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Abstract It has been known for a long time that t-designs can be employed to construct
both linear and nonlinear codes and that the codewords of a fixed weight in a code may
hold a t-design. While a lot of progress in the direction of constructing codes from t-designs
has been made, only a small amount of work on the construction of t-designs from codes
has been done. The objective of this paper is to construct infinite families of 2-designs and
3-designs from a type of binary linear codes with five weights. The total number of 2-designs
and 3-designs obtained in this paper are exponential in any odd m and the block size of the
designs varies in a huge range.
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1 Introduction

We start with a brief recall of t-designs. Let P be a set of v ≥ 1 elements, and let B be a set
of k-subsets of P, where k is a positive integer with 1 ≤ k ≤ v. Let t be a positive integer
with t ≤ k. The pair D = (P, B) is called a t-(v, k, λ) design, or simply t-design, if every
t-subset of P is contained in exactly λ elements of B. The elements of P are called points,
and those ofB are referred to as blocks.We usually use b to denote the number of blocks inB.

A t-design is called simple if B does not contain repeated blocks. In this paper, we consider
only simple t-designs. A t-design is called symmetric if v = b. It is clear that t-designs with
k = t or k = v always exist. Such t-designs are trivial. In this paper, we consider only
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704 C. Ding

t-designs with v > k > t. A t-(v, k, λ) design is referred to as a Steiner system if t ≥ 2 and
λ = 1, and is denoted by S(t, k, v).

A necessary condition for the existence of a t-(v, k, λ) design is that(
k − i

t − i

)
divides λ

(
v − i

t − i

)
, (1)

for all integer i with 0 ≤ i ≤ t.
The interplay between codes and t-designs goes in two directions. In one direction, the

incidence matrix of any t-design generates a linear code over any finite field GF(q). A lot of
progress in this direction has been made and documented in the literature (see, for examples,
[1,5,19,20]). In the other direction, the codewords of a fixed Hamming weight in a linear
or nonlinear code may hold a t-design. Some linear and nonlinear codes were employed
to construct t-designs [1,10,12,14,16,18–20]. Binary and ternary Golay codes of certain
parameters give 4-designs and 5-designs with fixed parameters. However, the largest t for
which an infinite family of t-designs is derived directly from codes is t = 3. According
to [1,13,19,20], not much progress on the construction of t-designs from codes has been
made so far, while many other constructions of t-designs are documented in the literature
[3,4,13,15,17]. The first motivation of this paper is to demonstrate that exponentially many
infinite families of 3-designs could be constructed from linear codes. The second motivation
is the important applications of t-designs in coding theory, cryptography, communications
and statistics.

The objective of this paper is to construct infinite families of 2-designs and 3-designs
from a type of binary linear codes with five weights. The obtained t-designs depend only on
the weight distribution of the underlying binary codes. The total number of 2-designs and
3-designs presented in this paper are exponential in m, where m ≥ 5 is an odd integer. In
addition, the block size of the designs can vary in a huge range.

2 The classical construction of t-designs from codes

Let C be a [v, κ, d] linear code over GF(q). Let Ai := Ai (C), which denotes the number of
codewordswithHammingweight i inC,where 0 ≤ i ≤ v.The sequence (A0, A1, . . . , Av) is
called theweight distribution ofC, and

∑v
i=0 Ai zi is referred to as theweight enumerator ofC.

For each k with Ak �= 0, let Bk denote the set of the supports of all codewords with Hamming
weight k in C, where the coordinates of a codeword are indexed by (0, 1, 2, . . . , v − 1). Let
P = {0, 1, 2, . . . , v − 1}. The pair (P, Bk) may be a t-(v, k, λ) design for some positive
integer λ. The following theorems, developed by Assmus and Mattson, show that the pair
(P, Bk) defined by a linear code is a t-design under certain conditions.

Theorem 1 (Assmus–Mattson Theorem [2,9], p. 303) Let C be a binary [v, κ, d] code.
Suppose C⊥ has minimum weight d⊥. Suppose that Ai = Ai (C) and A⊥

i = Ai (C⊥), for
0 ≤ i ≤ v, are the weight distributions of C and C⊥, respectively. Fix a positive integer t
with t < d, and let s be the number of i with A⊥

i �= 0 for 0 < i ≤ v − t. Suppose that
s ≤ d − t. Then

• the codewords of weight i in C hold a t-design provided that Ai �= 0 and d ≤ i ≤ v, and
• the codewords of weight i in C⊥ hold a t-design provided that A⊥

i �= 0 and d⊥ ≤ i ≤ v.

To construct t-designs via Theorem1, we will need the following lemma in subsequent
sections, which is a variant of the MacWilliam Identity [21, p. 41].
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Infinite families of 3-designs 705

Theorem 2 LetC bea [v, κ, d] codeoverGF(q)withweight enumerator A(z) = ∑v
i=0 Ai zi

and let A⊥(z) be the weight enumerator of C⊥. Then

A⊥(z) = q− κ(1 + (q − 1)z)vA

(
1 − z

1 + (q − 1)z

)
.

Later in this paper, we will need also the following theorem.

Theorem 3 Let C be an [n, k, d] binary linear code, and let C⊥ denote the dual of C.

Denote by C⊥ the extended code of C⊥, and let C⊥⊥
denote the dual of C⊥. Then we have

the following.

(1) C⊥ has parameters [n, n − k, d⊥], where d⊥ denotes the minimum distance of C⊥.

(2) C⊥ has parameters [n+1, n− k, d⊥], where d⊥ denotes the minimum distance of C⊥,

and is given by

d⊥ =
{
d⊥ if d⊥ is even,
d⊥ + 1 if d⊥ is odd.

(3) C⊥⊥
has parameters [n+1, k+1, d⊥⊥],where d⊥⊥

denotes the minimum distance of

C⊥⊥
. Furthermore, C⊥⊥

has only even-weight codewords, and all the nonzero weights

in C⊥⊥
are the following:

w1, w2, . . . , wt ; n + 1 − w1, n + 1 − w2, . . . , n + 1 − wt ; n + 1,

where w1, w2, . . . , wt denote all the nonzero weights of C.

Proof The conclusions of the first two parts are straightforward. We prove only the conclu-
sions of the third part below.

Since C⊥ has length n + 1 and dimension n − k, the dimension of C⊥⊥
is k + 1. By

assumption, all codes under consideration are binary. By definition, C⊥ has only even-weight
codewords. Recall that C⊥ is the extended code of C⊥. It is known that the generator matrix

of C⊥⊥
is given by [9, p. 15] [

1̄ 1
G 0̄

]
,

where 1̄ = (111 · · · 1) is the all-one vector of length n, 0̄ = (000 · · · 0)T , which is a column

vector of length n, and G is the generator matrix of C. Notice again that C⊥⊥
is binary,

the desired conclusions on the weights in C⊥⊥
follow from the relation between the two

generator matrices of the two codes C⊥⊥
and C. ��

3 A type of binary linear codes with five-weights and related codes

In this section, we first introduce a type of binary linear codes Cm of length n = 2m−1,which
has the weight distribution of Table1, and then analyze their dual codes C⊥

m , the extended

codes C⊥
m , and the duals C⊥

m
⊥
. Such codes will be employed to construct t-designs in Sects. 4

and 5. Examples of such codes will be given in Sect. 6.
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706 C. Ding

Table 1 The weight distribution of Cm for odd m

Weight w No. of codewords Aw

0 1

2m−1 − 2(m+1)/2 (2m − 1) · 2(m−5)/2 · (2(m−3)/2 + 1) · (2m−1 − 1)/3

2m−1 − 2(m−1)/2 (2m − 1) · 2(m−3)/2 · (2(m−1)/2 + 1) · (5 · 2m−1 + 4)/3

2m−1 (2m − 1) · (9 · 22m−4 + 3 · 2m−3 + 1)

2m−1 + 2(m−1)/2 (2m − 1) · 2(m−3)/2 · (2(m−1)/2 − 1) · (5 · 2m−1 + 4)/3

2m−1 + 2(m+1)/2 (2m − 1) · 2(m−5)/2 · (2(m−3)/2 − 1) · (2m−1 − 1)/3

Theorem 4 Let m ≥ 5 be an odd integer and let Cm be a binary code with the weight
distribution of Table1. Then the dual code C⊥

m has parameters [2m − 1, 2m − 1 − 3m, 7],
and its weight distribution is given by

23m A⊥
k =

(
2m − 1

k

)
+ aUa(k) + bUb(k) + cUc(k) + dUd(k) + eUe(k),

where 0 ≤ k ≤ 2m − 1,

a = (
2m − 1

)
2(m−5)/2

(
2(m−3)/2 + 1

) (
2m−1 − 1

)
/3,

b = (
2m − 1

)
2(m−3)/2

(
2(m−1)/2 + 1

) (
5 × 2m−1 + 4

)
/3,

c = (
2m − 1

) (
9 × 22m−4 + 3 × 2m−3 + 1

)
,

d = (
2m − 1

)
2(m−3)/2

(
2(m−1)/2 − 1

) (
5 × 2m−1 + 4

)
/3,

e = (
2m − 1

)
2(m−5)/2

(
2(m−3)/2 − 1

) (
2m−1 − 1

)
/3,

and

Ua(k) =
∑

0≤i≤2m−1−2(m+1)/2

0≤ j≤2m−1+2(m+1)/2−1
i+ j=k

(−1)i
(
2m−1 − 2(m+1)/2

i

)(
2m−1 + 2(m+1)/2 − 1

j

)
,

Ub(k) =
∑

0≤i≤2m−1−2(m−1)/2

0≤ j≤2m−1+2(m−1)/2−1
i+ j=k

(−1)i
(
2m−1 − 2(m−1)/2

i

)(
2m−1 + 2(m−1)/2 − 1

j

)
,

Uc(k) =
∑

0≤i≤2m−1

0≤ j≤2m−1−1
i+ j=k

(−1)i
(
2m−1

i

)(
2m−1 − 1

j

)
,

Ud(k) =
∑

0≤i≤2m−1+2(m−1)/2

0≤ j≤2m−1−2(m−1)/2−1
i+ j=k

(−1)i
(
2m−1 + 2(m−1)/2

i

)(
2m−1 − 2(m−1)/2 − 1

j

)
,
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Infinite families of 3-designs 707

Ue(k) =
∑

0≤i≤2m−1+2(m+1)/2

0≤ j≤2m−1−2(m+1)/2−1
i+ j=k

(−1)i
(
2m−1 + 2(m+1)/2

i

)(
2m−1 − 2(m+1)/2 − 1

j

)
.

Proof By assumption, the weight enumerator of Cm is given by

A(z) = 1 + az2
m−1−2(m+1)/2 + bz2

m−1−2(m−1)/2 + cz2
m−1 + dz2

m−1+2(m−1)/2 + ez2
m−1+2(m+1)/2

.

It then follows from Theorem2 that the weight enumerator of C⊥
m is given by

23m A⊥(z) = (1 + z)2
m−1

⎡
⎣1 + a

(
1 − z

1 + z

)2m−1−2
m+1
2

+ b

(
1 − z

1 + z

)2m−1−2
m−1
2

⎤
⎦

+(1 + z)2
m−1

⎡
⎣c

(
1 − z

1 + z

)2m−1

+ d

(
1 − z

1 + z

)2m−1+2
m−1
2

+ e

(
1 − z

1 + z

)2m−1+2
m+1
2

⎤
⎦ .

Hence, we have

23m A⊥(z) = (1 + z)2
m−1

+a(1 − z)2
m−1−2(m+1)/2

(1 + z)2
m−1+2(m+1)/2−1

+b(1 − z)2
m−1−2(m−1)/2

(1 + z)2
m−1+2(m−1)/2−1

+c(1 − z)2
m−1

(1 + z)2
m−1−1

+d(1 − z)2
m−1+2(m−1)/2

(1 + z)2
m−1−2(m−1)/2−1

+e(1 − z)2
m−1+2(m+1)/2

(1 + z)2
m−1−2(m+1)/2−1.

Obviously, we have

(1 + z)2
m−1 =

2m−1∑
k=0

(
2m − 1

k

)
zk .

It is easily seen that

(1 − z)2
m−1−2(m+1)/2

(1 + z)2
m−1+2(m+1)/2−1 =

2m−1∑
k=0

Ua(k)z
k,

and

(1 − z)2
m−1−2(m−1)/2

(1 + z)2
m−1+2(m−1)/2−1 =

2m−1∑
k=0

Ub(k)z
k .

Similarly,

(1 − z)2
m−1+2(m−1)/2

(1 + z)2
m−1−2(m−1)/2−1 =

2m−1∑
k=0

Ud(k)z
k,

and

(1 − z)2
m−1+2(m+1)/2

(1 + z)2
m−1−2(m+1)/2−1 =

2m−1∑
k=0

Ue(k)z
k .
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708 C. Ding

Finally, we have

(1 − z)2
m−1

(1 + z)2
m−1−1 =

2m−1∑
k=0

Uc(k)z
k .

Combining these formulas above yields the weight distribution formula for A⊥
k .

The weight distribution in Table1 tells us that the dimension of Cm is 3m. Therefore, the
dimension of C⊥

m is equal to 2m − 1 − 3m. Finally, we prove that the minimum distance of
C⊥
m equals 7.
We now prove that A⊥

k = 0 for all k with 1 ≤ k ≤ 6. Let x = 2(m−1)/2. With the weight
distribution formula for C⊥

m obtained before, we have

(
2m − 1

1

)
= 2x2 − 1,

aUa(1) = 1

3
x7 + 7

12
x6 − 2

3
x5 − 7

8
x4 + 5

12
x3 + 7

24
x2 − 1

12
x,

bUb(1) = 10

3
x7 + 5

3
x6 − 2

3
x5 + 1

2
x4 − 11

6
x3 − 2

3
x2 + 2

3
x,

cUc(1) = −9

2
x6 + 3

4
x4 − 5

4
x2 + 1,

dUd(1) = −10

3
x7 + 5

3
x6 + 2

3
x5 + 1

2
x4 + 11

6
x3 − 2

3
x2 − 2

3
x,

eUe(1) = −1

3
x7 + 7

12
x6 + 2

3
x5 − 7

8
x4 − 5

12
x3 + 7

24
x2 + 1

12
x .

Consequently,

23m A⊥
1 =

(
2m − 1

1

)
+ aUa(1) + bUb(1) + cUc(1) + dUd(1) + eUe(1) = 0.

Plugging k = 2 into the weight distribution formula above for C⊥
m , we get that

(
2m − 1

2

)
= 2x4 − 3x2 + 1,

aUa(2) = 7

12
x8 + 5

6
x7 − 35

24
x6 − 13

12
x5 + 7

6
x4 + 1

6
x3 − 7

24
x2 + 1

12
x,

bUb(2) = 5

3
x8 − 5

3
x7 − 7

6
x6 + 7

6
x5 − 7

6
x4 + 7

6
x3 + 2

3
x2 − 2

3
x,

cUc(2) = −9

2
x8 + 21

4
x6 − 2x4 + 9

4
x2 − 1,

dUd(2) = 5

3
x8 + 5

3
x7 − 7

6
x6 − 7

6
x5 − 7

6
x4 − 7

6
x3 + 2

3
x2 + 2

3
x,

eUe(2) = 7

12
x8 − 5

6
x7 − 35

24
x6 + 13

12
x5 + 7

6
x4 − 1

6
x3 − 7

24
x2 − 1

12
x .

As a result,

23m A⊥
2 =

(
2m − 1

2

)
+ aUa(2) + bUb(2) + cUc(2) + dUd(2) + eUe(2) = 0.
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Infinite families of 3-designs 709

Putting k = 3 into the weight distribution formula above for C⊥
m , we obtain that(

2m − 1

3

)
= 4

3
x6 − 4x4 + 11

3
x2 − 1,

aUa(3) = 5

9
x9 + 19

36
x8 − 14

9
x7 + 1

72
x6 + 43

36
x5 − 17

18
x4 − 1

9
x3 + 29

72
x2 − 1

12
x,

bUb(3) = −10

9
x9 − 25

9
x8 + 22

9
x7 + 35

18
x6 − 7

18
x5 + 35

18
x4 − 29

18
x3 − 10

9
x2 + 2

3
x,

cUc(3) = 9

2
x8 − 21

4
x6 + 2x4 − 9

4
x2 + 1,

dUd(3) = 10

9
x9 − 25

9
x8 − 22

9
x7 + 35

18
x6 + 7

18
x5 + 35

18
x4 + 29

18
x3 − 10

9
x2 − 2

3
x,

eUe(3) = −5

9
x9 + 19

36
x8 + 14

9
x7 + 1

72
x6 − 43

36
x5 − 17

18
x4 + 1

9
x3 + 29

72
x2 + 1

12
x .

Hence,

23m A⊥
3 =

(
2m − 1

3

)
+ aUa(3) + bUb(3) + cUc(3) + dUd(3) + eUe(3) = 0.

Plugging k = 4 into the weight distribution formula above for C⊥
m , we get that(

2m − 1

4

)
= 2

3
x8 − 10

3
x6 + 35

6
x4 − 25

6
x2 + 1,

aUa(4) = 19

72
x10 − 1

36
x9 − 25

48
x8 + 113

72
x7 − 35

72
x6 − 77

36
x5

+55

48
x4 + 37

72
x3 − 29

72
x2 + 1

12
x,

bUb(4) = −25

18
x10 − 5

18
x9 + 15

4
x8 − 53

36
x7 − 35

36
x6 + 49

36
x5 − 5

2
x4

+19

18
x3 + 10

9
x2 − 2

3
x,

cUc(4) = 9

4
x10 − 57

8
x8 + 25

4
x6 − 25

8
x4 + 11

4
x2 − 1,

dUd(4) = −25

18
x10 + 5

18
x9 + 15

4
x8 + 53

36
x7 − 35

36
x6 − 49

36
x5 − 5

2
x4

−19

18
x3 + 10

9
x2 + 2

3
x,

eUe(4) = 19

72
x10 + 1

36
x9 − 25

48
x8 − 113

72
x7 − 35

72
x6 + 77

36
x5

+55

48
x4 − 37

72
x3 − 29

72
x2 − 1

12
x .

Consequently,

23m A⊥
4 =

(
2m − 1

4

)
+ aUa(4) + bUb(4) + cUc(4) + dUd(4) + eUe(4) = 0.

Putting k = 5 into the weight distribution formula above for C⊥
m , we obtain that(

2m − 1

5

)
= 4

15
x10 − 2x8 + 17

3
x6 − 15

2
x4 + 137

30
x2 − 1,
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710 C. Ding

aUa(5) = − 1

90
x11 − 103

360
x10 + 59

90
x9 + 1279

720
x8 − 97

40
x7 − 49

40
x6 + 211

90
x5

−529

720
x4 − 173

360
x3 + 169

360
x2 − 1

12
x,

bUb(5) = −1

9
x11 + 23

18
x10 − 14

45
x9 − 781

180
x8 + 121

60
x7 + 91

60
x6 − 169

180
x5

+263

90
x4 − 119

90
x3 − 62

45
x2 + 2

3
x,

cUc(5) = −9

4
x10 + 57

8
x8 − 25

4
x6 + 25

8
x4 − 11

4
x2 + 1,

dUd(5) = 1

9
x11 + 23

18
x10 + 14

45
x9 − 781

180
x8 − 121

60
x7 + 91

60
x6 + 169

180
x5

+263

90
x4 + 119

90
x3 − 62

45
x2 − 2

3
x,

eUe(5) = 1

90
x11 − 103

360
x10 − 59

90
x9 + 1279

720
x8 + 97

40
x7 − 49

40
x6 − 211

90
x5

−529

720
x4 + 173

360
x3 + 169

360
x2 + 1

12
x .

Consequently,

23m A⊥
5 =

(
2m − 1

5

)
+ aUa(5) + bUb(5) + cUc(5) + dUd(5) + eUe(5) = 0.

Plugging k = 6 into the weight distribution formula above for C⊥
m , we arrive at that(

2m − 1

6

)
= 4

45
x12 − 14

15
x10 + 35

9
x8 − 49

6
x6 + 406

45
x4 − 49

10
x2 + 1,

aUa(6) = − 103

1080
x12 − 97

540
x11 + 1897

2160
x10 + 571

1080
x9 − 1573

720
x8 + 193

120
x7

+2117

2160
x6 − 3061

1080
x5 + 385

432
x4 + 857

1080
x3 − 169

360
x2 + 1

12
x,

bUb(6) = 23

54
x12 + 29

54
x11 − 1471

540
x10 − 613

540
x9 + 218

45
x8 − 68

45
x7

−293

540
x6 + 1033

540
x5 − 913

270
x4 + 233

270
x3 + 62

45
x2 − 2

3
x,

cUc(6) = −3

4
x12 + 37

8
x10 − 221

24
x8 + 175

24
x6 − 97

24
x4 + 37

12
x2 − 1,

dUd(6) = 23

54
x12 − 29

54
x11 − 1471

540
x10 + 613

540
x9 + 218

45
x8 + 68

45
x7

−293

540
x6 − 1033

540
x5 − 913

270
x4 − 233

270
x3 + 62

45
x2 + 2

3
x,

eUe(6) = − 103

1080
x12 + 97

540
x11 + 1897

2160
x10 − 571

1080
x9 − 1573

720
x8 − 193

120
x7

+2117

2160
x6 + 3061

1080
x5 + 385

432
x4 − 857

1080
x3 − 169

360
x2 − 1

12
x .

As a result,

23m A⊥
6 =

(
2m − 1

6

)
+ aUa(6) + bUb(6) + cUc(6) + dUd(6) + eUe(6) = 0.
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Plugging k = 7 into the weight distribution formula above for C⊥
m , we obtain(

2m − 1

7

)
= 8

315
x14 − 16

45
x12 + 92

45
x10 − 56

9
x8 + 967

90
x6 − 469

45
x4 + 363

70
x2 − 1,

and

aUa(7) = − 97

1890
x13 − 11

1512
x12 + 125

378
x11 − 8711

15, 120
x10 − 523

7560
x9 + 15, 643

5040
x8

−18, 281

7560
x7−39, 307

15, 120
x6+23, 141

7560
x5− 6619

15, 120
x4−5818

7560
x3 + 1303

2520
x2 − 1

12
x,

bUb(7) = 29

189
x13 − 103

378
x12 − 814

945
x11 + 9071

3780
x10 + 2659

3780
x9 − 554

105
x8 + 3889

1890
x7

+4117

3780
x6 − 6299

3780
x5 + 6857

1890
x4 − 1991

1890
x3 − 494

315
x2 + 2

3
x,

cUc(7) = 3

4
x12 − 37

8
x10 + 221

24
x8 − 175

24
x6 + 97

24
x4 − 37

12
x2 + 1,

dUd(7) = − 29

189
x13 − 103

378
x12 + 814

945
x11 + 9071

3780
x10 − 2659

3780
x9 − 554

105
x8 − 3889

1890
x7

+4117

3780
x6+6299

3780
x5+6857

1890
x4+1991

1890
x3−494

315
x2−2

3
x,

eUe(7) = 97

1890
x13− 11

1512
x12−125

378
x11− 8711

15, 120
x10+ 523

7560
x9+15, 643

5040
x8+18, 281

7560
x7

−39, 307

15, 120
x6 − 23, 141

7560
x5 − 6619

15, 120
x4 + 5819

7560
x3 + 1303

2520
x2 + 1

12
x .

It then follows that

A⊥
7 = 2−3m

((
2m − 1

7

)
+ aUa(7) + bUb(7) + cUc(7) + dUd(7) + eUe(7)

)

= (x2 − 1)(2x2 − 1)(x4 − 5x2 + 34)

630
.

Notice that x4 − 5x2 + 34 = (x2 − 5/2)2 + 34 − 25/4 > 0. We have A⊥
7 > 0 for all odd

m ≥ 5. This proves the desired conclusion on the minimum distance of C⊥
m . ��

Theorem 5 Let m ≥ 5 be an odd integer and let Cm be a binary code with the weight

distribution of Table 1. The code C⊥
m

⊥
has parameters[

2m, 3m + 1, 2m−1 − 2(m+1)/2
]
,

and its weight enumerator is given by

A⊥⊥
(z) = 1 + uz2

m−1−2
m+1
2 + vz2

m−1−2
m−1
2

+wz2
m−1 + vz2

m−1+2
m−1
2 + uz2

m−1+2
m+1
2 + z2

m
, (2)

where

u = 23m−4 − 3 × 22m−4 + 2m−3

3
,

v = 5 × 23m−2 + 3 × 22m−2 − 2m+1

3
,
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w = 2
(
2m − 1

) (
9 × 22m−4 + 3 × 2m−3 + 1

)
.

Proof It follows from Theorem3 that the code has all the weights given in (2). It remains
to determine the frequencies of these weights. The weight distribution of the code Cm given

in Table1 and the generator matrix of the code C⊥
m

⊥
documented in the proof of Theorem3

show that

A⊥⊥
2m−1 = 2c = w,

where c was defined in Theorem 4.
We now determine u and v. Recall that C⊥

m has minimum distance 7. It then follows from

Theorem3 that C⊥
m has minimum distance 8. The first and third Pless power moments say

that {∑2m
i=0 A

⊥⊥
i = 23m+1,∑2m

i=0 i
2A⊥⊥

i = 23m−12m(2m + 1).

These two equations become{
1 + u + v + c = 23m,

(22m−2 + 2m+1)u + (22m−2 + 2m−1)v + 22m−2c + 22m−1 = 24m−2(2m + 1).

Solving this system of equations proves the desired conclusion on the weight enumerator of
this code. ��

Finally, we settle the weight distribution of the code C⊥
m .

Theorem 6 Let m ≥ 5 be an odd integer and let Cm be a binary code with the weight
distribution of Table 1. The code C⊥

m has parameters [2m, 2m − 1 − 3m, 8], and its weight
distribution is given by

23m+1A⊥
k =

(
1 + (−1)k

)(
2m

k

)
+ wE0(k) + uE1(k) + vE2(k), (3)

where w, u, v are defined in Theorem5, and

E0(k) = 1 + (−1)k

2
(−1)�k/2	

(
2m−1

�k/2	
)

,

E1(k) =
∑

0≤i≤2m−1−2(m+1)/2

0≤ j≤2m−1+2(m+1)/2

i+ j=k

[(−1)i + (−1) j ]
(
2m−1 − 2(m+1)/2

i

)(
2m−1 + 2(m+1)/2

j

)
,

E2(k) =
∑

0≤i≤2m−1−2(m−1)/2

0≤ j≤2m−1+2(m−1)/2

i+ j=k

[(−1)i + (−1) j ]
(
2m−1 − 2(m−1)/2

i

)(
2m−1 + 2(m−1)/2

j

)
,

where 0 ≤ k ≤ 2m .

Proof By definition,

dim
(
C⊥
m

)
= dim

(
C⊥
m

)
= 2m − 1 − 3m.
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Infinite families of 3-designs 713

It has been showed in the proof of Theorem4 that the minimum distance of C⊥
m is equal to 8.

We now prove the conclusion on the weight distribution of this code.
By Theorems2 and 5, the weight enumerator of C⊥

m is given by

23m+1A⊥(z) = (1 + z)2
m

[
1 +

(
1 − z

1 + z

)2m

+ w

(
1 − z

1 + z

)2m−1]

+(1 + z)2
m

⎡
⎣u

(
1 − z

1 + z

)2m−1−2
m+1
2

+ v

(
1 − z

1 + z

)2m−1−2
m−1
2

⎤
⎦

+(1 + z)2
m

⎡
⎣v

(
1 − z

1 + z

)2m−1+2
m−1
2

+ u

(
1 − z

1 + z

)2m−1+2
m+1
2

⎤
⎦ . (4)

Consequently, we have

23m+1A⊥(z) = (1 + z)2
m + (1 − z)2

m + w(1 − z2)2
m−1

+u(1 − z)2
m−1−2(m+1)/2

(1 + z)2
m−1+2(m+1)/2

+v(1 − z)2
m−1−2(m−1)/2

(1 + z)2
m−1+2(m−1)/2

+v(1 − z)2
m−1+2(m−1)/2

(1 + z)2
m−1−2(m−1)/2

+u(1 − z)2
m−1+2(m+1)/2

(1 + z)2
m−1−2(m+1)/2

. (5)

We now treat the terms in (5) one by one. We first have

(1 + z)2
m + (1 − z)2

m =
2m∑
k=0

(
1 + (−1)k

)(
2m

k

)
. (6)

One can easily see that

(
1 − z2

)2m−1 =
2m−1∑
i=0

(−1)i
(
2m−1

i

)
z2i =

2m∑
k=0

1 + (−1)k

2
(−1)�k/2	

(
2m−1

�k/2	
)
zk . (7)

Notice that

(1 − z)2
m−1−2(m+1)/2 =

2m−1−2(m+1)/2∑
i=0

(
2m−1 − 2(m+1)/2

i

)
(−1)i zi ,

and

(1 + z)2
m−1+2(m+1)/2 =

2m−1+2(m+1)/2∑
i=0

(
2m−1 + 2(m+1)/2

i

)
zi .

We have then

(1 − z)2
m−1−2(m+1)/2

(1 + z)2
m−1+2(m+1)/2 =

2m∑
k=0

E1(k)z
k . (8)

Similarly, we have

(1 − z)2
m−1−2(m−1)/2

(1 + z)2
m−1+2(m−1)/2 =

2m∑
k=0

E2(k)z
k, (9)
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(1 − z)2
m−1+2(m−1)/2

(1 + z)2
m−1−2(m−1)/2 =

2m∑
k=0

E3(k)z
k, (10)

(1 − z)2
m−1+2(m+1)/2

(1 + z)2
m−1−2(m+1)/2 =

2m∑
k=0

E4(k)z
k . (11)

Plugging (6)–(11) into (5) proves the desired conclusion. ��

4 Infinite families of 2-designs from C⊥
m and Cm

Theorem 7 Let m ≥ 5 be an odd integer and let Cm be a binary code with the weight
distribution of Table 1. Let P = {0, 1, 2, . . . , 2m − 2}, and let B be the set of the supports
of the codewords of Cm with weight k, where Ak �= 0. Then (P, B) is a 2-(2m − 1, k, λ)

design, where

λ = k(k − 1)Ak

(2m − 1)(2m − 2)
,

where Ak is given in Table1.
Let P = {0, 1, 2, . . . , 2m − 2}, and let B⊥ be the set of the supports of the codewords of

C⊥
m with weight k and A⊥

k �= 0. Then (P, B⊥) is a 2-(2m − 1, k, λ) design, where

λ = k(k − 1)A⊥
k

(2m − 1)(2m − 2)
,

where A⊥
k is given in Theorem4.

Proof The weight distribution of C⊥
m is given in Theorem 4 and that of Cm is given in Table

1. By Theorem4, the minimum distance d⊥ of C⊥
m is equal to 7. Put t = 2. The number of i

with Ai �= 0 and 1 ≤ i ≤ 2m − 1 − t is s = 5. Hence, s = d⊥ − t. The desired conclusions
then follow from Theorem1 and the fact that two binary vectors have the same support if and
only if they are equal. ��
Example 1 Let m ≥ 5 be an odd integer and let Cm be a binary code with the weight
distribution of Table 1. Then the BCH code Cm holds five 2-designs with the following
parameters:

• (v, k, λ) =
⎛
⎝2m − 1, 2m−1 − 2

m+1
2 ,

2
m−5
2

(
2
m−3
2 +1

)(
2m−1−2

m+1
2

)(
2m−1−2

m+1
2 −1

)

6

⎞
⎠ .

• (v, k, λ) =
⎛
⎝2m − 1, 2m−1 − 2

m−1
2 ,

2m−2
(
2m−1−2

m−1
2 −1

)
(5×2m−1+4)

6

⎞
⎠ .

• (v, k, λ) = (
2m − 1, 2m−1, 2m−2

(
9 × 22m−4 + 3 × 2m−3 + 1

))
.

• (v, k, λ) =
⎛
⎝2m − 1, 2m−1 + 2

m−1
2 ,

2m−2
(
2m−1+2

m−1
2 −1

)
(5×2m−1+4)

6

⎞
⎠ .

• (v, k, λ) =
⎛
⎝2m − 1, 2m−1 + 2

m+1
2 ,

2
m−5
2

(
2
m−3
2 −1

)(
2m−1+2

m+1
2

)(
2m−1+2

m+1
2 −1

)

6

⎞
⎠ .
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Infinite families of 3-designs 715

Example 2 Let m ≥ 5 be an odd integer and let Cm be a binary code with the weight
distribution of Table 1. Then the supports of all codewords of weight 7 in C⊥

m give a 2-
(2m − 1, 7, λ) design, where

λ = 22(m−1) − 5 × 2m−1 + 34

30
.

Proof By Theorem4, we have

A⊥
7 = (2m−1 − 1)(2m − 1)(22(m−1) − 5 × 2m−1 + 34)

630
.

The desired conclusion on λ follows from Theorem7. ��
Example 3 Let m ≥ 5 be an odd integer and let Cm be a binary code with the weight
distribution of Table 1. Then the supports of all codewords of weight 8 in C⊥

m give a 2-
(2m − 1, 8, λ) design, where

λ = (2m−1 − 4)(22(m−1) − 5 × 2m−1 + 34)

90
.

Proof By Theorem4, we have

A⊥
8 = (2m−1 − 1)(2m−1 − 4)(2m − 1)(22(m−1) − 5 × 2m−1 + 34)

2520
.

The desired conclusion on λ follows from Theorem 7. ��
Example 4 Let m ≥ 7 be an odd integer and let Cm be a binary code with the weight
distribution of Table 1. Then the supports of all codewords of weight 9 in C⊥

m give a 2-
(2m − 1, 9, λ) design, where

λ = (2m−1 − 4)(2m−1 − 16)(22(m−1) − 2m−1 + 28)

315
.

Proof By Theorem4, we have

A⊥
9 = (2m−1 − 1)(2m−1 − 4)(2m−1 − 16)(2m − 1)(22(m−1) − 2m−1 + 28)

11,340
.

The desired conclusion on λ follows from Theorem 7. ��

5 Infinite families of 3-designs from C⊥
m and C⊥

m
⊥

Theorem 8 Let m ≥ 5 be an odd integer and let Cm be a binary code with the weight

distribution of Table 1. LetP = {0, 1, 2, . . . , 2m −1}, and let B⊥⊥
be the set of the supports

of the codewords of C⊥
m

⊥
with weight k, where A⊥⊥

k �= 0. Then (P, B⊥⊥
) is a 3-(2m, k, λ)

design, where

λ = A⊥⊥
k

(k
3

)
(2m
3

) ,

where A⊥⊥
k is given in Theorem 5.
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Let P = {0, 1, 2, . . . , 2m − 1}, and let B⊥ be the set of the supports of the codewords of
C⊥
m with weight k and A⊥

k �= 0. Then (P, B⊥) is a 3-(2m, k, λ) design, where

λ = A⊥
k
(k
3

)
(2m
3

) ,

where A⊥
k is given in Theorem6.

Proof The weight distributions of C⊥
m

⊥
and C⊥

m are described in Theorems 5 and 6. Notice

that the minimum distance d⊥ of C⊥
m

⊥
is equal to 8. Put t = 3. The number of i with A⊥

i �= 0

and 1 ≤ i ≤ 2m − t is s = 5. Hence, s = d⊥ − t. Clearly, two binary vectors have the same
support if and only if they are equal. The desired conclusions then follow from Theorem1. ��
Example 5 Let m ≥ 5 be an odd integer and let Cm be a binary code with the weight

distribution of Table 1. Then C⊥
m

⊥
holds five 3-designs with the following parameters:

• (v, k, λ) =
⎛
⎝2m, 2m−1 − 2

m+1
2 ,

(
2m−1−2

m+1
2

)(
2m−1−2

m+1
2 −1

)(
2m−1−2

m+1
2 −2

)

48

⎞
⎠ .

• (v, k, λ) =
⎛
⎝2m, 2m−1 − 2

m−1
2 ,

2
m−1
2

(
2m−1−2

m−1
2 −1

)(
2
m−1
2 −2

)
(5×2m−3+1)

3

⎞
⎠ .

• (v, k, λ) = (
2m, 2m−1,

(
2m−2 − 1

) (
9 × 22m−4 + 3 × 2m−3 + 1

))
.

• (v, k, λ) =
⎛
⎝2m, 2m−1 + 2

m−1
2 ,

2
m−1
2

(
2m−1+2

m−1
2 −1

)(
2
m−1
2 +2

)
(5×2m−3+1)

3

⎞
⎠ .

• (v, k, λ) =
⎛
⎝2m, 2m−1 + 2

m+1
2 ,

(
2m−1+2

m+1
2

)(
2m−1+2

m+1
2 −1

)(
2m−1+2

m+1
2 −2

)

48

⎞
⎠ .

Example 6 Let m ≥ 5 be an odd integer and let Cm be a binary code with the weight
distribution of Table 1. Then the supports of all codewords of weight 8 in C⊥

m give a 3-
(2m, 8, λ) design, where

λ = 22(m−1) − 5 × 2m−1 + 34

30
.

Proof By Theorem6, we have

A⊥
8 = 2m(2m−1 − 1)(2m − 1)(22(m−1) − 5 × 2m−1 + 34)

315
.

The desired value of λ follows from Theorem 8. ��
Example 7 Let m ≥ 7 be an odd integer and let Cm be a binary code with the weight
distribution of Table 1. Then the supports of all codewords of weight 10 in C⊥

m give a 3-
(2m, 10, λ) design, where

λ = (2m−1 − 4)(2m−1 − 16)(22(m−1) − 2m−1 + 28)

315
.
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Proof By Theorem6, we have

A⊥
10 = 2m−1(2m−1 − 1)(2m − 1)(2m−1 − 4)(2m−1 − 16)(22(m−1) − 2m−1 + 28)

4 × 14,175
.

The desired value of λ follows from Theorem 8. ��
Example 8 Let m ≥ 5 be an odd integer and let Cm be a binary code with the weight
distribution of Table 1. Then the supports of all codewords of weight 12 in C⊥

m give a 3-
(2m, 12, λ) design, where

λ= (2h−2 − 1)(2 × 25h−55 × 24h+647 × 23h − 2727 × 22h+11,541 × 2h − 47, 208)

2835
,

and h = m − 1.

Proof By Theorem6, we have

A⊥
12=ε2(ε2 − 1)(ε2 − 4)(2ε2 − 1)(2ε10−55ε8+647ε6−2727ε4+11, 541ε2 − 47, 208)

8 × 467,775
,

where ε = 2(m−1)/2. The desired value of λ follows from Theorem8. ��

6 Two families of binary cyclic codes with the weight distribution
of Table 1

To prove the existence of the 2-designs in Sect. 4 and the 3-designs in Sect. 5, we present
two families of binary codes of length 2m − 1 with the weight distribution of Table 1.

Let n = qm − 1, where m is a positive integer. Let α be a generator of GF(qm)∗. For any
i with 0 ≤ i ≤ n − 1, let Mi (x) denote the minimal polynomial of β i over GF(q). For any
2 ≤ δ ≤ n, define

g(q,n,δ,b)(x) = lcm (Mb(x), Mb+1(x), . . . ,Mb+δ −2(x)) , (12)

where b is an integer, lcm denotes the least common multiple of these minimal polynomi-
als, and the addition in the subscript b + i of Mb+i (x) always means the integer addition
modulo n. Let C(q,n,δ,b) denote the cyclic code of length n with generator polynomial
g(q,n,δ,b)(x). C(q,n,δ,b) is called a primitive BCH codewith designed distance δ .When b = 1,
the set C(q,n,δ,b) is called a narrow-sense primitive BCH code.

Although primitive BCH codes are not asymptotically good, they are among the best linear
codes when the length of the codes is not very large [5, Appendix A]. So far, we have very
limited knowledge of BCH codes, as the dimension and minimum distance of BCH codes are
in general open, in spite of some recent progress [6,7]. However, in a few cases the weight
distribution of a BCH code can be settled. The following theorem introduces such a case.

Theorem 9 Let m ≥ 5 be an odd integer and let δ = 2m−1 − 1 − 2(m+1)/2. Then the BCH
code C(2,2m−1,δ,0) has length n = 2m − 1, dimension 3m, and the weight distribution in
Table1.

Proof A proof can be found in [8]. ��
It is known that the dual of a BCH code may not be a BCH code. The following theorem

describes a family of cyclic codes having the weight distribution of Table1, which may not
be BCH codes.
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718 C. Ding

Theorem 10 Let m ≥ 5 be an odd integer. Let Cm be the dual of the narrow-sense primitive
BCH code C(2,2m−1,7,1). Then Cm has the weight distribution of Table1.

Proof A proof can be found in [11]. ��

7 Summary and concluding remarks

In this paper,with anybinary linear codeof length 2m−1and theweight distributionofTable1,
exponentiallymany infinite families of 2-designs and 3-designs with various block sizes were
constructed with only one strike. These designs depend only on the weight distribution of the
underlying linear code Cm, and do not depend on the specific construction of the linear code
Cm . In other words, one can tell you that your code and its associated codes (the dual code,
the extended code of the dual code) hold exponentially many 2-designs and 3-designs if you
only tell him/her that you have a binary linear code with the weight distribution of Table1
without giving further information of your linear code. This fact makes Theorems 7 and 8
different from theorems on t-designs from codes documented in the literature, which need the
description of the specific construction of the underlying code. In summary, Theorems7 and
8 are more specific than the original Assmus–Mattson Theorem, as they work only for a type
of linear codes with five weights. They are more general than other theorems on t-designs,
as most theorems on t-designs in the literature apply only to a specific linear code.

Given only the weight distribution of a linear code, it might be impossible to determine
the automorphism group of the linear code. Thus, Theorems7 and 8 may not be proved with
the automorphism group approach. Therefore, the proofs of 7 and 8 given in the paper may
be the only choice. For the same reason, the proofs of Theorems4 and 6 presented in this
paper may not have a choice, though they are complicated and tedious.

The constructions of the exponentially many infinite families of 3-designs presented in
this paper demonstrate that the coding theory approach to constructing t-designs may be
promising, and may stimulate further investigations in this direction. However, it is open if
the codewords of a fixed weight in a family of linear codes can hold an infinite family of
t-designs for some t ≥ 4.

Acknowledgements C. Ding’s research was supported by the Hong Kong Research Grants Council, Proj.
No. 16300415.

References

1. Assmus Jr. E.F., Key J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992).
2. Assmus Jr. E.F., Mattson Jr. H.F.: Coding and combinatorics. SIAM Rev. 16, 349–388 (1974).
3. Beth T., Jungnickel D., Lenz H.: Design Theory. Cambridge University Press, Cambridge (1999).
4. Colbourn C.J., Mathon R.: Steiner systems. In: Colbourn C.J., Dinitz J. (eds.) Handbook of Combinatorial

Designs, pp. 102–110. CRC Press, Boca Raton (2007).
5. Ding C.: Codes from Difference Sets. World Scientific, Singapore (2015).
6. Ding C.: Parameters of several classes of BCH codes. IEEE Trans. Inf. Theory 61, 5322–5330 (2015).
7. Ding C., Du X., Zhou Z.: The Bose and minimum distance of a class of BCH codes. IEEE Trans. Inf.

Theory 61, 2351–2356 (2015).
8. Ding C., Fan C., Zhou Z.: The dimension and minimum distance of two classes of primitive BCH codes.

Finite Fields Appl. 45, 237–263 (2017).
9. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cam-

bridge (2003).

123



Infinite families of 3-designs 719

10. Jungnickel D., Tonchev V.D.: Exponential number of quasi-symmetric SDP designs and codes meeting
the Grey–Rankin bound. Des. Codes Cryptogr. 1, 247–253 (1991).

11. Kasami T.: Chapter 20, weight distributions of Bose–Chaudhuri–Hocquenghem codes. In: Bose R.C.,
Dowlings T.A. (eds.) Combinatorial Mathematics and Applications. University of North Carolina Press,
Chapel Hill (1969).

12. Kennedy G.T., Pless V.: A coding-theoretic approach to extending designs. Discret. Math. 142, 155–168
(1995).

13. Khosrovshahi G.B., Laue H.: t-designs with t ≥ 3. In: Colbourn C.J., Dinitz J. (eds.) Handbook of
Combinatorial Designs, pp. 79–101. CRC Press, New York (2007).

14. Kim J.-L., Pless V.: Designs in additive codes over GF(4). Des. Codes Cryptogr. 30, 187–199 (2003).
15. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam

(1977).
16. Pless V.: Codes and designs—existence and uniqueness. Discret. Math. 92, 261–274 (1991).
17. Reid C., Rosa A.: Steiner systems S(2, 4)—a survey. Electron. J. Comb. #DS18 (2010).
18. Tonchev V.D.: Quasi-symmetric designs, codes, quadrics, and hyperplane sections. Geom. Dedicata 48,

295–308 (1993).
19. Tonchev V.D.: Codes and designs. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol.

II, pp. 1229–1268. Elsevier, Amsterdam (1998).
20. Tonchev V.D.: Codes. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn,

pp. 677–701. CRC Press, New York (2007).
21. van Lint J.H.: Introduction to Coding Theory, 3rd edn. Springer, New York (1999).

123


	Infinite families of 3-designs from a type of five-weight code
	Abstract
	1 Introduction
	2 The classical construction of t-designs from codes
	3 A type of binary linear codes with five-weights and related codes
	4 Infinite families of 2-designs from mathcalCmperp and mathcalCm
	5 Infinite families of 3-designs from overlinemathcalCmperp and overlinemathcalCmperpperp
	6 Two families of binary cyclic codes with the weight distribution of Table 1
	7 Summary and concluding remarks
	Acknowledgements
	References




