisfies
|χ(R)|2 = pn or 0. This observation reveals that the relative difference set R in the above
lemma is a partial geometric difference set.

One can obtain a p-ary bent function in the form of f (x) = Tr(γ P(x)) from a planar
function P and γ �= 0. A function P from Fpn to Fp is called planar if all mappings
x �→ P(x + a) − P(x) are bijective for all a �= 0. It is established in the work of Feng and
Luo that the following holds for f :

W f (μ) = εγ,μ

√
p∗n, εγ,μ ∈ W+ ∪ W−, εγ,0 · εγ,μ ∈ W+.

where εγ,0 ∈ {±1}, W+ =
{
ζ ip : 0 ≤ i ≤ p − 1

}
and W− =

{
−ζ ip : 0 ≤ i ≤ p − 1

}
[21].

Let G be the additive group of F32s+1 for s ≥ 1 and Di = {x : f (x) = i} for i = 0, 1, 2.
Suppose also that f (x) = f (−x) and f (0) = 0. Our goal is to show that Cayley graphs
generated by the sets D1 and D2 are (v, k;α, β)-graphs. Hence, we will conclude that D1

and D2 are partial geometric difference sets in G.

Lemma 4.9 Cay(G, D1) and Cay(G, D2) are
(
v = 32s+1, k = 32s + εγ,0 · 3s;α =(

32s−1 + εγ,0 · 3s−1
) (
32s + 2εγ,0 · 3s) , β = α + 32s

)
-graph and

(
v = 32s+1, k = 32s −

εγ,0 · 3s;α = (
32s−1 − εγ,0 · 3s−1

) (
32s − 2εγ,0 · 3s) , β = α + 32s

)
-graph, respectively.

Proof First by Lemma 4.7 we have that R = {(x, f (x)) : x ∈ F32s+1} is a relative difference
set in H = F32s+1 × F3. Let χμ be a character of the additive group of F32s+1 and ν be the
character of F3 that maps 1 to ζ3. Thus, we have that

(χμ, ν)(R) = W f (μ) = χμ(D0) + χμ(D1)ζ3 + χμ(D0)ζ
2
3 .

This implies

W f (0) = (
32s+1 − |D1| − 2|D2|

) + (|D1| − |D2|) ζ3.

We also have that W f (0) = i
√
33s or W f (0) = −i

√
33s . Therefore, we have two systems

of equations, ⎧⎨
⎩

3|D2|
2 + 3|D1|

2 = 32s+1

−|D2|
2 + |D1|

2 = 3s
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and {
3|D2|
2 + 3|D1|

2 = 32s+1

|D2|
2 − |D1|

2 = 3s .

The solutions of these systems are

|D1| = 32s + 3s, |D2| = 32s − 3s

and

|D1| = 32s − 3s, |D2| = 32s + 3s .

We note that |(χμ, ν)(R)|2 = 32s+1 and χμ(D−1
i ) = χμ(Di ). Hence,

χμ(D1)
2 + χμ(D2)

2 + χμ(D1)χμ(D2) = 32s .

Since only integer solutions of the equation

x2 + y2 + xy = 32s

are (±3s, 0), (0,±3s) and (±3s,∓3s), (χμ(D1), χμ(D2)) can only take values (±3s, 0),
(0,±3s) and (±3s,∓3s). This allows us to conclude that

(χμ(D1), χμ(D2)) = (3s, 0) : W f (μ) = −i
√
33sζ 2

3

(χμ(D1), χμ(D2)) = (0,−3s) : W f (μ) = −i
√
33sζ3

(χμ(D1), χμ(D2)) = (−3s, 3s) : W f (μ) = −i
√
33s

(χμ(D1), χμ(D2)) = (−3s, 0) : W f (μ) = i
√
33sζ 2

3

(χμ(D1), χμ(D2)) = (0, 3s) : W f (μ) = i
√
33sζ3

(χμ(D1), χμ(D2)) = (3s,−3s) : W f (μ) = i
√
33s .

We also know that W f (μ) = iεγ,μ

√
33s . If εγ,0 = −1 then εγ,μ ∈ W−. Thus, in the

case εγ,0 = −1, χμ(D1) and χμ(D2) can only take values ±3s and 0. We also note that
|D1| = 32s − 3s and |D2| = 32s + 3s . Similar idea works for the case εγ,0 = 1. This
completes the proof. �	
Lemma 4.10 Disjoint union of the graphs Cay(G, D1) and Cay(G, D2) is a

(
v = 32s+1,

k = 2 · 32s, α = 2
(
4 · 34s−1 − 32s−1

)
, β = α + 32s

)
-graph.

Proof We want to show that χμ((D1 + D2))
2 takes only the values 32s and 0. We consider

the case εγ,0 = −1 but similar calculations work for the case εγ,0 = 1 too. First observe that

χμ((D1 + D2))
2 = χμ(D1)

2 + χμ(D2)
2 + 2χμ(D1)χμ(D2).

Since we have (χμ(D1), χμ(D2)) = (3s, 0), (χμ(D1), χμ(D2)) = (0,−3s) and
(χμ(D1), χμ(D2)) = (−3s, 3s), χμ((D1 + D2)) takes only the values ±3s and 0. �	
Corollary 4.11 Cay(G, D0 \ {0}) has 4 distinct eigenvalues namely 3s , −1, 3s − 1 and
−3s − 1.

In the work of Tan et al. [28], a link between strongly regular graphs obtained from Cayley
graphs in the additive group of F32s and weakly regular ternary bent functions is established.
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Our result is a natural extension in odd dimension and provides a link between these functions
and (v, k;α, β)-graphs.

It is reported that weakly regular bent functions can be used in the construction process
of three-weight codes in the reference [29]. Our characterisation of ternary weakly regular
bent functions also yields a similar construction of three-weight codes. For example, D0 =
�

⋃{0} is a partial geometric difference set such that for any non-principal character χ ,
χ(S) takes only the values ±3s and 0. Hence by Theorem 3.4, the code C� is a ternary
three-weight code with non-zero weights w1 = 2 · 32s−1, w2 = 2 · (

32s−1 − 3s−1
)
and

w3 = 2 · (
32s−1 + 3s−1

)
.

Acknowledgements We are grateful to anonymous referees for numerous helpful comments which make us
to improve the exposition of the paper.
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